Oxidative Stress in Kidney Injury and Hypertension
Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative st...
Gespeichert in:
| Veröffentlicht in: | Antioxidants Jg. 13; H. 12; S. 1454 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
01.12.2024
MDPI |
| Schlagworte: | |
| ISSN: | 2076-3921, 2076-3921 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin–angiotensin–aldosterone system (RAAS) play critical roles in causing kidney injury in HTN. Genetic and environmental factors influence the susceptibility to hypertensive renal damage, with African American populations having a higher tendency due to genetic variants. Managing blood pressure (BP) effectively with treatments targeting RAAS activation, oxidative stress, and inflammation is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. Interactions between genetic and environmental factors impacting kidney function abnormalities are central to HTN development. Animal studies indicate that genetic factors significantly influence BP regulation. Anti-natriuretic mechanisms can reset the pressure–natriuresis relationship, requiring a higher BP to excrete sodium matched to intake. Activation of intrarenal angiotensin II receptors contributes to sodium retention and high BP. In HTN, the gut microbiome can affect BP by influencing energy metabolism and inflammatory pathways. Animal models, such as the spontaneously hypertensive rat and the chronic angiotensin II infusion model, mirror human essential hypertension and highlight the significance of the kidney in HTN pathogenesis. Overproduction of reactive oxygen species (ROS) plays a crucial role in the development and progression of HTN, impacting renal function and BP regulation. Targeting specific NADPH oxidase (NOX) isoforms to inhibit ROS production and enhance antioxidant mechanisms may improve renal structure and function while lowering blood pressure. Therapies like SGLT2 inhibitors and mineralocorticoid receptor antagonists have shown promise in reducing oxidative stress, inflammation, and RAAS activity, offering renal and antihypertensive protection in managing HTN and CKD. This review emphasizes the critical role of NOX in the development and progression of HTN, focusing on its impact on renal function and BP regulation. Effective BP management and targeting oxidative stress, inflammation, and RAAS activation, is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. |
|---|---|
| AbstractList | Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin–angiotensin–aldosterone system (RAAS) play critical roles in causing kidney injury in HTN. Genetic and environmental factors influence the susceptibility to hypertensive renal damage, with African American populations having a higher tendency due to genetic variants. Managing blood pressure (BP) effectively with treatments targeting RAAS activation, oxidative stress, and inflammation is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. Interactions between genetic and environmental factors impacting kidney function abnormalities are central to HTN development. Animal studies indicate that genetic factors significantly influence BP regulation. Anti-natriuretic mechanisms can reset the pressure–natriuresis relationship, requiring a higher BP to excrete sodium matched to intake. Activation of intrarenal angiotensin II receptors contributes to sodium retention and high BP. In HTN, the gut microbiome can affect BP by influencing energy metabolism and inflammatory pathways. Animal models, such as the spontaneously hypertensive rat and the chronic angiotensin II infusion model, mirror human essential hypertension and highlight the significance of the kidney in HTN pathogenesis. Overproduction of reactive oxygen species (ROS) plays a crucial role in the development and progression of HTN, impacting renal function and BP regulation. Targeting specific NADPH oxidase (NOX) isoforms to inhibit ROS production and enhance antioxidant mechanisms may improve renal structure and function while lowering blood pressure. Therapies like SGLT2 inhibitors and mineralocorticoid receptor antagonists have shown promise in reducing oxidative stress, inflammation, and RAAS activity, offering renal and antihypertensive protection in managing HTN and CKD. This review emphasizes the critical role of NOX in the development and progression of HTN, focusing on its impact on renal function and BP regulation. Effective BP management and targeting oxidative stress, inflammation, and RAAS activation, is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin-angiotensin-aldosterone system (RAAS) play critical roles in causing kidney injury in HTN. Genetic and environmental factors influence the susceptibility to hypertensive renal damage, with African American populations having a higher tendency due to genetic variants. Managing blood pressure (BP) effectively with treatments targeting RAAS activation, oxidative stress, and inflammation is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. Interactions between genetic and environmental factors impacting kidney function abnormalities are central to HTN development. Animal studies indicate that genetic factors significantly influence BP regulation. Anti-natriuretic mechanisms can reset the pressure-natriuresis relationship, requiring a higher BP to excrete sodium matched to intake. Activation of intrarenal angiotensin II receptors contributes to sodium retention and high BP. In HTN, the gut microbiome can affect BP by influencing energy metabolism and inflammatory pathways. Animal models, such as the spontaneously hypertensive rat and the chronic angiotensin II infusion model, mirror human essential hypertension and highlight the significance of the kidney in HTN pathogenesis. Overproduction of reactive oxygen species (ROS) plays a crucial role in the development and progression of HTN, impacting renal function and BP regulation. Targeting specific NADPH oxidase (NOX) isoforms to inhibit ROS production and enhance antioxidant mechanisms may improve renal structure and function while lowering blood pressure. Therapies like SGLT2 inhibitors and mineralocorticoid receptor antagonists have shown promise in reducing oxidative stress, inflammation, and RAAS activity, offering renal and antihypertensive protection in managing HTN and CKD. This review emphasizes the critical role of NOX in the development and progression of HTN, focusing on its impact on renal function and BP regulation. Effective BP management and targeting oxidative stress, inflammation, and RAAS activation, is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD.Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin-angiotensin-aldosterone system (RAAS) play critical roles in causing kidney injury in HTN. Genetic and environmental factors influence the susceptibility to hypertensive renal damage, with African American populations having a higher tendency due to genetic variants. Managing blood pressure (BP) effectively with treatments targeting RAAS activation, oxidative stress, and inflammation is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. Interactions between genetic and environmental factors impacting kidney function abnormalities are central to HTN development. Animal studies indicate that genetic factors significantly influence BP regulation. Anti-natriuretic mechanisms can reset the pressure-natriuresis relationship, requiring a higher BP to excrete sodium matched to intake. Activation of intrarenal angiotensin II receptors contributes to sodium retention and high BP. In HTN, the gut microbiome can affect BP by influencing energy metabolism and inflammatory pathways. Animal models, such as the spontaneously hypertensive rat and the chronic angiotensin II infusion model, mirror human essential hypertension and highlight the significance of the kidney in HTN pathogenesis. Overproduction of reactive oxygen species (ROS) plays a crucial role in the development and progression of HTN, impacting renal function and BP regulation. Targeting specific NADPH oxidase (NOX) isoforms to inhibit ROS production and enhance antioxidant mechanisms may improve renal structure and function while lowering blood pressure. Therapies like SGLT2 inhibitors and mineralocorticoid receptor antagonists have shown promise in reducing oxidative stress, inflammation, and RAAS activity, offering renal and antihypertensive protection in managing HTN and CKD. This review emphasizes the critical role of NOX in the development and progression of HTN, focusing on its impact on renal function and BP regulation. Effective BP management and targeting oxidative stress, inflammation, and RAAS activation, is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. |
| Audience | Academic |
| Author | Vendrov, Aleksandr E. Kumar, Nitin Arendshorst, Willaim J. Ganesh, Santhi K. Madamanchi, Nageswara R. |
| AuthorAffiliation | 2 Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; vendrov@med.umich.edu (A.E.V.); kumarni@med.umich.edu (N.K.); sganesh@med.umich.edu (S.K.G.) 3 Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA 1 Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; william_arendshorst@med.unc.edu |
| AuthorAffiliation_xml | – name: 2 Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; vendrov@med.umich.edu (A.E.V.); kumarni@med.umich.edu (N.K.); sganesh@med.umich.edu (S.K.G.) – name: 1 Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; william_arendshorst@med.unc.edu – name: 3 Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA |
| Author_xml | – sequence: 1 givenname: Willaim J. surname: Arendshorst fullname: Arendshorst, Willaim J. – sequence: 2 givenname: Aleksandr E. orcidid: 0000-0003-4971-8040 surname: Vendrov fullname: Vendrov, Aleksandr E. – sequence: 3 givenname: Nitin orcidid: 0000-0003-0153-3493 surname: Kumar fullname: Kumar, Nitin – sequence: 4 givenname: Santhi K. surname: Ganesh fullname: Ganesh, Santhi K. – sequence: 5 givenname: Nageswara R. orcidid: 0000-0003-0590-0908 surname: Madamanchi fullname: Madamanchi, Nageswara R. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39765782$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1Uk1v1DAQtVARLaVXjigSFy5b_BE79glVVaErKvUAnK2JPxavsvZiJ1X33-PQ0nYrsA8ejd97nhm_1-ggpugQekvwKWMKf4Q4hnRLGKGk5e0LdERxJxZMUXLwJD5EJ6WscV2KMInVK3TIVCd4J-kRote3wcIYblzzbcyulCbE5muw0e2aZVxPeddAtM3lbuvy6GIJKb5BLz0MxZ3cn8fox-eL7-eXi6vrL8vzs6uF4ZyOC9F7D9QrzKRihGFChDVGSYtVSyl4sD1mwJUnwLGVxvWUOGGod9B33DJ2jJZ3ujbBWm9z2EDe6QRB_0mkvNKQx2AGpwUn3HPa97y1rfQdsJ5SQYAo7HoQtGp9utPaTv3GWePimGHYE92_ieGnXqUbXavuaCfnaj7cK-T0a3Jl1JtQjBsGiC5NRTPCmRRCClmh759B12nKsc6qolrFMeGie0StoHYQok_1YTOL6jNJCVeKy7nw03-g6rZuE0y1gw81v0d497TThxb_fvmjosmplOz8A4RgPdtK79uqEtpnBBPGapk0TyoM_6P9Bi5Jz4E |
| CitedBy_id | crossref_primary_10_1007_s10157_025_02732_6 crossref_primary_10_1016_j_redox_2025_103724 crossref_primary_10_3389_fmed_2025_1671036 crossref_primary_10_1007_s00210_025_04150_7 crossref_primary_10_1186_s12872_025_04701_z crossref_primary_10_1152_ajprenal_00110_2025 crossref_primary_10_1080_0886022X_2025_2547262 crossref_primary_10_1186_s12951_025_03602_9 crossref_primary_10_1038_s41598_025_09950_8 crossref_primary_10_3390_medsci13020080 crossref_primary_10_1016_j_jprot_2025_105523 crossref_primary_10_3390_life15081287 crossref_primary_10_4103_ETMJ_ETMJ_D_25_00005 crossref_primary_10_1002_dmrr_70075 crossref_primary_10_1177_14703203251351194 |
| Cites_doi | 10.1111/j.1365-2125.2012.04336.x 10.1161/HYPERTENSIONAHA.110.159301 10.1016/j.febslet.2005.12.049 10.1152/physrev.00042.2012 10.1161/01.HYP.0000032100.23772.98 10.1172/JCI115467 10.1161/hy0202.103264 10.1097/HJH.0000000000001378 10.1007/s40292-021-00495-1 10.1016/j.eclinm.2021.100895 10.1139/Y08-012 10.1152/ajpheart.1992.262.6.H1809 10.1016/S0167-0115(00)00164-6 10.1536/ihj.18-392 10.1038/jhh.2013.55 10.1161/JAHA.119.012016 10.1097/00005344-200036051-00059 10.1172/JCI65460 10.1161/01.HYP.34.4.552 10.1161/01.HYP.5.3.368 10.1161/01.HYP.9.6_Pt_2.III130 10.1016/B978-0-12-374530-9.00013-9 10.1007/s10571-021-01044-z 10.1152/ajpheart.01167.2008 10.3390/jcm9082359 10.3892/mmr.2021.12157 10.1016/j.diff.2016.05.008 10.1016/j.ejps.2023.106531 10.1161/CIRCULATIONAHA.105.573709 10.1161/01.RES.80.1.45 10.3390/antiox9070586 10.1161/CIRCRESAHA.111.243972 10.1161/01.HYP.33.6.1353 10.1089/ars.2021.0047 10.1161/HYPERTENSIONAHA.107.089706 10.3389/fendo.2021.738848 10.1155/2020/2142740 10.1161/01.RES.0000263381.83835.7b 10.1161/JAHA.118.011911 10.1038/s41581-021-00393-8 10.1007/BF01649322 10.1161/HYPERTENSIONAHA.111.177006 10.1016/j.redox.2014.01.020 10.1179/174329210X12650506623401 10.1161/HYPERTENSIONAHA.117.10490 10.1111/bph.14965 10.1073/pnas.0605545103 10.1186/s12882-019-1490-z 10.1016/j.celrep.2018.09.058 10.2337/db21-1079 10.1016/j.biopha.2023.115213 10.1097/HJH.0000000000003099 10.3389/fimmu.2022.865772 10.1161/hy0202.103821 10.1159/000078713 10.3390/life12060803 10.1089/ars.2013.5607 10.1016/j.bbrc.2023.01.084 10.1152/physrev.00060.2009 10.3390/kidneydial2020032 10.1093/ajh/hpac124 10.1093/cvr/cvac121 10.1152/ajprenal.00691.2010 10.1016/S0895-7061(00)01255-3 10.1089/ars.2006.8.1597 10.1159/000475890 10.1152/ajpregu.2001.281.5.R1420 10.1089/ars.2020.8032 10.1152/physrev.00023.2016 10.1152/ajprenal.00041.2008 10.1080/07853890.2020.1841281 10.1371/journal.pone.0219483 10.1152/ajprenal.00302.2007 10.1536/ihj.19.886 10.1080/07315724.1989.10720318 10.1161/HYPERTENSIONAHA.109.134320 10.2174/1573402111666150529130922 10.1089/ars.2013.5259 10.1152/ajprenal.00565.2018 10.1177/1470320310391330 10.1159/000115289 10.1007/s11906-002-0041-2 10.1016/j.ejphar.2020.173228 10.1016/0014-2999(79)90211-5 10.1016/j.atherosclerosis.2010.04.031 10.1161/01.HYP.7.3.340 10.1161/CIRCRESAHA.121.318063 10.1016/j.amjhyper.2005.11.008 10.1152/ajpheart.00981.2007 10.1038/194480b0 10.1038/s41440-023-01301-2 10.1152/ajprenal.00024.2013 10.1007/s11886-018-0943-5 10.1016/S0895-7061(01)02233-6 10.1152/ajpcell.00528.2022 10.5551/jat.4556 10.1152/ajprenal.00116.2005 10.1152/ajpcell.00301.2011 10.1161/01.HYP.4.5_Pt_2.III108 10.1016/j.redox.2016.08.013 10.1152/ajprenal.00463.2012 10.1016/j.vph.2022.107095 10.1084/jem.132.5.976 10.5301/JN.2010.6 10.1016/j.biopha.2023.115289 10.1161/JAHA.120.019995 10.3390/nu10091154 10.1038/s41440-023-01324-9 10.1161/HYPERTENSIONAHA.120.15295 10.1152/ajpendo.00022.2023 10.1097/00004872-198312000-00004 10.1113/EP086204 10.1016/j.vph.2017.05.003 10.3109/10641963.2011.566956 10.1080/10715762.2016.1181757 10.1161/01.HYP.27.2.176 10.2174/1573402111999150521102331 10.1097/00004872-200107000-00007 10.1038/s41581-024-00836-y 10.1152/ajpregu.00250.2005 10.1016/j.cardiores.2007.03.030 10.3390/ijms23168915 10.1016/j.kint.2019.02.030 10.1016/j.mce.2015.02.007 10.1161/HYPERTENSIONAHA.115.06280 10.2174/1381612811319170009 10.1046/j.1523-1755.2000.00148.x 10.2302/kjm.59.84 10.1681/ASN.2012111112 10.1152/ajprenal.00107.2022 10.1210/en.2013-1937 10.1111/cns.12131 10.1016/S0895-7061(96)00325-1 10.1016/j.lfs.2014.05.011 10.1038/aps.2013.193 10.1097/00004872-199715040-00004 10.1097/MNH.0000000000000844 10.1007/978-981-13-8871-2_12 10.1097/MNH.0b013e32831c50a1 10.1101/2020.02.17.952507 10.1177/15353702-0322805-04 10.1152/ajpregu.00541.2009 10.1016/j.freeradbiomed.2019.09.029 10.1161/CIRCULATIONAHA.112.132159 10.1159/000528783 10.1016/j.yexmp.2019.104296 10.1161/01.HYP.38.2.171 10.1139/y92-100 10.1111/j.0954-6820.1979.tb00753.x 10.1161/CIRCULATIONAHA.115.018912 10.1038/ncpneph0283 10.1291/hypres.30.991 10.1097/00005344-199609000-00006 10.1097/00004872-200403000-00016 10.1016/j.acvd.2017.03.011 10.1007/5584_2016_85 10.1096/fj.202000966RR 10.1081/CEH-200044267 10.1111/jpi.12287 10.1152/ajprenal.00120.2019 10.1161/JAHA.121.023397 10.1006/bbrc.2001.5312 10.1016/j.freeradbiomed.2009.08.026 10.1016/j.cjca.2020.02.081 10.1016/j.cellsig.2019.109506 10.1152/ajpregu.2002.282.1.R31 10.1161/HYPERTENSIONAHA.121.18711 10.1161/HYPERTENSIONAHA.121.18643 10.1016/j.lfs.2021.119018 10.1161/01.RES.0000012569.55432.02 10.1161/HYPERTENSIONAHA.118.11176 10.1161/01.HYP.31.1.397 10.1016/j.steroids.2019.108494 10.1152/ajprenal.00028.2010 10.1097/FJC.0b013e318046f34a 10.1681/ASN.2004050425 10.1038/ki.2009.157 10.1007/s00125-019-4924-z 10.1111/j.1440-1681.2007.04642.x 10.1172/JCI118623 10.1161/01.HYP.0000242928.57344.92 10.3949/ccjm.90a.22046 10.1155/2019/8912768 10.1081/CEH-120020395 10.1161/01.HYP.0000094557.36656.D0 10.1155/2018/1841046 10.3109/08037059709086446 10.1002/emmm.201000080 10.1016/j.freeradbiomed.2011.12.007 10.1038/s41420-022-00822-y 10.1152/ajplung.00134.2010 10.1016/j.redox.2021.102115 10.1042/CS20210094 10.1089/ars.2017.7402 10.1016/j.cjca.2017.12.005 10.1046/j.1365-201x.2000.00630.x 10.1152/ajpregu.00122.2017 10.3390/ijms20030629 10.1002/jcp.25210 10.1093/ajh/4.4.341S 10.1161/HYPERTENSIONAHA.119.11684 10.1152/ajprenal.00438.2013 10.1016/j.amjhyper.2004.09.001 10.1161/01.HYP.38.2.249 10.1097/HJH.0b013e3283468367 10.1038/hr.2010.201 10.1152/ajpregu.00029.2006 10.1097/MNH.0000000000000149 10.1152/ajpregu.90960.2008 10.2174/1381612821666151029112302 10.1161/HYPERTENSIONAHA.118.10824 10.1016/j.vph.2005.08.024 10.1016/j.cmet.2020.06.020 10.1161/HYP.0000000000000084 10.1042/CS20050055 10.1161/CIRCULATIONAHA.105.538934 10.1111/j.1474-9726.2012.00796.x 10.1016/j.amjhyper.2005.05.022 10.1089/ars.2016.6665 10.1161/HYPERTENSIONAHA.108.189141 10.1161/CIRCRESAHA.112.267054 10.1152/ajpheart.00637.2004 10.1124/pr.59.3.3 10.1152/ajpregu.00601.2006 10.1111/j.1440-1681.2008.05078.x 10.1016/j.amjhyper.2004.04.010 10.1152/ajpregu.90718.2008 10.1111/j.1440-1681.1994.tb02480.x 10.1016/j.bbadis.2019.05.010 10.1016/j.freeradbiomed.2008.04.024 10.1038/s41598-023-46016-z 10.1152/ajpregu.00207.2011 10.1097/00004872-200208000-00024 10.1159/000110021 10.1161/HYPERTENSIONAHA.120.15058 10.1152/ajprenal.00060.2004 10.1155/2016/2807490 10.1161/01.HYP.35.5.1078 10.1161/JAHA.116.003698 10.1016/j.freeradbiomed.2004.04.018 10.1161/01.HYP.4.6.753 10.1159/000479846 10.1111/apha.13256 10.1016/j.exger.2011.02.003 10.1371/journal.pbio.3000885 10.3389/fphys.2021.752924 10.1159/000516213 10.1081/CEH-120024986 10.1161/01.HYP.17.1.54 10.1124/jpet.105.088062 10.1152/ajprenal.00351.2011 10.1038/s41440-020-0410-8 10.1152/ajpheart.00638.2004 10.1016/j.jash.2011.02.001 10.1161/01.HYP.0000178189.68229.8a 10.1161/01.HYP.14.4.396 10.1007/s10157-014-0998-6 10.1146/annurev-physiol-031620-095920 10.1097/01.ASN.0000117774.83396.E9 10.1152/ajprenal.00194.2018 10.1111/apha.13662 10.1161/CIRCULATIONAHA.120.050686 10.1371/journal.pone.0105337 10.1111/j.1523-1755.2005.00392.x 10.1161/01.HYP.38.3.655 10.1161/HYPERTENSIONAHA.110.157115 10.3390/ph6030407 10.1016/j.vph.2005.03.004 10.1016/j.ajpath.2019.02.004 10.1007/s11906-006-0068-x 10.1016/j.celrep.2020.107954 10.1161/01.HYP.0000136393.26777.63 10.2174/1573402110666140131155028 10.1042/CS20140361 10.1016/j.amjhyper.2003.09.007 10.1254/jphs.09148FP 10.1097/MNH.0000000000000081 10.1152/physiolgenomics.00073.2018 10.1111/j.1440-1797.2012.01572.x 10.1161/01.HYP.0000088363.65943.6C 10.2174/1573402115666190415153554 10.1002/sctm.17-0232 10.1016/j.regpep.2004.12.004 10.1161/01.HYP.0000200023.02195.73 10.1152/ajprenal.00501.2020 10.1159/000086411 10.3390/jcm12216868 10.1161/01.HYP.21.6.949 10.1038/sj.jhh.1001982 10.1152/ajprenal.00552.2020 10.1152/ajprenal.00596.2014 10.1093/ndt/gfn489 10.3109/07853890.2011.653393 10.1016/j.bbadis.2013.02.010 10.3904/kjim.1999.14.1.21 10.1291/hypres.29.813 10.1161/01.HYP.0000158845.49943.5e 10.3389/fmicb.2022.814855 10.1097/00004872-200103000-00010 10.1097/01.ASN.0000127045.14709.75 10.1016/j.freeradbiomed.2018.12.026 10.1152/ajpregu.90875.2008 10.1152/ajprenal.00542.2011 10.1159/000104834 10.1097/01.ASN.0000108523.02100.E0 10.3390/ijms20153711 10.3390/biom14010137 10.1093/ndt/16.suppl_1.50 10.1152/ajpheart.01042.2009 10.1152/ajpregu.00346.2001 10.1080/10641963.2017.1416118 10.1016/j.bcp.2007.07.004 10.1097/00004872-200201000-00019 10.1152/physrev.00056.2003 10.2337/db06-0895 10.1172/JCI116710 10.1089/ars.2013.5374 10.1074/jbc.M113.470971 10.1042/BJ20061903 10.1097/MS9.0000000000001498 10.1681/ASN.V115835 10.1161/CIRCRESAHA.109.193722 10.1152/ajprenal.00090.2005 10.1161/HYPERTENSIONAHA.121.17981 10.3109/07853890.2012.671538 10.1681/ASN.2012040373 10.1161/01.HYP.0000049621.85474.CF 10.1124/pharmrev.120.000281 10.1111/j.1523-1755.2005.00670.x 10.1161/01.HYP.31.6.1248 10.1152/ajpheart.00114.2008 10.1007/s00424-014-1548-5 10.1152/ajpregu.90650.2008 10.1152/ajprenal.1986.251.4.F655 10.2174/15734021113099990005 10.1161/JAHA.118.009388 10.1161/HYPERTENSIONAHA.107.092858 10.1161/01.HYP.26.6.1030 10.1097/HJH.0b013e3282ef84f8 10.1038/hr.2009.29 10.1152/ajprenal.90291.2008 10.1016/j.freeradbiomed.2017.02.021 10.1111/j.1523-1755.2004.00372.x 10.1089/ars.2012.4918 10.1053/j.ajkd.2007.12.012 10.1161/01.HYP.36.6.957 10.1016/j.bbrc.2009.01.107 10.1081/CEH-200044249 10.1111/jphp.13340 10.1161/CIRCRESAHA.122.321762 10.3390/ijms241310710 10.1007/s11906-006-0014-y 10.1161/01.HYP.0000094220.06020.C8 10.1042/CS20050227 10.1046/j.1523-1755.1999.00596.x 10.1111/j.1742-7843.2011.00785.x 10.1111/j.1365-201X.2004.01332.x 10.1016/j.trsl.2013.09.008 10.1152/ajprenal.00053.2022 10.1046/j.1523-1755.62.s82.2.x 10.1093/ajh/3.11.893 10.1038/labinvest.2017.120 10.1161/HYPERTENSIONAHA.107.103192 10.1021/bi500331y 10.1161/hh1701.096037 10.1016/j.biopha.2022.114149 10.1016/j.freeradbiomed.2007.05.014 10.1152/ajprenal.90628.2008 10.2174/1573402111666150530203858 10.3390/biom12010143 10.1152/ajprenal.00568.2016 10.1371/annotation/a392bbef-b0ec-4c70-b403-74a7bad85178 10.1038/s41440-019-0326-3 10.1097/00004872-200410000-00027 10.1097/00004872-200312000-00019 10.1097/00004872-200202000-00018 10.1038/s41573-021-00233-1 10.1161/HYPERTENSIONAHA.113.02558 10.1152/ajpregu.00476.2002 10.3109/10641963.2014.943402 10.1016/j.redox.2019.101234 10.1161/01.HYP.0000160404.08866.5a 10.2215/CJN.11491116 10.1074/jbc.M406486200 10.1042/cs0740063 10.1152/ajprenal.00477.2013 10.1016/j.jphs.2022.09.004 10.1038/s41581-021-00490-8 10.1093/ndt/gfy161 10.3389/fphys.2020.566410 10.1016/S0021-5198(19)52620-8 10.1177/03000605231206289 10.1161/HYPERTENSIONAHA.111.182923 10.2174/18756506OTg2CNjUuTcVY 10.1161/01.HYP.32.1.59 10.3390/ijms25020869 10.1177/1753944715574817 10.1152/ajpheart.00976.2006 10.1161/hh0901.089987 10.1172/JCI119297 10.1159/000109993 10.1161/HYPERTENSIONAHA.108.124511 10.1111/j.1440-1681.1986.tb02379.x |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 7QR 7T5 7TO 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ H94 HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/antiox13121454 |
| DatabaseName | CrossRef PubMed Chemoreception Abstracts Immunology Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2076-3921 |
| ExternalDocumentID | oai_doaj_org_article_6515f52bb54d48f7a3b2261a190eba62 PMC11672783 A821599582 39765782 10_3390_antiox13121454 |
| Genre | Journal Article Review |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM 7QR 7T5 7TO 8FD ABUWG AZQEC DWQXO FR3 GNUQQ H94 P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c552t-6bffa2f903893130116dcc98d09422afadb03a59f1a50d8ceb21e6c2feab75d33 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001384093700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3921 |
| IngestDate | Fri Oct 03 12:36:08 EDT 2025 Tue Nov 04 02:03:37 EST 2025 Fri Sep 05 13:54:01 EDT 2025 Fri Jul 25 12:03:18 EDT 2025 Tue Nov 11 10:50:10 EST 2025 Tue Nov 04 18:13:56 EST 2025 Sat Jan 11 01:32:10 EST 2025 Tue Nov 18 22:17:45 EST 2025 Sat Nov 29 07:11:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | chronic kidney disease Nrf2/ARE pathway NADPH oxidases antioxidants TGF-β signaling mitochondrial dysfunction renal dysfunction vascular remodeling MR receptor antagonists NF-κB signaling inflammation angiotensin II ROS renin–angiotensin–aldosterone system (RAAS) redox-sensitive signaling pathways fibrosis hypertension oxidative stress SGLT2 inhibitors |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c552t-6bffa2f903893130116dcc98d09422afadb03a59f1a50d8ceb21e6c2feab75d33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-0153-3493 0000-0003-0590-0908 0000-0003-4971-8040 |
| OpenAccessLink | https://www.proquest.com/docview/3149501567?pq-origsite=%requestingapplication% |
| PMID | 39765782 |
| PQID | 3149501567 |
| PQPubID | 2032435 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6515f52bb54d48f7a3b2261a190eba62 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11672783 proquest_miscellaneous_3153866868 proquest_journals_3149501567 gale_infotracmisc_A821599582 gale_infotracacademiconefile_A821599582 pubmed_primary_39765782 crossref_primary_10_3390_antiox13121454 crossref_citationtrail_10_3390_antiox13121454 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Antioxidants |
| PublicationTitleAlternate | Antioxidants (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Su (ref_135) 2021; 24 ref_136 ref_372 Manger (ref_362) 2003; 21 Boulestreau (ref_27) 2022; 11 Tian (ref_359) 2005; 45 Rapp (ref_326) 1985; 7 Khanna (ref_367) 2008; 52 Fukui (ref_282) 1997; 80 Adejare (ref_360) 2020; 14 Feng (ref_131) 2019; 1865 ref_369 Haque (ref_293) 2008; 295 Briones (ref_185) 2011; 5 Hocher (ref_88) 1997; 99 ref_365 Tomino (ref_22) 2013; 9 Rettig (ref_63) 1993; 7 Segura (ref_26) 2004; 15 Cediel (ref_84) 2002; 62 Spitler (ref_183) 2014; 63 Nagaoka (ref_168) 1982; 32 Howitt (ref_125) 2015; 467 Gong (ref_334) 2022; 8 ref_393 Salman (ref_114) 2011; 24 ref_394 ref_277 Wolf (ref_34) 1993; 92 Rao (ref_5) 2008; 51 Virdis (ref_257) 2004; 22 Cao (ref_194) 2011; 29 Feng (ref_208) 2001; 281 Jia (ref_375) 2021; 78 Konior (ref_104) 2014; 20 Holterman (ref_101) 2015; 128 Zhan (ref_196) 2004; 22 ref_269 Vaziri (ref_116) 2008; 52 ref_147 Granger (ref_85) 2006; 8 Zhai (ref_421) 2023; 51 Wang (ref_420) 2023; 653 Zhou (ref_181) 2008; 295 Jankowski (ref_6) 2021; 143 ref_381 ref_142 Akasaki (ref_243) 2006; 29 Welch (ref_274) 2006; 48 Yuan (ref_33) 2019; 1165 Bruckert (ref_411) 2022; 146 Tashiro (ref_350) 2015; 19 Wen (ref_346) 2019; 189 Yahr (ref_157) 2023; 90 Somanna (ref_294) 2016; 231 Herlitz (ref_165) 1979; 625 Herlitz (ref_246) 2005; 109 Vaziri (ref_198) 1998; 31 Kataoka (ref_351) 2001; 14 Gill (ref_100) 2006; 8 Biswas (ref_115) 2008; 28 Rhyu (ref_19) 2005; 16 Pech (ref_309) 2006; 19 Touyz (ref_109) 2011; 34 Zhou (ref_348) 2001; 19 Galla (ref_93) 2018; 50 Younis (ref_138) 2020; 72 Peshavariya (ref_301) 2014; 20 Souders (ref_95) 2022; 42 Pechanova (ref_236) 2006; 110 Samai (ref_271) 2007; 43 Weinberger (ref_57) 2006; 8 Polizio (ref_191) 2005; 128 Pavlov (ref_358) 2020; 34 Ling (ref_278) 2018; 102 Schluter (ref_233) 2006; 291 Vendrov (ref_61) 2022; 36 Gray (ref_155) 2013; 127 Lee (ref_390) 2019; 317 Chen (ref_384) 2023; 324 Mistry (ref_371) 2023; 32 Carlstrom (ref_67) 2015; 95 Karbach (ref_312) 2016; 5 Avery (ref_313) 2023; 119 Deelman (ref_35) 2009; 18 Diez (ref_180) 1998; 19 Kim (ref_416) 2019; 42 Bendall (ref_291) 2007; 100 Cui (ref_295) 2009; 111 Wang (ref_255) 2010; 56 Adler (ref_189) 2004; 287 Gray (ref_106) 2015; 21 ref_225 Meng (ref_331) 2002; 283 Yao (ref_402) 2023; 324 Gonzalez (ref_251) 2015; 9 Chien (ref_195) 2014; 163 Satou (ref_252) 2009; 53 Park (ref_182) 2002; 15 Tian (ref_319) 2007; 293 Elks (ref_235) 2009; 296 Liu (ref_129) 2009; 76 Wang (ref_132) 2018; 314 Callera (ref_148) 2003; 42 Vaziri (ref_197) 2000; 36 Wei (ref_270) 2010; 75 Ohshiro (ref_51) 2006; 55 Kopkan (ref_306) 2006; 290 Harrap (ref_216) 1986; 13 Meng (ref_211) 2018; 98 Graton (ref_187) 2019; 134 Hashimoto (ref_226) 2010; 17 Crowley (ref_64) 2006; 103 Chandramohan (ref_327) 2008; 28 Ono (ref_210) 1996; 27 Luft (ref_249) 1989; 14 Sasser (ref_279) 2010; 298 Sharma (ref_17) 2000; 58 Laude (ref_283) 2005; 288 Araujo (ref_71) 2014; 20 Benigni (ref_253) 2010; 2 Cappetta (ref_361) 2019; 2019 Kemp (ref_219) 2019; 8 Sawami (ref_396) 2023; 46 Chen (ref_347) 1991; 88 Whiting (ref_275) 2013; 305 Bhatt (ref_79) 2014; 36 Wilcox (ref_32) 2002; 4 Jaimes (ref_300) 2005; 68 Khalil (ref_69) 2013; 6 Cowley (ref_356) 2016; 67 Rizzoni (ref_214) 2003; 25 Das (ref_54) 2014; 306 Papinska (ref_299) 2018; 2018 Lavoie (ref_58) 2004; 181 Speed (ref_83) 2011; 301 Yu (ref_141) 2014; 2 Mennuni (ref_40) 2014; 28 Patinha (ref_192) 2014; 108 Buday (ref_16) 2010; 299 Welch (ref_205) 2005; 68 Das (ref_392) 2020; 68 Matsuno (ref_268) 2005; 112 Laursen (ref_386) 2021; 37 Bao (ref_281) 2007; 49 Christensen (ref_80) 1988; 6 DeFronzo (ref_4) 2021; 17 Takenaka (ref_239) 2018; 72 Wilcox (ref_378) 2020; 75 Bayorh (ref_345) 2005; 18 Vera (ref_311) 2007; 292 Churchill (ref_324) 1992; 262 Mule (ref_28) 2017; 956 Holterman (ref_144) 2019; 30 ref_55 Toral (ref_94) 2020; 177 Moreno (ref_266) 2002; 282 Rapp (ref_322) 1982; 4 Lam (ref_373) 2024; 20 Kolkhof (ref_413) 2021; 52 Zhan (ref_193) 2004; 65 Baumann (ref_212) 2007; 25 Rey (ref_286) 2001; 89 Diao (ref_355) 2017; 106 Jha (ref_31) 2019; 62 Romero (ref_87) 2010; 212 ref_68 ref_66 ref_287 Wang (ref_316) 2017; 35 Camargo (ref_245) 1991; 4 Tian (ref_330) 2008; 295 Rettig (ref_161) 1996; 10 Saravia (ref_364) 2021; 232 Ando (ref_320) 2012; 44 Schroder (ref_124) 2012; 110 Majid (ref_110) 2007; 34 Burnier (ref_376) 2023; 132 Michaeloudes (ref_53) 2011; 300 Wang (ref_285) 2001; 88 Navar (ref_75) 2002; 39 Naruse (ref_240) 2000; 36 Landmesser (ref_261) 2002; 40 Prior (ref_122) 2016; 9 Daou (ref_150) 2004; 37 Kawabe (ref_163) 1978; 19 Selemidis (ref_154) 2007; 75 Ogobi (ref_151) 2005; 43 Cao (ref_209) 2020; 2020 Rettig (ref_160) 2005; 46 Knudsen (ref_325) 1970; 132 Song (ref_380) 2019; 317 Kobori (ref_333) 2013; 19 Dukacz (ref_81) 1999; 276 Zimmerman (ref_127) 2011; 58 Lyle (ref_121) 2009; 105 Shokoji (ref_227) 2003; 41 Chappell (ref_76) 2004; 143 Kohan (ref_82) 2011; 91 Elkazzaz (ref_391) 2021; 280 ref_49 Cowley (ref_62) 1997; 273 Sun (ref_14) 2016; 92 ref_9 Chabrashvili (ref_272) 2003; 285 Baumann (ref_213) 2007; 25 Nakamura (ref_244) 1994; 5 Takeda (ref_337) 2009; 32 Sorensen (ref_207) 2005; 289 Weber (ref_280) 2005; 288 Shimada (ref_305) 2022; 79 Efrati (ref_222) 2007; 106 ref_99 ref_97 Kobori (ref_72) 2007; 59 Leibowitz (ref_340) 2016; 60 Ott (ref_23) 2013; 75 Damianaki (ref_379) 2022; 29 Kimura (ref_424) 2019; 60 Aoyagi (ref_297) 2019; 8 Lassegue (ref_103) 2012; 110 Fitzgerald (ref_248) 1997; 6 Calhoun (ref_44) 2008; 51 Mironova (ref_289) 2022; 323 Kerr (ref_241) 1999; 33 Zhou (ref_254) 2003; 42 Bakris (ref_400) 2022; 18 Shokoji (ref_232) 2004; 44 Ortiz (ref_310) 2001; 38 Saleem (ref_262) 2018; 315 Vallon (ref_388) 2021; 83 Gavazzi (ref_288) 2006; 580 Rajagopalan (ref_108) 1996; 97 Zhou (ref_338) 2011; 33 Yang (ref_98) 2022; 79 Morawietz (ref_242) 2001; 285 Sedeek (ref_139) 2010; 299 Wyss (ref_228) 1992; 70 Rettig (ref_158) 1991; 69 Jennings (ref_302) 2012; 302 Chakraborty (ref_366) 2018; 25 Williams (ref_7) 1989; 8 Ikeda (ref_342) 1995; 26 Bianchi (ref_59) 1973; 45 Duni (ref_368) 2020; 16 Roman (ref_170) 1990; 3 Croteau (ref_387) 2021; 10 Mills (ref_1) 2016; 134 Katholi (ref_231) 1985; 44 Chen (ref_152) 2013; 19 Ponnuchamy (ref_56) 2009; 296 Hinden (ref_397) 2020; 32 Tomita (ref_398) 2020; 32 Armando (ref_317) 2015; 11 Shaheen (ref_374) 2024; 86 Qi (ref_48) 2015; 405 Lundie (ref_172) 1997; 15 Montezano (ref_25) 2012; 44 Harrap (ref_162) 1994; 21 Caetano (ref_15) 2001; 38 Touyz (ref_143) 2019; 104 Yun (ref_215) 2018; 40 Zhao (ref_41) 2008; 28 Navar (ref_250) 2000; 168 Nishiyama (ref_42) 2004; 15 Dikalova (ref_78) 2005; 112 Wang (ref_133) 2019; 111 Yogi (ref_264) 2008; 51 Ambasta (ref_118) 2004; 279 Jia (ref_414) 2023; 46 Cruzado (ref_186) 2005; 18 Nava (ref_199) 1996; 9 Kassab (ref_89) 1998; 31 Griendling (ref_38) 2021; 128 Madrid (ref_60) 1997; 273 Liu (ref_217) 2009; 36 Castrop (ref_344) 2001; 19 Wang (ref_354) 2017; 42 McLennan (ref_166) 1991; 17 Touyz (ref_263) 2005; 45 Carlstrom (ref_284) 2009; 296 Huang (ref_341) 2016; 2016 Yousefipour (ref_223) 2014; 35 Dikalov (ref_290) 2014; 20 Diep (ref_221) 2001; 38 Hasan (ref_395) 2022; 150 Shimada (ref_304) 2020; 76 Carlstrom (ref_273) 2010; 56 Wang (ref_292) 2012; 11 Lee (ref_296) 2013; 288 Cheng (ref_43) 2016; 50 Welch (ref_200) 1999; 277 Thomson (ref_389) 2021; 320 Serrander (ref_119) 2007; 406 Yura (ref_149) 1999; 56 Camargo (ref_179) 2018; 72 Schnackenberg (ref_204) 1998; 32 Gomes (ref_45) 2018; 7 Potteti (ref_134) 2021; 320 Sun (ref_36) 2000; 35 Toal (ref_169) 1983; 1 Jaimes (ref_329) 2008; 294 Oe (ref_385) 2022; 2 Whelton (ref_2) 2018; 138 Gavazzi (ref_258) 2007; 50 Fujii (ref_47) 2007; 30 Raffetto (ref_70) 2008; 75 Bugaj (ref_90) 2012; 302 ref_412 Roman (ref_167) 1987; 9 Kim (ref_201) 1999; 14 ref_415 Neves (ref_126) 2018; 71 Briasoulis (ref_383) 2018; 20 Montezano (ref_265) 2012; 110 Ito (ref_422) 2022; 40 Johns (ref_353) 2010; 299 ref_419 Mizutani (ref_218) 2002; 20 Harrap (ref_173) 1988; 74 ref_405 ref_404 ref_407 Manning (ref_328) 2005; 25 Bernard (ref_11) 2020; 33 Holterman (ref_140) 2015; 24 Vaziri (ref_24) 2006; 2 Kaissling (ref_46) 2013; 1832 ref_409 ref_408 Franco (ref_176) 2013; 304 Dahl (ref_323) 1962; 194 Chabrashvili (ref_190) 2002; 39 Barton (ref_343) 2000; 11 Cottone (ref_52) 2009; 24 ref_315 ref_314 Fujita (ref_418) 2012; 59 Wan (ref_417) 2020; 43 Nisimoto (ref_107) 2014; 53 Pinheiro (ref_120) 2020; 16 Nezu (ref_130) 2017; 45 Kim (ref_332) 2012; 52 Girerd (ref_10) 2019; 96 Touyz (ref_13) 2020; 36 Montanari (ref_308) 2017; 312 Chade (ref_339) 2004; 15 Karalliedde (ref_39) 2006; 20 Schiffrin (ref_50) 2005; 43 Ruilope (ref_12) 2001; 16 ref_423 Mollnau (ref_267) 2002; 90 Nlandu (ref_29) 2012; 23 Barton (ref_128) 2019; 152 Winternitz (ref_229) 1982; 4 Jay (ref_145) 2008; 45 Bird (ref_91) 1996; 28 Rivera (ref_111) 2010; 15 Meneton (ref_65) 2005; 85 Fujii (ref_349) 2003; 42 Hayashi (ref_21) 2010; 59 Zhou (ref_363) 2008; 295 Kumar (ref_202) 2005; 27 Ferrebuz (ref_234) 2005; 315 Brown (ref_382) 2021; 53 Lara (ref_303) 2012; 302 Alicic (ref_3) 2017; 12 Wolin (ref_105) 2009; 296 Jose (ref_92) 2015; 24 Nouri (ref_260) 2007; 292 Sedeek (ref_8) 2013; 24 Saito (ref_37) 2014; 155 Ferrone (ref_171) 1979; 60 Kumar (ref_203) 2003; 25 Forman (ref_370) 2021; 20 Ratliff (ref_117) 2016; 25 Bouabout (ref_298) 2018; 111 Rajaram (ref_137) 2019; 34 Nishimoto (ref_321) 2015; 308 Wang (ref_238) 2009; 54 Kumar (ref_357) 2020; 76 Ljungman (ref_247) 1983; 5 Carey (ref_156) 2018; 72 Rudd (ref_230) 1986; 251 Steckelings (ref_224) 2022; 74 Wei (ref_406) 2023; 189 Yang (ref_96) 2019; 226 Abe (ref_20) 2013; 9 Kravtsova (ref_377) 2022; 322 Montezano (ref_146) 2018; 7 Manning (ref_276) 1993; 21 Saha (ref_184) 2008; 86 Sinha (ref_102) 2015; 11 Simao (ref_178) 2011; 46 Cowley (ref_174) 2008; 52 Majid (ref_318) 2015; 11 Bayorh (ref_336) 2011; 12 Tong (ref_153) 2009; 47 Wilcox (ref_113) 2005; 289 Neves (ref_73) 2000; 95 Modlinger (ref_259) 2006; 47 Miyata (ref_410) 2021; 135 Brosnan (ref_188) 2002; 20 Grisk (ref_159) 2002; 20 Herlitz (ref_164) 1982; 4 Janjoulia (ref_74) 2013; 123 Petrie (ref_399) 2018; 34 Ni (ref_352) 1999; 34 Polichnowski (ref_256) 2015; 308 Kawarazaki (ref_335) 2011; 300 Zhou (ref_307) 2004; 17 Mende (ref_401) 2023; 54 Kirchengast (ref_86) 2005; 55 Nabha (ref_177) 2005; 27 Santos (ref_77) 2018; 98 Goettsch (ref_18) 2009; 380 Jha (ref_30) 2022; 71 Small (ref_112) 2012; 17 Georgianos (ref_403) 2023; 36 Liu (ref_237) 2020; 882 Knock (ref_123) 2019; 145 Wu (ref_220) 2004; 17 Harrap (ref_175) 1986; 4 Good |
| References_xml | – volume: 75 start-page: 129 year: 2013 ident: ref_23 article-title: Effects of manidipine vs. amlodipine on intrarenal haemodynamics in patients with arterial hypertension publication-title: Br. J. Clin. Pharmacol. doi: 10.1111/j.1365-2125.2012.04336.x – volume: 56 start-page: 907 year: 2010 ident: ref_273 article-title: Superoxide dismutase 1 limits renal microvascular remodeling and attenuates arteriole and blood pressure responses to angiotensin II via modulation of nitric oxide bioavailability publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.110.159301 – volume: 580 start-page: 497 year: 2006 ident: ref_288 article-title: Decreased blood pressure in NOX1-deficient mice publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.12.049 – volume: 95 start-page: 405 year: 2015 ident: ref_67 article-title: Renal autoregulation in health and disease publication-title: Physiol. Rev. doi: 10.1152/physrev.00042.2012 – volume: 40 start-page: 511 year: 2002 ident: ref_261 article-title: Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II publication-title: Hypertension doi: 10.1161/01.HYP.0000032100.23772.98 – volume: 88 start-page: 1559 year: 1991 ident: ref_347 article-title: L-arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats publication-title: J. Clin. Investig. doi: 10.1172/JCI115467 – volume: 39 start-page: 269 year: 2002 ident: ref_190 article-title: Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney publication-title: Hypertension doi: 10.1161/hy0202.103264 – volume: 35 start-page: 1899 year: 2017 ident: ref_316 article-title: Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system publication-title: J. Hypertens. doi: 10.1097/HJH.0000000000001378 – volume: 29 start-page: 125 year: 2022 ident: ref_379 article-title: New Aspects in the Management of Hypertension in Patients with Chronic Kidney Disease not on Renal Replacement Therapy publication-title: High Blood Press. Cardiovasc. Prev. doi: 10.1007/s40292-021-00495-1 – volume: 37 start-page: 100895 year: 2021 ident: ref_386 article-title: Acute effects of dapagliflozin on renal oxygenation and perfusion in type 1 diabetes with albuminuria: A randomised, double-blind, placebo-controlled crossover trial publication-title: eClinicalMedicine doi: 10.1016/j.eclinm.2021.100895 – volume: 5 start-page: 61 year: 1994 ident: ref_244 article-title: Renal protective effects of angiotensin II receptor I antagonist CV-11974 in spontaneously hypertensive stroke-prone rats (SHR-sp) publication-title: Blood Press. Suppl. – volume: 86 start-page: 190 year: 2008 ident: ref_184 article-title: Reduced levels of cyclic AMP contribute to the enhanced oxidative stress in vascular smooth muscle cells from spontaneously hypertensive rats publication-title: Can. J. Physiol. Pharmacol. doi: 10.1139/Y08-012 – volume: 262 start-page: H1809 year: 1992 ident: ref_324 article-title: Kidney cross transplants in Dahl salt-sensitive and salt-resistant rats publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.1992.262.6.H1809 – volume: 95 start-page: 99 year: 2000 ident: ref_73 article-title: Angiotensin-(1–7) regulates the levels of angiotensin II receptor subtype AT1 mRNA differentially in a strain-specific fashion publication-title: Regul. Pept. doi: 10.1016/S0167-0115(00)00164-6 – volume: 60 start-page: 728 year: 2019 ident: ref_424 article-title: Inhibitory Effects of Tofogliflozin on Cardiac Hypertrophy in Dahl Salt-Sensitive and Salt-Resistant Rats Fed a High-Fat Diet publication-title: Int. Heart J. doi: 10.1536/ihj.18-392 – volume: 28 start-page: 74 year: 2014 ident: ref_40 article-title: Hypertension and kidneys: Unraveling complex molecular mechanisms underlying hypertensive renal damage publication-title: J. Hum. Hypertens. doi: 10.1038/jhh.2013.55 – volume: 8 start-page: e012016 year: 2019 ident: ref_219 article-title: Defective Renal Angiotensin III and AT(2) Receptor Signaling in Prehypertensive Spontaneously Hypertensive Rats publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.119.012016 – volume: 36 start-page: S195 year: 2000 ident: ref_240 article-title: Augmented expression of tissue endothelin-1 messenger RNA is a common feature in hypertensive rats publication-title: J. Cardiovasc. Pharmacol. doi: 10.1097/00005344-200036051-00059 – volume: 123 start-page: 2011 year: 2013 ident: ref_74 article-title: The absence of intrarenal ACE protects against hypertension publication-title: J. Clin. Investig. doi: 10.1172/JCI65460 – volume: 34 start-page: 552 year: 1999 ident: ref_352 article-title: Nitric oxide synthase isotype expression in salt-sensitive and salt-resistant Dahl rats publication-title: Hypertension doi: 10.1161/01.HYP.34.4.552 – volume: 5 start-page: 368 year: 1983 ident: ref_247 article-title: Effects of subpressor doses of angiotensin II on renal hemodynamics in relation to blood pressure publication-title: Hypertension doi: 10.1161/01.HYP.5.3.368 – volume: 9 start-page: iii130 year: 1987 ident: ref_167 article-title: Altered pressure-natriuresis relationship in young spontaneously hypertensive rats publication-title: Hypertension doi: 10.1161/01.HYP.9.6_Pt_2.III130 – ident: ref_68 doi: 10.1016/B978-0-12-374530-9.00013-9 – volume: 42 start-page: 419 year: 2022 ident: ref_95 article-title: Tumor Necrosis Factor Alpha and the Gastrointestinal Epithelium: Implications for the Gut-Brain Axis and Hypertension publication-title: Cell. Mol. Neurobiol. doi: 10.1007/s10571-021-01044-z – volume: 296 start-page: H539 year: 2009 ident: ref_105 article-title: Reactive oxygen species and the control of vascular function publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.01167.2008 – ident: ref_369 doi: 10.3390/jcm9082359 – volume: 24 start-page: 518 year: 2021 ident: ref_135 article-title: Hydrogen sulfide attenuates renal I/R-induced activation of the inflammatory response and apoptosis via regulating Nrf2-mediated NLRP3 signaling pathway inhibition publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2021.12157 – volume: 92 start-page: 102 year: 2016 ident: ref_14 article-title: The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis publication-title: Differentiation doi: 10.1016/j.diff.2016.05.008 – volume: 189 start-page: 106531 year: 2023 ident: ref_406 article-title: RNA-Seq transcriptome analysis of renal tissue from spontaneously hypertensive rats revealed renal protective effects of dapagliflozin, an inhibitor of sodium-glucose cotransporter 2 publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2023.106531 – volume: 112 start-page: 2677 year: 2005 ident: ref_268 article-title: Nox1 is involved in angiotensin II-mediated hypertension: A study in Nox1-deficient mice publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.573709 – volume: 80 start-page: 45 year: 1997 ident: ref_282 article-title: p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats publication-title: Circ. Res. doi: 10.1161/01.RES.80.1.45 – ident: ref_287 doi: 10.3390/antiox9070586 – volume: 110 start-page: 1364 year: 2012 ident: ref_103 article-title: Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.111.243972 – volume: 45 start-page: 135s year: 1973 ident: ref_59 article-title: The hypertensive role of the kidney in spontaneously hypertensive rats publication-title: Clin. Sci. Mol. Med. Suppl. – volume: 33 start-page: 1353 year: 1999 ident: ref_241 article-title: Superoxide anion production is increased in a model of genetic hypertension: Role of the endothelium publication-title: Hypertension doi: 10.1161/01.HYP.33.6.1353 – volume: 36 start-page: 550 year: 2022 ident: ref_61 article-title: Renal NOXA1/NOX1 Signaling Regulates Epithelial Sodium Channel and Sodium Retention in Angiotensin II-induced Hypertension publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2021.0047 – volume: 75 start-page: 304 year: 2010 ident: ref_270 article-title: Protein kinase C-delta is involved in induction of NOX1 gene expression by aldosterone in rat vascular smooth muscle cells publication-title: Biochemistry – volume: 50 start-page: 189 year: 2007 ident: ref_258 article-title: NOX1 deficiency protects from aortic dissection in response to angiotensin II publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.107.089706 – ident: ref_408 doi: 10.3389/fendo.2021.738848 – volume: 2020 start-page: 2142740 year: 2020 ident: ref_209 article-title: Combination of Exercise Training and SOD Mimetic Tempol Enhances Upregulation of Nitric Oxide Synthase in the Kidney of Spontaneously Hypertensive Rats publication-title: Int. J. Hypertens. doi: 10.1155/2020/2142740 – volume: 100 start-page: 1016 year: 2007 ident: ref_291 article-title: Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: Studies in endothelial-targeted Nox2 transgenic mice publication-title: Circ. Res. doi: 10.1161/01.RES.0000263381.83835.7b – volume: 8 start-page: e011911 year: 2019 ident: ref_297 article-title: Attenuation of Angiotensin II-Induced Hypertension in BubR1 Low-Expression Mice Via Repression of Angiotensin II Receptor 1 Overexpression publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.118.011911 – volume: 17 start-page: 319 year: 2021 ident: ref_4 article-title: Pathophysiology of diabetic kidney disease: Impact of SGLT2 inhibitors publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-021-00393-8 – volume: 69 start-page: 597 year: 1991 ident: ref_158 article-title: Are renal mechanisms involved in primary hypertension? Evidence from kidney transplantation studies in rats publication-title: Klin. Wochenschr. doi: 10.1007/BF01649322 – volume: 58 start-page: 446 year: 2011 ident: ref_127 article-title: Activation of NADPH oxidase 1 increases intracellular calcium and migration of smooth muscle cells publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.111.177006 – volume: 19 start-page: G29 year: 1998 ident: ref_180 article-title: Altered regulation of smooth muscle cell proliferation and apoptosis in small arteries of spontaneously hypertensive rats publication-title: Eur. Heart J. – volume: 2 start-page: 570 year: 2014 ident: ref_141 article-title: Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells publication-title: Redox Biol. doi: 10.1016/j.redox.2014.01.020 – volume: 44 start-page: 2846 year: 1985 ident: ref_231 article-title: Renal nerves and hypertension: An update publication-title: Fed. Proc. – volume: 15 start-page: 50 year: 2010 ident: ref_111 article-title: Nox isoforms in vascular pathophysiology: Insights from transgenic and knockout mouse models publication-title: Redox Rep. doi: 10.1179/174329210X12650506623401 – volume: 71 start-page: 638 year: 2018 ident: ref_126 article-title: VEGFR (Vascular Endothelial Growth Factor Receptor) Inhibition Induces Cardiovascular Damage via Redox-Sensitive Processes publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.117.10490 – volume: 177 start-page: 2006 year: 2020 ident: ref_94 article-title: Changes to the gut microbiota induced by losartan contributes to its antihypertensive effects publication-title: Br. J. Pharmacol. doi: 10.1111/bph.14965 – volume: 103 start-page: 17985 year: 2006 ident: ref_64 article-title: Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0605545103 – ident: ref_412 doi: 10.1186/s12882-019-1490-z – volume: 25 start-page: 677 year: 2018 ident: ref_366 article-title: Salt-Responsive Metabolite, beta-Hydroxybutyrate, Attenuates Hypertension publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.09.058 – volume: 71 start-page: 1282 year: 2022 ident: ref_30 article-title: Independent of Renox, NOX5 Promotes Renal Inflammation and Fibrosis in Diabetes by Activating ROS-Sensitive Pathways publication-title: Diabetes doi: 10.2337/db21-1079 – ident: ref_393 doi: 10.1016/j.biopha.2023.115213 – volume: 40 start-page: 956 year: 2022 ident: ref_422 article-title: Cardiorenal protective effects of sodium-glucose cotransporter 2 inhibition in combination with angiotensin II type 1 receptor blockade in salt-sensitive Dahl rats publication-title: J. Hypertens. doi: 10.1097/HJH.0000000000003099 – ident: ref_136 doi: 10.3389/fimmu.2022.865772 – volume: 39 start-page: 316 year: 2002 ident: ref_75 article-title: Regulation of intrarenal angiotensin II in hypertension publication-title: Hypertension doi: 10.1161/hy0202.103821 – volume: 143 start-page: 77 year: 2004 ident: ref_76 article-title: Novel aspects of the renal renin-angiotensin system: Angiotensin-(1–7), ACE2 and blood pressure regulation publication-title: Contrib. Nephrol. doi: 10.1159/000078713 – ident: ref_394 doi: 10.3390/life12060803 – volume: 20 start-page: 2794 year: 2014 ident: ref_104 article-title: NADPH oxidases in vascular pathology publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2013.5607 – volume: 653 start-page: 53 year: 2023 ident: ref_420 article-title: Canagliflozin ameliorates epithelial-mesenchymal transition in high-salt diet-induced hypertensive renal injury through restoration of sirtuin 3 expression and the reduction of oxidative stress publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2023.01.084 – volume: 4 start-page: S249 year: 1986 ident: ref_175 article-title: Renal haemodynamics and total body sodium in immature spontaneously hypertensive and Wistar-Kyoto rats publication-title: J. Hypertens. Suppl. – volume: 91 start-page: 1 year: 2011 ident: ref_82 article-title: Regulation of blood pressure and salt homeostasis by endothelin publication-title: Physiol. Rev. doi: 10.1152/physrev.00060.2009 – volume: 2 start-page: 349 year: 2022 ident: ref_385 article-title: The Pathophysiological Basis of Diabetic Kidney Protection by Inhibition of SGLT2 and SGLT1 publication-title: Kidney Dial. doi: 10.3390/kidneydial2020032 – volume: 36 start-page: 135 year: 2023 ident: ref_403 article-title: The Nonsteroidal Mineralocorticoid-Receptor-Antagonist Finerenone in Cardiorenal Medicine: A State-of-the-Art Review of the Literature publication-title: Am. J. Hypertens. doi: 10.1093/ajh/hpac124 – volume: 119 start-page: 1441 year: 2023 ident: ref_313 article-title: Quantifying the impact of gut microbiota on inflammation and hypertensive organ damage publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvac121 – volume: 300 start-page: F1402 year: 2011 ident: ref_335 article-title: Mineralocorticoid receptor activation: A major contributor to salt-induced renal injury and hypertension in young rats publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00691.2010 – volume: 14 start-page: 276 year: 2001 ident: ref_351 article-title: The role of nitric oxide and the renin-angiotensin system in salt-restricted Dahl rats publication-title: Am. J. Hypertens. doi: 10.1016/S0895-7061(00)01255-3 – volume: 8 start-page: 1597 year: 2006 ident: ref_100 article-title: NADPH oxidases in the kidney publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2006.8.1597 – volume: 45 start-page: 473 year: 2017 ident: ref_130 article-title: Targeting the KEAP1-NRF2 System to Prevent Kidney Disease Progression publication-title: Am. J. Nephrol. doi: 10.1159/000475890 – volume: 281 start-page: R1420 year: 2001 ident: ref_208 article-title: Selective effect of tempol on renal medullary hemodynamics in spontaneously hypertensive rats publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.2001.281.5.R1420 – volume: 33 start-page: 455 year: 2020 ident: ref_11 article-title: NADPH Oxidase Inhibition in Fibrotic Pathologies publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2020.8032 – volume: 98 start-page: 505 year: 2018 ident: ref_77 article-title: The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7) publication-title: Physiol. Rev. doi: 10.1152/physrev.00023.2016 – volume: 276 start-page: R10 year: 1999 ident: ref_81 article-title: Short- and long-term enalapril affect renal medullary hemodynamics in the spontaneously hypertensive rat publication-title: Am. J. Physiol. – volume: 295 start-page: F53 year: 2008 ident: ref_363 article-title: Renoprotection by statins is linked to a decrease in renal oxidative stress, TGF-beta, and fibronectin with concomitant increase in nitric oxide bioavailability publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00041.2008 – volume: 53 start-page: 2072 year: 2021 ident: ref_382 article-title: The expanding role of SGLT2 inhibitors beyond glucose-lowering to cardiorenal protection publication-title: Ann. Med. doi: 10.1080/07853890.2020.1841281 – ident: ref_49 doi: 10.1371/journal.pone.0219483 – volume: 294 start-page: F385 year: 2008 ident: ref_329 article-title: Upregulation of cortical COX-2 in salt-sensitive hypertension: Role of angiotensin II and reactive oxygen species publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00302.2007 – volume: 19 start-page: 886 year: 1978 ident: ref_163 article-title: Influence on blood pressure of renal isografts between spontaneously hypertensive and normotensive rats, utilizing the F1 hybrids publication-title: Jpn. Heart J. doi: 10.1536/ihj.19.886 – volume: 8 start-page: 490 year: 1989 ident: ref_7 article-title: Sodium-sensitive essential hypertension: Emerging insights into an old entity publication-title: J. Am. Coll. Nutr. doi: 10.1080/07315724.1989.10720318 – volume: 54 start-page: 810 year: 2009 ident: ref_238 article-title: Klotho gene delivery prevents the progression of spontaneous hypertension and renal damage publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.109.134320 – volume: 11 start-page: 132 year: 2015 ident: ref_102 article-title: Oxidative stress and antioxidants in hypertension—A current review publication-title: Curr. Hypertens. Rev. doi: 10.2174/1573402111666150529130922 – volume: 20 start-page: 74 year: 2014 ident: ref_71 article-title: Oxidative stress in hypertension: Role of the kidney publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2013.5259 – volume: 317 start-page: F767 year: 2019 ident: ref_390 article-title: Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00565.2018 – volume: 273 start-page: R1676 year: 1997 ident: ref_60 article-title: Effect of interactions between nitric oxide and angiotensin II on pressure diuresis and natriuresis publication-title: Am. J. Physiol. – volume: 12 start-page: 195 year: 2011 ident: ref_336 article-title: Eplerenone suppresses aldosterone/ salt-induced expression of NOX-4 publication-title: J. Renin Angiotensin Aldosterone Syst. doi: 10.1177/1470320310391330 – volume: 28 start-page: 548 year: 2008 ident: ref_41 article-title: Kidney fibrosis in hypertensive rats: Role of oxidative stress publication-title: Am. J. Nephrol. doi: 10.1159/000115289 – volume: 4 start-page: 160 year: 2002 ident: ref_32 article-title: Reactive oxygen species: Roles in blood pressure and kidney function publication-title: Curr. Hypertens. Rep doi: 10.1007/s11906-002-0041-2 – volume: 882 start-page: 173228 year: 2020 ident: ref_237 article-title: Inhibition of RAGE by FPS-ZM1 alleviates renal injury in spontaneously hypertensive rats publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2020.173228 – volume: 60 start-page: 131 year: 1979 ident: ref_171 article-title: Prevention of the development of spontaneous hypertension in rats by captopril (SQ 14,225) publication-title: Eur. J. Pharmacol. doi: 10.1016/0014-2999(79)90211-5 – volume: 212 start-page: 78 year: 2010 ident: ref_87 article-title: Vascular superoxide production by endothelin-1 requires Src non-receptor protein tyrosine kinase and MAPK activation publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2010.04.031 – volume: 7 start-page: 340 year: 1985 ident: ref_326 article-title: Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats publication-title: Hypertension doi: 10.1161/01.HYP.7.3.340 – volume: 128 start-page: 993 year: 2021 ident: ref_38 article-title: Oxidative Stress and Hypertension publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.121.318063 – volume: 19 start-page: 534 year: 2006 ident: ref_309 article-title: Oxidant stress and blood pressure responses to angiotensin II administration in rats fed varying salt diets publication-title: Am. J. Hypertens. doi: 10.1016/j.amjhyper.2005.11.008 – volume: 293 start-page: H3388 year: 2007 ident: ref_319 article-title: Interactions between oxidative stress and inflammation in salt-sensitive hypertension publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00981.2007 – volume: 194 start-page: 480 year: 1962 ident: ref_323 article-title: Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion publication-title: Nature doi: 10.1038/194480b0 – volume: 46 start-page: 1795 year: 2023 ident: ref_414 article-title: Associations of SGLT2 genetic polymorphisms with salt sensitivity, blood pressure changes and hypertension incidence in Chinese adults publication-title: Hypertens. Res. doi: 10.1038/s41440-023-01301-2 – volume: 305 start-page: F1031 year: 2013 ident: ref_275 article-title: Protective role of the endothelial isoform of nitric oxide synthase in ANG II-induced inflammatory responses in the kidney publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00024.2013 – volume: 20 start-page: 1 year: 2018 ident: ref_383 article-title: SGLT2 Inhibitors and Mechanisms of Hypertension publication-title: Curr. Cardiol. Rep. doi: 10.1007/s11886-018-0943-5 – volume: 15 start-page: 78 year: 2002 ident: ref_182 article-title: Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt-loaded stroke-prone spontaneously hypertensive rats publication-title: Am. J. Hypertens. doi: 10.1016/S0895-7061(01)02233-6 – volume: 324 start-page: C951 year: 2023 ident: ref_384 article-title: Renoprotective effects of empagliflozin are linked to activation of the tubuloglomerular feedback mechanism and blunting of the complement system publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00528.2022 – volume: 17 start-page: 785 year: 2010 ident: ref_226 article-title: Nifedipine activates PPARgamma and exerts antioxidative action through Cu/ZnSOD independent of blood-pressure lowering in SHRSP publication-title: J. Atheroscler. Thromb. doi: 10.5551/jat.4556 – volume: 289 start-page: F1227 year: 2005 ident: ref_207 article-title: NO-independent mechanism mediates tempol-induced renal vasodilation in SHR publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00116.2005 – volume: 302 start-page: C188 year: 2012 ident: ref_90 article-title: Collecting duct-specific endothelin B receptor knockout increases ENaC activity publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00301.2011 – volume: 4 start-page: iii108 year: 1982 ident: ref_229 article-title: Importance of the renal nerves in the pathogenesis of experimental hypertension publication-title: Hypertension doi: 10.1161/01.HYP.4.5_Pt_2.III108 – volume: 9 start-page: 287 year: 2016 ident: ref_122 article-title: CRISPR/Cas9-mediated knockout of p22phox leads to loss of Nox1 and Nox4, but not Nox5 activity publication-title: Redox Biol. doi: 10.1016/j.redox.2016.08.013 – volume: 304 start-page: F982 year: 2013 ident: ref_176 article-title: Impaired pressure natriuresis resulting in salt-sensitive hypertension is caused by tubulointerstitial immune cell infiltration in the kidney publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00463.2012 – volume: 146 start-page: 107095 year: 2022 ident: ref_411 article-title: Empagliflozin prevents angiotensin II-induced hypertension related micro and macrovascular endothelial cell activation and diastolic dysfunction in rats despite persistent hypertension: Role of endothelial SGLT1 and 2 publication-title: Vasc. Pharmacol. doi: 10.1016/j.vph.2022.107095 – volume: 132 start-page: 976 year: 1970 ident: ref_325 article-title: Effects of chronic excess salt ingestion. Inheritance of hypertension in the rat publication-title: J. Exp. Med. doi: 10.1084/jem.132.5.976 – volume: 24 start-page: 68 year: 2011 ident: ref_114 article-title: Characterization of renal hemodynamic and structural alterations in rat models of renal impairment: Role of renal sympathoexcitation publication-title: J. Nephrol. doi: 10.5301/JN.2010.6 – ident: ref_405 doi: 10.1016/j.biopha.2023.115289 – volume: 10 start-page: e019995 year: 2021 ident: ref_387 article-title: Effects of Sodium-Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.120.019995 – ident: ref_365 doi: 10.3390/nu10091154 – volume: 46 start-page: 1892 year: 2023 ident: ref_396 article-title: Recent understandings about hypertension management in type 2 diabetes: What are the roles of SGLT2 inhibitor, GLP-1 receptor agonist, and finerenone? publication-title: Hypertens. Res. doi: 10.1038/s41440-023-01324-9 – volume: 76 start-page: 849 year: 2020 ident: ref_304 article-title: Renal Perfusion Pressure Determines Infiltration of Leukocytes in the Kidney of Rats With Angiotensin II-Induced Hypertension publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.120.15295 – volume: 324 start-page: E531 year: 2023 ident: ref_402 article-title: Therapeutic perspective: Evolving evidence of nonsteroidal mineralocorticoid receptor antagonists in diabetic kidney disease publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00022.2023 – volume: 1 start-page: 345 year: 1983 ident: ref_169 article-title: Body fluid volumes during development of hypertension in the spontaneously hypertensive rat publication-title: J. Hypertens. doi: 10.1097/00004872-198312000-00004 – volume: 104 start-page: 605 year: 2019 ident: ref_143 article-title: NOX5: Molecular biology and pathophysiology publication-title: Exp. Physiol. doi: 10.1113/EP086204 – volume: 102 start-page: 11 year: 2018 ident: ref_278 article-title: Chronic administration of sodium nitrite prevents hypertension and protects arterial endothelial function by reducing oxidative stress in angiotensin II-infused mice publication-title: Vasc. Pharmacol. doi: 10.1016/j.vph.2017.05.003 – volume: 33 start-page: 538 year: 2011 ident: ref_338 article-title: Chronic antagonism of the mineralocorticoid receptor ameliorates hypertension and end organ damage in a rodent model of salt-sensitive hypertension publication-title: Clin. Exp. Hypertens. doi: 10.3109/10641963.2011.566956 – volume: 50 start-page: 840 year: 2016 ident: ref_43 article-title: Apocynin attenuates renal fibrosis via inhibition of NOXs-ROS-ERK-myofibroblast accumulation in UUO rats publication-title: Free. Radic. Res. doi: 10.1080/10715762.2016.1181757 – volume: 27 start-page: 176 year: 1996 ident: ref_210 article-title: ACE inhibition prevents and reverses L-NAME-exacerbated nephrosclerosis in spontaneously hypertensive rats publication-title: Hypertension doi: 10.1161/01.HYP.27.2.176 – volume: 277 start-page: F130 year: 1999 ident: ref_200 article-title: Nitric oxide synthase in the JGA of the SHR: Expression and role in tubuloglomerular feedback publication-title: Am. J. Physiol. – volume: 11 start-page: 49 year: 2015 ident: ref_317 article-title: Genomics and Pharmacogenomics of Salt-sensitive Hypertension publication-title: Curr. Hypertens. Rev. doi: 10.2174/1573402111999150521102331 – volume: 19 start-page: 1223 year: 2001 ident: ref_344 article-title: Differential nNOS gene expression in salt-sensitive and salt-resistant Dahl rats publication-title: J. Hypertens. doi: 10.1097/00004872-200107000-00007 – volume: 20 start-page: 513 year: 2024 ident: ref_373 article-title: Applications of SGLT2 inhibitors beyond glycaemic control publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-024-00836-y – volume: 289 start-page: R913 year: 2005 ident: ref_113 article-title: Oxidative stress and nitric oxide deficiency in the kidney: A critical link to hypertension? publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00250.2005 – volume: 75 start-page: 349 year: 2007 ident: ref_154 article-title: Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2007.03.030 – ident: ref_419 doi: 10.3390/ijms23168915 – volume: 96 start-page: 302 year: 2019 ident: ref_10 article-title: Mineralocorticoid receptor antagonists and kidney diseases: Pathophysiological basis publication-title: Kidney Int. doi: 10.1016/j.kint.2019.02.030 – volume: 405 start-page: 74 year: 2015 ident: ref_48 article-title: Glycated albumin triggers fibrosis and apoptosis via an NADPH oxidase/Nox4-MAPK pathway-dependent mechanism in renal proximal tubular cells publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2015.02.007 – volume: 67 start-page: 440 year: 2016 ident: ref_356 article-title: Evidence of the Importance of Nox4 in Production of Hypertension in Dahl Salt-Sensitive Rats publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.115.06280 – volume: 19 start-page: 3033 year: 2013 ident: ref_333 article-title: Angiotensin II blockade and renal protection publication-title: Curr. Pharm. Des. doi: 10.2174/1381612811319170009 – volume: 58 start-page: 131 year: 2000 ident: ref_17 article-title: Transforming growth factor-beta1 increases albumin permeability of isolated rat glomeruli via hydroxyl radicals publication-title: Kidney Int. doi: 10.1046/j.1523-1755.2000.00148.x – volume: 59 start-page: 84 year: 2010 ident: ref_21 article-title: T-type Ca channel blockade as a determinant of kidney protection publication-title: Keio J. Med. doi: 10.2302/kjm.59.84 – volume: 24 start-page: 1512 year: 2013 ident: ref_8 article-title: NADPH oxidases, reactive oxygen species, and the kidney: Friend and foe publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2012111112 – volume: 323 start-page: F633 year: 2022 ident: ref_289 article-title: NOXA1-dependent NADPH oxidase 1 signaling mediates angiotensin II activation of the epithelial sodium channel publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00107.2022 – volume: 155 start-page: 1899 year: 2014 ident: ref_37 article-title: Indoxyl sulfate-induced activation of (pro)renin receptor is involved in expression of TGF-beta1 and alpha-smooth muscle actin in proximal tubular cells publication-title: Endocrinology doi: 10.1210/en.2013-1937 – volume: 19 start-page: 675 year: 2013 ident: ref_152 article-title: Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress publication-title: CNS Neurosci. Ther. doi: 10.1111/cns.12131 – volume: 9 start-page: 1236 year: 1996 ident: ref_199 article-title: Nitric oxide synthase activity in renal cortex and medulla of normotensive and spontaneously hypertensive rats publication-title: Am. J. Hypertens. doi: 10.1016/S0895-7061(96)00325-1 – volume: 108 start-page: 71 year: 2014 ident: ref_192 article-title: Diabetes-induced increase of renal medullary hydrogen peroxide and urinary angiotensinogen is similar in normotensive and hypertensive rats publication-title: Life Sci. doi: 10.1016/j.lfs.2014.05.011 – volume: 35 start-page: 476 year: 2014 ident: ref_223 article-title: PPARalpha ligand clofibrate ameliorates blood pressure and vascular reactivity in spontaneously hypertensive rats publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2013.193 – volume: 15 start-page: 339 year: 1997 ident: ref_172 article-title: Long-term inhibition of the renin-angiotensin system in genetic hypertension: Analysis of the impact on blood pressure and cardiovascular structural changes publication-title: J. Hypertens. doi: 10.1097/00004872-199715040-00004 – volume: 32 start-page: 98 year: 2023 ident: ref_371 article-title: The changing trajectory of diabetic kidney disease publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/MNH.0000000000000844 – volume: 1165 start-page: 253 year: 2019 ident: ref_33 article-title: Myofibroblast in Kidney Fibrosis: Origin, Activation, and Regulation publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-13-8871-2_12 – volume: 18 start-page: 85 year: 2009 ident: ref_35 article-title: Mechanisms of kidney fibrosis and the role of antifibrotic therapies publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/MNH.0b013e32831c50a1 – ident: ref_225 doi: 10.1101/2020.02.17.952507 – volume: 228 start-page: 454 year: 2003 ident: ref_206 article-title: Functional expression of human heme oxygenase-1 gene in renal structure of spontaneously hypertensive rats publication-title: Exp. Biol. Med. doi: 10.1177/15353702-0322805-04 – volume: 299 start-page: R234 year: 2010 ident: ref_353 article-title: Impact of elevated dietary sodium intake on NAD(P)H oxidase and SOD in the cortex and medulla of the rat kidney publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00541.2009 – volume: 145 start-page: 385 year: 2019 ident: ref_123 article-title: NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2019.09.029 – volume: 127 start-page: 1888 year: 2013 ident: ref_155 article-title: NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.112.132159 – volume: 54 start-page: 50 year: 2023 ident: ref_401 article-title: Mineralocorticoid Receptor-Associated Mechanisms in Diabetic Kidney Disease and Clinical Significance of Mineralocorticoid Receptor Antagonists publication-title: Am. J. Nephrol. doi: 10.1159/000528783 – volume: 111 start-page: 104296 year: 2019 ident: ref_133 article-title: Nrf2 signaling attenuates epithelial-to-mesenchymal transition and renal interstitial fibrosis via PI3K/Akt signaling pathways publication-title: Exp. Mol. Pathol. doi: 10.1016/j.yexmp.2019.104296 – volume: 38 start-page: 171 year: 2001 ident: ref_15 article-title: Hypertensive nephrosclerosis as a relevant cause of chronic renal failure publication-title: Hypertension doi: 10.1161/01.HYP.38.2.171 – volume: 70 start-page: 759 year: 1992 ident: ref_228 article-title: Neuronal control of the kidney: Contribution to hypertension publication-title: Can. J. Physiol. Pharmacol. doi: 10.1139/y92-100 – volume: 625 start-page: 111 year: 1979 ident: ref_165 article-title: Sodium balance and structural vascular changes in the kidney during development of hypertension in spontaneously hypertensive rats publication-title: Acta Medica Scand. Suppl. doi: 10.1111/j.0954-6820.1979.tb00753.x – volume: 134 start-page: 441 year: 2016 ident: ref_1 article-title: Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies From 90 Countries publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.018912 – volume: 2 start-page: 582 year: 2006 ident: ref_24 article-title: Mechanisms of disease: Oxidative stress and inflammation in the pathogenesis of hypertension publication-title: Nat. Clin Pract. Nephrol doi: 10.1038/ncpneph0283 – volume: 30 start-page: 991 year: 2007 ident: ref_47 article-title: Albuminuria, expression of nicotinamide adenine dinucleotide phosphate oxidase and monocyte chemoattractant protein-1 in the renal tubules of hypertensive Dahl salt-sensitive rats publication-title: Hypertens. Res. doi: 10.1291/hypres.30.991 – volume: 28 start-page: 381 year: 1996 ident: ref_91 article-title: Cardiovascular and renal effects of endothelin B receptor selective agonists in spontaneously hypertensive rats publication-title: J. Cardiovasc. Pharmacol. doi: 10.1097/00005344-199609000-00006 – volume: 22 start-page: 535 year: 2004 ident: ref_257 article-title: Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice publication-title: J. Hypertens. doi: 10.1097/00004872-200403000-00016 – volume: 273 start-page: R1 year: 1997 ident: ref_62 article-title: Role of the renal medulla in volume and arterial pressure regulation publication-title: Am. J. Physiol. – volume: 111 start-page: 41 year: 2018 ident: ref_298 article-title: Nox4 genetic inhibition in experimental hypertension and metabolic syndrome publication-title: Arch. Cardiovasc. Dis. doi: 10.1016/j.acvd.2017.03.011 – volume: 956 start-page: 279 year: 2017 ident: ref_28 article-title: Subclinical Kidney Damage in Hypertensive Patients: A Renal Window Opened on the Cardiovascular System. Focus on Microalbuminuria publication-title: Adv. Exp. Med. Biol. doi: 10.1007/5584_2016_85 – volume: 34 start-page: 13396 year: 2020 ident: ref_358 article-title: NOX4-dependent regulation of ENaC in hypertension and diabetic kidney disease publication-title: FASEB J. doi: 10.1096/fj.202000966RR – volume: 27 start-page: 71 year: 2005 ident: ref_177 article-title: Vascular oxidative stress precedes high blood pressure in spontaneously hypertensive rats publication-title: Clin. Exp. Hypertens. doi: 10.1081/CEH-200044267 – volume: 60 start-page: 48 year: 2016 ident: ref_340 article-title: Melatonin prevents kidney injury in a high salt diet-induced hypertension model by decreasing oxidative stress publication-title: J. Pineal Res. doi: 10.1111/jpi.12287 – volume: 317 start-page: F207 year: 2019 ident: ref_380 article-title: Knockout of Na(+)-glucose cotransporter SGLT1 mitigates diabetes-induced upregulation of nitric oxide synthase NOS1 in the macula densa and glomerular hyperfiltration publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00120.2019 – volume: 11 start-page: e023397 year: 2022 ident: ref_27 article-title: Malignant Hypertension: Current Perspectives and Challenges publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.121.023397 – volume: 285 start-page: 1130 year: 2001 ident: ref_242 article-title: Upregulation of vascular NAD(P)H oxidase subunit gp91phox and impairment of the nitric oxide signal transduction pathway in hypertension publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2001.5312 – volume: 47 start-page: 1578 year: 2009 ident: ref_153 article-title: NADPH oxidases are responsible for the failure of nitric oxide to inhibit migration of smooth muscle cells exposed to high glucose publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.08.026 – volume: 36 start-page: 659 year: 2020 ident: ref_13 article-title: Oxidative Stress: A Unifying Paradigm in Hypertension publication-title: Can. J. Cardiol. doi: 10.1016/j.cjca.2020.02.081 – volume: 68 start-page: 109506 year: 2020 ident: ref_392 article-title: Empagliflozin reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits human renal proximal tubular epithelial cell migration and epithelial-to-mesenchymal transition publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2019.109506 – volume: 282 start-page: R31 year: 2002 ident: ref_266 article-title: Changes in NOS activity and protein expression during acute and prolonged ANG II administration publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.2002.282.1.R31 – volume: 79 start-page: 1591 year: 2022 ident: ref_98 article-title: Identification of a Gut Commensal That Compromises the Blood Pressure-Lowering Effect of Ester Angiotensin-Converting Enzyme Inhibitors publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.121.18711 – volume: 79 start-page: 1180 year: 2022 ident: ref_305 article-title: Acute Increase of Renal Perfusion Pressure Causes Rapid Activation of mTORC1 (Mechanistic Target Of Rapamycin Complex 1) and Leukocyte Infiltration publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.121.18643 – volume: 280 start-page: 119018 year: 2021 ident: ref_391 article-title: Role of sodium glucose cotransporter type 2 inhibitors dapagliflozin on diabetic nephropathy in rats; Inflammation, angiogenesis and apoptosis publication-title: Life Sci. doi: 10.1016/j.lfs.2021.119018 – volume: 90 start-page: E58 year: 2002 ident: ref_267 article-title: Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling publication-title: Circ. Res. doi: 10.1161/01.RES.0000012569.55432.02 – volume: 72 start-page: 1151 year: 2018 ident: ref_239 article-title: Klotho Ameliorates Medullary Fibrosis and Pressure Natriuresis in Hypertensive Rat Kidneys publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.118.11176 – volume: 31 start-page: 397 year: 1998 ident: ref_89 article-title: Endothelin-A receptor antagonism attenuates the hypertension and renal injury in Dahl salt-sensitive rats publication-title: Hypertension doi: 10.1161/01.HYP.31.1.397 – volume: 52 start-page: 283 year: 2008 ident: ref_367 article-title: Oxidative stress in hypertension: Association with antihypertensive treatment publication-title: Indian J. Physiol. Pharmacol. – volume: 52 start-page: e135 year: 2008 ident: ref_116 article-title: Inflammation, angiotensin II, and hypertension publication-title: Hypertension – volume: 152 start-page: 108494 year: 2019 ident: ref_128 article-title: Nox1 downregulators: A new class of therapeutics publication-title: Steroids doi: 10.1016/j.steroids.2019.108494 – volume: 299 start-page: F1348 year: 2010 ident: ref_139 article-title: Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: Implications in type 2 diabetic nephropathy publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00028.2010 – volume: 49 start-page: 362 year: 2007 ident: ref_281 article-title: Effects of p38 MAPK Inhibitor on angiotensin II-dependent hypertension, organ damage, and superoxide anion production publication-title: J. Cardiovasc. Pharmacol. doi: 10.1097/FJC.0b013e318046f34a – volume: 16 start-page: 667 year: 2005 ident: ref_19 article-title: Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2004050425 – volume: 76 start-page: 277 year: 2009 ident: ref_129 article-title: Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice publication-title: Kidney Int. doi: 10.1038/ki.2009.157 – volume: 62 start-page: 1712 year: 2019 ident: ref_31 article-title: Endothelial or vascular smooth muscle cell-specific expression of human NOX5 exacerbates renal inflammation, fibrosis and albuminuria in the Akita mouse publication-title: Diabetologia doi: 10.1007/s00125-019-4924-z – volume: 34 start-page: 946 year: 2007 ident: ref_110 article-title: Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension publication-title: Clin. Exp. Pharmacol. Physiol. doi: 10.1111/j.1440-1681.2007.04642.x – volume: 97 start-page: 1916 year: 1996 ident: ref_108 article-title: Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone publication-title: J. Clin. Investig. doi: 10.1172/JCI118623 – volume: 48 start-page: 934 year: 2006 ident: ref_274 article-title: Role of extracellular superoxide dismutase in the mouse angiotensin slow pressor response publication-title: Hypertension doi: 10.1161/01.HYP.0000242928.57344.92 – volume: 90 start-page: 115 year: 2023 ident: ref_157 article-title: Resistant hypertension: A stepwise approach publication-title: Clevel. Clin. J. Med. doi: 10.3949/ccjm.90a.22046 – volume: 2019 start-page: 8912768 year: 2019 ident: ref_361 article-title: Dipeptidyl Peptidase 4 Inhibition Ameliorates Chronic Kidney Disease in a Model of Salt-Dependent Hypertension publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2019/8912768 – volume: 25 start-page: 271 year: 2003 ident: ref_203 article-title: Diminished expression of constitutive nitric oxide synthases in the kidney of spontaneously hypertensive rat publication-title: Clin. Exp. Hypertens. doi: 10.1081/CEH-120020395 – volume: 42 start-page: 1014 year: 2003 ident: ref_349 article-title: L-arginine reverses p47phox and gp91phox expression induced by high salt in Dahl rats publication-title: Hypertension doi: 10.1161/01.HYP.0000094557.36656.D0 – volume: 55 start-page: 498 year: 2005 ident: ref_86 article-title: Effects of chronic endothelin ET(A) receptor blockade on blood pressure and vascular formation of cyclic guanosine-3′,5′-monophosphate in spontaneously hypertensive rats publication-title: Arzneimittelforschung – volume: 2018 start-page: 1841046 year: 2018 ident: ref_299 article-title: Long-Term Administration of Angiotensin (1–7) to db/db Mice Reduces Oxidative Stress Damage in the Kidneys and Prevents Renal Dysfunction publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2018/1841046 – volume: 6 start-page: 52 year: 1997 ident: ref_248 article-title: Low dose angiotensin II infusions into the renal artery induce chronic hypertension in conscious dogs publication-title: Blood Press. doi: 10.3109/08037059709086446 – volume: 2 start-page: 247 year: 2010 ident: ref_253 article-title: Angiotensin II revisited: New roles in inflammation, immunology and aging publication-title: EMBO Mol. Med. doi: 10.1002/emmm.201000080 – volume: 52 start-page: 880 year: 2012 ident: ref_332 article-title: Prevention of salt-induced renal injury by activation of NAD(P)H:quinone oxidoreductase 1, associated with NADPH oxidase publication-title: Free. Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2011.12.007 – volume: 8 start-page: 22 year: 2022 ident: ref_334 article-title: Alamandine alleviates hypertension and renal damage via oxidative-stress attenuation in Dahl rats publication-title: Cell Death Discov. doi: 10.1038/s41420-022-00822-y – volume: 300 start-page: L295 year: 2011 ident: ref_53 article-title: TGF-beta regulates Nox4, MnSOD and catalase expression, and IL-6 release in airway smooth muscle cells publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol. doi: 10.1152/ajplung.00134.2010 – ident: ref_314 doi: 10.1016/j.redox.2021.102115 – volume: 135 start-page: 943 year: 2021 ident: ref_410 article-title: Angiotensin II up-regulates sodium-glucose co-transporter 2 expression and SGLT2 inhibitor attenuates Ang II-induced hypertensive renal injury in mice publication-title: Clin. Sci. doi: 10.1042/CS20210094 – volume: 30 start-page: 1817 year: 2019 ident: ref_144 article-title: Podocyte NADPH Oxidase 5 Promotes Renal Inflammation Regulated by the Toll-Like Receptor Pathway publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2017.7402 – volume: 34 start-page: 575 year: 2018 ident: ref_399 article-title: Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms publication-title: Can. J. Cardiol. doi: 10.1016/j.cjca.2017.12.005 – volume: 168 start-page: 139 year: 2000 ident: ref_250 article-title: Nitric oxide-angiotensin II interactions in angiotensin II-dependent hypertension publication-title: Acta Physiol. Scand. doi: 10.1046/j.1365-201x.2000.00630.x – volume: 314 start-page: R399 year: 2018 ident: ref_132 article-title: NRF2 prevents hypertension, increased ADMA, microvascular oxidative stress, and dysfunction in mice with two weeks of ANG II infusion publication-title: Am. J. Physiol. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00122.2017 – ident: ref_407 doi: 10.3390/ijms20030629 – volume: 231 start-page: 1130 year: 2016 ident: ref_294 article-title: The Nox1/4 Dual Inhibitor GKT137831 or Nox4 Knockdown Inhibits Angiotensin-II-Induced Adult Mouse Cardiac Fibroblast Proliferation and Migration. AT1 Physically Associates With Nox4 publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25210 – volume: 4 start-page: 341S year: 1991 ident: ref_245 article-title: DuP 753 increases survival in spontaneously hypertensive stroke-prone rats fed a high sodium diet publication-title: Am. J. Hypertens. doi: 10.1093/ajh/4.4.341S – volume: 75 start-page: 894 year: 2020 ident: ref_378 article-title: Antihypertensive and Renal Mechanisms of SGLT2 (Sodium-Glucose Linked Transporter 2) Inhibitors publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.119.11684 – volume: 306 start-page: F155 year: 2014 ident: ref_54 article-title: Upregulation of mitochondrial Nox4 mediates TGF-beta-induced apoptosis in cultured mouse podocytes publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00438.2013 – volume: 18 start-page: 81 year: 2005 ident: ref_186 article-title: Vascular smooth muscle cell NAD(P)H oxidase activity during the development of hypertension: Effect of angiotensin II and role of insulinlike growth factor-1 receptor transactivation publication-title: Am. J. Hypertens. doi: 10.1016/j.amjhyper.2004.09.001 – volume: 38 start-page: 249 year: 2001 ident: ref_221 article-title: Increased expression of peroxisome proliferator-activated receptor-alpha and -gamma in blood vessels of spontaneously hypertensive rats publication-title: Hypertension doi: 10.1161/01.HYP.38.2.249 – volume: 29 start-page: 1167 year: 2011 ident: ref_194 article-title: Endogenous hydrogen peroxide up-regulates the expression of nitric oxide synthase in the kidney of SHR publication-title: J. Hypertens. doi: 10.1097/HJH.0b013e3283468367 – volume: 34 start-page: 5 year: 2011 ident: ref_109 article-title: Reactive oxygen species and vascular biology: Implications in human hypertension publication-title: Hypertens. Res. doi: 10.1038/hr.2010.201 – volume: 291 start-page: R391 year: 2006 ident: ref_233 article-title: Neonatal sympathectomy reduces NADPH oxidase activity and vascular resistance in spontaneously hypertensive rat kidneys publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00029.2006 – volume: 24 start-page: 403 year: 2015 ident: ref_92 article-title: Gut microbiota in hypertension publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/MNH.0000000000000149 – volume: 296 start-page: R1001 year: 2009 ident: ref_56 article-title: Cellular mediators of renal vascular dysfunction in hypertension publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.90960.2008 – volume: 21 start-page: 5933 year: 2015 ident: ref_106 article-title: The role of NADPH oxidase in vascular disease--hypertension, atherosclerosis & stroke publication-title: Curr. Pharm. Des. doi: 10.2174/1381612821666151029112302 – volume: 72 start-page: 235 year: 2018 ident: ref_179 article-title: Vascular Nox (NADPH Oxidase) Compartmentalization, Protein Hyperoxidation, and Endoplasmic Reticulum Stress Response in Hypertension publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.118.10824 – volume: 43 start-page: 310 year: 2005 ident: ref_151 article-title: Endothelin-1 activation of JAK2 in vascular smooth muscle cells involves NAD(P)H oxidase-derived reactive oxygen species publication-title: Vasc. Pharmacol. doi: 10.1016/j.vph.2005.08.024 – volume: 32 start-page: 404 year: 2020 ident: ref_398 article-title: SGLT2 Inhibition Mediates Protection from Diabetic Kidney Disease by Promoting Ketone Body-Induced mTORC1 Inhibition publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.06.020 – volume: 72 start-page: e53 year: 2018 ident: ref_156 article-title: Resistant Hypertension: Detection, Evaluation, and Management: A Scientific Statement From the American Heart Association publication-title: Hypertension doi: 10.1161/HYP.0000000000000084 – volume: 109 start-page: 311 year: 2005 ident: ref_246 article-title: Failure of angiotensin II to suppress plasma renin activity in normotensive subjects with a positive family history of hypertension publication-title: Clin. Sci. doi: 10.1042/CS20050055 – volume: 112 start-page: 2668 year: 2005 ident: ref_78 article-title: Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.538934 – volume: 11 start-page: 410 year: 2012 ident: ref_292 article-title: Klotho gene delivery suppresses Nox2 expression and attenuates oxidative stress in rat aortic smooth muscle cells via the cAMP-PKA pathway publication-title: Aging Cell doi: 10.1111/j.1474-9726.2012.00796.x – volume: 18 start-page: 1496 year: 2005 ident: ref_345 article-title: Simvastatin and losartan enhance nitric oxide and reduce oxidative stress in salt-induced hypertension publication-title: Am. J. Hypertens. doi: 10.1016/j.amjhyper.2005.05.022 – volume: 25 start-page: 119 year: 2016 ident: ref_117 article-title: Oxidant Mechanisms in Renal Injury and Disease publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2016.6665 – volume: 51 start-page: 1403 year: 2008 ident: ref_44 article-title: Resistant hypertension: Diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.108.189141 – volume: 110 start-page: 1217 year: 2012 ident: ref_124 article-title: Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.112.267054 – volume: 288 start-page: H7 year: 2005 ident: ref_283 article-title: Hemodynamic and biochemical adaptations to vascular smooth muscle overexpression of p22phox in mice publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00637.2004 – volume: 59 start-page: 251 year: 2007 ident: ref_72 article-title: The intrarenal renin-angiotensin system: From physiology to the pathobiology of hypertension and kidney disease publication-title: Pharmacol. Rev. doi: 10.1124/pr.59.3.3 – volume: 292 start-page: R1472 year: 2007 ident: ref_311 article-title: HO-1 induction lowers blood pressure and superoxide production in the renal medulla of angiotensin II hypertensive mice publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00601.2006 – volume: 36 start-page: 287 year: 2009 ident: ref_217 article-title: Benazepril, an angiotensin-converting enzyme inhibitor, alleviates renal injury in spontaneously hypertensive rats by inhibiting advanced glycation end-product-mediated pathways publication-title: Clin. Exp. Pharmacol. Physiol. doi: 10.1111/j.1440-1681.2008.05078.x – volume: 17 start-page: 749 year: 2004 ident: ref_220 article-title: Beneficial and deleterious effects of rosiglitazone on hypertension development in spontaneously hypertensive rats publication-title: Am. J. Hypertens. doi: 10.1016/j.amjhyper.2004.04.010 – volume: 296 start-page: R72 year: 2009 ident: ref_284 article-title: Role of NOX2 in the regulation of afferent arteriole responsiveness publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.90718.2008 – volume: 21 start-page: 129 year: 1994 ident: ref_162 article-title: Transplantation studies of the role of the kidney in long-term blood pressure reduction following brief ACE inhibitor treatment in young spontaneously hypertensive rats publication-title: Clin. Exp. Pharmacol. Physiol. doi: 10.1111/j.1440-1681.1994.tb02480.x – volume: 1865 start-page: 2317 year: 2019 ident: ref_131 article-title: Activated NF-kappaB/Nrf2 and Wnt/beta-catenin pathways are associated with lipid metabolism in CKD patients with microalbuminuria and macroalbuminuria publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/j.bbadis.2019.05.010 – volume: 45 start-page: 329 year: 2008 ident: ref_145 article-title: Nox5 mediates PDGF-induced proliferation in human aortic smooth muscle cells publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2008.04.024 – ident: ref_415 doi: 10.1038/s41598-023-46016-z – volume: 301 start-page: R519 year: 2011 ident: ref_83 article-title: Renal medullary endothelin-1 is decreased in Dahl salt-sensitive rats publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00207.2011 – volume: 20 start-page: 1607 year: 2002 ident: ref_218 article-title: Inhibitor for advanced glycation end products formation attenuates hypertension and oxidative damage in genetic hypertensive rats publication-title: J. Hypertens. doi: 10.1097/00004872-200208000-00024 – volume: 28 start-page: 158 year: 2008 ident: ref_327 article-title: Effects of dietary salt on intrarenal angiotensin system, NAD(P)H oxidase, COX-2, MCP-1 and PAI-1 expressions and NF-kappaB activity in salt-sensitive and -resistant rat kidneys publication-title: Am. J. Nephrol. doi: 10.1159/000110021 – volume: 76 start-page: 133 year: 2020 ident: ref_357 article-title: NOX4/H(2)O(2)/mTORC1 Pathway in Salt-Induced Hypertension and Kidney Injury publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.120.15058 – volume: 287 start-page: F907 year: 2004 ident: ref_189 article-title: Oxidant stress in kidneys of spontaneously hypertensive rats involves both oxidase overexpression and loss of extracellular superoxide dismutase publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00060.2004 – volume: 2016 start-page: 2807490 year: 2016 ident: ref_341 article-title: Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2016/2807490 – volume: 35 start-page: 1078 year: 2000 ident: ref_36 article-title: Local angiotensin II and transforming growth factor-beta1 in renal fibrosis of rats publication-title: Hypertension doi: 10.1161/01.HYP.35.5.1078 – volume: 5 start-page: 9 year: 2016 ident: ref_312 article-title: Gut Microbiota Promote Angiotensin II-Induced Arterial Hypertension and Vascular Dysfunction publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.116.003698 – volume: 37 start-page: 208 year: 2004 ident: ref_150 article-title: Reactive oxygen species mediate Endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 signaling, as well as protein synthesis, in vascular smooth muscle cells publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2004.04.018 – volume: 4 start-page: 753 year: 1982 ident: ref_322 article-title: Dahl salt-susceptible and salt-resistant rats. A review publication-title: Hypertension doi: 10.1161/01.HYP.4.6.753 – volume: 42 start-page: 587 year: 2017 ident: ref_354 article-title: Mitochondrial Dysfunction and Altered Renal Metabolism in Dahl Salt-Sensitive Rats publication-title: Kidney Blood Press. Res. doi: 10.1159/000479846 – volume: 226 start-page: e13256 year: 2019 ident: ref_96 article-title: Impaired butyrate absorption in the proximal colon, low serum butyrate and diminished central effects of butyrate on blood pressure in spontaneously hypertensive rats publication-title: Acta Physiol. doi: 10.1111/apha.13256 – volume: 46 start-page: 468 year: 2011 ident: ref_178 article-title: Age-related changes in renal expression of oxidant and antioxidant enzymes and oxidative stress markers in male SHR and WKY rats publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2011.02.003 – volume: 7 start-page: 177 year: 1993 ident: ref_63 article-title: Does the kidney play a role in the aetiology of primary hypertension? Evidence from renal transplantation studies in rats and humans publication-title: J. Hum. Hypertens. – ident: ref_142 doi: 10.1371/journal.pbio.3000885 – ident: ref_97 doi: 10.3389/fphys.2021.752924 – volume: 52 start-page: 642 year: 2021 ident: ref_413 article-title: Effects of Finerenone Combined with Empagliflozin in a Model of Hypertension-Induced End-Organ Damage publication-title: Am. J. Nephrol. doi: 10.1159/000516213 – volume: 25 start-page: 427 year: 2003 ident: ref_214 article-title: Effects of losartan and enalapril at different doses on cardiac and renal interstitial matrix in spontaneously hypertensive rats publication-title: Clin. Exp. Hypertens. doi: 10.1081/CEH-120024986 – volume: 17 start-page: 54 year: 1991 ident: ref_166 article-title: Effect of enalapril treatment on the pressure-natriuresis curve in spontaneously hypertensive rats publication-title: Hypertension doi: 10.1161/01.HYP.17.1.54 – volume: 315 start-page: 51 year: 2005 ident: ref_234 article-title: Early and sustained inhibition of nuclear factor-kappaB prevents hypertension in spontaneously hypertensive rats publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.105.088062 – volume: 302 start-page: F85 year: 2012 ident: ref_303 article-title: AT1 receptor-mediated augmentation of angiotensinogen, oxidative stress, and inflammation in ANG II-salt hypertension publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00351.2011 – volume: 14 start-page: 1179546820902843 year: 2020 ident: ref_360 article-title: l-arginine Supplementation Increased Only Endothelium-Dependent Relaxation in Sprague-Dawley Rats Fed a High-Salt Diet by Enhancing Abdominal Aorta Endothelial Nitric Oxide Synthase Gene Expression publication-title: Clin. Med. Insights: Cardiol. – volume: 43 start-page: 492 year: 2020 ident: ref_417 article-title: Effects of an SGLT2 inhibitor on the salt sensitivity of blood pressure and sympathetic nerve activity in a nondiabetic rat model of chronic kidney disease publication-title: Hypertens. Res. doi: 10.1038/s41440-020-0410-8 – volume: 288 start-page: H37 year: 2005 ident: ref_280 article-title: Angiotensin II-induced hypertrophy is potentiated in mice overexpressing p22phox in vascular smooth muscle publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00638.2004 – volume: 5 start-page: 137 year: 2011 ident: ref_185 article-title: Differential regulation of Nox1, Nox2 and Nox4 in vascular smooth muscle cells from WKY and SHR publication-title: J. Am. Soc. Hypertens. doi: 10.1016/j.jash.2011.02.001 – volume: 46 start-page: 463 year: 2005 ident: ref_160 article-title: The kidney as a determinant of genetic hypertension: Evidence from renal transplantation studies publication-title: Hypertension doi: 10.1161/01.HYP.0000178189.68229.8a – ident: ref_66 – volume: 14 start-page: 396 year: 1989 ident: ref_249 article-title: Angiotensin-induced hypertension in the rat. Sympathetic nerve activity and prostaglandins publication-title: Hypertension doi: 10.1161/01.HYP.14.4.396 – volume: 19 start-page: 343 year: 2015 ident: ref_350 article-title: Nicorandil suppresses urinary protein excretion and activates eNOS in Dahl salt-sensitive hypertensive rats publication-title: Clin. Exp. Nephrol. doi: 10.1007/s10157-014-0998-6 – volume: 83 start-page: 503 year: 2021 ident: ref_388 article-title: Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-031620-095920 – volume: 15 start-page: 958 year: 2004 ident: ref_339 article-title: Antioxidant intervention blunts renal injury in experimental renovascular disease publication-title: J. Am. Soc. Nephrol. doi: 10.1097/01.ASN.0000117774.83396.E9 – volume: 315 start-page: F1478 year: 2018 ident: ref_262 article-title: Superoxide via Sp3 mechanism increases renal renin activity, renal AT1 receptor function, and blood pressure in rats publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00194.2018 – volume: 232 start-page: e13662 year: 2021 ident: ref_364 article-title: Dietary influences on the Dahl SS rat gut microbiota and its effects on salt-sensitive hypertension and renal damage publication-title: Acta Physiol. doi: 10.1111/apha.13662 – volume: 143 start-page: 1157 year: 2021 ident: ref_6 article-title: Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.050686 – ident: ref_147 doi: 10.1371/journal.pone.0105337 – volume: 68 start-page: 179 year: 2005 ident: ref_205 article-title: Antihypertensive response to prolonged tempol in the spontaneously hypertensive rat publication-title: Kidney Int. doi: 10.1111/j.1523-1755.2005.00392.x – volume: 38 start-page: 655 year: 2001 ident: ref_310 article-title: Antioxidants block angiotensin II-induced increases in blood pressure and endothelin publication-title: Hypertension doi: 10.1161/01.HYP.38.3.655 – volume: 56 start-page: 950 year: 2010 ident: ref_255 article-title: Impaired endothelial function and microvascular asymmetrical dimethylarginine in angiotensin II-infused rats: Effects of tempol publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.110.157115 – volume: 6 start-page: 407 year: 2013 ident: ref_69 article-title: Protein Kinase C Inhibitors as Modulators of Vascular Function and their Application in Vascular Disease publication-title: Pharmaceuticals doi: 10.3390/ph6030407 – volume: 43 start-page: 19 year: 2005 ident: ref_50 article-title: Vascular endothelin in hypertension publication-title: Vasc. Pharmacol. doi: 10.1016/j.vph.2005.03.004 – volume: 189 start-page: 981 year: 2019 ident: ref_346 article-title: Stimulating Type 1 Angiotensin Receptors on T Lymphocytes Attenuates Renal Fibrosis publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2019.02.004 – volume: 8 start-page: 298 year: 2006 ident: ref_85 article-title: Endothelin, the kidney, and hypertension publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-006-0068-x – volume: 32 start-page: 107954 year: 2020 ident: ref_397 article-title: Proximal Tubule mTORC1 Is a Central Player in the Pathophysiology of Diabetic Nephropathy and Its Correction by SGLT2 Inhibitors publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.107954 – volume: 44 start-page: 236 year: 2004 ident: ref_232 article-title: Effects of local administrations of tempol and diethyldithio-carbamic on peripheral nerve activity publication-title: Hypertension doi: 10.1161/01.HYP.0000136393.26777.63 – volume: 9 start-page: 202 year: 2013 ident: ref_20 article-title: T-type Ca channel blockers in patients with chronic kidney disease in clinical practice publication-title: Curr. Hypertens. Rev. doi: 10.2174/1573402110666140131155028 – volume: 128 start-page: 465 year: 2015 ident: ref_101 article-title: Nox and renal disease publication-title: Clin. Sci. doi: 10.1042/CS20140361 – volume: 17 start-page: 167 year: 2004 ident: ref_307 article-title: Inhibition of oxidative stress and improvement of endothelial function by amlodipine in angiotensin II-infused rats publication-title: Am. J. Hypertens. doi: 10.1016/j.amjhyper.2003.09.007 – volume: 25 start-page: 207 year: 2007 ident: ref_212 article-title: Transient AT1 receptor-inhibition in prehypertensive spontaneously hypertensive rats results in maintained cardiac protection until advanced age publication-title: J. Hypertens. – volume: 111 start-page: 260 year: 2009 ident: ref_295 article-title: NADPH oxidase isoforms and anti-hypertensive effects of atorvastatin demonstrated in two animal models publication-title: J. Pharmacol. Sci. doi: 10.1254/jphs.09148FP – volume: 24 start-page: 81 year: 2015 ident: ref_140 article-title: NADPH oxidase 5 and renal disease publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/MNH.0000000000000081 – volume: 50 start-page: 837 year: 2018 ident: ref_93 article-title: Disparate effects of antibiotics on hypertension publication-title: Physiol. Genom. doi: 10.1152/physiolgenomics.00073.2018 – volume: 17 start-page: 311 year: 2012 ident: ref_112 article-title: Oxidative stress, anti-oxidant therapies and chronic kidney disease publication-title: Nephrology doi: 10.1111/j.1440-1797.2012.01572.x – volume: 42 start-page: 811 year: 2003 ident: ref_148 article-title: ETA receptor blockade decreases vascular superoxide generation in DOCA-salt hypertension publication-title: Hypertension doi: 10.1161/01.HYP.0000088363.65943.6C – volume: 16 start-page: 45 year: 2020 ident: ref_368 article-title: Hypertension in Chronic Kidney Disease: Novel Insights publication-title: Curr. Hypertens. Rev. doi: 10.2174/1573402115666190415153554 – volume: 7 start-page: 317 year: 2018 ident: ref_45 article-title: Kidney-Derived c-Kit(+) Cells Possess Regenerative Potential publication-title: Stem Cells Transl. Med. doi: 10.1002/sctm.17-0232 – volume: 128 start-page: 1 year: 2005 ident: ref_191 article-title: Effects of angiotensin II type 1 receptor blockade on the oxidative stress in spontaneously hypertensive rat tissues publication-title: Regul. Pept. doi: 10.1016/j.regpep.2004.12.004 – volume: 47 start-page: 238 year: 2006 ident: ref_259 article-title: RNA silencing in vivo reveals role of p22phox in rat angiotensin slow pressor response publication-title: Hypertension doi: 10.1161/01.HYP.0000200023.02195.73 – volume: 320 start-page: F464 year: 2021 ident: ref_134 article-title: Nrf2 mediates hypoxia-inducible HIF1alpha activation in kidney tubular epithelial cells publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00501.2020 – volume: 25 start-page: 311 year: 2005 ident: ref_328 article-title: Oxidative stress and antioxidant treatment in hypertension and the associated renal damage publication-title: Am. J. Nephrol. doi: 10.1159/000086411 – ident: ref_372 doi: 10.3390/jcm12216868 – volume: 21 start-page: 949 year: 1993 ident: ref_276 article-title: Role of nitric oxide in long-term angiotensin II-induced renal vasoconstriction publication-title: Hypertension doi: 10.1161/01.HYP.21.6.949 – volume: 20 start-page: 239 year: 2006 ident: ref_39 article-title: Evidence for renoprotection by blockade of the renin-angiotensin-aldosterone system in hypertension and diabetes publication-title: J. Hum. Hypertens. doi: 10.1038/sj.jhh.1001982 – volume: 320 start-page: F761 year: 2021 ident: ref_389 article-title: Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00552.2020 – volume: 308 start-page: F252 year: 2015 ident: ref_256 article-title: Hemodynamic basis for the limited renal injury in rats with angiotensin II-induced hypertension publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00596.2014 – volume: 24 start-page: 497 year: 2009 ident: ref_52 article-title: Endothelin-1 and F2-isoprostane relate to and predict renal dysfunction in hypertensive patients publication-title: Nephrol. Dial. Transplant. doi: 10.1093/ndt/gfn489 – volume: 44 start-page: S2 year: 2012 ident: ref_25 article-title: Oxidative stress, Noxs, and hypertension: Experimental evidence and clinical controversies publication-title: Ann. Med. doi: 10.3109/07853890.2011.653393 – volume: 1832 start-page: 931 year: 2013 ident: ref_46 article-title: Renal epithelial injury and fibrosis publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2013.02.010 – volume: 14 start-page: 21 year: 1999 ident: ref_201 article-title: Altered renal expression of nitric oxide synthase isozymes in spontaneously hypertensive rats publication-title: Korean J. Intern. Med. doi: 10.3904/kjim.1999.14.1.21 – volume: 29 start-page: 813 year: 2006 ident: ref_243 article-title: Increased expression of gp91phox homologues of NAD(P)H oxidase in the aortic media during chronic hypertension: Involvement of the renin-angiotensin system publication-title: Hypertens. Res. doi: 10.1291/hypres.29.813 – volume: 45 start-page: 530 year: 2005 ident: ref_263 article-title: Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase publication-title: Hypertension doi: 10.1161/01.HYP.0000158845.49943.5e – ident: ref_315 doi: 10.3389/fmicb.2022.814855 – volume: 19 start-page: 421 year: 2001 ident: ref_348 article-title: L-Arginine improves endothelial function in renal artery of hypertensive Dahl rats publication-title: J. Hypertens. doi: 10.1097/00004872-200103000-00010 – volume: 15 start-page: 1616 year: 2004 ident: ref_26 article-title: Development of chronic kidney disease and cardiovascular prognosis in essential hypertensive patients publication-title: J. Am. Soc. Nephrol. doi: 10.1097/01.ASN.0000127045.14709.75 – volume: 134 start-page: 53 year: 2019 ident: ref_187 article-title: Apocynin alters redox signaling in conductance and resistance vessels of spontaneously hypertensive rats publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.12.026 – volume: 298 start-page: R740 year: 2010 ident: ref_279 article-title: Asymmetric dimethylarginine in angiotensin II-induced hypertension publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.90875.2008 – volume: 302 start-page: F408 year: 2012 ident: ref_302 article-title: Involvement of cytochrome P-450 1B1 in renal dysfunction, injury, and inflammation associated with angiotensin II-induced hypertension in rats publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00542.2011 – volume: 106 start-page: e107 year: 2007 ident: ref_222 article-title: PPAR-gamma activation inhibits angiotensin II synthesis, apoptosis, and proliferation of mesangial cells from spontaneously hypertensive rats publication-title: Nephron Exp. Nephrol. doi: 10.1159/000104834 – volume: 15 start-page: 306 year: 2004 ident: ref_42 article-title: The SOD mimetic tempol ameliorates glomerular injury and reduces mitogen-activated protein kinase activity in Dahl salt-sensitive rats publication-title: J. Am. Soc. Nephrol. doi: 10.1097/01.ASN.0000108523.02100.E0 – ident: ref_9 doi: 10.3390/ijms20153711 – ident: ref_423 doi: 10.3390/biom14010137 – volume: 16 start-page: 50 year: 2001 ident: ref_12 article-title: The kidney in arterial hypertension publication-title: Nephrol. Dial. Transplant. doi: 10.1093/ndt/16.suppl_1.50 – volume: 299 start-page: H386 year: 2010 ident: ref_16 article-title: Elevated systemic TGF-beta impairs aortic vasomotor function through activation of NADPH oxidase-driven superoxide production and leads to hypertension, myocardial remodeling, and increased plaque formation in apoE−/− mice publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.01042.2009 – volume: 283 start-page: R732 year: 2002 ident: ref_331 article-title: Superoxide dismutase and oxidative stress in Dahl salt-sensitive and -resistant rats publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol doi: 10.1152/ajpregu.00346.2001 – volume: 4 start-page: 915 year: 1982 ident: ref_164 article-title: Hormonal pattern during development of hypertension in spontaneously hypertensive rats (SHR) publication-title: Clin. Exp. Hypertens. A – volume: 40 start-page: 617 year: 2018 ident: ref_215 article-title: The effects of single and combined application of ramipril and losartan on renal structure and function in hypertensive rats publication-title: Clin. Exp. Hypertens. doi: 10.1080/10641963.2017.1416118 – volume: 75 start-page: 346 year: 2008 ident: ref_70 article-title: Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2007.07.004 – volume: 20 start-page: 131 year: 2002 ident: ref_159 article-title: Long-term arterial pressure in spontaneously hypertensive rats is set by the kidney publication-title: J. Hypertens. doi: 10.1097/00004872-200201000-00019 – volume: 85 start-page: 679 year: 2005 ident: ref_65 article-title: Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases publication-title: Physiol. Rev. doi: 10.1152/physrev.00056.2003 – volume: 55 start-page: 3112 year: 2006 ident: ref_51 article-title: Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice publication-title: Diabetes doi: 10.2337/db06-0895 – volume: 92 start-page: 1366 year: 1993 ident: ref_34 article-title: Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-beta publication-title: J. Clin. Investig. doi: 10.1172/JCI116710 – volume: 20 start-page: 2710 year: 2014 ident: ref_301 article-title: Prostacyclin signaling boosts NADPH oxidase 4 in the endothelium promoting cytoprotection and angiogenesis publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2013.5374 – volume: 288 start-page: 28668 year: 2013 ident: ref_296 article-title: Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: Role of mitochondrial reactive oxygen species publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.470971 – volume: 406 start-page: 105 year: 2007 ident: ref_119 article-title: NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation publication-title: Biochem. J. doi: 10.1042/BJ20061903 – volume: 86 start-page: 319 year: 2024 ident: ref_374 article-title: MicroRNAs (miRNAs) role in hypertension: Pathogenesis and promising therapeutics publication-title: Ann. Med. Surg. doi: 10.1097/MS9.0000000000001498 – volume: 11 start-page: 835 year: 2000 ident: ref_343 article-title: Dysfunctional renal nitric oxide synthase as a determinant of salt-sensitive hypertension: Mechanisms of renal artery endothelial dysfunction and role of endothelin for vascular hypertrophy and Glomerulosclerosis publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.V115835 – volume: 105 start-page: 249 year: 2009 ident: ref_121 article-title: Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.109.193722 – volume: 290 start-page: F80 year: 2006 ident: ref_306 article-title: Enhanced superoxide generation modulates renal function in ANG II-induced hypertensive rats publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00090.2005 – volume: 78 start-page: 1197 year: 2021 ident: ref_375 article-title: Hypertension in Diabetes: An Update of Basic Mechanisms and Clinical Disease publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.121.17981 – volume: 44 start-page: S119 year: 2012 ident: ref_320 article-title: Pathophysiology of salt sensitivity hypertension publication-title: Ann. Med. doi: 10.3109/07853890.2012.671538 – volume: 23 start-page: 1967 year: 2012 ident: ref_29 article-title: NADPH-oxidase 4 protects against kidney fibrosis during chronic renal injury publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2012040373 – volume: 41 start-page: 266 year: 2003 ident: ref_227 article-title: Renal sympathetic nerve responses to tempol in spontaneously hypertensive rats publication-title: Hypertension doi: 10.1161/01.HYP.0000049621.85474.CF – volume: 74 start-page: 1051 year: 2022 ident: ref_224 article-title: The Angiotensin AT(2) Receptor: From a Binding Site to a Novel Therapeutic Target publication-title: Pharmacol. Rev. doi: 10.1124/pharmrev.120.000281 – volume: 68 start-page: 2143 year: 2005 ident: ref_300 article-title: Up-regulation of glomerular COX-2 by angiotensin II: Role of reactive oxygen species publication-title: Kidney Int. doi: 10.1111/j.1523-1755.2005.00670.x – volume: 31 start-page: 1248 year: 1998 ident: ref_198 article-title: Upregulation of renal and vascular nitric oxide synthase in young spontaneously hypertensive rats publication-title: Hypertension doi: 10.1161/01.HYP.31.6.1248 – volume: 295 start-page: H1008 year: 2008 ident: ref_181 article-title: NAD(P)H oxidase-derived peroxide mediates elevated basal and impaired flow-induced NO production in SHR mesenteric arteries in vivo publication-title: Am. J. Physiol. Hear. Circ. Physiol. doi: 10.1152/ajpheart.00114.2008 – volume: 6 start-page: S27 year: 1988 ident: ref_80 article-title: Long-term hypotensive effects of an angiotensin converting enzyme inhibitor in spontaneously hypertensive rats: Is there a role for vascular structure? publication-title: J. Hypertens. Suppl. – volume: 138 start-page: e426 year: 2018 ident: ref_2 article-title: 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines publication-title: Circulation – volume: 467 start-page: 727 year: 2015 ident: ref_125 article-title: Nox1 upregulates the function of vascular T-type calcium channels following chronic nitric oxide deficit publication-title: Pflügers Arch. Eur. J. Physiol. doi: 10.1007/s00424-014-1548-5 – volume: 295 start-page: R1858 year: 2008 ident: ref_330 article-title: NADPH oxidase contributes to renal damage and dysfunction in Dahl salt-sensitive hypertension publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.90650.2008 – volume: 251 start-page: F655 year: 1986 ident: ref_230 article-title: Acute renal denervation produces a diuresis and natriuresis in young SHR but not WKY rats publication-title: Am. J. Physiol. -Ren. Physiol. doi: 10.1152/ajprenal.1986.251.4.F655 – volume: 9 start-page: 108 year: 2013 ident: ref_22 article-title: Renoprotective effects of the L-/T-type calcium channel blocker benidipine in patients with hypertension publication-title: Curr. Hypertens. Rev. doi: 10.2174/15734021113099990005 – volume: 7 start-page: e009388 year: 2018 ident: ref_146 article-title: NADPH Oxidase 5 Is a Pro-Contractile Nox Isoform and a Point of Cross-Talk for Calcium and Redox Signaling-Implications in Vascular Function publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.118.009388 – volume: 52 start-page: 777 year: 2008 ident: ref_174 article-title: Renal medullary oxidative stress, pressure-natriuresis, and hypertension publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.107.092858 – volume: 26 start-page: 1030 year: 1995 ident: ref_342 article-title: Nitric oxide synthase isoform activities in kidney of Dahl salt-sensitive rats publication-title: Hypertension doi: 10.1161/01.HYP.26.6.1030 – volume: 25 start-page: 2504 year: 2007 ident: ref_213 article-title: Transient prehypertensive treatment in spontaneously hypertensive rats: A comparison of spironolactone and losartan regarding long-term blood pressure and target organ damage publication-title: J. Hypertens. doi: 10.1097/HJH.0b013e3282ef84f8 – volume: 32 start-page: 321 year: 2009 ident: ref_337 article-title: Effects of eplerenone, a selective mineralocorticoid receptor antagonist, on clinical and experimental salt-sensitive hypertension publication-title: Hypertens. Res. doi: 10.1038/hr.2009.29 – volume: 295 start-page: F758 year: 2008 ident: ref_293 article-title: Reduced renal responses to nitric oxide synthase inhibition in mice lacking the gene for gp91phox subunit of NAD(P)H oxidase publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.90291.2008 – volume: 106 start-page: 80 year: 2017 ident: ref_355 article-title: Increased renal oxidative stress in salt-sensitive human GRK4gamma486V transgenic mice publication-title: Free. Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2017.02.021 – volume: 65 start-page: 219 year: 2004 ident: ref_193 article-title: Up-regulation of kidney NAD(P)H oxidase and calcineurin in SHR: Reversal by lifelong antioxidant supplementation publication-title: Kidney Int. doi: 10.1111/j.1523-1755.2004.00372.x – volume: 20 start-page: 281 year: 2014 ident: ref_290 article-title: Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.4918 – volume: 51 start-page: S30 year: 2008 ident: ref_5 article-title: Hypertension and CKD: Kidney Early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES), 1999–2004 publication-title: Am. J. Kidney Dis. doi: 10.1053/j.ajkd.2007.12.012 – volume: 36 start-page: 957 year: 2000 ident: ref_197 article-title: Effect of antioxidant therapy on blood pressure and NO synthase expression in hypertensive rats publication-title: Hypertension doi: 10.1161/01.HYP.36.6.957 – volume: 380 start-page: 355 year: 2009 ident: ref_18 article-title: Nox4 overexpression activates reactive oxygen species and p38 MAPK in human endothelial cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2009.01.107 – volume: 27 start-page: 17 year: 2005 ident: ref_202 article-title: Overexpression of inducible nitric oxide synthase in the kidney of the spontaneously hypertensive rat publication-title: Clin. Exp. Hypertens. doi: 10.1081/CEH-200044249 – volume: 72 start-page: 1546 year: 2020 ident: ref_138 article-title: Modulation of NADPH oxidase and Nrf2/HO-1 pathway by vanillin in cisplatin-induced nephrotoxicity in rats publication-title: J. Pharm. Pharmacol. doi: 10.1111/jphp.13340 – volume: 132 start-page: 1050 year: 2023 ident: ref_376 article-title: Hypertension as Cardiovascular Risk Factor in Chronic Kidney Disease publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.122.321762 – ident: ref_409 doi: 10.3390/ijms241310710 – volume: 8 start-page: 166 year: 2006 ident: ref_57 article-title: Pathogenesis of salt sensitivity of blood pressure publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-006-0014-y – volume: 42 start-page: 945 year: 2003 ident: ref_254 article-title: In salt-sensitive hypertension, increased superoxide production is linked to functional upregulation of angiotensin II publication-title: Hypertension doi: 10.1161/01.HYP.0000094220.06020.C8 – volume: 110 start-page: 235 year: 2006 ident: ref_236 article-title: Effect of chronic N-acetylcysteine treatment on the development of spontaneous hypertension publication-title: Clin. Sci. doi: 10.1042/CS20050227 – volume: 56 start-page: 471 year: 1999 ident: ref_149 article-title: Free-radical-generated F2-isoprostane stimulates cell proliferation and endothelin-1 expression on endothelial cells publication-title: Kidney Int. doi: 10.1046/j.1523-1755.1999.00596.x – volume: 110 start-page: 87 year: 2012 ident: ref_265 article-title: Reactive oxygen species and endothelial function--role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases publication-title: Basic Clin. Pharmacol. Toxicol. doi: 10.1111/j.1742-7843.2011.00785.x – volume: 181 start-page: 571 year: 2004 ident: ref_58 article-title: Transgenic mice for studies of the renin-angiotensin system in hypertension publication-title: Acta Physiol. Scand. doi: 10.1111/j.1365-201X.2004.01332.x – volume: 163 start-page: 43 year: 2014 ident: ref_195 article-title: Two different approaches to restore renal nitric oxide and prevent hypertension in young spontaneously hypertensive rats: L-citrulline and nitrate publication-title: Transl. Res. doi: 10.1016/j.trsl.2013.09.008 – volume: 322 start-page: F692 year: 2022 ident: ref_377 article-title: SGLT2 inhibition effect on salt-induced hypertension, RAAS, and Na+ transport in Dahl SS rats publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00053.2022 – volume: 62 start-page: S2 year: 2002 ident: ref_84 article-title: Role of endothelin-1 and thromboxane A2 in renal vasoconstriction induced by angiotensin II in diabetes and hypertension publication-title: Kidney Int. Suppl. doi: 10.1046/j.1523-1755.62.s82.2.x – volume: 3 start-page: 893 year: 1990 ident: ref_170 article-title: Alterations in renal medullary hemodynamics and the pressure-natriuretic response in genetic hypertension publication-title: Am. J. Hypertens. doi: 10.1093/ajh/3.11.893 – volume: 98 start-page: 63 year: 2018 ident: ref_211 article-title: NADPH oxidase 4 promotes cisplatin-induced acute kidney injury via ROS-mediated programmed cell death and inflammation publication-title: Lab. Investig. doi: 10.1038/labinvest.2017.120 – volume: 51 start-page: 500 year: 2008 ident: ref_264 article-title: Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.107.103192 – volume: 53 start-page: 5111 year: 2014 ident: ref_107 article-title: Nox4: A hydrogen peroxide-generating oxygen sensor publication-title: Biochemistry doi: 10.1021/bi500331y – volume: 89 start-page: 408 year: 2001 ident: ref_286 article-title: Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O2− and systolic blood pressure in mice publication-title: Circ. Res. doi: 10.1161/hh1701.096037 – ident: ref_99 doi: 10.1016/j.biopha.2022.114149 – volume: 43 start-page: 528 year: 2007 ident: ref_271 article-title: Comparison of the effects of the superoxide dismutase mimetics EUK-134 and tempol on paraquat-induced nephrotoxicity publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2007.05.014 – volume: 296 start-page: F298 year: 2009 ident: ref_235 article-title: Chronic NF-kappaB blockade reduces cytosolic and mitochondrial oxidative stress and attenuates renal injury and hypertension in SHR publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.90628.2008 – volume: 11 start-page: 38 year: 2015 ident: ref_318 article-title: Salt-Sensitive Hypertension: Perspectives on Intrarenal Mechanisms publication-title: Curr. Hypertens. Rev. doi: 10.2174/1573402111666150530203858 – ident: ref_381 doi: 10.3390/biom12010143 – volume: 10 start-page: 641 year: 1996 ident: ref_161 article-title: The importance of the kidney in primary hypertension: Insights from cross-transplantation publication-title: J. Hum. Hypertens. – volume: 312 start-page: F870 year: 2017 ident: ref_308 article-title: Calcium channel blockade blunts the renal effects of acute nitric oxide synthase inhibition in healthy humans publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00568.2016 – ident: ref_269 doi: 10.1371/annotation/a392bbef-b0ec-4c70-b403-74a7bad85178 – volume: 42 start-page: 1905 year: 2019 ident: ref_416 article-title: Effects of empagliflozin on nondiabetic salt-sensitive hypertension in uninephrectomized rats publication-title: Hypertens. Res. doi: 10.1038/s41440-019-0326-3 – volume: 22 start-page: 2025 year: 2004 ident: ref_196 article-title: Superoxide dismutase, catalase and glutathione peroxidase in the spontaneously hypertensive rat kidney: Effect of antioxidant-rich diet publication-title: J. Hypertens. doi: 10.1097/00004872-200410000-00027 – volume: 21 start-page: 2305 year: 2003 ident: ref_362 article-title: Protective effects of dietary potassium chloride on hemodynamics of Dahl salt-sensitive rats in response to chronic administration of sodium chloride publication-title: J. Hypertens. doi: 10.1097/00004872-200312000-00019 – volume: 20 start-page: 281 year: 2002 ident: ref_188 article-title: Irbesartan lowers superoxide levels and increases nitric oxide bioavailability in blood vessels from spontaneously hypertensive stroke-prone rats publication-title: J. Hypertens. doi: 10.1097/00004872-200202000-00018 – volume: 20 start-page: 689 year: 2021 ident: ref_370 article-title: Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-021-00233-1 – volume: 63 start-page: e40 year: 2014 ident: ref_183 article-title: Endoplasmic reticulum stress contributes to aortic stiffening via proapoptotic and fibrotic signaling mechanisms publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.113.02558 – volume: 285 start-page: R117 year: 2003 ident: ref_272 article-title: Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression publication-title: Am. J. Physiol.-Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00476.2002 – volume: 36 start-page: 367 year: 2014 ident: ref_79 article-title: Vascular oxidative stress upregulates angiotensin II type I receptors via mechanisms involving nuclear factor kappa B publication-title: Clin. Exp. Hypertens. doi: 10.3109/10641963.2014.943402 – ident: ref_55 doi: 10.1016/j.redox.2019.101234 – volume: 45 start-page: 934 year: 2005 ident: ref_359 article-title: Antioxidant treatment prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitive hypertension publication-title: Hypertension doi: 10.1161/01.HYP.0000160404.08866.5a – volume: 12 start-page: 2032 year: 2017 ident: ref_3 article-title: Diabetic Kidney Disease: Challenges, Progress, and Possibilities publication-title: Clin. J. Am. Soc. Nephrol. doi: 10.2215/CJN.11491116 – volume: 279 start-page: 45935 year: 2004 ident: ref_118 article-title: Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M406486200 – volume: 74 start-page: 63 year: 1988 ident: ref_173 article-title: Genetic co-segregation of renal haemodynamics and blood pressure in the spontaneously hypertensive rat publication-title: Clin Sci. doi: 10.1042/cs0740063 – volume: 308 start-page: F377 year: 2015 ident: ref_321 article-title: Renal mechanisms of salt-sensitive hypertension: Contribution of two steroid receptor-associated pathways publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00477.2013 – volume: 150 start-page: 211 year: 2022 ident: ref_395 article-title: Mechanism of canagliflozin-induced vasodilation in resistance mesenteric arteries and the regulation of systemic blood pressure publication-title: J. Pharmacol. Sci. doi: 10.1016/j.jphs.2022.09.004 – volume: 18 start-page: 56 year: 2022 ident: ref_400 article-title: Mineralocorticoid receptor antagonists in diabetic kidney disease—Mechanistic and therapeutic effects publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-021-00490-8 – volume: 34 start-page: 567 year: 2019 ident: ref_137 article-title: Potential benefits and harms of NADPH oxidase type 4 in the kidneys and cardiovascular system publication-title: Nephrol. Dial. Transplant. doi: 10.1093/ndt/gfy161 – ident: ref_277 doi: 10.3389/fphys.2020.566410 – volume: 32 start-page: 839 year: 1982 ident: ref_168 article-title: Reduced sodium excretory ability in young spontaneously hypertensive rats publication-title: Jpn. J. Pharmacol. doi: 10.1016/S0021-5198(19)52620-8 – volume: 51 start-page: 3000605231206289 year: 2023 ident: ref_421 article-title: Canagliflozin and irbesartan ameliorate renal fibrosis via the TGF-beta1/Smad signaling pathway in Dahl salt-sensitive rats publication-title: J. Int. Med Res. doi: 10.1177/03000605231206289 – volume: 59 start-page: 105 year: 2012 ident: ref_418 article-title: Sympathoexcitation by brain oxidative stress mediates arterial pressure elevation in salt-induced chronic kidney disease publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.111.182923 – volume: 16 start-page: 166 year: 2020 ident: ref_120 article-title: Sources and Effects of Oxidative Stress in Hypertension publication-title: Curr. Hypertens. Rev. doi: 10.2174/18756506OTg2CNjUuTcVY – volume: 32 start-page: 59 year: 1998 ident: ref_204 article-title: Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic: Role of nitric oxide publication-title: Hypertension doi: 10.1161/01.HYP.32.1.59 – ident: ref_404 doi: 10.3390/ijms25020869 – volume: 9 start-page: 191 year: 2015 ident: ref_251 article-title: Roles of collecting duct renin and (pro)renin receptor in hypertension: Mini review publication-title: Ther. Adv. Cardiovasc. Dis. doi: 10.1177/1753944715574817 – volume: 292 start-page: H1685 year: 2007 ident: ref_260 article-title: p22phox in the macula densa regulates single nephron GFR during angiotensin II infusion in rats publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00976.2006 – volume: 88 start-page: 947 year: 2001 ident: ref_285 article-title: Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice publication-title: Circ. Res. doi: 10.1161/hh0901.089987 – volume: 99 start-page: 1380 year: 1997 ident: ref_88 article-title: Endothelin-1 transgenic mice develop glomerulosclerosis, interstitial fibrosis, and renal cysts but not hypertension publication-title: J. Clin. Investig. doi: 10.1172/JCI119297 – volume: 28 start-page: 133 year: 2008 ident: ref_115 article-title: Hypertension increases pro-oxidant generation and decreases antioxidant defense in the kidney in early diabetes publication-title: Am. J. Nephrol. doi: 10.1159/000109993 – volume: 53 start-page: 351 year: 2009 ident: ref_252 article-title: Angiotensin-converting enzyme-derived angiotensin II formation during angiotensin II-induced hypertension publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.108.124511 – volume: 13 start-page: 753 year: 1986 ident: ref_216 article-title: Persistent effects on blood pressure and renal haemodynamics following chronic angiotensin converting enzyme inhibition with perindopril publication-title: Clin. Exp. Pharmacol. Physiol. doi: 10.1111/j.1440-1681.1986.tb02379.x |
| SSID | ssj0000913809 |
| Score | 2.4114943 |
| SecondaryResourceType | review_article |
| Snippet | Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1454 |
| SubjectTerms | African Americans Aldosterone Analysis Angiotensin Angiotensin II Angiotensin II receptors Animal models Antihypertensives Antioxidants Apoptosis Blood pressure Cardiovascular disease Chronic kidney failure Collagen Coronary artery disease Coronary heart disease Diabetes Diseases End-stage renal disease Energy metabolism Environmental factors Enzymes Genetic aspects Genetic diversity Heart diseases Hypertension Inflammation Injuries Intestinal microflora Isoforms Kidney diseases Kinases mitochondrial dysfunction NAD(P)H oxidase NADPH oxidases Nephropathy Oxidases Oxidative stress Patients Physiological aspects Proteins Reactive oxygen species redox-sensitive signaling pathways Renal function Renin Review Risk factors ROS Stroke (Disease) United States |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SPOhBWj-ftrKC4Gnp23zsJsdWWipCFVToLSSTBFckr7y-SvvfO5PdPnYR8eJ1M8smM5nM_NjJbxh7azArl9C52gkJtZQgah1EqoNvfODOY4zQpdlEd36uLy7M50mrL6oJG-iBB8UdUqvupLj3SgapU-eEx4yhcRjIonfD6bvszARMlTPYNEIvzcDSKBDXHzoqHrxpREPU3HIWhQpZ_59H8iQmzeslJwHodJc9GjPH6miY8R67F_Nj9nDCJ_iE8U83fShM3tWXcgek6nP1sQ853lYf8g9UX-VyqM4Qe65L5foqP2XfTk--vj-rx6YINSjFN3XrU3I8GSLGEw25ZxsAjA6I0zh3yQW_FE6Z1Di1DBoQOTexBZ6i850KQjxjO3mV4wtWcUSQGI2kNwqk6riH1gA3CUBG9Ey9YPWdkiyMjOHUuOKnReRASrVzpS7Yu6385cCV8VfJY9L5Voo4rssDtLwdLW__ZXn8HFnMkifitMCNFwpwccRpZY80pjPGKI2S-zNJ9CCYD9_Z3I4efGUFQUe6Z94t2JvtML1JVWk5rq5JBsNF2-oWVfV82CLbJVGeR60CFkzPNs9szfOR3H8v_N70a4waoLz8H1p6xR5wzMOGCpx9trNZX8cDdh9-bfqr9eviNb8BQ-kb-A priority: 102 providerName: Directory of Open Access Journals |
| Title | Oxidative Stress in Kidney Injury and Hypertension |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39765782 https://www.proquest.com/docview/3149501567 https://www.proquest.com/docview/3153866868 https://pubmed.ncbi.nlm.nih.gov/PMC11672783 https://doaj.org/article/6515f52bb54d48f7a3b2261a190eba62 |
| Volume | 13 |
| WOSCitedRecordID | wos001384093700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3921 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913809 issn: 2076-3921 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3921 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913809 issn: 2076-3921 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2076-3921 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913809 issn: 2076-3921 databaseCode: M7P dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3921 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913809 issn: 2076-3921 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3921 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913809 issn: 2076-3921 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoywEOvCkLZRUkJE5RN34k9gm1aKtWiGXFQ1pOkR8xBFVO2d2icuG3M-Nkw0YILlxyiCeK7fF4Hh5_Q8hzBVY5t4VONeM25dyyVDrmU2cy46g2oCNkLDZRzGZysVDzLuC26tIqN3ti3KhdYzFGfsjQlMd7v8XLi28pVo3C09WuhMYO2UOUBBpT9-Z9jAUxL-VEtViNDLz7Q40phFcZyxCgmw90UYTs_3Nj3tJMw6zJLTV0cvt_B3CH3OoM0OSoXTF3ybUq3CM3t2AJ7xP69qp2ERA8eR-vkiR1SF7XLlQ_krPwFbiQ6OCSU3BhlzEBvgkPyMeT6YdXp2lXWyG1QtB1mhvvNfUK8fVYhlKeO2uVdODuUaq9dmbCtFA-02LipAUHPKtyS32lTSEcYw_JbmhC9YgkFBxRUGrcKGG5KKixubJUeWt5BQIuRyTdzHJpO-BxrH9xXoIDglwph1wZkRc9_UULufFXymNkWk-FUNnxRbP8XHaSV2Ktdy-oMYI7Ln2hmQGTM9NgCVVG5xR-hywvUaChW1Z39xJgcAiNVR5JWFlKCQmUBwNKEEQ7bN4wvuw2glX5m-sj8qxvxi8xuS1UzSXSgNbJc5nDVO23a6wfEpqLWHFgRORg9Q3GPGwJ9ZcIE44nbFhH5fG_-_WE3KBgqLUpOgdkd728rJ6S6_b7ul4tx2SnWMgx2TuezubvxjFiMY5Chs-fU2iZn72Zf_oFZMMwww |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLaqKRJwYF8GCgQJxCnqxEtiHxAqSzWjaYeRKFI5BW9pg1BSZqbQ_il-I-9lYyIEtx64xi-K7Xx-i_38PUKeKfDKuU10qBm3IeeWhdKxLHQmMo5qAzZCVsUmktlMHh6q-Qb52d6FwbTKVidWitqVFvfItxm68njvN3l18i3EqlF4utqW0KhhMfXnPyBkW76cvIX_-5zS3XcHb8ZhU1UgtELQVRibLNM0U8gsxyLEd-ysVdJBoEOpzrQzI6aFyiItRk5aCD0jH1uaeW0S4XADFFT-JkewD8jmfLI__9Tt6iDLphypmh2SMTXa1pi0eBaxCCnBec_6VUUC_jQFa7awn6e5Zvh2r_9vU3aDXGtc7GCnXhM3yYYvbpGra8SLtwl9f5a7ivI8-FBdlgnyIpjmrvDnwaT4AjgLdOGCMQTpiyrFvyzukI8X0um7ZFCUhb9PAgqhNphtbpSwXCTU2FhZqjJruQcVJockbP9qahtqdazw8TWFEAtRkPZRMCQvOvmTmlTkr5KvESSdFJKBVw_KxVHa6JYUq9lnghojuOMySzQz4FRHGnw9b3RM4XMIsRRVFnTL6ubmBQwOyb_SHQl-n1JCguRWTxJUje03t0BLG1W3TH-jbEieds34JqbvFb48RRmwq3EsY5iqezWmuyGhQ4w1FYZE9tDeG3O_pciPKyJ0PEPESjEP_t2vJ-Ty-GB_L92bzKYPyRUKbmmdkLRFBqvFqX9ELtnvq3y5eNws54B8vujl8Av1DIqI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqLUJw4P1YKBAkEKdoN46d2AeECmXV1cKyEiCVU_AjboOQU3a30P41fh0zebERglsPXOOJYjuf52GPvyHkiQSvnJlUhSpmJmTMxKGwsQutjrSlSoONEFWxiXQ-FwcHcrFFfrZ3YTCtstWJlaK2pcE98lGMrjze-01HrkmLWOxNXhx_C7GCFJ60tuU0aojM8rMfEL6tnk_34F8_pXTy-sOr_bCpMBAazuk6TLRzijqJLHNxhFhPrDFSWAh6KFVOWT2OFZcuUnxshYEwNMoTQ12udMotboaC-t8Gl5zRAdleTN8uPnU7PMi4KcayZoqMYzkeKUxgPI3iCOnBWc8SVgUD_jQLG3axn7O5YQQnV__n6btGrjSud7Bbr5XrZCv3N8jlDULGm4S-Oy1sRYUevK8u0QSFD2aF9flZMPVfAH-B8jbYh-B9WaX-l_4W-Xgunb5NBr70-V0SUAjBwZwzLblhPKXaJNJQ6YxhOag2MSRh-4cz01CuY-WPrxmEXoiIrI-IIXnWyR_XZCN_lXyJgOmkkCS8elAuD7NG52RY5d5xqjVnlgmXqliDsx0p8AFzrRIKn0O4ZajKoFtGNTcyYHBICpbtCvAHpeQCJHd6kqCCTL-5BV3WqMBV9htxQ_K4a8Y3Ma3P5-UJyoC9TRKRwFTdqfHdDQkdZay1MCSih_zemPstvjiqCNLxbBEryNz7d78ekYuwBrI30_nsPrlEwVut85R2yGC9PMkfkAvm-7pYLR82Kzsgn897NfwCdVSTSA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidative+Stress+in+Kidney+Injury+and+Hypertension&rft.jtitle=Antioxidants&rft.au=Arendshorst%2C+Willaim+J.&rft.au=Vendrov%2C+Aleksandr+E.&rft.au=Kumar%2C+Nitin&rft.au=Ganesh%2C+Santhi+K.&rft.date=2024-12-01&rft.issn=2076-3921&rft.eissn=2076-3921&rft.volume=13&rft.issue=12&rft.spage=1454&rft_id=info:doi/10.3390%2Fantiox13121454&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_antiox13121454 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3921&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3921&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3921&client=summon |