Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function

Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and promotes tumor growth. The Warburg effect or aerobic glycolysis is the catabolism of glucose to lactate to obtain adenosine triphosphate (ATP). This...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Seminars in oncology Ročník 41; číslo 2; s. 195
Hlavní autori: Martinez-Outschoorn, Ubaldo, Sotgia, Federica, Lisanti, Michael P
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.04.2014
Predmet:
ISSN:1532-8708, 1532-8708
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and promotes tumor growth. The Warburg effect or aerobic glycolysis is the catabolism of glucose to lactate to obtain adenosine triphosphate (ATP). This review summarizes the main findings on this stromal metabolic phenotype, and the associated signaling pathways, as well as the critical role of oxidative stress and autophagy, all of which promote carcinoma cell mitochondrial metabolism and tumor growth. Loss of Caveolin 1 (Cav-1) and the upregulation of monocarboxylate transporter 4 (MCT4) in stromal cells are novel markers of the Warburg effect and metabolic synergy between stromal and carcinoma cells. MCT4 and Cav-1 are also breast cancer prognostic biomarkers. Reactive oxygen species (ROS) are key mediators of the stromal Warburg effect. High ROS also favors cancer cell mitochondrial metabolism and tumorigenesis, and anti-oxidants can reverse this altered stromal and carcinoma metabolism. A pseudo-hypoxic state with glycolysis and low mitochondrial metabolism in the absence of hypoxia is a common feature in breast cancer. High ROS induces loss of Cav-1 in stromal cells and is sufficient to generate a pseudo-hypoxic state. Loss of Cav-1 in the stroma drives glycolysis and lactate extrusion via HIF-1α stabilization and the upregulation of MCT4. Stromal cells with loss of Cav-1 and/or high expression of MCT4 also show a catabolic phenotype, with enhanced macroautophagy. This catabolic state in stromal cells is driven by hypoxia-inducible factor (HIF)-1α, nuclear factor κB (NFκB), and JNK activation and high ROS generation. A feed-forward loop in stromal cells regulates pseudo-hypoxia and metabolic synergy, with Cav-1, MCT4, HIF-1α, NFκB, and ROS as its key elements. Metabolic synergy also may occur between cancer cells and cells in distant organs from the tumor. Cancer cachexia, which is due to severe organismal metabolic dysregulation in myocytes and adipocytes, shares similarities with stromal-carcinoma metabolic synergy, as well. In summary, metabolic synergy occurs when breast carcinoma cells induce a nutrient-rich microenvironment to promote tumor growth. The process of tumor metabolic synergy is a multistep process, due to the generation of ROS, and the induction of catabolism with autophagy, mitophagy and glycolysis. Studying epithelial-stromal interactions and metabolic synergy is important to better understand the ecology of cancer and the metabolic role of different cell types in tumor progression.
AbstractList Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and promotes tumor growth. The Warburg effect or aerobic glycolysis is the catabolism of glucose to lactate to obtain adenosine triphosphate (ATP). This review summarizes the main findings on this stromal metabolic phenotype, and the associated signaling pathways, as well as the critical role of oxidative stress and autophagy, all of which promote carcinoma cell mitochondrial metabolism and tumor growth. Loss of Caveolin 1 (Cav-1) and the upregulation of monocarboxylate transporter 4 (MCT4) in stromal cells are novel markers of the Warburg effect and metabolic synergy between stromal and carcinoma cells. MCT4 and Cav-1 are also breast cancer prognostic biomarkers. Reactive oxygen species (ROS) are key mediators of the stromal Warburg effect. High ROS also favors cancer cell mitochondrial metabolism and tumorigenesis, and anti-oxidants can reverse this altered stromal and carcinoma metabolism. A pseudo-hypoxic state with glycolysis and low mitochondrial metabolism in the absence of hypoxia is a common feature in breast cancer. High ROS induces loss of Cav-1 in stromal cells and is sufficient to generate a pseudo-hypoxic state. Loss of Cav-1 in the stroma drives glycolysis and lactate extrusion via HIF-1α stabilization and the upregulation of MCT4. Stromal cells with loss of Cav-1 and/or high expression of MCT4 also show a catabolic phenotype, with enhanced macroautophagy. This catabolic state in stromal cells is driven by hypoxia-inducible factor (HIF)-1α, nuclear factor κB (NFκB), and JNK activation and high ROS generation. A feed-forward loop in stromal cells regulates pseudo-hypoxia and metabolic synergy, with Cav-1, MCT4, HIF-1α, NFκB, and ROS as its key elements. Metabolic synergy also may occur between cancer cells and cells in distant organs from the tumor. Cancer cachexia, which is due to severe organismal metabolic dysregulation in myocytes and adipocytes, shares similarities with stromal-carcinoma metabolic synergy, as well. In summary, metabolic synergy occurs when breast carcinoma cells induce a nutrient-rich microenvironment to promote tumor growth. The process of tumor metabolic synergy is a multistep process, due to the generation of ROS, and the induction of catabolism with autophagy, mitophagy and glycolysis. Studying epithelial-stromal interactions and metabolic synergy is important to better understand the ecology of cancer and the metabolic role of different cell types in tumor progression.Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and promotes tumor growth. The Warburg effect or aerobic glycolysis is the catabolism of glucose to lactate to obtain adenosine triphosphate (ATP). This review summarizes the main findings on this stromal metabolic phenotype, and the associated signaling pathways, as well as the critical role of oxidative stress and autophagy, all of which promote carcinoma cell mitochondrial metabolism and tumor growth. Loss of Caveolin 1 (Cav-1) and the upregulation of monocarboxylate transporter 4 (MCT4) in stromal cells are novel markers of the Warburg effect and metabolic synergy between stromal and carcinoma cells. MCT4 and Cav-1 are also breast cancer prognostic biomarkers. Reactive oxygen species (ROS) are key mediators of the stromal Warburg effect. High ROS also favors cancer cell mitochondrial metabolism and tumorigenesis, and anti-oxidants can reverse this altered stromal and carcinoma metabolism. A pseudo-hypoxic state with glycolysis and low mitochondrial metabolism in the absence of hypoxia is a common feature in breast cancer. High ROS induces loss of Cav-1 in stromal cells and is sufficient to generate a pseudo-hypoxic state. Loss of Cav-1 in the stroma drives glycolysis and lactate extrusion via HIF-1α stabilization and the upregulation of MCT4. Stromal cells with loss of Cav-1 and/or high expression of MCT4 also show a catabolic phenotype, with enhanced macroautophagy. This catabolic state in stromal cells is driven by hypoxia-inducible factor (HIF)-1α, nuclear factor κB (NFκB), and JNK activation and high ROS generation. A feed-forward loop in stromal cells regulates pseudo-hypoxia and metabolic synergy, with Cav-1, MCT4, HIF-1α, NFκB, and ROS as its key elements. Metabolic synergy also may occur between cancer cells and cells in distant organs from the tumor. Cancer cachexia, which is due to severe organismal metabolic dysregulation in myocytes and adipocytes, shares similarities with stromal-carcinoma metabolic synergy, as well. In summary, metabolic synergy occurs when breast carcinoma cells induce a nutrient-rich microenvironment to promote tumor growth. The process of tumor metabolic synergy is a multistep process, due to the generation of ROS, and the induction of catabolism with autophagy, mitophagy and glycolysis. Studying epithelial-stromal interactions and metabolic synergy is important to better understand the ecology of cancer and the metabolic role of different cell types in tumor progression.
Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and promotes tumor growth. The Warburg effect or aerobic glycolysis is the catabolism of glucose to lactate to obtain adenosine triphosphate (ATP). This review summarizes the main findings on this stromal metabolic phenotype, and the associated signaling pathways, as well as the critical role of oxidative stress and autophagy, all of which promote carcinoma cell mitochondrial metabolism and tumor growth. Loss of Caveolin 1 (Cav-1) and the upregulation of monocarboxylate transporter 4 (MCT4) in stromal cells are novel markers of the Warburg effect and metabolic synergy between stromal and carcinoma cells. MCT4 and Cav-1 are also breast cancer prognostic biomarkers. Reactive oxygen species (ROS) are key mediators of the stromal Warburg effect. High ROS also favors cancer cell mitochondrial metabolism and tumorigenesis, and anti-oxidants can reverse this altered stromal and carcinoma metabolism. A pseudo-hypoxic state with glycolysis and low mitochondrial metabolism in the absence of hypoxia is a common feature in breast cancer. High ROS induces loss of Cav-1 in stromal cells and is sufficient to generate a pseudo-hypoxic state. Loss of Cav-1 in the stroma drives glycolysis and lactate extrusion via HIF-1α stabilization and the upregulation of MCT4. Stromal cells with loss of Cav-1 and/or high expression of MCT4 also show a catabolic phenotype, with enhanced macroautophagy. This catabolic state in stromal cells is driven by hypoxia-inducible factor (HIF)-1α, nuclear factor κB (NFκB), and JNK activation and high ROS generation. A feed-forward loop in stromal cells regulates pseudo-hypoxia and metabolic synergy, with Cav-1, MCT4, HIF-1α, NFκB, and ROS as its key elements. Metabolic synergy also may occur between cancer cells and cells in distant organs from the tumor. Cancer cachexia, which is due to severe organismal metabolic dysregulation in myocytes and adipocytes, shares similarities with stromal-carcinoma metabolic synergy, as well. In summary, metabolic synergy occurs when breast carcinoma cells induce a nutrient-rich microenvironment to promote tumor growth. The process of tumor metabolic synergy is a multistep process, due to the generation of ROS, and the induction of catabolism with autophagy, mitophagy and glycolysis. Studying epithelial-stromal interactions and metabolic synergy is important to better understand the ecology of cancer and the metabolic role of different cell types in tumor progression.
Author Lisanti, Michael P
Sotgia, Federica
Martinez-Outschoorn, Ubaldo
Author_xml – sequence: 1
  givenname: Ubaldo
  surname: Martinez-Outschoorn
  fullname: Martinez-Outschoorn, Ubaldo
  email: Ubaldo.Martinez-Outschoorn@jeffersonhospital.org
  organization: Thomas Jefferson University, Kimmel Cancer Center, Philadelphia, PA. Electronic address: Ubaldo.Martinez-Outschoorn@jeffersonhospital.org
– sequence: 2
  givenname: Federica
  surname: Sotgia
  fullname: Sotgia, Federica
  organization: University of Manchester, Manchester Breast Centre & Breakthrough Breast Cancer Research Unit, Manchester, United Kingdom
– sequence: 3
  givenname: Michael P
  surname: Lisanti
  fullname: Lisanti, Michael P
  organization: University of Manchester, Manchester Breast Centre & Breakthrough Breast Cancer Research Unit, Manchester, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24787293$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtPwzAQhC1URB_wF5CPXBL8SJqEG6p4SZW4lHNlbzbgKraL7YD67wlQJE6zmh19I82cTJx3SAjlLOeslNe7PKI1owm-zwXjRc5kzpg4ITNeSpHVFasn_-4pmce4GwO8EuKMTEVR1ZVo5Ix8bgbrA7UGgkf3YYJ3Fl2iyrXUYlLa9wZoPDgMrwdqHNUBVUwUlAMM8YZCMMmA6qmxex_St019NwKThzfv2mDGXzdgH3-Y3eAgGe_OyWmn-ogXR12Ql_u7zeoxWz8_PK1u1xmUpUiZ7ORSFhy6ail1CboG1o0D8BJEXZQc6rrAQitVFS1K3TSgG44dVsAqLrHVYkGufrn74N8HjGlrTQTse-XQD3HLS8GlaIqxbUEuj9FBW2y3-2CsCoft31jiC1hCdEo
CitedBy_id crossref_primary_10_1038_s41568_025_00868_x
crossref_primary_10_3389_fcell_2023_1254313
crossref_primary_10_1016_j_jid_2023_05_030
crossref_primary_10_1007_s13277_016_5049_3
crossref_primary_10_1080_01635581_2017_1295090
crossref_primary_10_1016_j_critrevonc_2023_104037
crossref_primary_10_3390_cells8040375
crossref_primary_10_1007_s12032_024_02417_2
crossref_primary_10_1186_s12967_025_06861_0
crossref_primary_10_3390_ijms21186863
crossref_primary_10_1515_revneuro_2017_0092
crossref_primary_10_1016_j_ijbiomac_2024_137776
crossref_primary_10_1016_j_cclet_2024_110314
crossref_primary_10_1186_s40170_016_0163_7
crossref_primary_10_1016_j_bbagen_2018_04_019
crossref_primary_10_1371_journal_pone_0125762
crossref_primary_10_1177_0194599817746934
crossref_primary_10_3390_cancers13051174
crossref_primary_10_1016_j_canlet_2015_02_018
crossref_primary_10_1186_s12967_025_06831_6
crossref_primary_10_1080_15384101_2016_1252882
crossref_primary_10_1534_genetics_117_201921
crossref_primary_10_3389_fendo_2023_1144016
crossref_primary_10_1007_s00508_017_1173_3
crossref_primary_10_1038_s41418_018_0197_1
crossref_primary_10_1210_endocr_bqab195
crossref_primary_10_1016_j_pharmthera_2019_107451
crossref_primary_10_1155_2016_4502846
crossref_primary_10_3389_fimmu_2022_1063313
crossref_primary_10_3390_cancers12040862
crossref_primary_10_1007_s10238_023_01174_2
crossref_primary_10_1016_j_biopha_2025_118339
crossref_primary_10_1016_j_bbrc_2018_05_091
crossref_primary_10_7759_cureus_53949
crossref_primary_10_1016_j_molmed_2017_02_009
crossref_primary_10_1177_1010428318756203
crossref_primary_10_2174_0929867325666180601101145
crossref_primary_10_1155_2021_8127145
crossref_primary_10_1101_gad_279737_116
crossref_primary_10_1093_carcin_bgv130
crossref_primary_10_3390_cancers12092349
crossref_primary_10_1186_s13046_019_1210_3
crossref_primary_10_1080_15384101_2015_1121329
crossref_primary_10_1038_s41574_021_00487_0
crossref_primary_10_1016_j_ygyno_2018_06_013
crossref_primary_10_2174_0929867325666180426165001
crossref_primary_10_1016_j_drup_2016_09_003
crossref_primary_10_1038_emm_2016_119
crossref_primary_10_1038_s41598_019_49327_2
crossref_primary_10_3390_ijms22115736
crossref_primary_10_1089_bfm_2016_0102
crossref_primary_10_1096_fj_202201872RR
crossref_primary_10_3390_ijms151018333
crossref_primary_10_1038_nrrheum_2015_160
crossref_primary_10_1155_2018_6075403
crossref_primary_10_1186_s11658_022_00356_2
crossref_primary_10_1002_ange_202104304
crossref_primary_10_1080_15548627_2018_1450020
crossref_primary_10_1186_s12943_025_02267_0
crossref_primary_10_1007_s44337_024_00131_6
crossref_primary_10_1098_rsob_160122
crossref_primary_10_1097_MOH_0000000000000390
crossref_primary_10_1155_2019_4647807
crossref_primary_10_15252_msb_20167386
crossref_primary_10_1002_mco2_70120
crossref_primary_10_3390_gels9090718
crossref_primary_10_12677_TCM_2017_62012
crossref_primary_10_3892_ol_2022_13414
crossref_primary_10_1016_j_urolonc_2015_05_013
crossref_primary_10_3390_ijms21030758
crossref_primary_10_1155_2015_242437
crossref_primary_10_1016_j_bbcan_2017_05_003
crossref_primary_10_1016_j_bbrc_2015_09_076
crossref_primary_10_12688_f1000research_130888_1
crossref_primary_10_1155_2015_183928
crossref_primary_10_1158_0008_5472_CAN_15_3458
crossref_primary_10_1158_1078_0432_CCR_16_0738
crossref_primary_10_1016_j_heliyon_2023_e14148
crossref_primary_10_1016_j_canlet_2015_05_030
crossref_primary_10_1038_nature20170
crossref_primary_10_1016_j_ctrv_2018_08_004
crossref_primary_10_1186_s12885_019_5547_y
crossref_primary_10_1016_j_phymed_2023_155214
crossref_primary_10_1007_s11596_014_1349_2
crossref_primary_10_1074_jbc_RA120_013805
crossref_primary_10_1080_08830185_2024_2432499
crossref_primary_10_3389_fonc_2020_574787
crossref_primary_10_1016_j_biopha_2022_113376
crossref_primary_10_1186_s12967_025_06151_9
crossref_primary_10_1002_nbm_4770
crossref_primary_10_1016_j_tranon_2017_12_009
crossref_primary_10_1016_j_gene_2025_149220
crossref_primary_10_1016_j_semcancer_2022_12_001
crossref_primary_10_1016_j_critrevonc_2017_06_004
crossref_primary_10_1186_s43556_024_00233_8
crossref_primary_10_1093_carcin_bgz001
crossref_primary_10_3390_cells12232742
crossref_primary_10_3389_fonc_2021_629614
crossref_primary_10_1016_j_cca_2021_07_011
crossref_primary_10_1242_dmm_029447
crossref_primary_10_1007_s10555_021_10013_3
crossref_primary_10_1007_s11042_023_14536_5
crossref_primary_10_3389_fimmu_2022_850856
crossref_primary_10_3389_fonc_2020_617109
crossref_primary_10_1007_s10555_021_10006_2
crossref_primary_10_1186_s40164_024_00532_4
crossref_primary_10_1002_anie_202104304
crossref_primary_10_3389_fimmu_2022_955476
crossref_primary_10_3390_genes9010048
crossref_primary_10_1155_2017_1372640
crossref_primary_10_1586_14737140_2015_1095095
crossref_primary_10_3389_fcell_2020_00651
crossref_primary_10_1016_j_canlet_2018_11_023
crossref_primary_10_1136_jclinpath_2020_207357
crossref_primary_10_1186_s12964_020_00679_7
crossref_primary_10_1016_j_yexcr_2022_113044
crossref_primary_10_1158_0008_5472_CAN_15_2304
crossref_primary_10_1016_j_bbagen_2018_07_017
crossref_primary_10_1038_cddis_2016_492
crossref_primary_10_1002_lary_25799
crossref_primary_10_1016_j_canlet_2015_12_033
crossref_primary_10_1155_2016_6429812
crossref_primary_10_3389_fonc_2020_604143
crossref_primary_10_1042_BCJ20170164
crossref_primary_10_1186_s12943_016_0577_4
crossref_primary_10_1007_s00432_017_2362_1
crossref_primary_10_1042_BCJ20170847
crossref_primary_10_3389_fonc_2017_00068
crossref_primary_10_1016_j_bbamcr_2024_119752
crossref_primary_10_1016_j_canlet_2015_10_027
crossref_primary_10_3390_cells9030560
crossref_primary_10_1007_s11306_018_1411_3
crossref_primary_10_1038_s41598_019_56038_1
crossref_primary_10_3390_cells8030275
crossref_primary_10_1007_s12672_024_01544_6
crossref_primary_10_1155_2015_396035
crossref_primary_10_3389_fonc_2023_1155621
crossref_primary_10_1155_2016_1580967
crossref_primary_10_3390_cancers14122862
crossref_primary_10_1158_0008_5472_CAN_16_1457
crossref_primary_10_3390_jcm8101542
crossref_primary_10_1111_jcmm_12794
crossref_primary_10_1186_s12885_018_5141_8
crossref_primary_10_3389_fonc_2018_00331
crossref_primary_10_1016_j_canlet_2020_05_030
ContentType Journal Article
Copyright Copyright © 2014. Published by Elsevier Inc.
Copyright_xml – notice: Copyright © 2014. Published by Elsevier Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1053/j.seminoncol.2014.03.002
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1532-8708
ExternalDocumentID 24787293
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
0R~
123
1P~
3O-
4.4
457
4CK
53G
5RE
AAEDW
AALRI
AAQOH
AAQQT
AAQXK
AAWTL
AAXUO
ABFRF
ABJNI
ABOCM
ABUDA
ABWVN
ACGFO
ACRPL
ADBBV
ADMUD
ADNMO
AEFWE
AENEX
AEVXI
AFCTW
AFETI
AFFNX
AFJKZ
AFRHN
AFTJW
AGHFR
AGQPQ
AGRDE
AIGII
AITUG
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
CGR
CS3
CUY
CVF
DU5
EBS
ECM
EIF
EJD
F5P
FDB
FEDTE
FGOYB
GBLVA
HVGLF
HZ~
IH2
J5H
K-O
L7B
MJL
N4W
NPM
O9-
OC~
OO-
P2P
R2-
RIG
ROL
SEL
SES
SJN
TWZ
UDS
X7M
Z5R
ZGI
ZXP
7X8
ID FETCH-LOGICAL-c552t-3f36341cf763b5cb8c0f05315c28451c884e4baa74de3b99cb91efe7c0713edb2
IEDL.DBID 7X8
ISICitedReferencesCount 184
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335538600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-8708
IngestDate Fri Sep 05 12:04:41 EDT 2025
Mon Jul 21 05:53:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright © 2014. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-3f36341cf763b5cb8c0f05315c28451c884e4baa74de3b99cb91efe7c0713edb2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 24787293
PQID 1521329455
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1521329455
pubmed_primary_24787293
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Seminars in oncology
PublicationTitleAlternate Semin Oncol
PublicationYear 2014
SSID ssj0021722
Score 2.5102558
SecondaryResourceType review_article
Snippet Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 195
SubjectTerms Animals
Autophagy
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Cachexia - physiopathology
Carcinoma - metabolism
Caveolin 1 - metabolism
Cell Line, Tumor
Cell Transformation, Neoplastic
Female
Fibroblasts - metabolism
Glycolysis
Humans
Lactic Acid - metabolism
Mitochondria - metabolism
Oxidative Stress
Phenotype
Reactive Oxygen Species - metabolism
Signal Transduction
Stromal Cells - cytology
Tumor Microenvironment
Title Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function
URI https://www.ncbi.nlm.nih.gov/pubmed/24787293
https://www.proquest.com/docview/1521329455
Volume 41
WOSCitedRecordID wos000335538600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS-QwEA6eyuGLenrq-osIvpZt02Sb-iIiLj7o4oMn-7Yk0wQK11a3XcX_3pm2q_dycHAvpRQSyuTLzCTzzQxj52BEFnqjglh5FUhposBanwVJlCahxjfZFp5_uksmEz2dpg_9hVvd0yqXOrFV1FkFdEc-JDsTi1Qqdfn8ElDXKIqu9i00vrG1GF0ZQnUy_YwiUO8l0dVLpV0f6p7Jg7gbUkZ3keMJG8VNBC_ZlToVf3c0W4Mz3vrfX91mm72rya86bPxgK67cYd_v-2D6Lnt7XBTVnBdEyfsj342bMuOFaxAdv3Pg9XubHcjzklsisDccCCjz-oJD3yaB50XrxeNnXnmcsKlQqZYZYZv7BVrfdk4yoQSDn-zX-Obx-jbo-zAEoJRogtjHIzR24FEXWQVWQ-hp7ypA26Yi0Fo6aY1JZOZim6Zg08h5lwCdgF1mxR5bRUm7A8aNHemR85EVmZIiBG2kAakloJslfSQG7Gwp0hninIIXpnTVop59CXXA9rt1mT13BTlmgioMod9y-A-jj9gGLXdHvjlmax53uTth6_Da5PX8tAUQPicP9x-BMtOR
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+microenvironment+and+metabolic+synergy+in+breast+cancers%3A+critical+importance+of+mitochondrial+fuels+and+function&rft.jtitle=Seminars+in+oncology&rft.au=Martinez-Outschoorn%2C+Ubaldo&rft.au=Sotgia%2C+Federica&rft.au=Lisanti%2C+Michael+P&rft.date=2014-04-01&rft.eissn=1532-8708&rft.volume=41&rft.issue=2&rft.spage=195&rft_id=info:doi/10.1053%2Fj.seminoncol.2014.03.002&rft_id=info%3Apmid%2F24787293&rft_id=info%3Apmid%2F24787293&rft.externalDocID=24787293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-8708&client=summon