Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function
Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and promotes tumor growth. The Warburg effect or aerobic glycolysis is the catabolism of glucose to lactate to obtain adenosine triphosphate (ATP). This...
Uložené v:
| Vydané v: | Seminars in oncology Ročník 41; číslo 2; s. 195 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.04.2014
|
| Predmet: | |
| ISSN: | 1532-8708, 1532-8708 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and promotes tumor growth. The Warburg effect or aerobic glycolysis is the catabolism of glucose to lactate to obtain adenosine triphosphate (ATP). This review summarizes the main findings on this stromal metabolic phenotype, and the associated signaling pathways, as well as the critical role of oxidative stress and autophagy, all of which promote carcinoma cell mitochondrial metabolism and tumor growth. Loss of Caveolin 1 (Cav-1) and the upregulation of monocarboxylate transporter 4 (MCT4) in stromal cells are novel markers of the Warburg effect and metabolic synergy between stromal and carcinoma cells. MCT4 and Cav-1 are also breast cancer prognostic biomarkers. Reactive oxygen species (ROS) are key mediators of the stromal Warburg effect. High ROS also favors cancer cell mitochondrial metabolism and tumorigenesis, and anti-oxidants can reverse this altered stromal and carcinoma metabolism. A pseudo-hypoxic state with glycolysis and low mitochondrial metabolism in the absence of hypoxia is a common feature in breast cancer. High ROS induces loss of Cav-1 in stromal cells and is sufficient to generate a pseudo-hypoxic state. Loss of Cav-1 in the stroma drives glycolysis and lactate extrusion via HIF-1α stabilization and the upregulation of MCT4. Stromal cells with loss of Cav-1 and/or high expression of MCT4 also show a catabolic phenotype, with enhanced macroautophagy. This catabolic state in stromal cells is driven by hypoxia-inducible factor (HIF)-1α, nuclear factor κB (NFκB), and JNK activation and high ROS generation. A feed-forward loop in stromal cells regulates pseudo-hypoxia and metabolic synergy, with Cav-1, MCT4, HIF-1α, NFκB, and ROS as its key elements. Metabolic synergy also may occur between cancer cells and cells in distant organs from the tumor. Cancer cachexia, which is due to severe organismal metabolic dysregulation in myocytes and adipocytes, shares similarities with stromal-carcinoma metabolic synergy, as well. In summary, metabolic synergy occurs when breast carcinoma cells induce a nutrient-rich microenvironment to promote tumor growth. The process of tumor metabolic synergy is a multistep process, due to the generation of ROS, and the induction of catabolism with autophagy, mitophagy and glycolysis. Studying epithelial-stromal interactions and metabolic synergy is important to better understand the ecology of cancer and the metabolic role of different cell types in tumor progression. |
|---|---|
| AbstractList | Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and promotes tumor growth. The Warburg effect or aerobic glycolysis is the catabolism of glucose to lactate to obtain adenosine triphosphate (ATP). This review summarizes the main findings on this stromal metabolic phenotype, and the associated signaling pathways, as well as the critical role of oxidative stress and autophagy, all of which promote carcinoma cell mitochondrial metabolism and tumor growth. Loss of Caveolin 1 (Cav-1) and the upregulation of monocarboxylate transporter 4 (MCT4) in stromal cells are novel markers of the Warburg effect and metabolic synergy between stromal and carcinoma cells. MCT4 and Cav-1 are also breast cancer prognostic biomarkers. Reactive oxygen species (ROS) are key mediators of the stromal Warburg effect. High ROS also favors cancer cell mitochondrial metabolism and tumorigenesis, and anti-oxidants can reverse this altered stromal and carcinoma metabolism. A pseudo-hypoxic state with glycolysis and low mitochondrial metabolism in the absence of hypoxia is a common feature in breast cancer. High ROS induces loss of Cav-1 in stromal cells and is sufficient to generate a pseudo-hypoxic state. Loss of Cav-1 in the stroma drives glycolysis and lactate extrusion via HIF-1α stabilization and the upregulation of MCT4. Stromal cells with loss of Cav-1 and/or high expression of MCT4 also show a catabolic phenotype, with enhanced macroautophagy. This catabolic state in stromal cells is driven by hypoxia-inducible factor (HIF)-1α, nuclear factor κB (NFκB), and JNK activation and high ROS generation. A feed-forward loop in stromal cells regulates pseudo-hypoxia and metabolic synergy, with Cav-1, MCT4, HIF-1α, NFκB, and ROS as its key elements. Metabolic synergy also may occur between cancer cells and cells in distant organs from the tumor. Cancer cachexia, which is due to severe organismal metabolic dysregulation in myocytes and adipocytes, shares similarities with stromal-carcinoma metabolic synergy, as well. In summary, metabolic synergy occurs when breast carcinoma cells induce a nutrient-rich microenvironment to promote tumor growth. The process of tumor metabolic synergy is a multistep process, due to the generation of ROS, and the induction of catabolism with autophagy, mitophagy and glycolysis. Studying epithelial-stromal interactions and metabolic synergy is important to better understand the ecology of cancer and the metabolic role of different cell types in tumor progression.Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and promotes tumor growth. The Warburg effect or aerobic glycolysis is the catabolism of glucose to lactate to obtain adenosine triphosphate (ATP). This review summarizes the main findings on this stromal metabolic phenotype, and the associated signaling pathways, as well as the critical role of oxidative stress and autophagy, all of which promote carcinoma cell mitochondrial metabolism and tumor growth. Loss of Caveolin 1 (Cav-1) and the upregulation of monocarboxylate transporter 4 (MCT4) in stromal cells are novel markers of the Warburg effect and metabolic synergy between stromal and carcinoma cells. MCT4 and Cav-1 are also breast cancer prognostic biomarkers. Reactive oxygen species (ROS) are key mediators of the stromal Warburg effect. High ROS also favors cancer cell mitochondrial metabolism and tumorigenesis, and anti-oxidants can reverse this altered stromal and carcinoma metabolism. A pseudo-hypoxic state with glycolysis and low mitochondrial metabolism in the absence of hypoxia is a common feature in breast cancer. High ROS induces loss of Cav-1 in stromal cells and is sufficient to generate a pseudo-hypoxic state. Loss of Cav-1 in the stroma drives glycolysis and lactate extrusion via HIF-1α stabilization and the upregulation of MCT4. Stromal cells with loss of Cav-1 and/or high expression of MCT4 also show a catabolic phenotype, with enhanced macroautophagy. This catabolic state in stromal cells is driven by hypoxia-inducible factor (HIF)-1α, nuclear factor κB (NFκB), and JNK activation and high ROS generation. A feed-forward loop in stromal cells regulates pseudo-hypoxia and metabolic synergy, with Cav-1, MCT4, HIF-1α, NFκB, and ROS as its key elements. Metabolic synergy also may occur between cancer cells and cells in distant organs from the tumor. Cancer cachexia, which is due to severe organismal metabolic dysregulation in myocytes and adipocytes, shares similarities with stromal-carcinoma metabolic synergy, as well. In summary, metabolic synergy occurs when breast carcinoma cells induce a nutrient-rich microenvironment to promote tumor growth. The process of tumor metabolic synergy is a multistep process, due to the generation of ROS, and the induction of catabolism with autophagy, mitophagy and glycolysis. Studying epithelial-stromal interactions and metabolic synergy is important to better understand the ecology of cancer and the metabolic role of different cell types in tumor progression. Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and promotes tumor growth. The Warburg effect or aerobic glycolysis is the catabolism of glucose to lactate to obtain adenosine triphosphate (ATP). This review summarizes the main findings on this stromal metabolic phenotype, and the associated signaling pathways, as well as the critical role of oxidative stress and autophagy, all of which promote carcinoma cell mitochondrial metabolism and tumor growth. Loss of Caveolin 1 (Cav-1) and the upregulation of monocarboxylate transporter 4 (MCT4) in stromal cells are novel markers of the Warburg effect and metabolic synergy between stromal and carcinoma cells. MCT4 and Cav-1 are also breast cancer prognostic biomarkers. Reactive oxygen species (ROS) are key mediators of the stromal Warburg effect. High ROS also favors cancer cell mitochondrial metabolism and tumorigenesis, and anti-oxidants can reverse this altered stromal and carcinoma metabolism. A pseudo-hypoxic state with glycolysis and low mitochondrial metabolism in the absence of hypoxia is a common feature in breast cancer. High ROS induces loss of Cav-1 in stromal cells and is sufficient to generate a pseudo-hypoxic state. Loss of Cav-1 in the stroma drives glycolysis and lactate extrusion via HIF-1α stabilization and the upregulation of MCT4. Stromal cells with loss of Cav-1 and/or high expression of MCT4 also show a catabolic phenotype, with enhanced macroautophagy. This catabolic state in stromal cells is driven by hypoxia-inducible factor (HIF)-1α, nuclear factor κB (NFκB), and JNK activation and high ROS generation. A feed-forward loop in stromal cells regulates pseudo-hypoxia and metabolic synergy, with Cav-1, MCT4, HIF-1α, NFκB, and ROS as its key elements. Metabolic synergy also may occur between cancer cells and cells in distant organs from the tumor. Cancer cachexia, which is due to severe organismal metabolic dysregulation in myocytes and adipocytes, shares similarities with stromal-carcinoma metabolic synergy, as well. In summary, metabolic synergy occurs when breast carcinoma cells induce a nutrient-rich microenvironment to promote tumor growth. The process of tumor metabolic synergy is a multistep process, due to the generation of ROS, and the induction of catabolism with autophagy, mitophagy and glycolysis. Studying epithelial-stromal interactions and metabolic synergy is important to better understand the ecology of cancer and the metabolic role of different cell types in tumor progression. |
| Author | Lisanti, Michael P Sotgia, Federica Martinez-Outschoorn, Ubaldo |
| Author_xml | – sequence: 1 givenname: Ubaldo surname: Martinez-Outschoorn fullname: Martinez-Outschoorn, Ubaldo email: Ubaldo.Martinez-Outschoorn@jeffersonhospital.org organization: Thomas Jefferson University, Kimmel Cancer Center, Philadelphia, PA. Electronic address: Ubaldo.Martinez-Outschoorn@jeffersonhospital.org – sequence: 2 givenname: Federica surname: Sotgia fullname: Sotgia, Federica organization: University of Manchester, Manchester Breast Centre & Breakthrough Breast Cancer Research Unit, Manchester, United Kingdom – sequence: 3 givenname: Michael P surname: Lisanti fullname: Lisanti, Michael P organization: University of Manchester, Manchester Breast Centre & Breakthrough Breast Cancer Research Unit, Manchester, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24787293$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtPwzAQhC1URB_wF5CPXBL8SJqEG6p4SZW4lHNlbzbgKraL7YD67wlQJE6zmh19I82cTJx3SAjlLOeslNe7PKI1owm-zwXjRc5kzpg4ITNeSpHVFasn_-4pmce4GwO8EuKMTEVR1ZVo5Ix8bgbrA7UGgkf3YYJ3Fl2iyrXUYlLa9wZoPDgMrwdqHNUBVUwUlAMM8YZCMMmA6qmxex_St019NwKThzfv2mDGXzdgH3-Y3eAgGe_OyWmn-ogXR12Ql_u7zeoxWz8_PK1u1xmUpUiZ7ORSFhy6ail1CboG1o0D8BJEXZQc6rrAQitVFS1K3TSgG44dVsAqLrHVYkGufrn74N8HjGlrTQTse-XQD3HLS8GlaIqxbUEuj9FBW2y3-2CsCoft31jiC1hCdEo |
| CitedBy_id | crossref_primary_10_1038_s41568_025_00868_x crossref_primary_10_3389_fcell_2023_1254313 crossref_primary_10_1016_j_jid_2023_05_030 crossref_primary_10_1007_s13277_016_5049_3 crossref_primary_10_1080_01635581_2017_1295090 crossref_primary_10_1016_j_critrevonc_2023_104037 crossref_primary_10_3390_cells8040375 crossref_primary_10_1007_s12032_024_02417_2 crossref_primary_10_1186_s12967_025_06861_0 crossref_primary_10_3390_ijms21186863 crossref_primary_10_1515_revneuro_2017_0092 crossref_primary_10_1016_j_ijbiomac_2024_137776 crossref_primary_10_1016_j_cclet_2024_110314 crossref_primary_10_1186_s40170_016_0163_7 crossref_primary_10_1016_j_bbagen_2018_04_019 crossref_primary_10_1371_journal_pone_0125762 crossref_primary_10_1177_0194599817746934 crossref_primary_10_3390_cancers13051174 crossref_primary_10_1016_j_canlet_2015_02_018 crossref_primary_10_1186_s12967_025_06831_6 crossref_primary_10_1080_15384101_2016_1252882 crossref_primary_10_1534_genetics_117_201921 crossref_primary_10_3389_fendo_2023_1144016 crossref_primary_10_1007_s00508_017_1173_3 crossref_primary_10_1038_s41418_018_0197_1 crossref_primary_10_1210_endocr_bqab195 crossref_primary_10_1016_j_pharmthera_2019_107451 crossref_primary_10_1155_2016_4502846 crossref_primary_10_3389_fimmu_2022_1063313 crossref_primary_10_3390_cancers12040862 crossref_primary_10_1007_s10238_023_01174_2 crossref_primary_10_1016_j_biopha_2025_118339 crossref_primary_10_1016_j_bbrc_2018_05_091 crossref_primary_10_7759_cureus_53949 crossref_primary_10_1016_j_molmed_2017_02_009 crossref_primary_10_1177_1010428318756203 crossref_primary_10_2174_0929867325666180601101145 crossref_primary_10_1155_2021_8127145 crossref_primary_10_1101_gad_279737_116 crossref_primary_10_1093_carcin_bgv130 crossref_primary_10_3390_cancers12092349 crossref_primary_10_1186_s13046_019_1210_3 crossref_primary_10_1080_15384101_2015_1121329 crossref_primary_10_1038_s41574_021_00487_0 crossref_primary_10_1016_j_ygyno_2018_06_013 crossref_primary_10_2174_0929867325666180426165001 crossref_primary_10_1016_j_drup_2016_09_003 crossref_primary_10_1038_emm_2016_119 crossref_primary_10_1038_s41598_019_49327_2 crossref_primary_10_3390_ijms22115736 crossref_primary_10_1089_bfm_2016_0102 crossref_primary_10_1096_fj_202201872RR crossref_primary_10_3390_ijms151018333 crossref_primary_10_1038_nrrheum_2015_160 crossref_primary_10_1155_2018_6075403 crossref_primary_10_1186_s11658_022_00356_2 crossref_primary_10_1002_ange_202104304 crossref_primary_10_1080_15548627_2018_1450020 crossref_primary_10_1186_s12943_025_02267_0 crossref_primary_10_1007_s44337_024_00131_6 crossref_primary_10_1098_rsob_160122 crossref_primary_10_1097_MOH_0000000000000390 crossref_primary_10_1155_2019_4647807 crossref_primary_10_15252_msb_20167386 crossref_primary_10_1002_mco2_70120 crossref_primary_10_3390_gels9090718 crossref_primary_10_12677_TCM_2017_62012 crossref_primary_10_3892_ol_2022_13414 crossref_primary_10_1016_j_urolonc_2015_05_013 crossref_primary_10_3390_ijms21030758 crossref_primary_10_1155_2015_242437 crossref_primary_10_1016_j_bbcan_2017_05_003 crossref_primary_10_1016_j_bbrc_2015_09_076 crossref_primary_10_12688_f1000research_130888_1 crossref_primary_10_1155_2015_183928 crossref_primary_10_1158_0008_5472_CAN_15_3458 crossref_primary_10_1158_1078_0432_CCR_16_0738 crossref_primary_10_1016_j_heliyon_2023_e14148 crossref_primary_10_1016_j_canlet_2015_05_030 crossref_primary_10_1038_nature20170 crossref_primary_10_1016_j_ctrv_2018_08_004 crossref_primary_10_1186_s12885_019_5547_y crossref_primary_10_1016_j_phymed_2023_155214 crossref_primary_10_1007_s11596_014_1349_2 crossref_primary_10_1074_jbc_RA120_013805 crossref_primary_10_1080_08830185_2024_2432499 crossref_primary_10_3389_fonc_2020_574787 crossref_primary_10_1016_j_biopha_2022_113376 crossref_primary_10_1186_s12967_025_06151_9 crossref_primary_10_1002_nbm_4770 crossref_primary_10_1016_j_tranon_2017_12_009 crossref_primary_10_1016_j_gene_2025_149220 crossref_primary_10_1016_j_semcancer_2022_12_001 crossref_primary_10_1016_j_critrevonc_2017_06_004 crossref_primary_10_1186_s43556_024_00233_8 crossref_primary_10_1093_carcin_bgz001 crossref_primary_10_3390_cells12232742 crossref_primary_10_3389_fonc_2021_629614 crossref_primary_10_1016_j_cca_2021_07_011 crossref_primary_10_1242_dmm_029447 crossref_primary_10_1007_s10555_021_10013_3 crossref_primary_10_1007_s11042_023_14536_5 crossref_primary_10_3389_fimmu_2022_850856 crossref_primary_10_3389_fonc_2020_617109 crossref_primary_10_1007_s10555_021_10006_2 crossref_primary_10_1186_s40164_024_00532_4 crossref_primary_10_1002_anie_202104304 crossref_primary_10_3389_fimmu_2022_955476 crossref_primary_10_3390_genes9010048 crossref_primary_10_1155_2017_1372640 crossref_primary_10_1586_14737140_2015_1095095 crossref_primary_10_3389_fcell_2020_00651 crossref_primary_10_1016_j_canlet_2018_11_023 crossref_primary_10_1136_jclinpath_2020_207357 crossref_primary_10_1186_s12964_020_00679_7 crossref_primary_10_1016_j_yexcr_2022_113044 crossref_primary_10_1158_0008_5472_CAN_15_2304 crossref_primary_10_1016_j_bbagen_2018_07_017 crossref_primary_10_1038_cddis_2016_492 crossref_primary_10_1002_lary_25799 crossref_primary_10_1016_j_canlet_2015_12_033 crossref_primary_10_1155_2016_6429812 crossref_primary_10_3389_fonc_2020_604143 crossref_primary_10_1042_BCJ20170164 crossref_primary_10_1186_s12943_016_0577_4 crossref_primary_10_1007_s00432_017_2362_1 crossref_primary_10_1042_BCJ20170847 crossref_primary_10_3389_fonc_2017_00068 crossref_primary_10_1016_j_bbamcr_2024_119752 crossref_primary_10_1016_j_canlet_2015_10_027 crossref_primary_10_3390_cells9030560 crossref_primary_10_1007_s11306_018_1411_3 crossref_primary_10_1038_s41598_019_56038_1 crossref_primary_10_3390_cells8030275 crossref_primary_10_1007_s12672_024_01544_6 crossref_primary_10_1155_2015_396035 crossref_primary_10_3389_fonc_2023_1155621 crossref_primary_10_1155_2016_1580967 crossref_primary_10_3390_cancers14122862 crossref_primary_10_1158_0008_5472_CAN_16_1457 crossref_primary_10_3390_jcm8101542 crossref_primary_10_1111_jcmm_12794 crossref_primary_10_1186_s12885_018_5141_8 crossref_primary_10_3389_fonc_2018_00331 crossref_primary_10_1016_j_canlet_2020_05_030 |
| ContentType | Journal Article |
| Copyright | Copyright © 2014. Published by Elsevier Inc. |
| Copyright_xml | – notice: Copyright © 2014. Published by Elsevier Inc. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1053/j.seminoncol.2014.03.002 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1532-8708 |
| ExternalDocumentID | 24787293 |
| Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GroupedDBID | --- --K .1- .55 .FO .GJ 0R~ 123 1P~ 3O- 4.4 457 4CK 53G 5RE AAEDW AALRI AAQOH AAQQT AAQXK AAWTL AAXUO ABFRF ABJNI ABOCM ABUDA ABWVN ACGFO ACRPL ADBBV ADMUD ADNMO AEFWE AENEX AEVXI AFCTW AFETI AFFNX AFJKZ AFRHN AFTJW AGHFR AGQPQ AGRDE AIGII AITUG AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN CGR CS3 CUY CVF DU5 EBS ECM EIF EJD F5P FDB FEDTE FGOYB GBLVA HVGLF HZ~ IH2 J5H K-O L7B MJL N4W NPM O9- OC~ OO- P2P R2- RIG ROL SEL SES SJN TWZ UDS X7M Z5R ZGI ZXP 7X8 |
| ID | FETCH-LOGICAL-c552t-3f36341cf763b5cb8c0f05315c28451c884e4baa74de3b99cb91efe7c0713edb2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 184 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335538600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-8708 |
| IngestDate | Fri Sep 05 12:04:41 EDT 2025 Mon Jul 21 05:53:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Copyright © 2014. Published by Elsevier Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c552t-3f36341cf763b5cb8c0f05315c28451c884e4baa74de3b99cb91efe7c0713edb2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 24787293 |
| PQID | 1521329455 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1521329455 pubmed_primary_24787293 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-01 |
| PublicationDateYYYYMMDD | 2014-04-01 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Seminars in oncology |
| PublicationTitleAlternate | Semin Oncol |
| PublicationYear | 2014 |
| SSID | ssj0021722 |
| Score | 2.5102558 |
| SecondaryResourceType | review_article |
| Snippet | Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 195 |
| SubjectTerms | Animals Autophagy Breast Neoplasms - metabolism Breast Neoplasms - pathology Cachexia - physiopathology Carcinoma - metabolism Caveolin 1 - metabolism Cell Line, Tumor Cell Transformation, Neoplastic Female Fibroblasts - metabolism Glycolysis Humans Lactic Acid - metabolism Mitochondria - metabolism Oxidative Stress Phenotype Reactive Oxygen Species - metabolism Signal Transduction Stromal Cells - cytology Tumor Microenvironment |
| Title | Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24787293 https://www.proquest.com/docview/1521329455 |
| Volume | 41 |
| WOSCitedRecordID | wos000335538600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS-QwEA6eyuGLenrq-osIvpZt02Sb-iIiLj7o4oMn-7Yk0wQK11a3XcX_3pm2q_dycHAvpRQSyuTLzCTzzQxj52BEFnqjglh5FUhposBanwVJlCahxjfZFp5_uksmEz2dpg_9hVvd0yqXOrFV1FkFdEc-JDsTi1Qqdfn8ElDXKIqu9i00vrG1GF0ZQnUy_YwiUO8l0dVLpV0f6p7Jg7gbUkZ3keMJG8VNBC_ZlToVf3c0W4Mz3vrfX91mm72rya86bPxgK67cYd_v-2D6Lnt7XBTVnBdEyfsj342bMuOFaxAdv3Pg9XubHcjzklsisDccCCjz-oJD3yaB50XrxeNnXnmcsKlQqZYZYZv7BVrfdk4yoQSDn-zX-Obx-jbo-zAEoJRogtjHIzR24FEXWQVWQ-hp7ypA26Yi0Fo6aY1JZOZim6Zg08h5lwCdgF1mxR5bRUm7A8aNHemR85EVmZIiBG2kAakloJslfSQG7Gwp0hninIIXpnTVop59CXXA9rt1mT13BTlmgioMod9y-A-jj9gGLXdHvjlmax53uTth6_Da5PX8tAUQPicP9x-BMtOR |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+microenvironment+and+metabolic+synergy+in+breast+cancers%3A+critical+importance+of+mitochondrial+fuels+and+function&rft.jtitle=Seminars+in+oncology&rft.au=Martinez-Outschoorn%2C+Ubaldo&rft.au=Sotgia%2C+Federica&rft.au=Lisanti%2C+Michael+P&rft.date=2014-04-01&rft.eissn=1532-8708&rft.volume=41&rft.issue=2&rft.spage=195&rft_id=info:doi/10.1053%2Fj.seminoncol.2014.03.002&rft_id=info%3Apmid%2F24787293&rft_id=info%3Apmid%2F24787293&rft.externalDocID=24787293 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-8708&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-8708&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-8708&client=summon |