Variational and Geometric Structures of Discrete Dirac Mechanics
In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems with constraints. We first construct discrete analogues of Tulczyjew’s triple and induced Dirac structures by considering the geometry of symple...
Uložené v:
| Vydané v: | Foundations of computational mathematics Ročník 11; číslo 5; s. 529 - 562 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer-Verlag
01.10.2011
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1615-3375, 1615-3383 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems with constraints. We first construct discrete analogues of Tulczyjew’s triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete Lagrange–Dirac and nonholonomic Hamiltonian systems. In particular, this yields nonholonomic Lagrangian and Hamiltonian integrators. We also introduce discrete Lagrange–d’Alembert–Pontryagin and Hamilton–d’Alembert variational principles, which provide an alternative derivation of the same set of integration algorithms. The paper provides a unified treatment of discrete Lagrangian and Hamiltonian mechanics in the more general setting of discrete Dirac mechanics, as well as a generalization of symplectic and Poisson integrators to the broader category of Dirac integrators. |
|---|---|
| AbstractList | In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems with constraints. We first construct discrete analogues of Tulczyjew's triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete Lagrange-Dirac and nonholonomic Hamiltonian systems. In particular, this yields nonholonomic Lagrangian and Hamiltonian integrators. We also introduce discrete Lagrange-d'Alembert-Pontryagin and Hamilton-d'Alembert variational principles, which provide an alternative derivation of the same set of integration algorithms. The paper provides a unified treatment of discrete Lagrangian and Hamiltonian mechanics in the more general setting of discrete Dirac mechanics, as well as a generalization of symplectic and Poisson integrators to the broader category of Dirac integrators. In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems with constraints. We first construct discrete analogues of Tulczyjew's triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete Lagrange-Dirac and nonholonomic Hamiltonian systems. In particular, this yields nonholonomic Lagrangian and Hamiltonian integrators. We also introduce discrete Lagrange-d'Alembert-Pontryagin and Hamilton-d'Alembert variational principles, which provide an alternative derivation of the same set of integration algorithms. The paper provides a unified treatment of discrete Lagrangian and Hamiltonian mechanics in the more general setting of discrete Dirac mechanics, as well as a generalization of symplectic and Poisson integrators to the broader category of Dirac integrators.[PUBLICATION ABSTRACT] |
| Author | Ohsawa, Tomoki Leok, Melvin |
| Author_xml | – sequence: 1 givenname: Melvin surname: Leok fullname: Leok, Melvin email: mleok@math.ucsd.edu organization: Department of Mathematics, University of California – sequence: 2 givenname: Tomoki surname: Ohsawa fullname: Ohsawa, Tomoki organization: Department of Mathematics, University of California |
| BookMark | eNp9kD1PwzAQhi0EEm3hB7BFLEwBO44dewMVKEhFDHys1uFcwFWaFNsZ-Pe4FIFUCaa74X1e3T1jstv1HRJyxOgpo7Q6C4wWVOWUsVxTLfNih4yYZCLnXPHdn70S-2QcwoJSJjQrR-T8GbyD6PoO2gy6Opthv8Tonc0eoh9sHDyGrG-ySxesx4hp8WCzO7Rv0DkbDsheA23Aw-85IU_XV4_Tm3x-P7udXsxzK0QRc4aag1D4UjZYsJo1ZamkLjSvrJJAG1ELKJmgQtY1RWkVSC3AKt6AxlpUfEJONr0r378PGKJZpouwbaHDfghGS66ELlPjhBxvJRf94NN_wSgty-SJ0xSqNiHr-xA8Nsa6-OUhenCtYdSsvZqNV5O8mrVXUySSbZEr75bgP_5lig0TUrZ7Rf970t_QJwGZiwU |
| CODEN | FCMOA3 |
| CitedBy_id | crossref_primary_10_1016_S0034_4877_18_30019_3 crossref_primary_10_1080_00207160_2021_1999427 crossref_primary_10_1016_j_cnsns_2014_09_027 crossref_primary_10_1007_s00332_017_9364_7 crossref_primary_10_3390_e19100518 crossref_primary_10_1088_0951_7715_28_4_871 crossref_primary_10_1007_s10208_022_09571_x crossref_primary_10_1093_imanum_dry053 crossref_primary_10_1007_s00332_023_09999_7 crossref_primary_10_1016_j_sysconle_2017_10_003 crossref_primary_10_1007_s10208_019_09420_4 crossref_primary_10_1142_S2972458925500042 crossref_primary_10_1007_s00332_022_09795_9 |
| Cites_doi | 10.1016/j.geomphys.2006.02.009 10.1016/0034-4877(93)90073-N 10.1088/0951-7715/12/6/314 10.1137/S0363012996312039 10.1007/s10208-008-9030-4 10.1016/S0034-4877(08)00004-9 10.1007/s00332-007-9012-8 10.3934/jgm.2009.1.87 10.1016/S0034-4877(97)85617-0 10.1137/S1064827500381720 10.1007/978-0-387-21792-5 10.1016/S0034-4877(98)80176-6 10.1088/0951-7715/14/5/322 10.3934/jgm.2010.2.159 10.4310/JSG.2010.v8.n2.a5 10.1007/3-540-45802-6_5 10.2307/2001258 10.1007/978-1-4612-1126-6 10.1016/0034-4877(94)90038-8 10.1007/b97376 10.4153/CJM-1950-012-1 10.1088/0305-4470/39/19/S11 10.1515/9781400830244 10.1088/0951-7715/19/6/006 10.1016/j.geomphys.2011.02.015 10.1016/j.geomphys.2006.02.012 10.1098/rspa.1958.0141 10.1007/978-3-540-73890-9_18 10.3934/jgm.2009.1.461 10.1088/0305-4470/23/22/010 10.1088/1751-8113/41/1/015205 10.1007/3-540-09238-2_74 10.1007/978-1-4757-2063-1 10.1142/S0219887810004385 10.1007/s00332-005-0698-1 |
| ContentType | Journal Article |
| Copyright | SFoCM 2011 |
| Copyright_xml | – notice: SFoCM 2011 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s10208-011-9096-2 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Mathematics Applied Sciences Computer Science |
| EISSN | 1615-3383 |
| EndPage | 562 |
| ExternalDocumentID | 2476805181 10_1007_s10208_011_9096_2 |
| Genre | Feature |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IEA IHE IJ- IKXTQ IOF ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MK~ N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PQQKQ PT4 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c552t-1e93a58eb4fe21d1f448692937c86a0f5d5a415056dd0e6c8a695ac83fa9ed573 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300097200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-3375 |
| IngestDate | Fri Sep 05 10:44:22 EDT 2025 Fri Jul 25 19:15:38 EDT 2025 Tue Nov 18 20:40:22 EST 2025 Sat Nov 29 06:41:13 EST 2025 Fri Feb 21 02:36:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | 65P10 Lagrange–Dirac systems 37J60 Dirac structures 70H45 70F25 Geometric integration |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c552t-1e93a58eb4fe21d1f448692937c86a0f5d5a415056dd0e6c8a695ac83fa9ed573 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 896402030 |
| PQPubID | 43692 |
| PageCount | 34 |
| ParticipantIDs | proquest_miscellaneous_963859429 proquest_journals_896402030 crossref_citationtrail_10_1007_s10208_011_9096_2 crossref_primary_10_1007_s10208_011_9096_2 springer_journals_10_1007_s10208_011_9096_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-10-01 |
| PublicationDateYYYYMMDD | 2011-10-01 |
| PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Journal of the Society for the Foundations of Computational Mathematics |
| PublicationTitle | Foundations of computational mathematics |
| PublicationTitleAbbrev | Found Comput Math |
| PublicationYear | 2011 |
| Publisher | Springer-Verlag Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer Nature B.V |
| References | LeokM.OhsawaT.Discrete Dirac structures and implicit discrete Lagrangian and Hamiltonian systemsXVIII International Fall Workshop on Geometry and Physics2010New YorkAIP91102 DalsmoM.van der SchaftA.J.On representations and integrability of mathematical structures in energy-conserving physical systemsSIAM J. Control Optim.1998371549110.1137/S0363012996312039 GotayM.J.NesterJ.M.Presymplectic Lagrangian systems. I: the constraint algorithm and the equivalence theoremAnn. Inst. Henri Poincaré A19793021291425353690414.58015 YoshimuraH.MarsdenJ.E.Dirac cotangent bundle reductionJ. Geom. Mech.2009118715825113031168.7031410.3934/jgm.2009.1.87 KoonW.S.MarsdenJ.E.The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systemsRep. Math. Phys.1997401216214924130929.7000910.1016/S0034-4877(97)85617-0 YoshimuraH.MarsdenJ.E.Dirac structures in Lagrangian mechanics Part II: variational structuresJ. Geom. Phys.200657120925022654691121.5305710.1016/j.geomphys.2006.02.012 OhsawaT.FernandezO.E.BlochA.M.ZenkovD.V.Nonholonomic Hamilton–Jacobi theory via Chaplygin HamiltonizationJ. Geom. Phys.20116181263129128024710591905810.1016/j.geomphys.2011.02.015 KünzleH.P.Degenerate Lagrangean systemsAnn. Inst. Henri Poincaré A19691143934140193.24901 MarsdenJ.E.RatiuT.S.Introduction to Mechanics and Symmetry1999BerlinSpringer0933.70003 SternA.Discrete Hamilton–Pontryagin mechanics and generating functions on Lie groupoidsJ. Symplectic Geom.201082225238267016605780490 WeinsteinA.Lagrangian mechanics and groupoidsFields Inst. Commun.19967207231 CourantT.Dirac manifoldsTrans. Am. Math. Soc.199031926316619981240850.7021210.2307/2001258 LallS.WestM.Discrete variational Hamiltonian mechanicsJ. Phys. A, Math. Gen.200639195509551922207731087.4902710.1088/0305-4470/39/19/S11 ArnoldV.I.Mathematical Methods of Classical Mechanics1989BerlinSpringer IglesiasD.MarreroJ.C.de DiegoD.M.MartínezE.Discrete nonholonomic Lagrangian systems on Lie groupoidsJ. Nonlinear Sci.200818322127624113791182.3703610.1007/s00332-007-9012-8 KharevychL.YangW.TongY.KansoE.MarsdenJ.E.SchröderP.DesbrunM.Geometric, variational integrators for computer animationACM/EG Symposium on Computer Animation20064351 MarsdenJ.E.PekarskyS.ShkollerS.Discrete Euler–Poincaré and Lie–Poisson equationsNonlinearity19991261647166217266700978.3704510.1088/0951-7715/12/6/314 YoshimuraH.MarsdenJ.E.Reduction of Dirac structures and the Hamilton–Pontryagin principleRep. Math. Phys.200760338142623695391141.5308110.1016/S0034-4877(08)00004-9 YoshimuraH.MarsdenJ.E.Dirac structures in Lagrangian mechanics Part I: implicit Lagrangian systemsJ. Geom. Phys.200657113315622654641107.5305310.1016/j.geomphys.2006.02.009 M. Leok, T. Ohsawa, D. Sosa, Hamilton–Jacobi theory for degenerate Lagrangian systems with constraints (in preparation). BatesL.SniatyckiJ.Nonholonomic reductionRep. Math. Phys.19933219911512471650798.5802610.1016/0034-4877(93)90073-N van der SchaftA.J.Implicit Hamiltonian systems with symmetryRep. Math. Phys.199841220322116313830921.7001410.1016/S0034-4877(98)80176-6 GoldsteinH.PooleC.P.SafkoJ.L.Classical Mechanics20013ReadingAddison–Wesley McLachlanR.PerlmutterM.Integrators for nonholonomic mechanical systemsJ. Nonlinear Sci.200616428332822547071104.3704310.1007/s00332-005-0698-1 OhsawaT.BlochA.M.Nonholonomic Hamilton–Jacobi equation and integrabilityJ. Geom. Mech.20091446148125876070569155510.3934/jgm.2009.1.461 GotayM.J.NesterJ.M.Presymplectic Lagrangian systems. II: the second-order equation problemAnn. Inst. Henri Poincaré A19803211135748090453.58016 D. Iglesias-Ponte, M. de León, D.M. de Diego, Towards a Hamilton–Jacobi theory for nonholonomic mechanical systems. Journal of Physics A: Mathematical and Theoretical 41(1) (2008). VaradarajanV.S.Lie Groups, Lie Algebras, and Their Representations1984New YorkSpringer0955.22500 A. Lew, J.E. Marsden, M. Ortiz, M. West, An overview of variational integrators, in Finite Element Methods: 1970’s and Beyond (CIMNE 2003). GotayM.J.NesterJ.M.Presymplectic Hamilton and Lagrange systems, gauge transformations and the Dirac theory of constraintsGroup Theoretical Methods in Physics1979BerlinSpringer27227910.1007/3-540-09238-2_74 CariñenaJ.F.GraciaX.MarmoG.MartínezE.Munõz LecandaM.C.Román-RoyN.Geometric Hamilton–Jacobi theory for nonholonomic dynamical systemsInt. J. Geom. Methods Mod. Phys.20107343145426467740572344510.1142/S0219887810004385 DiracP.A.M.Lectures on Quantum Mechanics1964New YorkBelfer Graduate School of Science, Yeshiva University CerveraJ.van der SchaftA.J.BañosA.On composition of Dirac structures and its implications for control by interconnectionNonlinear and Adaptive Control2003BerlinSpringer556310.1007/3-540-45802-6_5 CortésJ.MartínezS.Non-holonomic integratorsNonlinearity20011451365139218628251067.3711610.1088/0951-7715/14/5/322 TulczyjewW.M.Les sous-variétés lagrangiennes et la dynamique lagrangienneC. R. Acad. Sci. Paris19762836756784207150334.58008 LeimkuhlerB.ReichS.Simulating Hamiltonian Dynamics2004CambridgeCambridge University Press1069.65139 AbrahamR.MarsdenJ.E.Foundations of Mechanics19782ReadingAddison–Wesley0393.70001 N. Bou-Rabee, J.E. Marsden, Hamilton–Pontryagin integrators on Lie groups part I: introduction and structure-preserving properties, Found. Comput. Math. (2008). CourantT.Tangent Dirac structuresJ. Phys. A, Math. Gen.199023225153516810858630715.5801310.1088/0305-4470/23/22/010 BenettinG.CherubiniA.M.FassòF.A changing-chart symplectic algorithm for rigid bodies and other Hamiltonian systems on manifoldsSIAM J. Sci. Comput.20012341189120318855971002.6513610.1137/S1064827500381720ISSN 1064-8275 BlochA.M.CrouchP.E.Representations of Dirac structures on vector spaces and nonlinear L-C circuitsDifferential Geometry and Control Theory1997ProvidenceAmerican Mathematical Society103117 TulczyjewW.M.Les sous-variétés lagrangiennes et la dynamique hamiltonienneC. R. Acad. Sci. Paris197628315184207140327.58007 J. Vankerschaver, H. Yoshimura, J.E. Marsden, Multi-Dirac structures and Hamilton–Pontryagin principles for Lagrange–Dirac field theories. Preprint, arXiv:1008.0252 (2010). van der SchaftA.J.MaschkeB.M.On the Hamiltonian formulation of nonholonomic mechanical systemsRep. Math. Phys.199434222523313231300817.7001010.1016/0034-4877(94)90038-8 MarsdenJ.E.WestM.Discrete mechanics and variational integratorsActa Numerica2001357514 MarreroJ.C.de DiegoD. MartínMartínezE.Discrete Lagrangian and Hamiltonian mechanics on Lie groupoidsNonlinearity20061961313134822300011162.1731210.1088/0951-7715/19/6/006 van der SchaftA.J.Port-Hamiltonian systems: an introductory surveyProceedings of the International Congress of Mathematicians200613391365 HairerE.LubichC.WannerG.Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations2006BerlinSpringer1094.65125 DiracP.A.M.Generalized Hamiltonian dynamicsCan. J. Math.19502129148437240036.1410410.4153/CJM-1950-012-1 YoshimuraH.MarsdenJ.E.Dirac structures and the Legendre transformation for implicit Lagrangian and Hamiltonian systemsLagrangian and Hamiltonian Methods for Nonlinear Control 2006200723324710.1007/978-3-540-73890-9_18 AbsilP.-A.MahonyR.SepulchreR.Optimization Algorithms on Matrix Manifolds2008PrincetonPrinceton University Press1147.65043 DiracP.A.M.Generalized Hamiltonian dynamicsProc. R. Soc. Lond. Ser. A, Math. Phys. Sci.19582461246326332942050080.4140210.1098/rspa.1958.0141 de LeónM.MarreroJ.C.Martín de DiegoD.Linear almost Poisson structures and Hamilton–Jacobi equation. Applications to nonholonomic mechanicsJ. Geom. Mech.20102215919826607140582761010.3934/jgm.2010.2.159 BlochA.M.Nonholonomic Mechanics and Control2003BerlinSpringer1045.7000110.1007/b97376 H. Yoshimura (9096_CR50) 2006; 57 T. Ohsawa (9096_CR40) 2011; 61 B. Leimkuhler (9096_CR30) 2004 J.C. Marrero (9096_CR34) 2006; 19 R. McLachlan (9096_CR38) 2006; 16 S. Lall (9096_CR29) 2006; 39 H. Yoshimura (9096_CR53) 2007 H. Yoshimura (9096_CR54) 2009; 1 A.J. Schaft van der (9096_CR46) 1994; 34 M. Dalsmo (9096_CR14) 1998; 37 A. Weinstein (9096_CR49) 1996; 7 P.A.M. Dirac (9096_CR18) 1964 9096_CR47 V.I. Arnold (9096_CR3) 1989 M.J. Gotay (9096_CR22) 1980; 32 M.J. Gotay (9096_CR21) 1979; 30 A.M. Bloch (9096_CR6) 2003 H.P. Künzle (9096_CR28) 1969; 11 V.S. Varadarajan (9096_CR48) 1984 L. Kharevych (9096_CR26) 2006 T. Courant (9096_CR12) 1990; 319 J.E. Marsden (9096_CR36) 2001 9096_CR32 9096_CR33 H. Yoshimura (9096_CR52) 2007; 60 T. Ohsawa (9096_CR39) 2009; 1 J. Cortés (9096_CR11) 2001; 14 M. León de (9096_CR15) 2010; 2 P.A.M. Dirac (9096_CR16) 1950; 2 L. Bates (9096_CR4) 1993; 32 J.F. Cariñena (9096_CR9) 2010; 7 A.M. Bloch (9096_CR7) 1997 A.J. Schaft van der (9096_CR44) 1998; 41 J.E. Marsden (9096_CR35) 1999 M.J. Gotay (9096_CR20) 1979 E. Hairer (9096_CR23) 2006 A. Stern (9096_CR41) 2010; 8 P.-A. Absil (9096_CR2) 2008 M. Leok (9096_CR31) 2010 H. Goldstein (9096_CR19) 2001 9096_CR25 P.A.M. Dirac (9096_CR17) 1958; 246 T. Courant (9096_CR13) 1990; 23 R. Abraham (9096_CR1) 1978 9096_CR8 W.M. Tulczyjew (9096_CR43) 1976; 283 G. Benettin (9096_CR5) 2001; 23 H. Yoshimura (9096_CR51) 2006; 57 J. Cervera (9096_CR10) 2003 A.J. Schaft van der (9096_CR45) 2006 D. Iglesias (9096_CR24) 2008; 18 J.E. Marsden (9096_CR37) 1999; 12 W.S. Koon (9096_CR27) 1997; 40 W.M. Tulczyjew (9096_CR42) 1976; 283 |
| References_xml | – reference: DiracP.A.M.Generalized Hamiltonian dynamicsProc. R. Soc. Lond. Ser. A, Math. Phys. Sci.19582461246326332942050080.4140210.1098/rspa.1958.0141 – reference: J. Vankerschaver, H. Yoshimura, J.E. Marsden, Multi-Dirac structures and Hamilton–Pontryagin principles for Lagrange–Dirac field theories. Preprint, arXiv:1008.0252 (2010). – reference: CariñenaJ.F.GraciaX.MarmoG.MartínezE.Munõz LecandaM.C.Román-RoyN.Geometric Hamilton–Jacobi theory for nonholonomic dynamical systemsInt. J. Geom. Methods Mod. Phys.20107343145426467740572344510.1142/S0219887810004385 – reference: AbsilP.-A.MahonyR.SepulchreR.Optimization Algorithms on Matrix Manifolds2008PrincetonPrinceton University Press1147.65043 – reference: BatesL.SniatyckiJ.Nonholonomic reductionRep. Math. Phys.19933219911512471650798.5802610.1016/0034-4877(93)90073-N – reference: AbrahamR.MarsdenJ.E.Foundations of Mechanics19782ReadingAddison–Wesley0393.70001 – reference: BlochA.M.CrouchP.E.Representations of Dirac structures on vector spaces and nonlinear L-C circuitsDifferential Geometry and Control Theory1997ProvidenceAmerican Mathematical Society103117 – reference: KharevychL.YangW.TongY.KansoE.MarsdenJ.E.SchröderP.DesbrunM.Geometric, variational integrators for computer animationACM/EG Symposium on Computer Animation20064351 – reference: van der SchaftA.J.Implicit Hamiltonian systems with symmetryRep. Math. Phys.199841220322116313830921.7001410.1016/S0034-4877(98)80176-6 – reference: MarsdenJ.E.RatiuT.S.Introduction to Mechanics and Symmetry1999BerlinSpringer0933.70003 – reference: DiracP.A.M.Generalized Hamiltonian dynamicsCan. J. Math.19502129148437240036.1410410.4153/CJM-1950-012-1 – reference: ArnoldV.I.Mathematical Methods of Classical Mechanics1989BerlinSpringer – reference: van der SchaftA.J.Port-Hamiltonian systems: an introductory surveyProceedings of the International Congress of Mathematicians200613391365 – reference: van der SchaftA.J.MaschkeB.M.On the Hamiltonian formulation of nonholonomic mechanical systemsRep. Math. Phys.199434222523313231300817.7001010.1016/0034-4877(94)90038-8 – reference: GotayM.J.NesterJ.M.Presymplectic Lagrangian systems. I: the constraint algorithm and the equivalence theoremAnn. Inst. Henri Poincaré A19793021291425353690414.58015 – reference: GotayM.J.NesterJ.M.Presymplectic Lagrangian systems. II: the second-order equation problemAnn. Inst. Henri Poincaré A19803211135748090453.58016 – reference: CourantT.Dirac manifoldsTrans. Am. Math. Soc.199031926316619981240850.7021210.2307/2001258 – reference: D. Iglesias-Ponte, M. de León, D.M. de Diego, Towards a Hamilton–Jacobi theory for nonholonomic mechanical systems. Journal of Physics A: Mathematical and Theoretical 41(1) (2008). – reference: N. Bou-Rabee, J.E. Marsden, Hamilton–Pontryagin integrators on Lie groups part I: introduction and structure-preserving properties, Found. Comput. Math. (2008). – reference: WeinsteinA.Lagrangian mechanics and groupoidsFields Inst. Commun.19967207231 – reference: A. Lew, J.E. Marsden, M. Ortiz, M. West, An overview of variational integrators, in Finite Element Methods: 1970’s and Beyond (CIMNE 2003). – reference: McLachlanR.PerlmutterM.Integrators for nonholonomic mechanical systemsJ. Nonlinear Sci.200616428332822547071104.3704310.1007/s00332-005-0698-1 – reference: M. Leok, T. Ohsawa, D. Sosa, Hamilton–Jacobi theory for degenerate Lagrangian systems with constraints (in preparation). – reference: VaradarajanV.S.Lie Groups, Lie Algebras, and Their Representations1984New YorkSpringer0955.22500 – reference: YoshimuraH.MarsdenJ.E.Dirac structures in Lagrangian mechanics Part I: implicit Lagrangian systemsJ. Geom. Phys.200657113315622654641107.5305310.1016/j.geomphys.2006.02.009 – reference: GoldsteinH.PooleC.P.SafkoJ.L.Classical Mechanics20013ReadingAddison–Wesley – reference: OhsawaT.FernandezO.E.BlochA.M.ZenkovD.V.Nonholonomic Hamilton–Jacobi theory via Chaplygin HamiltonizationJ. Geom. Phys.20116181263129128024710591905810.1016/j.geomphys.2011.02.015 – reference: CerveraJ.van der SchaftA.J.BañosA.On composition of Dirac structures and its implications for control by interconnectionNonlinear and Adaptive Control2003BerlinSpringer556310.1007/3-540-45802-6_5 – reference: MarsdenJ.E.WestM.Discrete mechanics and variational integratorsActa Numerica2001357514 – reference: YoshimuraH.MarsdenJ.E.Dirac structures and the Legendre transformation for implicit Lagrangian and Hamiltonian systemsLagrangian and Hamiltonian Methods for Nonlinear Control 2006200723324710.1007/978-3-540-73890-9_18 – reference: KoonW.S.MarsdenJ.E.The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systemsRep. Math. Phys.1997401216214924130929.7000910.1016/S0034-4877(97)85617-0 – reference: CortésJ.MartínezS.Non-holonomic integratorsNonlinearity20011451365139218628251067.3711610.1088/0951-7715/14/5/322 – reference: YoshimuraH.MarsdenJ.E.Dirac structures in Lagrangian mechanics Part II: variational structuresJ. Geom. Phys.200657120925022654691121.5305710.1016/j.geomphys.2006.02.012 – reference: MarsdenJ.E.PekarskyS.ShkollerS.Discrete Euler–Poincaré and Lie–Poisson equationsNonlinearity19991261647166217266700978.3704510.1088/0951-7715/12/6/314 – reference: DalsmoM.van der SchaftA.J.On representations and integrability of mathematical structures in energy-conserving physical systemsSIAM J. Control Optim.1998371549110.1137/S0363012996312039 – reference: GotayM.J.NesterJ.M.Presymplectic Hamilton and Lagrange systems, gauge transformations and the Dirac theory of constraintsGroup Theoretical Methods in Physics1979BerlinSpringer27227910.1007/3-540-09238-2_74 – reference: OhsawaT.BlochA.M.Nonholonomic Hamilton–Jacobi equation and integrabilityJ. Geom. Mech.20091446148125876070569155510.3934/jgm.2009.1.461 – reference: YoshimuraH.MarsdenJ.E.Reduction of Dirac structures and the Hamilton–Pontryagin principleRep. Math. Phys.200760338142623695391141.5308110.1016/S0034-4877(08)00004-9 – reference: TulczyjewW.M.Les sous-variétés lagrangiennes et la dynamique lagrangienneC. R. Acad. Sci. Paris19762836756784207150334.58008 – reference: LallS.WestM.Discrete variational Hamiltonian mechanicsJ. Phys. A, Math. Gen.200639195509551922207731087.4902710.1088/0305-4470/39/19/S11 – reference: LeimkuhlerB.ReichS.Simulating Hamiltonian Dynamics2004CambridgeCambridge University Press1069.65139 – reference: DiracP.A.M.Lectures on Quantum Mechanics1964New YorkBelfer Graduate School of Science, Yeshiva University – reference: MarreroJ.C.de DiegoD. MartínMartínezE.Discrete Lagrangian and Hamiltonian mechanics on Lie groupoidsNonlinearity20061961313134822300011162.1731210.1088/0951-7715/19/6/006 – reference: CourantT.Tangent Dirac structuresJ. Phys. A, Math. Gen.199023225153516810858630715.5801310.1088/0305-4470/23/22/010 – reference: LeokM.OhsawaT.Discrete Dirac structures and implicit discrete Lagrangian and Hamiltonian systemsXVIII International Fall Workshop on Geometry and Physics2010New YorkAIP91102 – reference: de LeónM.MarreroJ.C.Martín de DiegoD.Linear almost Poisson structures and Hamilton–Jacobi equation. Applications to nonholonomic mechanicsJ. Geom. Mech.20102215919826607140582761010.3934/jgm.2010.2.159 – reference: HairerE.LubichC.WannerG.Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations2006BerlinSpringer1094.65125 – reference: BlochA.M.Nonholonomic Mechanics and Control2003BerlinSpringer1045.7000110.1007/b97376 – reference: SternA.Discrete Hamilton–Pontryagin mechanics and generating functions on Lie groupoidsJ. Symplectic Geom.201082225238267016605780490 – reference: BenettinG.CherubiniA.M.FassòF.A changing-chart symplectic algorithm for rigid bodies and other Hamiltonian systems on manifoldsSIAM J. Sci. Comput.20012341189120318855971002.6513610.1137/S1064827500381720ISSN 1064-8275 – reference: IglesiasD.MarreroJ.C.de DiegoD.M.MartínezE.Discrete nonholonomic Lagrangian systems on Lie groupoidsJ. Nonlinear Sci.200818322127624113791182.3703610.1007/s00332-007-9012-8 – reference: KünzleH.P.Degenerate Lagrangean systemsAnn. Inst. Henri Poincaré A19691143934140193.24901 – reference: YoshimuraH.MarsdenJ.E.Dirac cotangent bundle reductionJ. Geom. Mech.2009118715825113031168.7031410.3934/jgm.2009.1.87 – reference: TulczyjewW.M.Les sous-variétés lagrangiennes et la dynamique hamiltonienneC. R. Acad. Sci. Paris197628315184207140327.58007 – volume: 57 start-page: 133 issue: 1 year: 2006 ident: 9096_CR50 publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2006.02.009 – volume: 32 start-page: 99 issue: 1 year: 1993 ident: 9096_CR4 publication-title: Rep. Math. Phys. doi: 10.1016/0034-4877(93)90073-N – volume-title: Classical Mechanics year: 2001 ident: 9096_CR19 – volume: 7 start-page: 207 year: 1996 ident: 9096_CR49 publication-title: Fields Inst. Commun. – volume: 12 start-page: 1647 issue: 6 year: 1999 ident: 9096_CR37 publication-title: Nonlinearity doi: 10.1088/0951-7715/12/6/314 – volume: 37 start-page: 54 issue: 1 year: 1998 ident: 9096_CR14 publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012996312039 – ident: 9096_CR8 doi: 10.1007/s10208-008-9030-4 – volume: 60 start-page: 381 issue: 3 year: 2007 ident: 9096_CR52 publication-title: Rep. Math. Phys. doi: 10.1016/S0034-4877(08)00004-9 – start-page: 1339 volume-title: Proceedings of the International Congress of Mathematicians year: 2006 ident: 9096_CR45 – volume: 18 start-page: 221 issue: 3 year: 2008 ident: 9096_CR24 publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-007-9012-8 – volume: 1 start-page: 87 issue: 1 year: 2009 ident: 9096_CR54 publication-title: J. Geom. Mech. doi: 10.3934/jgm.2009.1.87 – volume: 40 start-page: 21 issue: 1 year: 1997 ident: 9096_CR27 publication-title: Rep. Math. Phys. doi: 10.1016/S0034-4877(97)85617-0 – volume: 23 start-page: 1189 issue: 4 year: 2001 ident: 9096_CR5 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827500381720 – start-page: 43 volume-title: ACM/EG Symposium on Computer Animation year: 2006 ident: 9096_CR26 – start-page: 91 volume-title: XVIII International Fall Workshop on Geometry and Physics year: 2010 ident: 9096_CR31 – volume-title: Introduction to Mechanics and Symmetry year: 1999 ident: 9096_CR35 doi: 10.1007/978-0-387-21792-5 – volume: 41 start-page: 203 issue: 2 year: 1998 ident: 9096_CR44 publication-title: Rep. Math. Phys. doi: 10.1016/S0034-4877(98)80176-6 – volume-title: Foundations of Mechanics year: 1978 ident: 9096_CR1 – volume: 14 start-page: 1365 issue: 5 year: 2001 ident: 9096_CR11 publication-title: Nonlinearity doi: 10.1088/0951-7715/14/5/322 – volume: 2 start-page: 159 issue: 2 year: 2010 ident: 9096_CR15 publication-title: J. Geom. Mech. doi: 10.3934/jgm.2010.2.159 – volume: 8 start-page: 225 issue: 2 year: 2010 ident: 9096_CR41 publication-title: J. Symplectic Geom. doi: 10.4310/JSG.2010.v8.n2.a5 – volume: 283 start-page: 675 year: 1976 ident: 9096_CR43 publication-title: C. R. Acad. Sci. Paris – ident: 9096_CR32 – start-page: 55 volume-title: Nonlinear and Adaptive Control year: 2003 ident: 9096_CR10 doi: 10.1007/3-540-45802-6_5 – volume: 319 start-page: 631 issue: 2 year: 1990 ident: 9096_CR12 publication-title: Trans. Am. Math. Soc. doi: 10.2307/2001258 – start-page: 357 volume-title: Acta Numerica year: 2001 ident: 9096_CR36 – volume-title: Lie Groups, Lie Algebras, and Their Representations year: 1984 ident: 9096_CR48 doi: 10.1007/978-1-4612-1126-6 – volume: 34 start-page: 225 issue: 2 year: 1994 ident: 9096_CR46 publication-title: Rep. Math. Phys. doi: 10.1016/0034-4877(94)90038-8 – ident: 9096_CR47 – volume-title: Nonholonomic Mechanics and Control year: 2003 ident: 9096_CR6 doi: 10.1007/b97376 – volume: 2 start-page: 129 year: 1950 ident: 9096_CR16 publication-title: Can. J. Math. doi: 10.4153/CJM-1950-012-1 – volume: 39 start-page: 5509 issue: 19 year: 2006 ident: 9096_CR29 publication-title: J. Phys. A, Math. Gen. doi: 10.1088/0305-4470/39/19/S11 – volume-title: Optimization Algorithms on Matrix Manifolds year: 2008 ident: 9096_CR2 doi: 10.1515/9781400830244 – volume: 19 start-page: 1313 issue: 6 year: 2006 ident: 9096_CR34 publication-title: Nonlinearity doi: 10.1088/0951-7715/19/6/006 – volume: 61 start-page: 1263 issue: 8 year: 2011 ident: 9096_CR40 publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2011.02.015 – volume: 57 start-page: 209 issue: 1 year: 2006 ident: 9096_CR51 publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2006.02.012 – volume: 246 start-page: 326 issue: 1246 year: 1958 ident: 9096_CR17 publication-title: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. doi: 10.1098/rspa.1958.0141 – ident: 9096_CR33 – start-page: 233 volume-title: Lagrangian and Hamiltonian Methods for Nonlinear Control 2006 year: 2007 ident: 9096_CR53 doi: 10.1007/978-3-540-73890-9_18 – volume-title: Lectures on Quantum Mechanics year: 1964 ident: 9096_CR18 – volume: 1 start-page: 461 issue: 4 year: 2009 ident: 9096_CR39 publication-title: J. Geom. Mech. doi: 10.3934/jgm.2009.1.461 – start-page: 103 volume-title: Differential Geometry and Control Theory year: 1997 ident: 9096_CR7 – volume: 23 start-page: 5153 issue: 22 year: 1990 ident: 9096_CR13 publication-title: J. Phys. A, Math. Gen. doi: 10.1088/0305-4470/23/22/010 – volume-title: Simulating Hamiltonian Dynamics year: 2004 ident: 9096_CR30 – volume: 283 start-page: 15 year: 1976 ident: 9096_CR42 publication-title: C. R. Acad. Sci. Paris – volume: 30 start-page: 129 issue: 2 year: 1979 ident: 9096_CR21 publication-title: Ann. Inst. Henri Poincaré A – volume: 32 start-page: 1 issue: 1 year: 1980 ident: 9096_CR22 publication-title: Ann. Inst. Henri Poincaré A – ident: 9096_CR25 doi: 10.1088/1751-8113/41/1/015205 – start-page: 272 volume-title: Group Theoretical Methods in Physics year: 1979 ident: 9096_CR20 doi: 10.1007/3-540-09238-2_74 – volume-title: Mathematical Methods of Classical Mechanics year: 1989 ident: 9096_CR3 doi: 10.1007/978-1-4757-2063-1 – volume: 7 start-page: 431 issue: 3 year: 2010 ident: 9096_CR9 publication-title: Int. J. Geom. Methods Mod. Phys. doi: 10.1142/S0219887810004385 – volume: 16 start-page: 283 issue: 4 year: 2006 ident: 9096_CR38 publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-005-0698-1 – volume-title: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations year: 2006 ident: 9096_CR23 – volume: 11 start-page: 393 issue: 4 year: 1969 ident: 9096_CR28 publication-title: Ann. Inst. Henri Poincaré A |
| SSID | ssj0015914 ssib031263371 |
| Score | 2.101439 |
| Snippet | In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 529 |
| SubjectTerms | Applications of Mathematics Categories Computational mathematics Computer Science Derivation Economics Foundations Geometry Integrators Lagrange multiplier Linear and Multilinear Algebras Math Applications in Computer Science Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Matrix Theory Numerical Analysis Variational principles |
| Title | Variational and Geometric Structures of Discrete Dirac Mechanics |
| URI | https://link.springer.com/article/10.1007/s10208-011-9096-2 https://www.proquest.com/docview/896402030 https://www.proquest.com/docview/963859429 |
| Volume | 11 |
| WOSCitedRecordID | wos000300097200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1615-3383 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015914 issn: 1615-3375 databaseCode: RSV dateStart: 20010101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEB9EBZ8H9fmB66rk4EkptE3TJjfFz4OK6HPxVtJkAoJ2xbr-_U5qs-t7qOC7lNCkaZlkMr_pfAHskFBIMXGW-BtdlKXU0oIujqM1hRVYtV6-g_Pi8lLe3amrLo67Cd7uwSTZntQfgt3S1vHKuxSoPKJzd4aknfT1Gq5vBmPTgVBtQm-PZCLOCxFMmZ9N8bcwmiDMf4yiraw5Wfyvr1yChQ5asoP3vfAbprBehsUOZrKOiRu6FSo5hHvLMBfik6l7_mKcybVZgf0BKdPdD0Oma8tOcfjoq3AZdtOmnh2Rvs6Gjh3d0wFECJwaz9qwC_QhxTTFKtyeHP85PIu6qguRESJ9iRJUXAuJVeYwTWziSIHLCUTxwshcx05YoUnqE3CyNsbcSJ0roY3kTiu0ouBrMF0Pa1wH5lKTV3nmeCarLM6yCoUptCME5BKJTvUgDuQvTZeS3FfGeCgnyZQ9OUsiZ-nJWaY92B0_8vSej-O7wf2wpmXHmk0pVe51Zh73gI17iae8oUTXOBw1pT-UhCJJ3YO9sMqTCb583caPRvfhVxr8CZNNmKY1wy2YNa8v983zdrun3wAA2e-i |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hQKIcCoVWbGmpD5yKIiVxnMQ3EC0PsbtCQFfcLMceSyuVLCLA72cc4t2CKBJcIit2nGjs8XyTeQFsk1BIMXGW-BtdlKXU0oIujqM1hRVYtV6-o34xHJaXl_K0i-Nugrd7MEm2J_U_wW5p63jlXQpkHtG5u5CRwPIJ88_OR1PTgZBtQm-PZCLOCxFMmS9N8VQYzRDmM6NoK2sOVt71lavwsYOWbO9xL3yCOazXYKWDmaxj4oZuhUoO4d4aLIX4ZOpeHkwzuTbrsDsiZbr7Ych0bdkhTq58FS7DztvUs3ekr7OJY7_GdAARAqfGjTZsgD6kmKb4DH8Ofl_sH0Vd1YXICJHeRglKrkWJVeYwTWziSIHLCUTxwpS5jp2wQpPUJ-BkbYy5KXUuhTYld1qiFQX_AvP1pMYNYC41eZVnjmdllcVZVqEwhXaEgFxSopM9iAP5lelSkvvKGH_VLJmyJ6cicipPTpX24Of0kevHfByvDd4Ma6o61mxUKXOvM_O4B2zaSzzlDSW6xsldo_yhJCRJ6h7shFWeTfDf13190-gfsHR0Meir_vHwZBM-pMG3MPkG87R--B0Wzf3tuLnZavf3A0RL8oY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8hQBs8wNZtonxsftjTpogkjpP4DQSUTaNVpW4Vb5ZjnyWkLUWk7O_fOY3bbWKTEC-RFTtO5PP5fpf7AnhPQiHFxFnib3RRllJLC7o4jtYUVmDVevlOr4rRqLy-luOuzmkTvN2DSXIR0-CzNNXz41vrjn8LfEtbJyzvXiDziM7gjcz70Xt1fTJdmhGEbJN7e1QTcV6IYNZ8aIo_BdMKbf5lIG3lzmD3yV_8AnY6yMlOF3vkJaxh3YPdDn6yjrkbuhUqPIR7PXge4pape3u4zPDavIKTKSnZ3Y9EpmvLLnH2w1fnMmzSpqS9Jz2ezRw7v6GDiZA5Ne60YUP0ocY0xWv4Nrj4evYp6qoxREaIdB4lKLkWJVaZwzSxiSPFLidwxQtT5jp2wgpNaIAAlbUx5qbUuRTalNxpiVYU_A2s17Ma94C51ORVnjmelVUWZ1mFwhTaETJySYlO9iEOpFCmS1XuK2Z8V6sky345FS2n8sup0j58WD5yu8jT8b_BB4G-qmPZRpUy97o0j_vAlr3Ea96Aomuc3TfKH1ZCkgTvw8dA8dUE_3zd_qNGv4Nn4_OBuvo8-nIAW2lwOUwOYZ3Ih0ewaX7Ob5q7t-1W_wW74Ptq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+and+Geometric+Structures+of+Discrete+Dirac+Mechanics&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Leok%2C+Melvin&rft.au=Ohsawa%2C+Tomoki&rft.date=2011-10-01&rft.pub=Springer-Verlag&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=11&rft.issue=5&rft.spage=529&rft.epage=562&rft_id=info:doi/10.1007%2Fs10208-011-9096-2&rft.externalDocID=10_1007_s10208_011_9096_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon |