Variational and Geometric Structures of Discrete Dirac Mechanics

In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems with constraints. We first construct discrete analogues of Tulczyjew’s triple and induced Dirac structures by considering the geometry of symple...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Foundations of computational mathematics Ročník 11; číslo 5; s. 529 - 562
Hlavní autori: Leok, Melvin, Ohsawa, Tomoki
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer-Verlag 01.10.2011
Springer Nature B.V
Predmet:
ISSN:1615-3375, 1615-3383
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems with constraints. We first construct discrete analogues of Tulczyjew’s triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete Lagrange–Dirac and nonholonomic Hamiltonian systems. In particular, this yields nonholonomic Lagrangian and Hamiltonian integrators. We also introduce discrete Lagrange–d’Alembert–Pontryagin and Hamilton–d’Alembert variational principles, which provide an alternative derivation of the same set of integration algorithms. The paper provides a unified treatment of discrete Lagrangian and Hamiltonian mechanics in the more general setting of discrete Dirac mechanics, as well as a generalization of symplectic and Poisson integrators to the broader category of Dirac integrators.
AbstractList In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems with constraints. We first construct discrete analogues of Tulczyjew's triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete Lagrange-Dirac and nonholonomic Hamiltonian systems. In particular, this yields nonholonomic Lagrangian and Hamiltonian integrators. We also introduce discrete Lagrange-d'Alembert-Pontryagin and Hamilton-d'Alembert variational principles, which provide an alternative derivation of the same set of integration algorithms. The paper provides a unified treatment of discrete Lagrangian and Hamiltonian mechanics in the more general setting of discrete Dirac mechanics, as well as a generalization of symplectic and Poisson integrators to the broader category of Dirac integrators.
In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems with constraints. We first construct discrete analogues of Tulczyjew's triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete Lagrange-Dirac and nonholonomic Hamiltonian systems. In particular, this yields nonholonomic Lagrangian and Hamiltonian integrators. We also introduce discrete Lagrange-d'Alembert-Pontryagin and Hamilton-d'Alembert variational principles, which provide an alternative derivation of the same set of integration algorithms. The paper provides a unified treatment of discrete Lagrangian and Hamiltonian mechanics in the more general setting of discrete Dirac mechanics, as well as a generalization of symplectic and Poisson integrators to the broader category of Dirac integrators.[PUBLICATION ABSTRACT]
Author Ohsawa, Tomoki
Leok, Melvin
Author_xml – sequence: 1
  givenname: Melvin
  surname: Leok
  fullname: Leok, Melvin
  email: mleok@math.ucsd.edu
  organization: Department of Mathematics, University of California
– sequence: 2
  givenname: Tomoki
  surname: Ohsawa
  fullname: Ohsawa, Tomoki
  organization: Department of Mathematics, University of California
BookMark eNp9kD1PwzAQhi0EEm3hB7BFLEwBO44dewMVKEhFDHys1uFcwFWaFNsZ-Pe4FIFUCaa74X1e3T1jstv1HRJyxOgpo7Q6C4wWVOWUsVxTLfNih4yYZCLnXPHdn70S-2QcwoJSJjQrR-T8GbyD6PoO2gy6Opthv8Tonc0eoh9sHDyGrG-ySxesx4hp8WCzO7Rv0DkbDsheA23Aw-85IU_XV4_Tm3x-P7udXsxzK0QRc4aag1D4UjZYsJo1ZamkLjSvrJJAG1ELKJmgQtY1RWkVSC3AKt6AxlpUfEJONr0r378PGKJZpouwbaHDfghGS66ELlPjhBxvJRf94NN_wSgty-SJ0xSqNiHr-xA8Nsa6-OUhenCtYdSsvZqNV5O8mrVXUySSbZEr75bgP_5lig0TUrZ7Rf970t_QJwGZiwU
CODEN FCMOA3
CitedBy_id crossref_primary_10_1016_S0034_4877_18_30019_3
crossref_primary_10_1080_00207160_2021_1999427
crossref_primary_10_1016_j_cnsns_2014_09_027
crossref_primary_10_1007_s00332_017_9364_7
crossref_primary_10_3390_e19100518
crossref_primary_10_1088_0951_7715_28_4_871
crossref_primary_10_1007_s10208_022_09571_x
crossref_primary_10_1093_imanum_dry053
crossref_primary_10_1007_s00332_023_09999_7
crossref_primary_10_1016_j_sysconle_2017_10_003
crossref_primary_10_1007_s10208_019_09420_4
crossref_primary_10_1142_S2972458925500042
crossref_primary_10_1007_s00332_022_09795_9
Cites_doi 10.1016/j.geomphys.2006.02.009
10.1016/0034-4877(93)90073-N
10.1088/0951-7715/12/6/314
10.1137/S0363012996312039
10.1007/s10208-008-9030-4
10.1016/S0034-4877(08)00004-9
10.1007/s00332-007-9012-8
10.3934/jgm.2009.1.87
10.1016/S0034-4877(97)85617-0
10.1137/S1064827500381720
10.1007/978-0-387-21792-5
10.1016/S0034-4877(98)80176-6
10.1088/0951-7715/14/5/322
10.3934/jgm.2010.2.159
10.4310/JSG.2010.v8.n2.a5
10.1007/3-540-45802-6_5
10.2307/2001258
10.1007/978-1-4612-1126-6
10.1016/0034-4877(94)90038-8
10.1007/b97376
10.4153/CJM-1950-012-1
10.1088/0305-4470/39/19/S11
10.1515/9781400830244
10.1088/0951-7715/19/6/006
10.1016/j.geomphys.2011.02.015
10.1016/j.geomphys.2006.02.012
10.1098/rspa.1958.0141
10.1007/978-3-540-73890-9_18
10.3934/jgm.2009.1.461
10.1088/0305-4470/23/22/010
10.1088/1751-8113/41/1/015205
10.1007/3-540-09238-2_74
10.1007/978-1-4757-2063-1
10.1142/S0219887810004385
10.1007/s00332-005-0698-1
ContentType Journal Article
Copyright SFoCM 2011
Copyright_xml – notice: SFoCM 2011
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10208-011-9096-2
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 562
ExternalDocumentID 2476805181
10_1007_s10208_011_9096_2
Genre Feature
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c552t-1e93a58eb4fe21d1f448692937c86a0f5d5a415056dd0e6c8a695ac83fa9ed573
IEDL.DBID RSV
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300097200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-3375
IngestDate Fri Sep 05 10:44:22 EDT 2025
Fri Jul 25 19:15:38 EDT 2025
Tue Nov 18 20:40:22 EST 2025
Sat Nov 29 06:41:13 EST 2025
Fri Feb 21 02:36:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 65P10
Lagrange–Dirac systems
37J60
Dirac structures
70H45
70F25
Geometric integration
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-1e93a58eb4fe21d1f448692937c86a0f5d5a415056dd0e6c8a695ac83fa9ed573
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 896402030
PQPubID 43692
PageCount 34
ParticipantIDs proquest_miscellaneous_963859429
proquest_journals_896402030
crossref_citationtrail_10_1007_s10208_011_9096_2
crossref_primary_10_1007_s10208_011_9096_2
springer_journals_10_1007_s10208_011_9096_2
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationYear 2011
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References LeokM.OhsawaT.Discrete Dirac structures and implicit discrete Lagrangian and Hamiltonian systemsXVIII International Fall Workshop on Geometry and Physics2010New YorkAIP91102
DalsmoM.van der SchaftA.J.On representations and integrability of mathematical structures in energy-conserving physical systemsSIAM J. Control Optim.1998371549110.1137/S0363012996312039
GotayM.J.NesterJ.M.Presymplectic Lagrangian systems. I: the constraint algorithm and the equivalence theoremAnn. Inst. Henri Poincaré A19793021291425353690414.58015
YoshimuraH.MarsdenJ.E.Dirac cotangent bundle reductionJ. Geom. Mech.2009118715825113031168.7031410.3934/jgm.2009.1.87
KoonW.S.MarsdenJ.E.The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systemsRep. Math. Phys.1997401216214924130929.7000910.1016/S0034-4877(97)85617-0
YoshimuraH.MarsdenJ.E.Dirac structures in Lagrangian mechanics Part II: variational structuresJ. Geom. Phys.200657120925022654691121.5305710.1016/j.geomphys.2006.02.012
OhsawaT.FernandezO.E.BlochA.M.ZenkovD.V.Nonholonomic Hamilton–Jacobi theory via Chaplygin HamiltonizationJ. Geom. Phys.20116181263129128024710591905810.1016/j.geomphys.2011.02.015
KünzleH.P.Degenerate Lagrangean systemsAnn. Inst. Henri Poincaré A19691143934140193.24901
MarsdenJ.E.RatiuT.S.Introduction to Mechanics and Symmetry1999BerlinSpringer0933.70003
SternA.Discrete Hamilton–Pontryagin mechanics and generating functions on Lie groupoidsJ. Symplectic Geom.201082225238267016605780490
WeinsteinA.Lagrangian mechanics and groupoidsFields Inst. Commun.19967207231
CourantT.Dirac manifoldsTrans. Am. Math. Soc.199031926316619981240850.7021210.2307/2001258
LallS.WestM.Discrete variational Hamiltonian mechanicsJ. Phys. A, Math. Gen.200639195509551922207731087.4902710.1088/0305-4470/39/19/S11
ArnoldV.I.Mathematical Methods of Classical Mechanics1989BerlinSpringer
IglesiasD.MarreroJ.C.de DiegoD.M.MartínezE.Discrete nonholonomic Lagrangian systems on Lie groupoidsJ. Nonlinear Sci.200818322127624113791182.3703610.1007/s00332-007-9012-8
KharevychL.YangW.TongY.KansoE.MarsdenJ.E.SchröderP.DesbrunM.Geometric, variational integrators for computer animationACM/EG Symposium on Computer Animation20064351
MarsdenJ.E.PekarskyS.ShkollerS.Discrete Euler–Poincaré and Lie–Poisson equationsNonlinearity19991261647166217266700978.3704510.1088/0951-7715/12/6/314
YoshimuraH.MarsdenJ.E.Reduction of Dirac structures and the Hamilton–Pontryagin principleRep. Math. Phys.200760338142623695391141.5308110.1016/S0034-4877(08)00004-9
YoshimuraH.MarsdenJ.E.Dirac structures in Lagrangian mechanics Part I: implicit Lagrangian systemsJ. Geom. Phys.200657113315622654641107.5305310.1016/j.geomphys.2006.02.009
M. Leok, T. Ohsawa, D. Sosa, Hamilton–Jacobi theory for degenerate Lagrangian systems with constraints (in preparation).
BatesL.SniatyckiJ.Nonholonomic reductionRep. Math. Phys.19933219911512471650798.5802610.1016/0034-4877(93)90073-N
van der SchaftA.J.Implicit Hamiltonian systems with symmetryRep. Math. Phys.199841220322116313830921.7001410.1016/S0034-4877(98)80176-6
GoldsteinH.PooleC.P.SafkoJ.L.Classical Mechanics20013ReadingAddison–Wesley
McLachlanR.PerlmutterM.Integrators for nonholonomic mechanical systemsJ. Nonlinear Sci.200616428332822547071104.3704310.1007/s00332-005-0698-1
OhsawaT.BlochA.M.Nonholonomic Hamilton–Jacobi equation and integrabilityJ. Geom. Mech.20091446148125876070569155510.3934/jgm.2009.1.461
GotayM.J.NesterJ.M.Presymplectic Lagrangian systems. II: the second-order equation problemAnn. Inst. Henri Poincaré A19803211135748090453.58016
D. Iglesias-Ponte, M. de León, D.M. de Diego, Towards a Hamilton–Jacobi theory for nonholonomic mechanical systems. Journal of Physics A: Mathematical and Theoretical 41(1) (2008).
VaradarajanV.S.Lie Groups, Lie Algebras, and Their Representations1984New YorkSpringer0955.22500
A. Lew, J.E. Marsden, M. Ortiz, M. West, An overview of variational integrators, in Finite Element Methods: 1970’s and Beyond (CIMNE 2003).
GotayM.J.NesterJ.M.Presymplectic Hamilton and Lagrange systems, gauge transformations and the Dirac theory of constraintsGroup Theoretical Methods in Physics1979BerlinSpringer27227910.1007/3-540-09238-2_74
CariñenaJ.F.GraciaX.MarmoG.MartínezE.Munõz LecandaM.C.Román-RoyN.Geometric Hamilton–Jacobi theory for nonholonomic dynamical systemsInt. J. Geom. Methods Mod. Phys.20107343145426467740572344510.1142/S0219887810004385
DiracP.A.M.Lectures on Quantum Mechanics1964New YorkBelfer Graduate School of Science, Yeshiva University
CerveraJ.van der SchaftA.J.BañosA.On composition of Dirac structures and its implications for control by interconnectionNonlinear and Adaptive Control2003BerlinSpringer556310.1007/3-540-45802-6_5
CortésJ.MartínezS.Non-holonomic integratorsNonlinearity20011451365139218628251067.3711610.1088/0951-7715/14/5/322
TulczyjewW.M.Les sous-variétés lagrangiennes et la dynamique lagrangienneC. R. Acad. Sci. Paris19762836756784207150334.58008
LeimkuhlerB.ReichS.Simulating Hamiltonian Dynamics2004CambridgeCambridge University Press1069.65139
AbrahamR.MarsdenJ.E.Foundations of Mechanics19782ReadingAddison–Wesley0393.70001
N. Bou-Rabee, J.E. Marsden, Hamilton–Pontryagin integrators on Lie groups part I: introduction and structure-preserving properties, Found. Comput. Math. (2008).
CourantT.Tangent Dirac structuresJ. Phys. A, Math. Gen.199023225153516810858630715.5801310.1088/0305-4470/23/22/010
BenettinG.CherubiniA.M.FassòF.A changing-chart symplectic algorithm for rigid bodies and other Hamiltonian systems on manifoldsSIAM J. Sci. Comput.20012341189120318855971002.6513610.1137/S1064827500381720ISSN 1064-8275
BlochA.M.CrouchP.E.Representations of Dirac structures on vector spaces and nonlinear L-C circuitsDifferential Geometry and Control Theory1997ProvidenceAmerican Mathematical Society103117
TulczyjewW.M.Les sous-variétés lagrangiennes et la dynamique hamiltonienneC. R. Acad. Sci. Paris197628315184207140327.58007
J. Vankerschaver, H. Yoshimura, J.E. Marsden, Multi-Dirac structures and Hamilton–Pontryagin principles for Lagrange–Dirac field theories. Preprint, arXiv:1008.0252 (2010).
van der SchaftA.J.MaschkeB.M.On the Hamiltonian formulation of nonholonomic mechanical systemsRep. Math. Phys.199434222523313231300817.7001010.1016/0034-4877(94)90038-8
MarsdenJ.E.WestM.Discrete mechanics and variational integratorsActa Numerica2001357514
MarreroJ.C.de DiegoD. MartínMartínezE.Discrete Lagrangian and Hamiltonian mechanics on Lie groupoidsNonlinearity20061961313134822300011162.1731210.1088/0951-7715/19/6/006
van der SchaftA.J.Port-Hamiltonian systems: an introductory surveyProceedings of the International Congress of Mathematicians200613391365
HairerE.LubichC.WannerG.Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations2006BerlinSpringer1094.65125
DiracP.A.M.Generalized Hamiltonian dynamicsCan. J. Math.19502129148437240036.1410410.4153/CJM-1950-012-1
YoshimuraH.MarsdenJ.E.Dirac structures and the Legendre transformation for implicit Lagrangian and Hamiltonian systemsLagrangian and Hamiltonian Methods for Nonlinear Control 2006200723324710.1007/978-3-540-73890-9_18
AbsilP.-A.MahonyR.SepulchreR.Optimization Algorithms on Matrix Manifolds2008PrincetonPrinceton University Press1147.65043
DiracP.A.M.Generalized Hamiltonian dynamicsProc. R. Soc. Lond. Ser. A, Math. Phys. Sci.19582461246326332942050080.4140210.1098/rspa.1958.0141
de LeónM.MarreroJ.C.Martín de DiegoD.Linear almost Poisson structures and Hamilton–Jacobi equation. Applications to nonholonomic mechanicsJ. Geom. Mech.20102215919826607140582761010.3934/jgm.2010.2.159
BlochA.M.Nonholonomic Mechanics and Control2003BerlinSpringer1045.7000110.1007/b97376
H. Yoshimura (9096_CR50) 2006; 57
T. Ohsawa (9096_CR40) 2011; 61
B. Leimkuhler (9096_CR30) 2004
J.C. Marrero (9096_CR34) 2006; 19
R. McLachlan (9096_CR38) 2006; 16
S. Lall (9096_CR29) 2006; 39
H. Yoshimura (9096_CR53) 2007
H. Yoshimura (9096_CR54) 2009; 1
A.J. Schaft van der (9096_CR46) 1994; 34
M. Dalsmo (9096_CR14) 1998; 37
A. Weinstein (9096_CR49) 1996; 7
P.A.M. Dirac (9096_CR18) 1964
9096_CR47
V.I. Arnold (9096_CR3) 1989
M.J. Gotay (9096_CR22) 1980; 32
M.J. Gotay (9096_CR21) 1979; 30
A.M. Bloch (9096_CR6) 2003
H.P. Künzle (9096_CR28) 1969; 11
V.S. Varadarajan (9096_CR48) 1984
L. Kharevych (9096_CR26) 2006
T. Courant (9096_CR12) 1990; 319
J.E. Marsden (9096_CR36) 2001
9096_CR32
9096_CR33
H. Yoshimura (9096_CR52) 2007; 60
T. Ohsawa (9096_CR39) 2009; 1
J. Cortés (9096_CR11) 2001; 14
M. León de (9096_CR15) 2010; 2
P.A.M. Dirac (9096_CR16) 1950; 2
L. Bates (9096_CR4) 1993; 32
J.F. Cariñena (9096_CR9) 2010; 7
A.M. Bloch (9096_CR7) 1997
A.J. Schaft van der (9096_CR44) 1998; 41
J.E. Marsden (9096_CR35) 1999
M.J. Gotay (9096_CR20) 1979
E. Hairer (9096_CR23) 2006
A. Stern (9096_CR41) 2010; 8
P.-A. Absil (9096_CR2) 2008
M. Leok (9096_CR31) 2010
H. Goldstein (9096_CR19) 2001
9096_CR25
P.A.M. Dirac (9096_CR17) 1958; 246
T. Courant (9096_CR13) 1990; 23
R. Abraham (9096_CR1) 1978
9096_CR8
W.M. Tulczyjew (9096_CR43) 1976; 283
G. Benettin (9096_CR5) 2001; 23
H. Yoshimura (9096_CR51) 2006; 57
J. Cervera (9096_CR10) 2003
A.J. Schaft van der (9096_CR45) 2006
D. Iglesias (9096_CR24) 2008; 18
J.E. Marsden (9096_CR37) 1999; 12
W.S. Koon (9096_CR27) 1997; 40
W.M. Tulczyjew (9096_CR42) 1976; 283
References_xml – reference: DiracP.A.M.Generalized Hamiltonian dynamicsProc. R. Soc. Lond. Ser. A, Math. Phys. Sci.19582461246326332942050080.4140210.1098/rspa.1958.0141
– reference: J. Vankerschaver, H. Yoshimura, J.E. Marsden, Multi-Dirac structures and Hamilton–Pontryagin principles for Lagrange–Dirac field theories. Preprint, arXiv:1008.0252 (2010).
– reference: CariñenaJ.F.GraciaX.MarmoG.MartínezE.Munõz LecandaM.C.Román-RoyN.Geometric Hamilton–Jacobi theory for nonholonomic dynamical systemsInt. J. Geom. Methods Mod. Phys.20107343145426467740572344510.1142/S0219887810004385
– reference: AbsilP.-A.MahonyR.SepulchreR.Optimization Algorithms on Matrix Manifolds2008PrincetonPrinceton University Press1147.65043
– reference: BatesL.SniatyckiJ.Nonholonomic reductionRep. Math. Phys.19933219911512471650798.5802610.1016/0034-4877(93)90073-N
– reference: AbrahamR.MarsdenJ.E.Foundations of Mechanics19782ReadingAddison–Wesley0393.70001
– reference: BlochA.M.CrouchP.E.Representations of Dirac structures on vector spaces and nonlinear L-C circuitsDifferential Geometry and Control Theory1997ProvidenceAmerican Mathematical Society103117
– reference: KharevychL.YangW.TongY.KansoE.MarsdenJ.E.SchröderP.DesbrunM.Geometric, variational integrators for computer animationACM/EG Symposium on Computer Animation20064351
– reference: van der SchaftA.J.Implicit Hamiltonian systems with symmetryRep. Math. Phys.199841220322116313830921.7001410.1016/S0034-4877(98)80176-6
– reference: MarsdenJ.E.RatiuT.S.Introduction to Mechanics and Symmetry1999BerlinSpringer0933.70003
– reference: DiracP.A.M.Generalized Hamiltonian dynamicsCan. J. Math.19502129148437240036.1410410.4153/CJM-1950-012-1
– reference: ArnoldV.I.Mathematical Methods of Classical Mechanics1989BerlinSpringer
– reference: van der SchaftA.J.Port-Hamiltonian systems: an introductory surveyProceedings of the International Congress of Mathematicians200613391365
– reference: van der SchaftA.J.MaschkeB.M.On the Hamiltonian formulation of nonholonomic mechanical systemsRep. Math. Phys.199434222523313231300817.7001010.1016/0034-4877(94)90038-8
– reference: GotayM.J.NesterJ.M.Presymplectic Lagrangian systems. I: the constraint algorithm and the equivalence theoremAnn. Inst. Henri Poincaré A19793021291425353690414.58015
– reference: GotayM.J.NesterJ.M.Presymplectic Lagrangian systems. II: the second-order equation problemAnn. Inst. Henri Poincaré A19803211135748090453.58016
– reference: CourantT.Dirac manifoldsTrans. Am. Math. Soc.199031926316619981240850.7021210.2307/2001258
– reference: D. Iglesias-Ponte, M. de León, D.M. de Diego, Towards a Hamilton–Jacobi theory for nonholonomic mechanical systems. Journal of Physics A: Mathematical and Theoretical 41(1) (2008).
– reference: N. Bou-Rabee, J.E. Marsden, Hamilton–Pontryagin integrators on Lie groups part I: introduction and structure-preserving properties, Found. Comput. Math. (2008).
– reference: WeinsteinA.Lagrangian mechanics and groupoidsFields Inst. Commun.19967207231
– reference: A. Lew, J.E. Marsden, M. Ortiz, M. West, An overview of variational integrators, in Finite Element Methods: 1970’s and Beyond (CIMNE 2003).
– reference: McLachlanR.PerlmutterM.Integrators for nonholonomic mechanical systemsJ. Nonlinear Sci.200616428332822547071104.3704310.1007/s00332-005-0698-1
– reference: M. Leok, T. Ohsawa, D. Sosa, Hamilton–Jacobi theory for degenerate Lagrangian systems with constraints (in preparation).
– reference: VaradarajanV.S.Lie Groups, Lie Algebras, and Their Representations1984New YorkSpringer0955.22500
– reference: YoshimuraH.MarsdenJ.E.Dirac structures in Lagrangian mechanics Part I: implicit Lagrangian systemsJ. Geom. Phys.200657113315622654641107.5305310.1016/j.geomphys.2006.02.009
– reference: GoldsteinH.PooleC.P.SafkoJ.L.Classical Mechanics20013ReadingAddison–Wesley
– reference: OhsawaT.FernandezO.E.BlochA.M.ZenkovD.V.Nonholonomic Hamilton–Jacobi theory via Chaplygin HamiltonizationJ. Geom. Phys.20116181263129128024710591905810.1016/j.geomphys.2011.02.015
– reference: CerveraJ.van der SchaftA.J.BañosA.On composition of Dirac structures and its implications for control by interconnectionNonlinear and Adaptive Control2003BerlinSpringer556310.1007/3-540-45802-6_5
– reference: MarsdenJ.E.WestM.Discrete mechanics and variational integratorsActa Numerica2001357514
– reference: YoshimuraH.MarsdenJ.E.Dirac structures and the Legendre transformation for implicit Lagrangian and Hamiltonian systemsLagrangian and Hamiltonian Methods for Nonlinear Control 2006200723324710.1007/978-3-540-73890-9_18
– reference: KoonW.S.MarsdenJ.E.The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systemsRep. Math. Phys.1997401216214924130929.7000910.1016/S0034-4877(97)85617-0
– reference: CortésJ.MartínezS.Non-holonomic integratorsNonlinearity20011451365139218628251067.3711610.1088/0951-7715/14/5/322
– reference: YoshimuraH.MarsdenJ.E.Dirac structures in Lagrangian mechanics Part II: variational structuresJ. Geom. Phys.200657120925022654691121.5305710.1016/j.geomphys.2006.02.012
– reference: MarsdenJ.E.PekarskyS.ShkollerS.Discrete Euler–Poincaré and Lie–Poisson equationsNonlinearity19991261647166217266700978.3704510.1088/0951-7715/12/6/314
– reference: DalsmoM.van der SchaftA.J.On representations and integrability of mathematical structures in energy-conserving physical systemsSIAM J. Control Optim.1998371549110.1137/S0363012996312039
– reference: GotayM.J.NesterJ.M.Presymplectic Hamilton and Lagrange systems, gauge transformations and the Dirac theory of constraintsGroup Theoretical Methods in Physics1979BerlinSpringer27227910.1007/3-540-09238-2_74
– reference: OhsawaT.BlochA.M.Nonholonomic Hamilton–Jacobi equation and integrabilityJ. Geom. Mech.20091446148125876070569155510.3934/jgm.2009.1.461
– reference: YoshimuraH.MarsdenJ.E.Reduction of Dirac structures and the Hamilton–Pontryagin principleRep. Math. Phys.200760338142623695391141.5308110.1016/S0034-4877(08)00004-9
– reference: TulczyjewW.M.Les sous-variétés lagrangiennes et la dynamique lagrangienneC. R. Acad. Sci. Paris19762836756784207150334.58008
– reference: LallS.WestM.Discrete variational Hamiltonian mechanicsJ. Phys. A, Math. Gen.200639195509551922207731087.4902710.1088/0305-4470/39/19/S11
– reference: LeimkuhlerB.ReichS.Simulating Hamiltonian Dynamics2004CambridgeCambridge University Press1069.65139
– reference: DiracP.A.M.Lectures on Quantum Mechanics1964New YorkBelfer Graduate School of Science, Yeshiva University
– reference: MarreroJ.C.de DiegoD. MartínMartínezE.Discrete Lagrangian and Hamiltonian mechanics on Lie groupoidsNonlinearity20061961313134822300011162.1731210.1088/0951-7715/19/6/006
– reference: CourantT.Tangent Dirac structuresJ. Phys. A, Math. Gen.199023225153516810858630715.5801310.1088/0305-4470/23/22/010
– reference: LeokM.OhsawaT.Discrete Dirac structures and implicit discrete Lagrangian and Hamiltonian systemsXVIII International Fall Workshop on Geometry and Physics2010New YorkAIP91102
– reference: de LeónM.MarreroJ.C.Martín de DiegoD.Linear almost Poisson structures and Hamilton–Jacobi equation. Applications to nonholonomic mechanicsJ. Geom. Mech.20102215919826607140582761010.3934/jgm.2010.2.159
– reference: HairerE.LubichC.WannerG.Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations2006BerlinSpringer1094.65125
– reference: BlochA.M.Nonholonomic Mechanics and Control2003BerlinSpringer1045.7000110.1007/b97376
– reference: SternA.Discrete Hamilton–Pontryagin mechanics and generating functions on Lie groupoidsJ. Symplectic Geom.201082225238267016605780490
– reference: BenettinG.CherubiniA.M.FassòF.A changing-chart symplectic algorithm for rigid bodies and other Hamiltonian systems on manifoldsSIAM J. Sci. Comput.20012341189120318855971002.6513610.1137/S1064827500381720ISSN 1064-8275
– reference: IglesiasD.MarreroJ.C.de DiegoD.M.MartínezE.Discrete nonholonomic Lagrangian systems on Lie groupoidsJ. Nonlinear Sci.200818322127624113791182.3703610.1007/s00332-007-9012-8
– reference: KünzleH.P.Degenerate Lagrangean systemsAnn. Inst. Henri Poincaré A19691143934140193.24901
– reference: YoshimuraH.MarsdenJ.E.Dirac cotangent bundle reductionJ. Geom. Mech.2009118715825113031168.7031410.3934/jgm.2009.1.87
– reference: TulczyjewW.M.Les sous-variétés lagrangiennes et la dynamique hamiltonienneC. R. Acad. Sci. Paris197628315184207140327.58007
– volume: 57
  start-page: 133
  issue: 1
  year: 2006
  ident: 9096_CR50
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2006.02.009
– volume: 32
  start-page: 99
  issue: 1
  year: 1993
  ident: 9096_CR4
  publication-title: Rep. Math. Phys.
  doi: 10.1016/0034-4877(93)90073-N
– volume-title: Classical Mechanics
  year: 2001
  ident: 9096_CR19
– volume: 7
  start-page: 207
  year: 1996
  ident: 9096_CR49
  publication-title: Fields Inst. Commun.
– volume: 12
  start-page: 1647
  issue: 6
  year: 1999
  ident: 9096_CR37
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/12/6/314
– volume: 37
  start-page: 54
  issue: 1
  year: 1998
  ident: 9096_CR14
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012996312039
– ident: 9096_CR8
  doi: 10.1007/s10208-008-9030-4
– volume: 60
  start-page: 381
  issue: 3
  year: 2007
  ident: 9096_CR52
  publication-title: Rep. Math. Phys.
  doi: 10.1016/S0034-4877(08)00004-9
– start-page: 1339
  volume-title: Proceedings of the International Congress of Mathematicians
  year: 2006
  ident: 9096_CR45
– volume: 18
  start-page: 221
  issue: 3
  year: 2008
  ident: 9096_CR24
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-007-9012-8
– volume: 1
  start-page: 87
  issue: 1
  year: 2009
  ident: 9096_CR54
  publication-title: J. Geom. Mech.
  doi: 10.3934/jgm.2009.1.87
– volume: 40
  start-page: 21
  issue: 1
  year: 1997
  ident: 9096_CR27
  publication-title: Rep. Math. Phys.
  doi: 10.1016/S0034-4877(97)85617-0
– volume: 23
  start-page: 1189
  issue: 4
  year: 2001
  ident: 9096_CR5
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827500381720
– start-page: 43
  volume-title: ACM/EG Symposium on Computer Animation
  year: 2006
  ident: 9096_CR26
– start-page: 91
  volume-title: XVIII International Fall Workshop on Geometry and Physics
  year: 2010
  ident: 9096_CR31
– volume-title: Introduction to Mechanics and Symmetry
  year: 1999
  ident: 9096_CR35
  doi: 10.1007/978-0-387-21792-5
– volume: 41
  start-page: 203
  issue: 2
  year: 1998
  ident: 9096_CR44
  publication-title: Rep. Math. Phys.
  doi: 10.1016/S0034-4877(98)80176-6
– volume-title: Foundations of Mechanics
  year: 1978
  ident: 9096_CR1
– volume: 14
  start-page: 1365
  issue: 5
  year: 2001
  ident: 9096_CR11
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/14/5/322
– volume: 2
  start-page: 159
  issue: 2
  year: 2010
  ident: 9096_CR15
  publication-title: J. Geom. Mech.
  doi: 10.3934/jgm.2010.2.159
– volume: 8
  start-page: 225
  issue: 2
  year: 2010
  ident: 9096_CR41
  publication-title: J. Symplectic Geom.
  doi: 10.4310/JSG.2010.v8.n2.a5
– volume: 283
  start-page: 675
  year: 1976
  ident: 9096_CR43
  publication-title: C. R. Acad. Sci. Paris
– ident: 9096_CR32
– start-page: 55
  volume-title: Nonlinear and Adaptive Control
  year: 2003
  ident: 9096_CR10
  doi: 10.1007/3-540-45802-6_5
– volume: 319
  start-page: 631
  issue: 2
  year: 1990
  ident: 9096_CR12
  publication-title: Trans. Am. Math. Soc.
  doi: 10.2307/2001258
– start-page: 357
  volume-title: Acta Numerica
  year: 2001
  ident: 9096_CR36
– volume-title: Lie Groups, Lie Algebras, and Their Representations
  year: 1984
  ident: 9096_CR48
  doi: 10.1007/978-1-4612-1126-6
– volume: 34
  start-page: 225
  issue: 2
  year: 1994
  ident: 9096_CR46
  publication-title: Rep. Math. Phys.
  doi: 10.1016/0034-4877(94)90038-8
– ident: 9096_CR47
– volume-title: Nonholonomic Mechanics and Control
  year: 2003
  ident: 9096_CR6
  doi: 10.1007/b97376
– volume: 2
  start-page: 129
  year: 1950
  ident: 9096_CR16
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1950-012-1
– volume: 39
  start-page: 5509
  issue: 19
  year: 2006
  ident: 9096_CR29
  publication-title: J. Phys. A, Math. Gen.
  doi: 10.1088/0305-4470/39/19/S11
– volume-title: Optimization Algorithms on Matrix Manifolds
  year: 2008
  ident: 9096_CR2
  doi: 10.1515/9781400830244
– volume: 19
  start-page: 1313
  issue: 6
  year: 2006
  ident: 9096_CR34
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/19/6/006
– volume: 61
  start-page: 1263
  issue: 8
  year: 2011
  ident: 9096_CR40
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2011.02.015
– volume: 57
  start-page: 209
  issue: 1
  year: 2006
  ident: 9096_CR51
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2006.02.012
– volume: 246
  start-page: 326
  issue: 1246
  year: 1958
  ident: 9096_CR17
  publication-title: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci.
  doi: 10.1098/rspa.1958.0141
– ident: 9096_CR33
– start-page: 233
  volume-title: Lagrangian and Hamiltonian Methods for Nonlinear Control 2006
  year: 2007
  ident: 9096_CR53
  doi: 10.1007/978-3-540-73890-9_18
– volume-title: Lectures on Quantum Mechanics
  year: 1964
  ident: 9096_CR18
– volume: 1
  start-page: 461
  issue: 4
  year: 2009
  ident: 9096_CR39
  publication-title: J. Geom. Mech.
  doi: 10.3934/jgm.2009.1.461
– start-page: 103
  volume-title: Differential Geometry and Control Theory
  year: 1997
  ident: 9096_CR7
– volume: 23
  start-page: 5153
  issue: 22
  year: 1990
  ident: 9096_CR13
  publication-title: J. Phys. A, Math. Gen.
  doi: 10.1088/0305-4470/23/22/010
– volume-title: Simulating Hamiltonian Dynamics
  year: 2004
  ident: 9096_CR30
– volume: 283
  start-page: 15
  year: 1976
  ident: 9096_CR42
  publication-title: C. R. Acad. Sci. Paris
– volume: 30
  start-page: 129
  issue: 2
  year: 1979
  ident: 9096_CR21
  publication-title: Ann. Inst. Henri Poincaré A
– volume: 32
  start-page: 1
  issue: 1
  year: 1980
  ident: 9096_CR22
  publication-title: Ann. Inst. Henri Poincaré A
– ident: 9096_CR25
  doi: 10.1088/1751-8113/41/1/015205
– start-page: 272
  volume-title: Group Theoretical Methods in Physics
  year: 1979
  ident: 9096_CR20
  doi: 10.1007/3-540-09238-2_74
– volume-title: Mathematical Methods of Classical Mechanics
  year: 1989
  ident: 9096_CR3
  doi: 10.1007/978-1-4757-2063-1
– volume: 7
  start-page: 431
  issue: 3
  year: 2010
  ident: 9096_CR9
  publication-title: Int. J. Geom. Methods Mod. Phys.
  doi: 10.1142/S0219887810004385
– volume: 16
  start-page: 283
  issue: 4
  year: 2006
  ident: 9096_CR38
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-005-0698-1
– volume-title: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
  year: 2006
  ident: 9096_CR23
– volume: 11
  start-page: 393
  issue: 4
  year: 1969
  ident: 9096_CR28
  publication-title: Ann. Inst. Henri Poincaré A
SSID ssj0015914
ssib031263371
Score 2.101439
Snippet In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 529
SubjectTerms Applications of Mathematics
Categories
Computational mathematics
Computer Science
Derivation
Economics
Foundations
Geometry
Integrators
Lagrange multiplier
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Variational principles
Title Variational and Geometric Structures of Discrete Dirac Mechanics
URI https://link.springer.com/article/10.1007/s10208-011-9096-2
https://www.proquest.com/docview/896402030
https://www.proquest.com/docview/963859429
Volume 11
WOSCitedRecordID wos000300097200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1615-3383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015914
  issn: 1615-3375
  databaseCode: RSV
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEB9EBZ8H9fmB66rk4EkptE3TJjfFz4OK6HPxVtJkAoJ2xbr-_U5qs-t7qOC7lNCkaZlkMr_pfAHskFBIMXGW-BtdlKXU0oIujqM1hRVYtV6-g_Pi8lLe3amrLo67Cd7uwSTZntQfgt3S1vHKuxSoPKJzd4aknfT1Gq5vBmPTgVBtQm-PZCLOCxFMmZ9N8bcwmiDMf4yiraw5Wfyvr1yChQ5asoP3vfAbprBehsUOZrKOiRu6FSo5hHvLMBfik6l7_mKcybVZgf0BKdPdD0Oma8tOcfjoq3AZdtOmnh2Rvs6Gjh3d0wFECJwaz9qwC_QhxTTFKtyeHP85PIu6qguRESJ9iRJUXAuJVeYwTWziSIHLCUTxwshcx05YoUnqE3CyNsbcSJ0roY3kTiu0ouBrMF0Pa1wH5lKTV3nmeCarLM6yCoUptCME5BKJTvUgDuQvTZeS3FfGeCgnyZQ9OUsiZ-nJWaY92B0_8vSej-O7wf2wpmXHmk0pVe51Zh73gI17iae8oUTXOBw1pT-UhCJJ3YO9sMqTCb583caPRvfhVxr8CZNNmKY1wy2YNa8v983zdrun3wAA2e-i
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hQKIcCoVWbGmpD5yKIiVxnMQ3EC0PsbtCQFfcLMceSyuVLCLA72cc4t2CKBJcIit2nGjs8XyTeQFsk1BIMXGW-BtdlKXU0oIujqM1hRVYtV6-o34xHJaXl_K0i-Nugrd7MEm2J_U_wW5p63jlXQpkHtG5u5CRwPIJ88_OR1PTgZBtQm-PZCLOCxFMmS9N8VQYzRDmM6NoK2sOVt71lavwsYOWbO9xL3yCOazXYKWDmaxj4oZuhUoO4d4aLIX4ZOpeHkwzuTbrsDsiZbr7Ych0bdkhTq58FS7DztvUs3ekr7OJY7_GdAARAqfGjTZsgD6kmKb4DH8Ofl_sH0Vd1YXICJHeRglKrkWJVeYwTWziSIHLCUTxwpS5jp2wQpPUJ-BkbYy5KXUuhTYld1qiFQX_AvP1pMYNYC41eZVnjmdllcVZVqEwhXaEgFxSopM9iAP5lelSkvvKGH_VLJmyJ6cicipPTpX24Of0kevHfByvDd4Ma6o61mxUKXOvM_O4B2zaSzzlDSW6xsldo_yhJCRJ6h7shFWeTfDf13190-gfsHR0Meir_vHwZBM-pMG3MPkG87R--B0Wzf3tuLnZavf3A0RL8oY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8hQBs8wNZtonxsftjTpogkjpP4DQSUTaNVpW4Vb5ZjnyWkLUWk7O_fOY3bbWKTEC-RFTtO5PP5fpf7AnhPQiHFxFnib3RRllJLC7o4jtYUVmDVevlOr4rRqLy-luOuzmkTvN2DSXIR0-CzNNXz41vrjn8LfEtbJyzvXiDziM7gjcz70Xt1fTJdmhGEbJN7e1QTcV6IYNZ8aIo_BdMKbf5lIG3lzmD3yV_8AnY6yMlOF3vkJaxh3YPdDn6yjrkbuhUqPIR7PXge4pape3u4zPDavIKTKSnZ3Y9EpmvLLnH2w1fnMmzSpqS9Jz2ezRw7v6GDiZA5Ne60YUP0ocY0xWv4Nrj4evYp6qoxREaIdB4lKLkWJVaZwzSxiSPFLidwxQtT5jp2wgpNaIAAlbUx5qbUuRTalNxpiVYU_A2s17Ma94C51ORVnjmelVUWZ1mFwhTaETJySYlO9iEOpFCmS1XuK2Z8V6sky345FS2n8sup0j58WD5yu8jT8b_BB4G-qmPZRpUy97o0j_vAlr3Ea96Aomuc3TfKH1ZCkgTvw8dA8dUE_3zd_qNGv4Nn4_OBuvo8-nIAW2lwOUwOYZ3Ih0ewaX7Ob5q7t-1W_wW74Ptq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+and+Geometric+Structures+of+Discrete+Dirac+Mechanics&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Leok%2C+Melvin&rft.au=Ohsawa%2C+Tomoki&rft.date=2011-10-01&rft.pub=Springer-Verlag&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=11&rft.issue=5&rft.spage=529&rft.epage=562&rft_id=info:doi/10.1007%2Fs10208-011-9096-2&rft.externalDocID=10_1007_s10208_011_9096_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon