The consequences of pain in early life: injury-induced plasticity in developing pain pathways
Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who ha...
Gespeichert in:
| Veröffentlicht in: | The European journal of neuroscience Jg. 39; H. 3; S. 344 - 352 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
France
Blackwell Publishing Ltd
01.02.2014
BlackWell Publishing Ltd |
| Schlagworte: | |
| ISSN: | 0953-816X, 1460-9568, 1460-9568 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who have experienced neonatal injury display increased pain and injury‐induced hyperalgesia in the affected region but mild injury can also induce widespread baseline hyposensitivity across the rest of the body surface, suggesting the involvement of several underlying mechanisms, depending upon the type of early life experience. Peripheral nerve sprouting and dorsal horn central sensitization, disinhibition and neuroimmune priming are discussed in relation to the increased pain and hyperalgesia, while altered descending pain control systems driven, in part, by changes in the stress/HPA axis are discussed in relation to the widespread hypoalgesia. Finally, it is proposed that the endocannabinoid system deserves further attention in the search for mechanisms underlying injury‐induced changes in pain processing in infants and children.
Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. |
|---|---|
| AbstractList | Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who have experienced neonatal injury display increased pain and injury‐induced hyperalgesia in the affected region but mild injury can also induce widespread baseline hyposensitivity across the rest of the body surface, suggesting the involvement of several underlying mechanisms, depending upon the type of early life experience. Peripheral nerve sprouting and dorsal horn central sensitization, disinhibition and neuroimmune priming are discussed in relation to the increased pain and hyperalgesia, while altered descending pain control systems driven, in part, by changes in the stress/HPA axis are discussed in relation to the widespread hypoalgesia. Finally, it is proposed that the endocannabinoid system deserves further attention in the search for mechanisms underlying injury‐induced changes in pain processing in infants and children.
Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who have experienced neonatal injury display increased pain and injury-induced hyperalgesia in the affected region but mild injury can also induce widespread baseline hyposensitivity across the rest of the body surface, suggesting the involvement of several underlying mechanisms, depending upon the type of early life experience. Peripheral nerve sprouting and dorsal horn central sensitization, disinhibition and neuroimmune priming are discussed in relation to the increased pain and hyperalgesia, while altered descending pain control systems driven, in part, by changes in the stress/HPA axis are discussed in relation to the widespread hypoalgesia. Finally, it is proposed that the endocannabinoid system deserves further attention in the search for mechanisms underlying injury-induced changes in pain processing in infants and children. Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who have experienced neonatal injury display increased pain and injury-induced hyperalgesia in the affected region but mild injury can also induce widespread baseline hyposensitivity across the rest of the body surface, suggesting the involvement of several underlying mechanisms, depending upon the type of early life experience. Peripheral nerve sprouting and dorsal horn central sensitization, disinhibition and neuroimmune priming are discussed in relation to the increased pain and hyperalgesia, while altered descending pain control systems driven, in part, by changes in the stress/HPA axis are discussed in relation to the widespread hypoalgesia. Finally, it is proposed that the endocannabinoid system deserves further attention in the search for mechanisms underlying injury-induced changes in pain processing in infants and children. Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who have experienced neonatal injury display increased pain and injury-induced hyperalgesia in the affected region but mild injury can also induce widespread baseline hyposensitivity across the rest of the body surface, suggesting the involvement of several underlying mechanisms, depending upon the type of early life experience. Peripheral nerve sprouting and dorsal horn central sensitization, disinhibition and neuroimmune priming are discussed in relation to the increased pain and hyperalgesia, while altered descending pain control systems driven, in part, by changes in the stress/HPA axis are discussed in relation to the widespread hypoalgesia. Finally, it is proposed that the endocannabinoid system deserves further attention in the search for mechanisms underlying injury-induced changes in pain processing in infants and children.Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who have experienced neonatal injury display increased pain and injury-induced hyperalgesia in the affected region but mild injury can also induce widespread baseline hyposensitivity across the rest of the body surface, suggesting the involvement of several underlying mechanisms, depending upon the type of early life experience. Peripheral nerve sprouting and dorsal horn central sensitization, disinhibition and neuroimmune priming are discussed in relation to the increased pain and hyperalgesia, while altered descending pain control systems driven, in part, by changes in the stress/HPA axis are discussed in relation to the widespread hypoalgesia. Finally, it is proposed that the endocannabinoid system deserves further attention in the search for mechanisms underlying injury-induced changes in pain processing in infants and children. |
| Author | Schwaller, Fred Fitzgerald, Maria |
| Author_xml | – sequence: 1 givenname: Fred surname: Schwaller fullname: Schwaller, Fred organization: Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK – sequence: 2 givenname: Maria surname: Fitzgerald fullname: Fitzgerald, Maria email: : Dr M. Fitzgerald, as above., m.fitzgerald@ucl.ac.uk organization: Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24494675$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkV9rFDEUxYNU7Lb64BeQedSHaZPJvxkfBCl1rawVpKIvEjLJnW7WbDJOZlrn23fW3S0qCoZAuOR3Dodzj9BBiAEQekrwCZnOKazCCSkYYQ_QjDCB84qL8gDNcMVpXhLx5RAdpbTCGJeC8UfosGCsYkLyGfp6tYTMxJDg-wDBQMpik7XahWy6oDs_Zt418HIaV0M35i7YwYDNWq9T74zrxw1o4QZ8bF243mpb3S9v9Zgeo4eN9gme7N5j9OnN-dXZ23zxYX5x9nqRG84LljNoqCVEsrpg1lDNK2q5lDUBzKxgGmPT8LKwQlBrJDHGatpgVpc11VDigh6jV1vfdqjXYA2EvtNetZ1b625UUTv1-09wS3UdbxQrBKuomAye7wy6OBWRerV2yYD3OkAckiIcc0q5kP-BsqoiRSHZBn32a6z7PPv6J-B0C5guptRBo6ZGde_iJqXzimC1WbCaFqx-LnhSvPhDsTf9G7tzv3Uexn-D6vzd5V6RbxUu9fDjXqG7b0pIKrn6fDlXHzmW8_cLoQi9A-YIxRs |
| CitedBy_id | crossref_primary_10_1038_s41372_018_0193_9 crossref_primary_10_1016_j_neulet_2020_135350 crossref_primary_10_1016_j_expneurol_2015_07_017 crossref_primary_10_1016_j_pmn_2021_05_008 crossref_primary_10_1134_S0022093015040067 crossref_primary_10_1002_pbc_30315 crossref_primary_10_1016_j_bbi_2023_07_002 crossref_primary_10_1111_bcp_15834 crossref_primary_10_3390_diagnostics15070839 crossref_primary_10_1007_s11055_018_0549_9 crossref_primary_10_1007_s13193_022_01571_1 crossref_primary_10_1016_j_pmn_2021_05_003 crossref_primary_10_1111_ejn_12483 crossref_primary_10_1016_j_pedn_2022_02_004 crossref_primary_10_1111_ejn_13294 crossref_primary_10_1016_j_bja_2018_06_017 crossref_primary_10_1523_JNEUROSCI_0416_22_2022 crossref_primary_10_2147_JPR_S248042 crossref_primary_10_1016_j_jpain_2018_07_007 crossref_primary_10_1093_bja_aex238 crossref_primary_10_1155_2016_8458696 crossref_primary_10_3389_fped_2023_1148946 crossref_primary_10_1097_j_pain_0000000000000784 crossref_primary_10_1016_j_brainres_2022_147927 crossref_primary_10_1371_journal_pone_0246213 crossref_primary_10_1111_apa_13936 crossref_primary_10_1371_journal_pone_0290871 crossref_primary_10_1038_sdata_2018_248 crossref_primary_10_1007_s00482_018_0301_y crossref_primary_10_1002_ejp_1656 crossref_primary_10_1016_j_jpain_2017_07_003 crossref_primary_10_1007_s11055_017_0493_0 crossref_primary_10_1080_03004430_2022_2117312 crossref_primary_10_1111_pan_13950 crossref_primary_10_1002_dneu_22583 crossref_primary_10_1016_j_pmn_2020_07_006 crossref_primary_10_1111_nicc_12636 crossref_primary_10_3389_fnins_2020_00722 crossref_primary_10_1002_jnr_23802 crossref_primary_10_1016_j_ijdevneu_2016_05_008 crossref_primary_10_1186_s13578_023_01106_3 crossref_primary_10_1113_EP085714 crossref_primary_10_1111_ejn_16170 crossref_primary_10_1134_S0022093022020053 crossref_primary_10_1155_2017_9253710 crossref_primary_10_1016_j_bbr_2020_112690 crossref_primary_10_1002_dev_22486 crossref_primary_10_1007_s00210_021_02086_2 crossref_primary_10_1016_j_aci_2019_05_003 crossref_primary_10_1177_13674935231195133 crossref_primary_10_1002_ejp_855 crossref_primary_10_1097_PR9_0000000000000684 crossref_primary_10_55275_JPOSNA_2022_0074 crossref_primary_10_1016_j_pmn_2021_09_007 crossref_primary_10_1016_j_neubiorev_2020_12_016 crossref_primary_10_1016_j_physbeh_2017_06_015 crossref_primary_10_1097_j_pain_0000000000001375 crossref_primary_10_1097_j_pain_0000000000003555 crossref_primary_10_1002_ejp_1233 crossref_primary_10_1038_s41390_024_03245_w crossref_primary_10_1177_02601060251336823 crossref_primary_10_1016_j_pmn_2021_11_012 crossref_primary_10_1097_ALN_0000000000001017 crossref_primary_10_3389_fnhum_2019_00262 crossref_primary_10_3389_fped_2020_00030 crossref_primary_10_3389_fped_2021_568755 crossref_primary_10_1007_s00482_015_0036_y crossref_primary_10_1016_j_bbi_2023_04_001 crossref_primary_10_3389_fphys_2021_660792 crossref_primary_10_1002_jdn_10185 crossref_primary_10_1016_j_physbeh_2024_114695 crossref_primary_10_3389_fnbeh_2021_691578 crossref_primary_10_3389_fanim_2021_759522 crossref_primary_10_1016_j_cobeha_2019_01_010 crossref_primary_10_1097_FTD_0000000000000763 crossref_primary_10_1038_s41372_020_00852_3 crossref_primary_10_1002_imhj_21636 crossref_primary_10_1111_cns_12490 crossref_primary_10_1002_ejp_1487 crossref_primary_10_1097_j_pain_0000000000002459 crossref_primary_10_1177_09732179231172280 crossref_primary_10_3390_children7070077 crossref_primary_10_1016_j_neuroscience_2016_07_026 crossref_primary_10_1016_j_expneurol_2016_07_022 crossref_primary_10_1016_j_pharmthera_2024_108687 crossref_primary_10_1172_JCI191931 crossref_primary_10_1002_dev_21777 crossref_primary_10_1002_dneu_22898 crossref_primary_10_3389_fnbeh_2017_00011 crossref_primary_10_3166_dea_2022_0266 crossref_primary_10_1093_pm_pnv059 crossref_primary_10_1016_j_neuint_2020_104686 crossref_primary_10_1007_s00482_016_0107_8 crossref_primary_10_1111_jsm_12703 crossref_primary_10_1002_jnr_24811 crossref_primary_10_1016_j_neulet_2018_11_045 crossref_primary_10_1038_s41390_021_01472_z crossref_primary_10_1111_ejn_15153 crossref_primary_10_1016_j_pedn_2020_11_007 crossref_primary_10_1016_j_physbeh_2019_03_014 crossref_primary_10_1038_s41467_022_31505_y crossref_primary_10_1038_s41598_017_05404_y crossref_primary_10_1097_JPN_0000000000000267 crossref_primary_10_1007_s00103_016_2421_9 crossref_primary_10_1111_ijn_12695 crossref_primary_10_1016_j_psyneuen_2018_07_029 crossref_primary_10_1097_j_pain_0000000000003051 crossref_primary_10_1523_JNEUROSCI_0867_17_2017 crossref_primary_10_1016_j_jcms_2019_10_002 crossref_primary_10_1016_j_cophys_2019_06_002 crossref_primary_10_1111_pan_14042 crossref_primary_10_1016_j_pmn_2024_10_001 crossref_primary_10_1002_dneu_22789 crossref_primary_10_1016_j_jpain_2018_08_007 crossref_primary_10_1038_s41390_019_0420_x crossref_primary_10_1097_ALN_0000000000000658 crossref_primary_10_1097_ALN_0000000000000659 crossref_primary_10_1016_j_expneurol_2015_06_020 crossref_primary_10_2196_13552 crossref_primary_10_1016_j_cobeha_2015_11_015 crossref_primary_10_1371_journal_pone_0301594 crossref_primary_10_3390_medicina54060094 crossref_primary_10_1007_s00011_021_01450_5 crossref_primary_10_1016_j_cub_2017_10_063 crossref_primary_10_1007_s11055_016_0258_1 crossref_primary_10_3389_fneur_2016_00180 crossref_primary_10_1080_09540261_2017_1320982 crossref_primary_10_1016_j_neulet_2024_138090 crossref_primary_10_1016_j_ijnurstu_2025_105031 crossref_primary_10_1038_s41390_021_01638_9 crossref_primary_10_1007_s11042_023_15403_z crossref_primary_10_1016_j_neuroscience_2017_01_021 crossref_primary_10_1002_dev_21632 crossref_primary_10_1016_j_neuroscience_2017_06_044 crossref_primary_10_17816_MAJ164243_244 crossref_primary_10_1016_j_pedn_2019_04_015 crossref_primary_10_3389_frvir_2020_602299 crossref_primary_10_1016_j_neulet_2021_136382 crossref_primary_10_1113_JP283994 crossref_primary_10_1177_0020764018795211 crossref_primary_10_1016_j_pmn_2022_03_012 crossref_primary_10_2147_RRU_S444167 crossref_primary_10_1016_j_neuroscience_2024_08_028 crossref_primary_10_1186_s12969_019_0360_3 crossref_primary_10_1002_brb3_3309 crossref_primary_10_1016_j_neuroscience_2016_05_001 crossref_primary_10_1111_jne_12912 crossref_primary_10_1007_s00431_019_03475_9 crossref_primary_10_1016_j_neuroscience_2016_05_007 crossref_primary_10_1017_S1047951122003559 crossref_primary_10_1111_jep_13950 crossref_primary_10_1007_s10517_016_3502_3 crossref_primary_10_1038_s41390_020_01353_x crossref_primary_10_1155_2020_7125060 crossref_primary_10_1016_j_jpain_2022_08_005 crossref_primary_10_1097_j_pain_0000000000001327 crossref_primary_10_1111_nicc_12811 crossref_primary_10_1016_j_earlhumdev_2024_106014 crossref_primary_10_1002_ejp_1319 crossref_primary_10_1097_PR9_0000000000001324 crossref_primary_10_1371_journal_pone_0233711 crossref_primary_10_3390_children3030016 crossref_primary_10_1016_j_earlhumdev_2019_104840 crossref_primary_10_1016_j_siny_2019_05_004 crossref_primary_10_1038_srep39159 crossref_primary_10_3389_fnins_2022_988096 crossref_primary_10_1016_j_pmn_2022_01_005 crossref_primary_10_1097_j_pain_0000000000001201 crossref_primary_10_1242_jeb_218008 crossref_primary_10_1097_AJP_0000000000000707 crossref_primary_10_1097_j_pain_0000000000001840 crossref_primary_10_1016_j_jpain_2025_105454 crossref_primary_10_1242_dmm_052062 crossref_primary_10_1016_j_ynpai_2018_01_001 crossref_primary_10_1016_j_ijdevneu_2019_05_001 crossref_primary_10_3389_fpain_2024_1396992 crossref_primary_10_1177_09732179221136963 crossref_primary_10_1002_pne2_12033 crossref_primary_10_1007_s40368_019_00438_4 crossref_primary_10_1007_s40140_016_0177_2 |
| Cites_doi | 10.1016/j.jchemneu.2010.01.004 10.1016/j.pain.2006.09.018 10.1016/j.jpain.2009.07.010 10.1093/med/9780199642656.003.0003 10.1016/j.neuroscience.2004.11.039 10.1016/S0306-4522(02)00129-X 10.1016/j.pain.2009.08.017 10.1016/0306-4522(84)90107-6 10.1097/AJP.0b013e3181e5bb00 10.1016/j.brainresrev.2007.08.005 10.1016/j.pain.2005.01.014 10.1016/j.coph.2011.10.012 10.1016/j.ejpain.2008.03.004 10.1111/ejn.12341 10.1159/000351121 10.1097/AJP.0b013e3181ed1058 10.1113/jphysiol.2003.043661 10.1054/jpai.2001.17697 10.1016/j.pain.2007.08.010 10.1016/j.ejpain.2009.05.005 10.1016/S0304-3959(03)00201-X 10.1152/jn.00520.2009 10.1097/ALN.0b013e3181870a32 10.1159/000126464 10.1016/j.pain.2008.11.008 10.1016/j.bbr.2008.03.031 10.1016/j.pain.2008.10.012 10.1016/j.cub.2011.08.010 10.1016/j.brainres.2010.06.042 10.1016/j.pain.2012.02.007 10.1016/j.pneurobio.2009.04.003 10.1016/j.pain.2011.07.021 10.1073/pnas.1118960109 10.1016/j.neulet.2010.12.050 10.1016/j.jpain.2006.01.450 10.1016/j.pain.2004.11.013 10.1146/annurev.neuro.24.1.677 10.1016/j.pain.2010.08.029 10.1016/j.jpain.2009.04.005 10.1002/syn.21640 10.1097/01.anes.0000267604.40258.d1 10.1186/1744-8069-7-51 10.1016/j.pain.2005.09.022 10.1017/S1740925X12000087 10.1016/j.psyneuen.2009.05.010 10.2174/187152709789824660 10.3389/neuro.08.031.2009 10.1002/cne.903580403 10.1152/ajpgi.00240.2001 10.1007/s00213-010-2009-2 10.1186/1744-8069-8-30 10.3389/fnins.2013.00109 10.1016/j.bbi.2005.08.004 10.1053/j.gastro.2010.03.003 10.1016/j.brainresbull.2010.07.007 10.1016/0169-328X(93)90189-V 10.1371/journal.pone.0076470 10.1038/sj.bjp.0707440 10.1093/bja/83.4.662 10.1002/dev.20014 10.1016/j.neulet.2011.06.047 10.1016/j.pain.2012.07.012 10.1016/j.pain.2009.05.020 10.1038/nchembio.552 10.1016/j.pediatrneurol.2012.10.016 10.1016/S0031-9384(98)00338-2 10.1080/10298420290030569 10.1053/gast.2000.19576 10.1371/journal.pone.0034316 10.1016/S0006-8993(03)02358-8 10.1016/j.pain.2011.11.011 10.1016/j.ejpain.2010.03.008 10.1186/1471-2202-13-87 10.1186/1744-8069-1-27 10.1016/j.pain.2009.03.022 10.1016/j.biopsych.2013.04.006 10.1093/brain/awr288 10.1016/j.brainresrev.2008.12.009 10.1111/nyas.12033 10.1038/nn1992 10.1523/JNEUROSCI.1551-12.2012 10.1002/ana.22267 10.1186/1744-9081-4-28 10.1002/dneu.22047 10.1016/j.pain.2010.09.030 10.1016/j.pain.2005.03.016 10.1126/science.277.5332.1659 10.1038/nrn2639 10.1016/j.ejpain.2005.12.005 10.1002/dev.20510 10.1523/JNEUROSCI.4569-09.2009 10.1523/JNEUROSCI.4106-09.2009 10.1016/j.ejpain.2006.12.009 10.1016/j.pain.2004.04.006 10.1113/jphysiol.2008.168013 10.1016/0165-0173(86)90010-X 10.1016/j.jpain.2005.07.009 10.1016/j.jpain.2007.07.001 10.1111/j.1460-9568.2005.04452.x 10.1016/S0031-9384(01)00432-2 10.1016/j.neuroimage.2010.04.253 10.1016/j.pain.2013.03.030 10.1126/science.3340858 10.1016/j.neuroscience.2012.10.057 10.1111/j.1365-2826.2012.02306.x 10.1016/j.psyneuen.2012.01.005 10.1097/ALN.0b013e318190bc16 10.1111/j.1749-6632.1994.tb39245.x |
| ContentType | Journal Article |
| Copyright | 2014 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. Copyright © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2014 |
| Copyright_xml | – notice: 2014 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: Copyright © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2014 |
| DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
| DOI | 10.1111/ejn.12414 |
| DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
| DatabaseTitleList | Neurosciences Abstracts CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1460-9568 |
| EndPage | 352 |
| ExternalDocumentID | PMC4264936 24494675 10_1111_ejn_12414 EJN12414 ark_67375_WNG_R507GML6_1 |
| Genre | article Journal Article Review |
| GrantInformation_xml | – fundername: Medical Research Council grantid: G0901269 – fundername: Medical Research Council grantid: MR/M006468/1 |
| GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT 24P AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RIG WRC WUP AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
| ID | FETCH-LOGICAL-c5524-4ef3d1174b24dc3a593d577b1e04d64a00cf582d663dc71ccda3f04b8b3ae8023 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 194 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330558300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0953-816X 1460-9568 |
| IngestDate | Tue Nov 04 01:58:55 EST 2025 Sun Nov 09 12:20:25 EST 2025 Thu Oct 02 06:47:27 EDT 2025 Mon Jul 21 05:53:10 EDT 2025 Sat Nov 29 06:09:02 EST 2025 Tue Nov 18 21:58:04 EST 2025 Wed Jan 22 16:30:57 EST 2025 Sun Sep 21 06:19:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | experience dependent-plasticity cannabinoids hyperalgesia descending pain control newborn infant |
| Language | English |
| License | Attribution 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5524-4ef3d1174b24dc3a593d577b1e04d64a00cf582d663dc71ccda3f04b8b3ae8023 |
| Notes | istex:941DC0F6B03464C902DF9986780C71F64385D5B4 ark:/67375/WNG-R507GML6-1 ArticleID:EJN12414 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.12414 |
| PMID | 24494675 |
| PQID | 1499122746 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4264936 proquest_miscellaneous_1505335676 proquest_miscellaneous_1499122746 pubmed_primary_24494675 crossref_citationtrail_10_1111_ejn_12414 crossref_primary_10_1111_ejn_12414 wiley_primary_10_1111_ejn_12414_EJN12414 istex_primary_ark_67375_WNG_R507GML6_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-02 February 2014 2014-02-00 2014-Feb 20140201 |
| PublicationDateYYYYMMDD | 2014-02-01 |
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-02 |
| PublicationDecade | 2010 |
| PublicationPlace | France |
| PublicationPlace_xml | – name: France – name: Oxford, UK |
| PublicationTitle | The European journal of neuroscience |
| PublicationTitleAlternate | Eur J Neurosci |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd BlackWell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: BlackWell Publishing Ltd |
| References | Huang, E.J. & Reichardt, L.F. (2001) Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci., 24, 677-736. Howard, R.F., Walker, S.M., Michael Mota, P. & Fitzgerald, M. (2005) The ontogeny of neuropathic pain: postnatal onset of mechanical allodynia in rat spared nerve injury (SNI) and chronic constriction injury (CCI) models. Pain, 115, 382-389. Alvarez, P., Green, P.G. & Levine, J.D. (2013) Stress in the adult rat exacerbates muscle pain induced by early-life stress. Biol. Psychiat., 74, 688-695. Schmelzle-Lubiecki, B.M., Campbell, K.A.A., Howard, R.H., Franck, L. & Fitzgerald, M. (2007) Long-term consequences of early infant injury and trauma upon somatosensory processing. Eur. J. Pain Lond. Engl., 11, 799-809. Staud, R., Nagel, S., Robinson, M.E. & Price, D.D. (2009) Enhanced central pain processing of fibromyalgia patients is maintained by muscle afferent input: a randomized, double-blind, placebo-controlled study. Pain, 145, 96-104. Koch, S. & Fitzgerald, M. (2013) Activity dependent development of tactile and nociceptive spinal cord circuits. Ann. NY Acad. Sci., 1279, 97-102. Woolf, C.J. (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain, 152, S2-S15. Hathway, G.J., Vega-Avelaira, D. & Fitzgerald, M. (2012) A critical period in the supraspinal control of pain: opioid-dependent changes in brainstem rostroventral medulla function in preadolescence. Pain, 153, 775-783. Lupien, S.J., McEwen, B.S., Gunnar, M.R. & Heim, C. (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci., 10, 434-445. Long, L.E., Lind, J., Webster, M. & Weickert, C.S. (2012) Developmental trajectory of the endocannabinoid system in human dorsolateral prefrontal cortex. BMC Neurosci., 13, 87. Buwembo, A., Long, H. & Walker, C.-D. (2012) Participation of endocannabinoids in rapid suppression of stress responses by glucocorticoids in neonates. Neuroscience, 249, 154-161. Al-Chaer, E.D., Kawasaki, M. & Pasricha, P.J. (2000) A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology, 119, 1276-1285. Li, J., Blankenship, M.L. & Baccei, M.L. (2013) Deficits in glycinergic inhibition within adult spinal nociceptive circuits after neonatal tissue damage. Pain, 154, 1129-1139. Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, D., Plotsky, P.M. & Meaney, M.J. (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659-1662. Hohmeister, J., Demirakça, S., Zohsel, K., Flor, H. & Hermann, C. (2009) Responses to pain in school-aged children with experience in a neonatal intensive care unit: cognitive aspects and maternal influences. Eur. J. Pain, 13, 94-101. Grunau, R.E., Tu, M.T., Whitfield, M.F., Oberlander, T.F., Weinberg, J., Yu, W., Thiessen, P., Gosse, G. & Scheifele, D. (2010) Cortisol, behavior, and heart rate reactivity to immunization pain at 4 months corrected age in infants born very preterm. Clin. J. Pain, 26, 698-704. Reynolds, M.L. & Fitzgerald, M. (1995) Long-term sensory hyperinnervation following neonatal skin wounds. J. Comp. Neurol., 358, 487-498. Spencer, S.J., Boissé, L., Mouihate, A. & Pittman, Q.J. (2006) Long term alterations in neuroimmune responses of female rats after neonatal exposure to lipopolysaccharide. Brain Behav. Immun., 20, 325-330. Walker, A.K., Hawkins, G., Sominsky, L. & Hodgson, D.M. (2012) Transgenerational transmission of anxiety induced by neonatal exposure to lipopolysaccharide: implications for male and female germ lines. Psychoneuroendocrino., 37, 1320-1335. Trang, T., Beggs, S. & Salter, M.W. (2011) Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron Glia Biol., 7, 99-108. Mohamad, O., Chen, D., Zhang, L., Hofmann, C., Wei, L. & Yu, S.P. (2011) Erythropoietin reduces neuronal cell death and hyperalgesia induced by peripheral inflammatory pain in neonatal rats. Mol. Pain, 7, 51. LaPrairie, J.L. & Murphy, A.Z. (2007) Female rats are more vulnerable to the long-term consequences of neonatal inflammatory injury. Pain, 132(Suppl 1), S124-S133. Moss, A., Alvares, D., Meredith-Middleton, J., Robinson, M., Slater, R., Hunt, S.P. & Fitzgerald, M. (2005) Ephrin-A4 inhibits sensory neurite outgrowth and is regulated by neonatal skin wounding. Eur. J. Neurosci., 22, 2413-2421. Vinall, J., Miller, S.P., Chau, V., Brummelte, S., Synnes, A.R. & Grunau, R.E. (2012) Neonatal pain in relation to postnatal growth in infants born very preterm. Pain, 153, 1374-1381. Walker, S.M., Meredith-Middleton, J., Cooke-Yarborough, C. & Fitzgerald, M. (2003) Neonatal inflammation and primary afferent terminal plasticity in the rat dorsal horn. Pain, 105, 185-195. Green, P.G., Chen, X., Alvarez, P., Ferrari, L.F. & Levine, J.D. (2011) Early-life stress produces muscle hyperalgesia and nociceptor sensitization in the adult rat. Pain, 152, 2549-2556. Koch, S.C., Tochiki, K.K., Hirschberg, S. & Fitzgerald, M. (2012) C-fiber activity-dependent maturation of glycinergic inhibition in the spinal dorsal horn of the postnatal rat. Proc. Natl. Acad. Sci. USA, 109, 12201-12206. DeBerry, J., Randich, A., Shaffer, A.D., Robbins, M.T. & Ness, T.J. (2010) Neonatal bladder inflammation produces functional changes and alters neuropeptide content in bladders of adult female rats. J. Pain Off. J. Am. Pain Soc., 11, 247-255. Anseloni, V.C.Z., He, F., Novikova, S.I., Turnbach Robbins, M., Lidow, I.A., Ennis, M. & Lidow, M.S. (2005) Alterations in stress-associated behaviors and neurochemical markers in adult rats after neonatal short-lasting local inflammatory insult. Neuroscience, 131, 635-645. Levine, S. (1994) The ontogeny of the hypothalamic-pituitary-adrenal axis. The influence of maternal factorsa. Ann. NY Acad. Sci., 746, 275-288. Chen, J., Evans, A.N., Liu, Y., Honda, M., Saavedra, J.M. & Aguilera, G. (2012) Maternal deprivation in rats is associated with corticotrophin-releasing hormone (CRH) promoter hypomethylation and enhances CRH transcriptional responses to stress in adulthood. J. Neuroendocrinol., 24, 1055-1064. Papaioannou, A., Dafni, U., Alikaridis, F., Bolaris, S. & Stylianopoulou, F. (2002) Effects of neonatal handling on basal and stress-induced monoamine levels in the male and female rat brain. Neuroscience, 114, 195-206. Beggs, S., Currie, G., Salter, M.W., Fitzgerald, M. & Walker, S.M. (2012b) Priming of adult pain responses by neonatal pain experience: maintenance by central neuroimmune activity. Brain J. Neurol., 135, 404-417. Beland, B. & Fitzgerald, M. (2001) Influence of peripheral inflammation on the postnatal maturation of primary sensory neuron phenotype in rats. J. Pain, 2, 36-45. Fabrizi, L., Slater, R., Worley, A., Meek, J., Boyd, S., Olhede, S. & Fitzgerald, M. (2011) A shift in sensory processing that enables the developing human brain to discriminate touch from pain. Curr. Biol., 21, 1552-1558. Faye, P.M., De Jonckheere, J., Logier, R., Kuissi, E., Jeanne, M., Rakza, T. & Storme, L. (2010) Newborn infant pain assessment using heart rate variability analysis. Clin. J. Pain, 26, 777-782. Moss, A., Beggs, S., Vega-Avelaira, D., Costigan, M., Hathway, G.J., Salter, M.W. & Fitzgerald, M. (2007) Spinal microglia and neuropathic pain in young rats. Pain, 128, 215-224. Boissé, L., Spencer, S.J., Mouihate, A., Vergnolle, N. & Pittman, Q.J. (2005) Neonatal immune challenge alters nociception in the adult rat. Pain, 119, 133-141. Scholz, J. & Woolf, C.J. (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat. Neurosci., 10, 1361-1368. Bhutta, A.T., Rovnaghi, C., Simpson, P.M., Gossett, J.M., Scalzo, F.M. & Anand, K.J. (2001) Interactions of inflammatory pain and morphine in infant rats: long-term behavioral effects. Physiol. Behav., 73, 51-58. Walker, S.M., Tochiki, K.K. & Fitzgerald, M. (2009c) Hindpaw incision in early life increases the hyperalgesic response to repeat surgical injury: critical period and dependence on initial afferent activity. Pain, 147, 99-106. Roizenblatt, S., Andersen, M.L., Bignotto, M., D'Almeida, V., Martins, P.J.F. & Tufik, S. (2010) Neonatal arthritis disturbs sleep and behaviour of adult rat offspring and their dams. Eur. J. Pain Lond. Engl., 14, 985-991. Negrigo, A., Medeiros, M., Guinsburg, R. & Covolan, L. (2011) Long-term gender behavioral vulnerability after nociceptive neonatal formalin stimulation in rats. Neurosci. Lett., 490, 196-199. Christianson, J.A., Bielefeldt, K., Malin, S.A. & Davis, B.M. (2010) Neonatal colon insult alters growth factor expression and TRPA1 responses in adult mice. Pain, 151, 540-549. Beggs, S., Alvares, D., Moss, A., Currie, G., Middleton, J., Salter, M.W. & Fitzgerald, M. (2012a) A role for NT-3 in the hyperinnervation of neonatally wounded skin. Pain, 153, 2133-2139. Costigan, M., Moss, A., Latremoliere, A., Johnston, C., Verma-Gandhu, M., Herbert, T.A., Barrett, L., Brenner, G.J., Vardeh, D., Woolf, C.J. & Fitzgerald, M. (2009) T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J. Neurosci. Off. J. Soc. Neurosci., 29, 14415-14422. Wollgarten-Hadamek, I., Hohmeister, J., Demirakça, S., Zohsel, K., Flor, H. & Hermann, C. (2009) Do burn injuries during infancy affect pain and sensory sensitivity in later childhood? Pain, 141, 165-172. Cornelissen, L., Fabrizi, L., Patten, D., Worley, A., Meek, J., Boyd, S., Slater, R. & Fitzgerald, M. (2013) Postnatal temporal, spatial and modality tuning of nociceptive cutaneous flexion reflexes in human infants. PLoS ONE, 8, e76470. LaPrairie, J.L. & Murphy, A.Z. (2009) Neonatal injury alters adult pain sensitivity by increasing opioid tone in the periaqueductal gray. Front. Behav. Neurosci., 3, 31. Levine, S. (2002) Regulation of the hypothalamic-pituitary-adrenal axis in the neonatal rat: the role of maternal behavior. Neur 2009; 88 2010; 11 2008; 191 2010; 14 2007; 106 2013; 67 1997; 277 2011; 53 2008; 109 2009; 110 2013; 7 2013; 8 2012; 13 2012a; 153 2012; 12 2012; 249 2003; 550 2009; 13 2010; 26 2006; 20 2009; 10 2009a; 587 2007; 8 2012; 24 2009b; 144 2009; 60 2005; 113 2010; 39 2005; 114 2005; 115 2000; 119 2004; 45 2005; 119 2002; 4 2008; 57 2012; 37 2007; 10 2007; 11 2001; 24 2003; 971 2011; 490 2012; 32 2009b; 141 2011; 7 2012; 109 1993; 57 2003; 105 2013; 73 2007; 152 2013; 74 2005; 6 2009; 102 2005; 1 2005; 131 2002; 114 2011; 15 1999; 83 2009a; 34 2008; 4 2011; 152 2005; 22 2012; 71 2012b; 135 2007; 132 1984; 13 2011; 21 2010; 151 2013; 154 1994; 746 2011; 214 2013; 1279 2010a; 52 2013; 48 2007; 128 1986; 396 2006; 7 1999; 66 1995; 358 2010b; 14 2009; 29 2010; 83 2011; 501 2004; 110 2012; 153 2002; 282 1993; 18 2010; 138 2013; 35 2010; 1349 2009; 145 2009; 8 2001; 2 2009c; 147 2009; 141 2013 2009; 3 2012; 7 2001; 73 1988; 239 2012; 8 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 Walker S.M. (e_1_2_7_94_1) 2013 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 Kwok C.H.T. (e_1_2_7_45_1) 2013 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 Wollgarten‐Hadamek I. (e_1_2_7_105_1) 2011; 15 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 Grunau R.E. (e_1_2_7_30_1) 2010; 26 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
| References_xml | – reference: Walker, A.K., Nakamura, T., Byrne, R.J., Naicker, S., Tynan, R.J., Hunter, M. & Hodgson, D.M. (2009a) Neonatal lipopolysaccharide and adult stress exposure predisposes rats to anxiety-like behaviour and blunted corticosterone responses: implications for the double-hit hypothesis. Psychoneuroendocrino., 34, 1515-1525. – reference: Leslie, A.T.F.S., Akers, K.G., Martinez-Canabal, A., Mello, L.E., Covolan, L. & Guinsburg, R. (2011) Neonatal inflammatory pain increases hippocampal neurogenesis in rat pups. Neurosci. Lett., 501, 78-82. – reference: Perez, M., Benitez, S.U., Cartarozzi, L.P., del Bel, E., Guimarães, F.S. & Oliveira, A.L.R. (2013) Neuroprotection and reduction of glial reaction by cannabidiol treatment after sciatic nerve transection in neonatal rats. Eur. J. Neurosci., doi: 10.1111/ejn.12341. [Epub ahead of print]. – reference: Lupien, S.J., McEwen, B.S., Gunnar, M.R. & Heim, C. (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci., 10, 434-445. – reference: Long, L.E., Lind, J., Webster, M. & Weickert, C.S. (2012) Developmental trajectory of the endocannabinoid system in human dorsolateral prefrontal cortex. BMC Neurosci., 13, 87. – reference: Huang, E.J. & Reichardt, L.F. (2001) Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci., 24, 677-736. – reference: Ren, K., Anseloni, V., Zou, S.-P., Wade, E., Novikova, S., Ennis, M., Traub, R., Gold, M., Dubner, R. & Lidow, M. (2004) Characterization of basal and re-inflammation-associated long-term alteration in pain responsivity following short-lasting neonatal local inflamatory insult. Pain, 110, 588-596. – reference: Anand, K.J., Coskun, V., Thrivikraman, K.V., Nemeroff, C.B. & Plotsky, P.M. (1999) Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiol. Behav., 66, 627-637. – reference: Beggs, S., Alvares, D., Moss, A., Currie, G., Middleton, J., Salter, M.W. & Fitzgerald, M. (2012a) A role for NT-3 in the hyperinnervation of neonatally wounded skin. Pain, 153, 2133-2139. – reference: Hellman, K.M. & Mason, P. (2012) Opioids disrupt pro-nociceptive modulation mediated by raphe magnus. J. Neurosci. Off. J. Soc. Neurosci., 32, 13668-13678. – reference: Li, J., Walker, S.M., Fitzgerald, M. & Baccei, M.L. (2009) Activity-dependent modulation of glutamatergic signaling in the developing rat dorsal horn by early tissue injury. J. Neurophysiol., 102, 2208-2219. – reference: Moriceau, S., Shionoya, K., Jakubs, K. & Sullivan, R.M. (2009) Early-life stress disrupts attachment learning: the role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine. J. Neurosci. Off. J. Soc. Neurosci., 29, 15745-15755. – reference: Faye, P.M., De Jonckheere, J., Logier, R., Kuissi, E., Jeanne, M., Rakza, T. & Storme, L. (2010) Newborn infant pain assessment using heart rate variability analysis. Clin. J. Pain, 26, 777-782. – reference: Knaepen, L., Patijn, J., van Kleef, M., Mulder, M., Tibboel, D. & Joosten, E.A.J. (2013) Neonatal repetitive needle pricking: plasticity of the spinal nociceptive circuit and extended postoperative pain in later life. Dev. Neurobiol., 73, 85-97. – reference: Scholz, J. & Woolf, C.J. (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat. Neurosci., 10, 1361-1368. – reference: Walker, S.M., Meredith-Middleton, J., Cooke-Yarborough, C. & Fitzgerald, M. (2003) Neonatal inflammation and primary afferent terminal plasticity in the rat dorsal horn. Pain, 105, 185-195. – reference: Trang, T., Beggs, S. & Salter, M.W. (2011) Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron Glia Biol., 7, 99-108. – reference: Christianson, J.A., Bielefeldt, K., Malin, S.A. & Davis, B.M. (2010) Neonatal colon insult alters growth factor expression and TRPA1 responses in adult mice. Pain, 151, 540-549. – reference: LaPrairie, J.L. & Murphy, A.Z. (2009) Neonatal injury alters adult pain sensitivity by increasing opioid tone in the periaqueductal gray. Front. Behav. Neurosci., 3, 31. – reference: Levine, S. (2002) Regulation of the hypothalamic-pituitary-adrenal axis in the neonatal rat: the role of maternal behavior. Neurotox. Res., 4, 557-564. – reference: Grunau, R.E., Tu, M.T., Whitfield, M.F., Oberlander, T.F., Weinberg, J., Yu, W., Thiessen, P., Gosse, G. & Scheifele, D. (2010) Cortisol, behavior, and heart rate reactivity to immunization pain at 4 months corrected age in infants born very preterm. Clin. J. Pain, 26, 698-704. – reference: Peters, J.W.B., Schouw, R., Anand, K.J.S., van Dijk, M., Duivenvoorden, H.J. & Tibboel, D. (2005) Does neonatal surgery lead to increased pain sensitivity in later childhood? Pain, 114, 444-454. – reference: Victoria, N.C., Inoue, K., Young, L.J. & Murphy, A.Z. (2013) A single neonatal injury induces life-long deficits in response to stress. Dev. Neurosci., 35, 326-327. – reference: Lin, C. & Al-Chaer, E.D. (2003) Long-term sensitization of primary afferents in adult rats exposed to neonatal colon pain. Brain Res., 971, 73-82. – reference: Weaver, S.A., Diorio, J. & Meaney, M.J. (2007) Maternal separation leads to persistent reductions in pain sensitivity in female rats. J. Pain Off. J. Am. Pain Soc., 8, 962-969. – reference: Moss, A., Alvares, D., Meredith-Middleton, J., Robinson, M., Slater, R., Hunt, S.P. & Fitzgerald, M. (2005) Ephrin-A4 inhibits sensory neurite outgrowth and is regulated by neonatal skin wounding. Eur. J. Neurosci., 22, 2413-2421. – reference: Al-Chaer, E.D., Kawasaki, M. & Pasricha, P.J. (2000) A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology, 119, 1276-1285. – reference: Wang, J., Gu, C. & Al-Chaer, E.D. (2008) Altered behavior and digestive outcomes in adult male rats primed with minimal colon pain as neonates. Behav. Brain Funct., 4, 28. – reference: Butler, R.K. & Finn, D.P. (2009) Stress-induced analgesia. Prog. Neurobiol., 88, 184-202. – reference: Géranton, S.M. (2012) Targeting epigenetic mechanisms for pain relief. Curr. Opin. Pharmacol., 12, 35-41. – reference: Alvarez, P., Green, P.G. & Levine, J.D. (2013) Stress in the adult rat exacerbates muscle pain induced by early-life stress. Biol. Psychiat., 74, 688-695. – reference: Davis, E.P., Waffarn, F. & Sandman, C.A. (2011) Prenatal treatment with glucocorticoids sensitizes the hpa axis response to stress among full-term infants. Dev. Psychobiol., 53, 175-183. – reference: Boissé, L., Spencer, S.J., Mouihate, A., Vergnolle, N. & Pittman, Q.J. (2005) Neonatal immune challenge alters nociception in the adult rat. Pain, 119, 133-141. – reference: Hohmann, A.G., Neely, M.H., Piña, J. & Nackley, A.G. (2005) Neonatal chronic hind paw inflammation alters sensitization to intradermal capsaicin in adult rats: a behavioral and immunocytochemical study. J. Pain Off. J. Am. Pain Soc., 6, 798-808. – reference: Meaney, M.J., Aitken, D.H., van Berkel, C., Bhatnagar, S. & Sapolsky, R.M. (1988) Effect of neonatal handling on age-related impairments associated with the hippocampus. Science, 239, 766-768. – reference: Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. Brain Res. Rev., 57, 596-605. – reference: Koch, S. & Fitzgerald, M. (2013) Activity dependent development of tactile and nociceptive spinal cord circuits. Ann. NY Acad. Sci., 1279, 97-102. – reference: Kwok, C.H.T., Devonshire, I.M., Bennett, A.J. & Hathway, G.J. (2013) Postnatal maturation of endogenous opioid systems within the periaqueductal grey and spinal dorsal horn of the rat. Pain, doi: 10.1016/j.pain.2013.09.022. [Epub ahead of print]. – reference: Wollgarten-Hadamek, I., Hohmeister, J., Demirakça, S., Zohsel, K., Flor, H. & Hermann, C. (2009) Do burn injuries during infancy affect pain and sensory sensitivity in later childhood? Pain, 141, 165-172. – reference: Macrì, S., Chiarotti, F. & Würbel, H. (2008) Maternal separation and maternal care act independently on the development of HPA responses in male rats. Behav. Brain Res., 191, 227-234. – reference: Beland, B. & Fitzgerald, M. (2001) Influence of peripheral inflammation on the postnatal maturation of primary sensory neuron phenotype in rats. J. Pain, 2, 36-45. – reference: Slater, R., Worley, A., Fabrizi, L., Roberts, S., Meek, J., Boyd, S. & Fitzgerald, M. (2010b) Evoked potentials generated by noxious stimulation in the human infant brain. Eur. J. Pain Lond. Engl., 14, 321-326. – reference: Brummelte, S., Grunau, R.E., Chau, V., Poskitt, K.J., Brant, R., Vinall, J., Gover, A., Synnes, A.R. & Miller, S.P. (2012) Procedural pain and brain development in premature newborns. Ann. Neurol., 71, 385-396. – reference: Vega-Avelaira, D., McKelvey, R., Hathway, G. & Fitzgerald, M. (2012) The emergence of adolescent onset pain hypersensitivity following neonatal nerve injury. Mol. Pain, 8, 30. – reference: Rüedi-Bettschen, D., Feldon, J. & Pryce, C.R. (2004) Circadian- and temperature-specific effects of early deprivation on rat maternal care and pup development: short-term markers for long-term effects. Dev. Psychobiol., 45, 59-71. – reference: Xiong, W., Cheng, K., Cui, T., Godlewski, G., Rice, K.C., Xu, Y. & Zhang, L. (2011) Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. Nat. Chem. Biol., 7, 296-303. – reference: Torsney, C. & Fitzgerald, M. (2003) Spinal dorsal horn cell receptive field size is increased in adult rats following neonatal hindpaw skin injury. J. Physiol., 550, 255-261. – reference: Wollgarten-Hadamek, I., Hohmeister, J., Zohsel, K., Flor, H. & Hermann, C. (2011) Do school-aged children with burn injuries during infancy show stress-induced activation of pain inhibitory mechanisms? Eur. J. Pain Lond. Engl., 15, e1-e10. – reference: Khasar, S.G., Dina, O.A., Green, P.G. & Levine, J.D. (2009) Sound stress-induced long-term enhancement of mechanical hyperalgesia in rats is maintained by sympathoadrenal catecholamines. J. Pain Off. J. Am. Pain Soc., 10, 1073-1077. – reference: Walker, S.J. & Vrana, K.E. (1993) Pituitary corticotroph function during the stress hyporesponsive period in neonatal rats. Neuroendocrinology, 57, 1003-1010. – reference: Koch, S.C., Tochiki, K.K., Hirschberg, S. & Fitzgerald, M. (2012) C-fiber activity-dependent maturation of glycinergic inhibition in the spinal dorsal horn of the postnatal rat. Proc. Natl. Acad. Sci. USA, 109, 12201-12206. – reference: Anseloni, V.C.Z., He, F., Novikova, S.I., Turnbach Robbins, M., Lidow, I.A., Ennis, M. & Lidow, M.S. (2005) Alterations in stress-associated behaviors and neurochemical markers in adult rats after neonatal short-lasting local inflammatory insult. Neuroscience, 131, 635-645. – reference: Fabrizi, L., Slater, R., Worley, A., Meek, J., Boyd, S., Olhede, S. & Fitzgerald, M. (2011) A shift in sensory processing that enables the developing human brain to discriminate touch from pain. Curr. Biol., 21, 1552-1558. – reference: Rea, K., Roche, M. & Finn, D.P. (2007) Supraspinal modulation of pain by cannabinoids: the role of GABA and glutamate. Brit. J. Pharmacol., 152, 633-648. – reference: Zwicker, J.G., Grunau, R.E., Adams, E., Chau, V., Brant, R., Poskitt, K.J., Synnes, A. & Miller, S.P. (2013) Score for neonatal acute physiology-II and neonatal pain predict corticospinal tract development in premature newborns. Pediatr. Neurol., 48, e1. – reference: Walker, S.M., Franck, L.S., Fitzgerald, M., Myles, J., Stocks, J. & Marlow, N. (2009b) Long-term impact of neonatal intensive care and surgery on somatosensory perception in children born extremely preterm. Pain, 141, 79-87. – reference: Hathway, G.J., Vega-Avelaira, D., Moss, A., Ingram, R. & Fitzgerald, M. (2009b) Brief, low frequency stimulation of rat peripheral C-fibres evokes prolonged microglial-induced central sensitization in adults but not in neonates. Pain, 144, 110-118. – reference: Roizenblatt, S., Andersen, M.L., Bignotto, M., D'Almeida, V., Martins, P.J.F. & Tufik, S. (2010) Neonatal arthritis disturbs sleep and behaviour of adult rat offspring and their dams. Eur. J. Pain Lond. Engl., 14, 985-991. – reference: Borsook, D., Becerra, L., Carlezon, W.A. Jr., Shaw, M., Renshaw, P., Elman, I. & Levine, J. (2007) Reward-aversion circuitry in analgesia and pain: implications for psychiatric disorders. Eur. J. Pain Lond. Engl., 11, 7-20. – reference: Schmelzle-Lubiecki, B.M., Campbell, K.A.A., Howard, R.H., Franck, L. & Fitzgerald, M. (2007) Long-term consequences of early infant injury and trauma upon somatosensory processing. Eur. J. Pain Lond. Engl., 11, 799-809. – reference: Hathway, G.J., Koch, S., Low, L. & Fitzgerald, M. (2009a) The changing balance of brainstem-spinal cord modulation of pain processing over the first weeks of rat postnatal life. J. Physiol., 587, 2927-2935. – reference: Chen, J., Evans, A.N., Liu, Y., Honda, M., Saavedra, J.M. & Aguilera, G. (2012) Maternal deprivation in rats is associated with corticotrophin-releasing hormone (CRH) promoter hypomethylation and enhances CRH transcriptional responses to stress in adulthood. J. Neuroendocrinol., 24, 1055-1064. – reference: Walker, A.K., Hawkins, G., Sominsky, L. & Hodgson, D.M. (2012) Transgenerational transmission of anxiety induced by neonatal exposure to lipopolysaccharide: implications for male and female germ lines. Psychoneuroendocrino., 37, 1320-1335. – reference: Slater, R., Fabrizi, L., Worley, A., Meek, J., Boyd, S. & Fitzgerald, M. (2010a) Premature infants display increased noxious-evoked neuronal activity in the brain compared with healthy age-matched term-born infants. NeuroImage, 52, 583-589. – reference: Randich, A., Uzzell, T., DeBerry, J.J. & Ness, T.J. (2006) Neonatal urinary bladder inflammation produces adult bladder hypersensitivity. J. Pain Off. J. Am. Pain Soc., 7, 469-479. – reference: Plotsky, P.M. & Meaney, M.J. (1993) Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res. Mol. Brain Res., 18, 195-200. – reference: De Lima, J., Alvares, D., Hatch, D.J. & Fitzgerald, M. (1999) Sensory hyperinnervation after neonatal skin wounding: effect of bupivacaine sciatic nerve block. Brit. J. Anaesth., 83, 662-664. – reference: DeBerry, J., Randich, A., Shaffer, A.D., Robbins, M.T. & Ness, T.J. (2010) Neonatal bladder inflammation produces functional changes and alters neuropeptide content in bladders of adult female rats. J. Pain Off. J. Am. Pain Soc., 11, 247-255. – reference: Zhang, Y.-H., Wang, X.-M. & Ennis, M. (2010) Effects of neonatal inflammation on descending modulation from the rostroventromedial medulla. Brain Res. Bull., 83, 16-22. – reference: Woolf, C.J. (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain, 152, S2-S15. – reference: Ririe, D.G., Bremner, L.R. & Fitzgerald, M. (2008) Comparison of the immediate effects of surgical incision on dorsal horn neuronal receptive field size and responses during postnatal development. Anesthesiology, 109, 698-706. – reference: Buwembo, A., Long, H. & Walker, C.-D. (2012) Participation of endocannabinoids in rapid suppression of stress responses by glucocorticoids in neonates. Neuroscience, 249, 154-161. – reference: Hathway, G.J., Vega-Avelaira, D. & Fitzgerald, M. (2012) A critical period in the supraspinal control of pain: opioid-dependent changes in brainstem rostroventral medulla function in preadolescence. Pain, 153, 775-783. – reference: Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, D., Plotsky, P.M. & Meaney, M.J. (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659-1662. – reference: Ren, K., Novikova, S.I., He, F., Dubner, R. & Lidow, M.S. (2005) Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats. Mol. Pain, 1, 27. – reference: Sapolsky, R.M. & Meaney, M.J. (1986) Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Res., 396, 64-76. – reference: Spencer, S.J., Boissé, L., Mouihate, A. & Pittman, Q.J. (2006) Long term alterations in neuroimmune responses of female rats after neonatal exposure to lipopolysaccharide. Brain Behav. Immun., 20, 325-330. – reference: Howard, R.F., Walker, S.M., Michael Mota, P. & Fitzgerald, M. (2005) The ontogeny of neuropathic pain: postnatal onset of mechanical allodynia in rat spared nerve injury (SNI) and chronic constriction injury (CCI) models. Pain, 115, 382-389. – reference: Green, P.G., Chen, X., Alvarez, P., Ferrari, L.F. & Levine, J.D. (2011) Early-life stress produces muscle hyperalgesia and nociceptor sensitization in the adult rat. Pain, 152, 2549-2556. – reference: Beggs, S., Currie, G., Salter, M.W., Fitzgerald, M. & Walker, S.M. (2012b) Priming of adult pain responses by neonatal pain experience: maintenance by central neuroimmune activity. Brain J. Neurol., 135, 404-417. – reference: LaPrairie, J.L. & Murphy, A.Z. (2007) Female rats are more vulnerable to the long-term consequences of neonatal inflammatory injury. Pain, 132(Suppl 1), S124-S133. – reference: Negrigo, A., Medeiros, M., Guinsburg, R. & Covolan, L. (2011) Long-term gender behavioral vulnerability after nociceptive neonatal formalin stimulation in rats. Neurosci. Lett., 490, 196-199. – reference: Vinall, J., Miller, S.P., Chau, V., Brummelte, S., Synnes, A.R. & Grunau, R.E. (2012) Neonatal pain in relation to postnatal growth in infants born very preterm. Pain, 153, 1374-1381. – reference: Reynolds, M.L. & Fitzgerald, M. (1995) Long-term sensory hyperinnervation following neonatal skin wounds. J. Comp. Neurol., 358, 487-498. – reference: Chu, Y.-C., Chan, K.-H., Tsou, M.-Y., Lin, S.-M., Hsieh, Y.-C. & Tao, Y.-X. (2007) Mechanical pain hypersensitivity after incisional surgery is enhanced in rats subjected to neonatal peripheral inflammation: effects of N-methyl-D-aspartate receptor antagonists. Anesthesiology, 106, 1204-1212. – reference: Li, J., Blankenship, M.L. & Baccei, M.L. (2013) Deficits in glycinergic inhibition within adult spinal nociceptive circuits after neonatal tissue damage. Pain, 154, 1129-1139. – reference: Fitzgerald, M. & Gibson, S. (1984) The postnatal physiological and neurochemical development of peripheral sensory C fibres. Neuroscience, 13, 933-944. – reference: Gosselin, R.D., O'Connor, R.M., Tramullas, M., Julio-Pieper, M., Dinan, T.G. & Cryan, J.F. (2010) Riluzole normalizes early-life stress-induced visceral hypersensitivity in rats: role of spinal glutamate reuptake mechanisms. Gastroenterology, 138, 2418-2425. – reference: Wen, Y.-R., Suter, M.R., Ji, R.-R., Yeh, G.-C., Wu, Y.-S., Wang, K.-C., Kohno, T., Sun, W.-Z. & Wang, C.-C. (2009) Activation of p38 mitogen-activated protein kinase in spinal microglia contributes to incision-induced mechanical allodynia. Anesthesiology, 110, 155-165. – reference: Zavitsanou, K., Dalton, V.S., Walker, A.K., Weickert, C.S., Sominsky, L. & Hodgson, D.M. (2013) Neonatal lipopolysaccharide treatment has long-term effects on monoaminergic and cannabinoid receptors in the rat. Synapse, 67, 290-299. – reference: Bhutta, A.T., Rovnaghi, C., Simpson, P.M., Gossett, J.M., Scalzo, F.M. & Anand, K.J. (2001) Interactions of inflammatory pain and morphine in infant rats: long-term behavioral effects. Physiol. Behav., 73, 51-58. – reference: Hohmeister, J., Demirakça, S., Zohsel, K., Flor, H. & Hermann, C. (2009) Responses to pain in school-aged children with experience in a neonatal intensive care unit: cognitive aspects and maternal influences. Eur. J. Pain, 13, 94-101. – reference: Moss, A., Beggs, S., Vega-Avelaira, D., Costigan, M., Hathway, G.J., Salter, M.W. & Fitzgerald, M. (2007) Spinal microglia and neuropathic pain in young rats. Pain, 128, 215-224. – reference: Pechtel, P. & Pizzagalli, D.A. (2011) Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacology, 214, 55-70. – reference: Heinricher, M.M., Tavares, I., Leith, J.L. & Lumb, B.M. (2009) Descending control of nociception: specificity, recruitment and plasticity. Brain Res. Rev., 60, 214-225. – reference: Spencer, S.J. (2013) Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress. Front. Neurosci., 7, 109. – reference: Guindon, J. & Hohmann, A.G. (2009) The endocannabinoid system and pain. CNS Neurol. Disord.-Dr., 8, 403-421. – reference: Low, L.A. & Fitzgerald, M. (2012) Acute pain and a motivational pathway in adult rats: influence of early life pain experience. PLoS ONE, 7, e34316. – reference: Papaioannou, A., Dafni, U., Alikaridis, F., Bolaris, S. & Stylianopoulou, F. (2002) Effects of neonatal handling on basal and stress-induced monoamine levels in the male and female rat brain. Neuroscience, 114, 195-206. – reference: Suárez, J., Rivera, P., Llorente, R., Romero-Zerbo, S.Y., Bermúdez-Silva, F.J., de Fonseca, F.R. & Viveros, M.-P. (2010) Early maternal deprivation induces changes on the expression of 2-AG biosynthesis and degradation enzymes in neonatal rat hippocampus. Brain Res., 1349, 162-173. – reference: Costigan, M., Moss, A., Latremoliere, A., Johnston, C., Verma-Gandhu, M., Herbert, T.A., Barrett, L., Brenner, G.J., Vardeh, D., Woolf, C.J. & Fitzgerald, M. (2009) T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J. Neurosci. Off. J. Soc. Neurosci., 29, 14415-14422. – reference: Levine, S. (1994) The ontogeny of the hypothalamic-pituitary-adrenal axis. The influence of maternal factorsa. Ann. NY Acad. Sci., 746, 275-288. – reference: Staud, R., Nagel, S., Robinson, M.E. & Price, D.D. (2009) Enhanced central pain processing of fibromyalgia patients is maintained by muscle afferent input: a randomized, double-blind, placebo-controlled study. Pain, 145, 96-104. – reference: Mohamad, O., Chen, D., Zhang, L., Hofmann, C., Wei, L. & Yu, S.P. (2011) Erythropoietin reduces neuronal cell death and hyperalgesia induced by peripheral inflammatory pain in neonatal rats. Mol. Pain, 7, 51. – reference: Walker, S.M., Tochiki, K.K. & Fitzgerald, M. (2009c) Hindpaw incision in early life increases the hyperalgesic response to repeat surgical injury: critical period and dependence on initial afferent activity. Pain, 147, 99-106. – reference: Cornelissen, L., Fabrizi, L., Patten, D., Worley, A., Meek, J., Boyd, S., Slater, R. & Fitzgerald, M. (2013) Postnatal temporal, spatial and modality tuning of nociceptive cutaneous flexion reflexes in human infants. PLoS ONE, 8, e76470. – reference: Sternberg, W.F., Scorr, L., Smith, L.D., Ridgway, C.G. & Stout, M. (2005) Long-term effects of neonatal surgery on adulthood pain behavior. Pain, 113, 347-353. – reference: Coutinho, S.V., Plotsky, P.M., Sablad, M., Miller, J.C., Zhou, H., Bayati, A.I., McRoberts, J.A. & Mayer, E.A. (2002) Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat. Am. J. Physiol.-Gastr. L., 282, G307-G316. – reference: Zavitsanou, K., Dalton, V.S., Wang, H., Newson, P. & Chahl, L.A. (2010) Receptor changes in brain tissue of rats treated as neonates with capsaicin. J. Chem. Neuroanat., 39, 248-255. – volume: 154 start-page: 1129 year: 2013 end-page: 1139 article-title: Deficits in glycinergic inhibition within adult spinal nociceptive circuits after neonatal tissue damage publication-title: Pain – volume: 48 start-page: e1 year: 2013 article-title: Score for neonatal acute physiology‐II and neonatal pain predict corticospinal tract development in premature newborns publication-title: Pediatr. Neurol. – volume: 239 start-page: 766 year: 1988 end-page: 768 article-title: Effect of neonatal handling on age‐related impairments associated with the hippocampus publication-title: Science – volume: 113 start-page: 347 year: 2005 end-page: 353 article-title: Long‐term effects of neonatal surgery on adulthood pain behavior publication-title: Pain – volume: 73 start-page: 51 year: 2001 end-page: 58 article-title: Interactions of inflammatory pain and morphine in infant rats: long‐term behavioral effects publication-title: Physiol. Behav. – volume: 8 start-page: 403 year: 2009 end-page: 421 article-title: The endocannabinoid system and pain publication-title: CNS Neurol. Disord.‐Dr. – volume: 13 start-page: 94 year: 2009 end-page: 101 article-title: Responses to pain in school‐aged children with experience in a neonatal intensive care unit: cognitive aspects and maternal influences publication-title: Eur. J. Pain – volume: 26 start-page: 777 year: 2010 end-page: 782 article-title: Newborn infant pain assessment using heart rate variability analysis publication-title: Clin. J. Pain – volume: 971 start-page: 73 year: 2003 end-page: 82 article-title: Long‐term sensitization of primary afferents in adult rats exposed to neonatal colon pain publication-title: Brain Res. – volume: 71 start-page: 385 year: 2012 end-page: 396 article-title: Procedural pain and brain development in premature newborns publication-title: Ann. Neurol. – volume: 11 start-page: 7 year: 2007 end-page: 20 article-title: Reward‐aversion circuitry in analgesia and pain: implications for psychiatric disorders publication-title: Eur. J. Pain Lond. Engl. – volume: 106 start-page: 1204 year: 2007 end-page: 1212 article-title: Mechanical pain hypersensitivity after incisional surgery is enhanced in rats subjected to neonatal peripheral inflammation: effects of N‐methyl‐D‐aspartate receptor antagonists publication-title: Anesthesiology – volume: 4 start-page: 28 year: 2008 article-title: Altered behavior and digestive outcomes in adult male rats primed with minimal colon pain as neonates publication-title: Behav. Brain Funct. – volume: 7 start-page: 296 year: 2011 end-page: 303 article-title: Cannabinoid potentiation of glycine receptors contributes to cannabis‐induced analgesia publication-title: Nat. Chem. Biol. – volume: 152 start-page: S2 year: 2011 end-page: S15 article-title: Central sensitization: implications for the diagnosis and treatment of pain publication-title: Pain – volume: 1 start-page: 27 year: 2005 article-title: Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats publication-title: Mol. Pain – volume: 14 start-page: 321 year: 2010b end-page: 326 article-title: Evoked potentials generated by noxious stimulation in the human infant brain publication-title: Eur. J. Pain Lond. Engl. – volume: 39 start-page: 248 year: 2010 end-page: 255 article-title: Receptor changes in brain tissue of rats treated as neonates with capsaicin publication-title: J. Chem. Neuroanat. – volume: 7 start-page: e34316 year: 2012 article-title: Acute pain and a motivational pathway in adult rats: influence of early life pain experience publication-title: PLoS ONE – volume: 21 start-page: 1552 year: 2011 end-page: 1558 article-title: A shift in sensory processing that enables the developing human brain to discriminate touch from pain publication-title: Curr. Biol. – volume: 60 start-page: 214 year: 2009 end-page: 225 article-title: Descending control of nociception: specificity, recruitment and plasticity publication-title: Brain Res. Rev. – volume: 29 start-page: 15745 year: 2009 end-page: 15755 article-title: Early‐life stress disrupts attachment learning: the role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine publication-title: J. Neurosci. Off. J. Soc. Neurosci. – volume: 11 start-page: 799 year: 2007 end-page: 809 article-title: Long‐term consequences of early infant injury and trauma upon somatosensory processing publication-title: Eur. J. Pain Lond. Engl. – volume: 587 start-page: 2927 year: 2009a end-page: 2935 article-title: The changing balance of brainstem–spinal cord modulation of pain processing over the first weeks of rat postnatal life publication-title: J. Physiol. – volume: 7 start-page: 109 year: 2013 article-title: Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress publication-title: Front. Neurosci. – volume: 153 start-page: 2133 year: 2012a end-page: 2139 article-title: A role for NT‐3 in the hyperinnervation of neonatally wounded skin publication-title: Pain – volume: 144 start-page: 110 year: 2009b end-page: 118 article-title: Brief, low frequency stimulation of rat peripheral C‐fibres evokes prolonged microglial‐induced central sensitization in adults but not in neonates publication-title: Pain – volume: 73 start-page: 85 year: 2013 end-page: 97 article-title: Neonatal repetitive needle pricking: plasticity of the spinal nociceptive circuit and extended postoperative pain in later life publication-title: Dev. Neurobiol. – volume: 2 start-page: 36 year: 2001 end-page: 45 article-title: Influence of peripheral inflammation on the postnatal maturation of primary sensory neuron phenotype in rats publication-title: J. Pain – volume: 132 start-page: S124 issue: Suppl 1 year: 2007 end-page: S133 article-title: Female rats are more vulnerable to the long‐term consequences of neonatal inflammatory injury publication-title: Pain – volume: 45 start-page: 59 year: 2004 end-page: 71 article-title: Circadian‐ and temperature‐specific effects of early deprivation on rat maternal care and pup development: short‐term markers for long‐term effects publication-title: Dev. Psychobiol. – start-page: 20 year: 2013 end-page: 29 – volume: 10 start-page: 434 year: 2009 end-page: 445 article-title: Effects of stress throughout the lifespan on the brain, behaviour and cognition publication-title: Nat. Rev. Neurosci. – volume: 24 start-page: 1055 year: 2012 end-page: 1064 article-title: Maternal deprivation in rats is associated with corticotrophin‐releasing hormone (CRH) promoter hypomethylation and enhances CRH transcriptional responses to stress in adulthood publication-title: J. Neuroendocrinol. – volume: 214 start-page: 55 year: 2011 end-page: 70 article-title: Effects of early life stress on cognitive and affective function: an integrated review of human literature publication-title: Psychopharmacology – volume: 3 start-page: 31 year: 2009 article-title: Neonatal injury alters adult pain sensitivity by increasing opioid tone in the periaqueductal gray publication-title: Front. Behav. Neurosci. – volume: 52 start-page: 583 year: 2010a end-page: 589 article-title: Premature infants display increased noxious‐evoked neuronal activity in the brain compared with healthy age‐matched term‐born infants publication-title: NeuroImage – volume: 88 start-page: 184 year: 2009 end-page: 202 article-title: Stress‐induced analgesia publication-title: Prog. Neurobiol. – volume: 131 start-page: 635 year: 2005 end-page: 645 article-title: Alterations in stress‐associated behaviors and neurochemical markers in adult rats after neonatal short‐lasting local inflammatory insult publication-title: Neuroscience – volume: 24 start-page: 677 year: 2001 end-page: 736 article-title: Neurotrophins: roles in neuronal development and function publication-title: Annu. Rev. Neurosci. – volume: 550 start-page: 255 year: 2003 end-page: 261 article-title: Spinal dorsal horn cell receptive field size is increased in adult rats following neonatal hindpaw skin injury publication-title: J. Physiol. – volume: 114 start-page: 195 year: 2002 end-page: 206 article-title: Effects of neonatal handling on basal and stress‐induced monoamine levels in the male and female rat brain publication-title: Neuroscience – volume: 114 start-page: 444 year: 2005 end-page: 454 article-title: Does neonatal surgery lead to increased pain sensitivity in later childhood? publication-title: Pain – volume: 7 start-page: 51 year: 2011 article-title: Erythropoietin reduces neuronal cell death and hyperalgesia induced by peripheral inflammatory pain in neonatal rats publication-title: Mol. Pain – volume: 11 start-page: 247 year: 2010 end-page: 255 article-title: Neonatal bladder inflammation produces functional changes and alters neuropeptide content in bladders of adult female rats publication-title: J. Pain Off. J. Am. Pain Soc. – volume: 282 start-page: G307 year: 2002 end-page: G316 article-title: Neonatal maternal separation alters stress‐induced responses to viscerosomatic nociceptive stimuli in rat publication-title: Am. J. Physiol.‐Gastr. L. – volume: 26 start-page: 698 year: 2010 end-page: 704 article-title: Cortisol, behavior, and heart rate reactivity to immunization pain at 4 months corrected age in infants born very preterm publication-title: Clin. J. Pain – volume: 119 start-page: 1276 year: 2000 end-page: 1285 article-title: A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development publication-title: Gastroenterology – volume: 37 start-page: 1320 year: 2012 end-page: 1335 article-title: Transgenerational transmission of anxiety induced by neonatal exposure to lipopolysaccharide: implications for male and female germ lines publication-title: Psychoneuroendocrino. – volume: 57 start-page: 1003 year: 1993 end-page: 1010 article-title: Pituitary corticotroph function during the stress hyporesponsive period in neonatal rats publication-title: Neuroendocrinology – volume: 4 start-page: 557 year: 2002 end-page: 564 article-title: Regulation of the hypothalamic‐pituitary‐adrenal axis in the neonatal rat: the role of maternal behavior publication-title: Neurotox. Res. – volume: 35 start-page: 326 year: 2013 end-page: 327 article-title: A single neonatal injury induces life‐long deficits in response to stress publication-title: Dev. Neurosci. – year: 2013 article-title: Neuroprotection and reduction of glial reaction by cannabidiol treatment after sciatic nerve transection in neonatal rats publication-title: Eur. J. Neurosci. – volume: 14 start-page: 985 year: 2010 end-page: 991 article-title: Neonatal arthritis disturbs sleep and behaviour of adult rat offspring and their dams publication-title: Eur. J. Pain Lond. Engl. – volume: 249 start-page: 154 year: 2012 end-page: 161 article-title: Participation of endocannabinoids in rapid suppression of stress responses by glucocorticoids in neonates publication-title: Neuroscience – volume: 153 start-page: 1374 year: 2012 end-page: 1381 article-title: Neonatal pain in relation to postnatal growth in infants born very preterm publication-title: Pain – volume: 83 start-page: 662 year: 1999 end-page: 664 article-title: Sensory hyperinnervation after neonatal skin wounding: effect of bupivacaine sciatic nerve block publication-title: Brit. J. Anaesth. – volume: 8 start-page: e76470 year: 2013 article-title: Postnatal temporal, spatial and modality tuning of nociceptive cutaneous flexion reflexes in human infants publication-title: PLoS ONE – volume: 7 start-page: 99 year: 2011 end-page: 108 article-title: Brain‐derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain publication-title: Neuron Glia Biol. – volume: 490 start-page: 196 year: 2011 end-page: 199 article-title: Long‐term gender behavioral vulnerability after nociceptive neonatal formalin stimulation in rats publication-title: Neurosci. Lett. – volume: 153 start-page: 775 year: 2012 end-page: 783 article-title: A critical period in the supraspinal control of pain: opioid‐dependent changes in brainstem rostroventral medulla function in preadolescence publication-title: Pain – volume: 6 start-page: 798 year: 2005 end-page: 808 article-title: Neonatal chronic hind paw inflammation alters sensitization to intradermal capsaicin in adult rats: a behavioral and immunocytochemical study publication-title: J. Pain Off. J. Am. Pain Soc. – volume: 501 start-page: 78 year: 2011 end-page: 82 article-title: Neonatal inflammatory pain increases hippocampal neurogenesis in rat pups publication-title: Neurosci. Lett. – volume: 138 start-page: 2418 year: 2010 end-page: 2425 article-title: Riluzole normalizes early‐life stress‐induced visceral hypersensitivity in rats: role of spinal glutamate reuptake mechanisms publication-title: Gastroenterology – volume: 109 start-page: 698 year: 2008 end-page: 706 article-title: Comparison of the immediate effects of surgical incision on dorsal horn neuronal receptive field size and responses during postnatal development publication-title: Anesthesiology – volume: 191 start-page: 227 year: 2008 end-page: 234 article-title: Maternal separation and maternal care act independently on the development of HPA responses in male rats publication-title: Behav. Brain Res. – volume: 32 start-page: 13668 year: 2012 end-page: 13678 article-title: Opioids disrupt pro‐nociceptive modulation mediated by raphe magnus publication-title: J. Neurosci. Off. J. Soc. Neurosci. – volume: 151 start-page: 540 year: 2010 end-page: 549 article-title: Neonatal colon insult alters growth factor expression and TRPA1 responses in adult mice publication-title: Pain – volume: 119 start-page: 133 year: 2005 end-page: 141 article-title: Neonatal immune challenge alters nociception in the adult rat publication-title: Pain – volume: 12 start-page: 35 year: 2012 end-page: 41 article-title: Targeting epigenetic mechanisms for pain relief publication-title: Curr. Opin. Pharmacol. – volume: 109 start-page: 12201 year: 2012 end-page: 12206 article-title: C‐fiber activity‐dependent maturation of glycinergic inhibition in the spinal dorsal horn of the postnatal rat publication-title: Proc. Natl. Acad. Sci. USA – volume: 53 start-page: 175 year: 2011 end-page: 183 article-title: Prenatal treatment with glucocorticoids sensitizes the hpa axis response to stress among full‐term infants publication-title: Dev. Psychobiol. – volume: 145 start-page: 96 year: 2009 end-page: 104 article-title: Enhanced central pain processing of fibromyalgia patients is maintained by muscle afferent input: a randomized, double‐blind, placebo‐controlled study publication-title: Pain – volume: 746 start-page: 275 year: 1994 end-page: 288 article-title: The ontogeny of the hypothalamic‐pituitary‐adrenal axis. The influence of maternal factorsa publication-title: Ann. NY Acad. Sci. – volume: 57 start-page: 596 year: 2008 end-page: 605 article-title: Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter‐species and intra‐species differences publication-title: Brain Res. Rev. – volume: 105 start-page: 185 year: 2003 end-page: 195 article-title: Neonatal inflammation and primary afferent terminal plasticity in the rat dorsal horn publication-title: Pain – volume: 358 start-page: 487 year: 1995 end-page: 498 article-title: Long‐term sensory hyperinnervation following neonatal skin wounds publication-title: J. Comp. Neurol. – volume: 102 start-page: 2208 year: 2009 end-page: 2219 article-title: Activity‐dependent modulation of glutamatergic signaling in the developing rat dorsal horn by early tissue injury publication-title: J. Neurophysiol. – volume: 20 start-page: 325 year: 2006 end-page: 330 article-title: Long term alterations in neuroimmune responses of female rats after neonatal exposure to lipopolysaccharide publication-title: Brain Behav. Immun. – volume: 66 start-page: 627 year: 1999 end-page: 637 article-title: Long‐term behavioral effects of repetitive pain in neonatal rat pups publication-title: Physiol. Behav. – year: 2013 article-title: Postnatal maturation of endogenous opioid systems within the periaqueductal grey and spinal dorsal horn of the rat publication-title: Pain – volume: 128 start-page: 215 year: 2007 end-page: 224 article-title: Spinal microglia and neuropathic pain in young rats publication-title: Pain – volume: 277 start-page: 1659 year: 1997 end-page: 1662 article-title: Maternal care, hippocampal glucocorticoid receptors, and hypothalamic‐pituitary‐adrenal responses to stress publication-title: Science – volume: 15 start-page: e1 year: 2011 end-page: e10 article-title: Do school‐aged children with burn injuries during infancy show stress‐induced activation of pain inhibitory mechanisms? publication-title: Eur. J. Pain Lond. Engl. – volume: 83 start-page: 16 year: 2010 end-page: 22 article-title: Effects of neonatal inflammation on descending modulation from the rostroventromedial medulla publication-title: Brain Res. Bull. – volume: 110 start-page: 155 year: 2009 end-page: 165 article-title: Activation of p38 mitogen‐activated protein kinase in spinal microglia contributes to incision‐induced mechanical allodynia publication-title: Anesthesiology – volume: 22 start-page: 2413 year: 2005 end-page: 2421 article-title: Ephrin‐A4 inhibits sensory neurite outgrowth and is regulated by neonatal skin wounding publication-title: Eur. J. Neurosci. – volume: 152 start-page: 2549 year: 2011 end-page: 2556 article-title: Early‐life stress produces muscle hyperalgesia and nociceptor sensitization in the adult rat publication-title: Pain – volume: 34 start-page: 1515 year: 2009a end-page: 1525 article-title: Neonatal lipopolysaccharide and adult stress exposure predisposes rats to anxiety‐like behaviour and blunted corticosterone responses: implications for the double‐hit hypothesis publication-title: Psychoneuroendocrino. – volume: 13 start-page: 933 year: 1984 end-page: 944 article-title: The postnatal physiological and neurochemical development of peripheral sensory C fibres publication-title: Neuroscience – volume: 135 start-page: 404 year: 2012b end-page: 417 article-title: Priming of adult pain responses by neonatal pain experience: maintenance by central neuroimmune activity publication-title: Brain J. Neurol. – volume: 147 start-page: 99 year: 2009c end-page: 106 article-title: Hindpaw incision in early life increases the hyperalgesic response to repeat surgical injury: critical period and dependence on initial afferent activity publication-title: Pain – volume: 13 start-page: 87 year: 2012 article-title: Developmental trajectory of the endocannabinoid system in human dorsolateral prefrontal cortex publication-title: BMC Neurosci. – volume: 67 start-page: 290 year: 2013 end-page: 299 article-title: Neonatal lipopolysaccharide treatment has long‐term effects on monoaminergic and cannabinoid receptors in the rat publication-title: Synapse – volume: 7 start-page: 469 year: 2006 end-page: 479 article-title: Neonatal urinary bladder inflammation produces adult bladder hypersensitivity publication-title: J. Pain Off. J. Am. Pain Soc. – volume: 8 start-page: 962 year: 2007 end-page: 969 article-title: Maternal separation leads to persistent reductions in pain sensitivity in female rats publication-title: J. Pain Off. J. Am. Pain Soc. – volume: 29 start-page: 14415 year: 2009 end-page: 14422 article-title: T‐cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain‐like hypersensitivity publication-title: J. Neurosci. Off. J. Soc. Neurosci. – volume: 152 start-page: 633 year: 2007 end-page: 648 article-title: Supraspinal modulation of pain by cannabinoids: the role of GABA and glutamate publication-title: Brit. J. Pharmacol. – volume: 110 start-page: 588 year: 2004 end-page: 596 article-title: Characterization of basal and re‐inflammation‐associated long‐term alteration in pain responsivity following short‐lasting neonatal local inflamatory insult publication-title: Pain – volume: 1279 start-page: 97 year: 2013 end-page: 102 article-title: Activity dependent development of tactile and nociceptive spinal cord circuits publication-title: Ann. NY Acad. Sci. – volume: 1349 start-page: 162 year: 2010 end-page: 173 article-title: Early maternal deprivation induces changes on the expression of 2‐AG biosynthesis and degradation enzymes in neonatal rat hippocampus publication-title: Brain Res. – volume: 141 start-page: 79 year: 2009b end-page: 87 article-title: Long‐term impact of neonatal intensive care and surgery on somatosensory perception in children born extremely preterm publication-title: Pain – volume: 115 start-page: 382 year: 2005 end-page: 389 article-title: The ontogeny of neuropathic pain: postnatal onset of mechanical allodynia in rat spared nerve injury (SNI) and chronic constriction injury (CCI) models publication-title: Pain – volume: 10 start-page: 1073 year: 2009 end-page: 1077 article-title: Sound stress‐induced long‐term enhancement of mechanical hyperalgesia in rats is maintained by sympathoadrenal catecholamines publication-title: J. Pain Off. J. Am. Pain Soc. – volume: 10 start-page: 1361 year: 2007 end-page: 1368 article-title: The neuropathic pain triad: neurons, immune cells and glia publication-title: Nat. Neurosci. – volume: 18 start-page: 195 year: 1993 end-page: 200 article-title: Early, postnatal experience alters hypothalamic corticotropin‐releasing factor (CRF) mRNA, median eminence CRF content and stress‐induced release in adult rats publication-title: Brain Res. Mol. Brain Res. – volume: 141 start-page: 165 year: 2009 end-page: 172 article-title: Do burn injuries during infancy affect pain and sensory sensitivity in later childhood? publication-title: Pain – volume: 396 start-page: 64 year: 1986 end-page: 76 article-title: Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period publication-title: Brain Res. – volume: 74 start-page: 688 year: 2013 end-page: 695 article-title: Stress in the adult rat exacerbates muscle pain induced by early‐life stress publication-title: Biol. Psychiat. – volume: 8 start-page: 30 year: 2012 article-title: The emergence of adolescent onset pain hypersensitivity following neonatal nerve injury publication-title: Mol. Pain – ident: e_1_2_7_108_1 doi: 10.1016/j.jchemneu.2010.01.004 – ident: e_1_2_7_63_1 doi: 10.1016/j.pain.2006.09.018 – ident: e_1_2_7_23_1 doi: 10.1016/j.jpain.2009.07.010 – start-page: 20 volume-title: Oxford Textbook of Paediatric Pain year: 2013 ident: e_1_2_7_94_1 doi: 10.1093/med/9780199642656.003.0003 – ident: e_1_2_7_5_1 doi: 10.1016/j.neuroscience.2004.11.039 – ident: e_1_2_7_65_1 doi: 10.1016/S0306-4522(02)00129-X – ident: e_1_2_7_99_1 doi: 10.1016/j.pain.2009.08.017 – ident: e_1_2_7_26_1 doi: 10.1016/0306-4522(84)90107-6 – volume: 26 start-page: 698 year: 2010 ident: e_1_2_7_30_1 article-title: Cortisol, behavior, and heart rate reactivity to immunization pain at 4 months corrected age in infants born very preterm publication-title: Clin. J. Pain doi: 10.1097/AJP.0b013e3181e5bb00 – ident: e_1_2_7_70_1 doi: 10.1016/j.brainresrev.2007.08.005 – ident: e_1_2_7_68_1 doi: 10.1016/j.pain.2005.01.014 – ident: e_1_2_7_27_1 doi: 10.1016/j.coph.2011.10.012 – ident: e_1_2_7_38_1 doi: 10.1016/j.ejpain.2008.03.004 – ident: e_1_2_7_67_1 doi: 10.1111/ejn.12341 – ident: e_1_2_7_92_1 doi: 10.1159/000351121 – ident: e_1_2_7_25_1 doi: 10.1097/AJP.0b013e3181ed1058 – ident: e_1_2_7_89_1 doi: 10.1113/jphysiol.2003.043661 – ident: e_1_2_7_8_1 doi: 10.1054/jpai.2001.17697 – ident: e_1_2_7_46_1 doi: 10.1016/j.pain.2007.08.010 – ident: e_1_2_7_83_1 doi: 10.1016/j.ejpain.2009.05.005 – ident: e_1_2_7_96_1 doi: 10.1016/S0304-3959(03)00201-X – ident: e_1_2_7_51_1 doi: 10.1152/jn.00520.2009 – ident: e_1_2_7_76_1 doi: 10.1097/ALN.0b013e3181870a32 – ident: e_1_2_7_95_1 doi: 10.1159/000126464 – ident: e_1_2_7_104_1 doi: 10.1016/j.pain.2008.11.008 – ident: e_1_2_7_58_1 doi: 10.1016/j.bbr.2008.03.031 – volume: 15 start-page: e1 year: 2011 ident: e_1_2_7_105_1 article-title: Do school‐aged children with burn injuries during infancy show stress‐induced activation of pain inhibitory mechanisms? publication-title: Eur. J. Pain Lond. Engl. – ident: e_1_2_7_98_1 doi: 10.1016/j.pain.2008.10.012 – ident: e_1_2_7_24_1 doi: 10.1016/j.cub.2011.08.010 – ident: e_1_2_7_88_1 doi: 10.1016/j.brainres.2010.06.042 – ident: e_1_2_7_93_1 doi: 10.1016/j.pain.2012.02.007 – ident: e_1_2_7_13_1 doi: 10.1016/j.pneurobio.2009.04.003 – ident: e_1_2_7_29_1 doi: 10.1016/j.pain.2011.07.021 – ident: e_1_2_7_44_1 doi: 10.1073/pnas.1118960109 – ident: e_1_2_7_64_1 doi: 10.1016/j.neulet.2010.12.050 – ident: e_1_2_7_71_1 doi: 10.1016/j.jpain.2006.01.450 – ident: e_1_2_7_87_1 doi: 10.1016/j.pain.2004.11.013 – ident: e_1_2_7_40_1 doi: 10.1146/annurev.neuro.24.1.677 – ident: e_1_2_7_16_1 doi: 10.1016/j.pain.2010.08.029 – ident: e_1_2_7_41_1 doi: 10.1016/j.jpain.2009.04.005 – ident: e_1_2_7_109_1 doi: 10.1002/syn.21640 – ident: e_1_2_7_17_1 doi: 10.1097/01.anes.0000267604.40258.d1 – ident: e_1_2_7_60_1 doi: 10.1186/1744-8069-7-51 – ident: e_1_2_7_10_1 doi: 10.1016/j.pain.2005.09.022 – ident: e_1_2_7_90_1 doi: 10.1017/S1740925X12000087 – ident: e_1_2_7_97_1 doi: 10.1016/j.psyneuen.2009.05.010 – ident: e_1_2_7_31_1 doi: 10.2174/187152709789824660 – ident: e_1_2_7_47_1 doi: 10.3389/neuro.08.031.2009 – ident: e_1_2_7_75_1 doi: 10.1002/cne.903580403 – ident: e_1_2_7_20_1 doi: 10.1152/ajpgi.00240.2001 – ident: e_1_2_7_66_1 doi: 10.1007/s00213-010-2009-2 – ident: e_1_2_7_91_1 doi: 10.1186/1744-8069-8-30 – ident: e_1_2_7_84_1 doi: 10.3389/fnins.2013.00109 – ident: e_1_2_7_85_1 doi: 10.1016/j.bbi.2005.08.004 – ident: e_1_2_7_28_1 doi: 10.1053/j.gastro.2010.03.003 – ident: e_1_2_7_110_1 doi: 10.1016/j.brainresbull.2010.07.007 – ident: e_1_2_7_69_1 doi: 10.1016/0169-328X(93)90189-V – year: 2013 ident: e_1_2_7_45_1 article-title: Postnatal maturation of endogenous opioid systems within the periaqueductal grey and spinal dorsal horn of the rat publication-title: Pain – ident: e_1_2_7_18_1 doi: 10.1371/journal.pone.0076470 – ident: e_1_2_7_72_1 doi: 10.1038/sj.bjp.0707440 – ident: e_1_2_7_22_1 doi: 10.1093/bja/83.4.662 – ident: e_1_2_7_78_1 doi: 10.1002/dev.20014 – ident: e_1_2_7_48_1 doi: 10.1016/j.neulet.2011.06.047 – ident: e_1_2_7_6_1 doi: 10.1016/j.pain.2012.07.012 – ident: e_1_2_7_86_1 doi: 10.1016/j.pain.2009.05.020 – ident: e_1_2_7_107_1 doi: 10.1038/nchembio.552 – ident: e_1_2_7_111_1 doi: 10.1016/j.pediatrneurol.2012.10.016 – ident: e_1_2_7_4_1 doi: 10.1016/S0031-9384(98)00338-2 – ident: e_1_2_7_50_1 doi: 10.1080/10298420290030569 – ident: e_1_2_7_2_1 doi: 10.1053/gast.2000.19576 – ident: e_1_2_7_56_1 doi: 10.1371/journal.pone.0034316 – ident: e_1_2_7_53_1 doi: 10.1016/S0006-8993(03)02358-8 – ident: e_1_2_7_34_1 doi: 10.1016/j.pain.2011.11.011 – ident: e_1_2_7_77_1 doi: 10.1016/j.ejpain.2010.03.008 – ident: e_1_2_7_55_1 doi: 10.1186/1471-2202-13-87 – ident: e_1_2_7_74_1 doi: 10.1186/1744-8069-1-27 – ident: e_1_2_7_33_1 doi: 10.1016/j.pain.2009.03.022 – ident: e_1_2_7_3_1 doi: 10.1016/j.biopsych.2013.04.006 – ident: e_1_2_7_7_1 doi: 10.1093/brain/awr288 – ident: e_1_2_7_35_1 doi: 10.1016/j.brainresrev.2008.12.009 – ident: e_1_2_7_43_1 doi: 10.1111/nyas.12033 – ident: e_1_2_7_81_1 doi: 10.1038/nn1992 – ident: e_1_2_7_36_1 doi: 10.1523/JNEUROSCI.1551-12.2012 – ident: e_1_2_7_12_1 doi: 10.1002/ana.22267 – ident: e_1_2_7_101_1 doi: 10.1186/1744-9081-4-28 – ident: e_1_2_7_42_1 doi: 10.1002/dneu.22047 – ident: e_1_2_7_106_1 doi: 10.1016/j.pain.2010.09.030 – ident: e_1_2_7_39_1 doi: 10.1016/j.pain.2005.03.016 – ident: e_1_2_7_54_1 doi: 10.1126/science.277.5332.1659 – ident: e_1_2_7_57_1 doi: 10.1038/nrn2639 – ident: e_1_2_7_11_1 doi: 10.1016/j.ejpain.2005.12.005 – ident: e_1_2_7_21_1 doi: 10.1002/dev.20510 – ident: e_1_2_7_19_1 doi: 10.1523/JNEUROSCI.4569-09.2009 – ident: e_1_2_7_61_1 doi: 10.1523/JNEUROSCI.4106-09.2009 – ident: e_1_2_7_80_1 doi: 10.1016/j.ejpain.2006.12.009 – ident: e_1_2_7_73_1 doi: 10.1016/j.pain.2004.04.006 – ident: e_1_2_7_32_1 doi: 10.1113/jphysiol.2008.168013 – ident: e_1_2_7_79_1 doi: 10.1016/0165-0173(86)90010-X – ident: e_1_2_7_37_1 doi: 10.1016/j.jpain.2005.07.009 – ident: e_1_2_7_102_1 doi: 10.1016/j.jpain.2007.07.001 – ident: e_1_2_7_62_1 doi: 10.1111/j.1460-9568.2005.04452.x – ident: e_1_2_7_9_1 doi: 10.1016/S0031-9384(01)00432-2 – ident: e_1_2_7_82_1 doi: 10.1016/j.neuroimage.2010.04.253 – ident: e_1_2_7_52_1 doi: 10.1016/j.pain.2013.03.030 – ident: e_1_2_7_59_1 doi: 10.1126/science.3340858 – ident: e_1_2_7_14_1 doi: 10.1016/j.neuroscience.2012.10.057 – ident: e_1_2_7_15_1 doi: 10.1111/j.1365-2826.2012.02306.x – ident: e_1_2_7_100_1 doi: 10.1016/j.psyneuen.2012.01.005 – ident: e_1_2_7_103_1 doi: 10.1097/ALN.0b013e318190bc16 – ident: e_1_2_7_49_1 doi: 10.1111/j.1749-6632.1994.tb39245.x |
| SSID | ssj0008645 |
| Score | 2.5268486 |
| SecondaryResourceType | review_article |
| Snippet | Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental... |
| SourceID | pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 344 |
| SubjectTerms | Animal models Animals cannabinoids descending pain control Endocannabinoids - metabolism experience dependent-plasticity Humans hyperalgesia Hyperalgesia - metabolism Hyperalgesia - physiopathology Nervous System - growth & development Nervous System - metabolism Nervous System - physiopathology Neuralgia - metabolism Neuralgia - physiopathology Neuronal Plasticity newborn infant Special Issue: Neurobiology of Pain Trauma, Nervous System - metabolism Trauma, Nervous System - physiopathology |
| Title | The consequences of pain in early life: injury-induced plasticity in developing pain pathways |
| URI | https://api.istex.fr/ark:/67375/WNG-R507GML6-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.12414 https://www.ncbi.nlm.nih.gov/pubmed/24494675 https://www.proquest.com/docview/1499122746 https://www.proquest.com/docview/1505335676 https://pubmed.ncbi.nlm.nih.gov/PMC4264936 |
| Volume | 39 |
| WOSCitedRecordID | wos000330558300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1460-9568 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008645 issn: 0953-816X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL2aViR4YbDBKB-TQWjaS5AT27EDT9NYh9CopomJvkW244iOkVZtN-gbP4HfyC_h2mlCKwZCQoqiRLlOFPvYPje5PhfguUmVizOrIstKFXGNMNY2KSPGRSJtKZRVJiSbkP2-GgyykzV41ayFqfUh2g9uvmeE8dp3cG2mS53cnVcvcHLySaw7ccykh3TCT9phWKUhQ7HXU4tUnA4WskI-jKctujIZdXy9fr2Oaf4eMLlMZMNM1Nv4r3e4A7cXBJTs14i5C2uu2oSt_Qqd789zsktCSGj41r4JNw-adHBbkCOgiF2KvSajkoz1sCK4OS-TTC6GpXuJp-fYTj--fUdvH3FTkDESdB-7PZt701-rtOrSPiXyFz2f3oOz3uH7gzfRIjtDZIVIeMRdyYoYHRqT8MIyLTJWCClN7CgvUq4p9U2dFEhpCitjawvNSsqNMkw7Lzt3H9arUeUeAHFOyTIzNEuk4ZYqbUpKnWVO00RzZruw1zRTbhfS5T6DxkXeuDBYkXmoyC48a03HtV7HdUa7oa1bCz355APcpMg_9I_yU-TIR--O0zzuwtMGDDlWt_-Xois3upyix4TEOkGXPv2LjfALnUUq0Wa7BlD7RGRVGc5RogtyBVqtgZf9Xr1SDT8G-W_PYTOG99wL0Prza-aHb_vh4OG_mz6CW0gJeR2X_hjWZ5NL9wRu2KvZcDrZCT0M93KgdqDz-rR3dvwTJHIuEg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6aWqTxMmDjUq4BoWkvQUlsxw7iZRrrBnQRmjbRN8txHNFtpFXbAX3jJ_Ab-SUcOxdaMRASUh4S5TiR7c_xd5zj7wA8z2JhwkQLX5NC-FQhjJWOCp9QFnFdMKFF5pJN8DQVw2Hyfg1eNXthKn2IdsHNjgz3vbYD3C5IL41yc1a-wNnJZrHuUoQR60D39XH_dNB-iUXskhRbSTVfhPGwVhaykTxt4ZX5qGub9utVZPP3mMllLusmo_6N_6vGTdioSai3W6HmFqyZchO2dkt0wD8tvG3PhYW69fZNWN9rUsJtgURQeXop_tobF95EjUoPD2Olkr2LUWFe4uUZ9tWPb9_R40fs5N4ESbqN354vrOmvnVpVaZsW-YtazG7DaX__ZO_QrzM0-JqxiPrUFCQP0anJIpprolhCcsZ5FpqA5jFVQWC7O8qR1uSah1rnihQBzURGlLHSc3egU45Lcw88YwQvkixIIp5RHQiVFUFgNDEqiBQlugc7TT9JXcuX2ywaF7JxY7AhpWvIHjxrTSeVZsdVRtuus1sLNT23QW6cyQ_pgTxGnnxwNIhl2IOnDRokNrf9n6JKM76codeE5DpCtz7-iw2zm51ZzNHmboWg9o3IrBKcp1gP-Aq2WgMr_b16pxx9dBLglscmBJ-547D152rK_bepO7n_76ZPYP3w5GggB2_Sdw_gOlJEWsWpP4TOfHppHsE1_Xk-mk0f1wPuJ9VFMQc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VLQIuPFoey9MgVPUSlMR27KBeqtItj7JaIRB7sxzHFltKdrW7BfbGT-A39pcwdjZhVxSEhJRDokwSeWZsf-OMvwF4UmTSJrmRkaFORkyjG2uTuogyngrjuDSyCMUmRK8nB4O8vwa7zV6Ymh-iXXDzPSOM176D23Hplnq5Pa6e4uzkq1hvMI5jrOd1Zv12HJZZKFHsCdUimWSDBa-Qz-NpH12ZjTa8Yr-dBzV_z5hcRrJhKupe_b9GXIMrCwhK9mqfuQ5rttqErb0Kw-_Pc7JNQlJoWG3fhEv7TUG4LVDoUsQsZV-TkSNjPawIHtYTJZOTobPP8PIYLXX2_QfG--g5JRkjRPfZ27O5F_21T6t-2hdF_qrn0xvwvnvwbv9FtKjPEBnOUxYx62iZYEhTpKw0VPOcllyIIrExKzOm49gbOy0R1JRGJMaUmrqYFbKg2nriuZuwXo0qexuItVK4vIjzVBTMxFIXLo6toVbHqWbUdGCnsZMyC_JyX0PjRDVBDCpSBUV24HErOq4ZO84T2g7GbiX05JNPcRNcfegdqreIkg_fHGUq6cCjxhsUqtv_TdGVHZ1OMWZCaJ1iUJ_9RYb7rc48Eyhzq_ag9ouIq3KcpXgHxIpvtQKe-Hv1TjX8GAjAPYrNKb5zJ_jWn5upDl71wsmdfxd9CBf7z7vq6GXv9V24jPiQ1Unq92B9Njm19-GC-TIbTicPQm_7CcHELvA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+consequences+of+pain+in+early+life%3A+injury-induced+plasticity+in+developing+pain+pathways&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Schwaller%2C+Fred&rft.au=Fitzgerald%2C+Maria&rft.date=2014-02-01&rft.eissn=1460-9568&rft.volume=39&rft.issue=3&rft.spage=344&rft_id=info:doi/10.1111%2Fejn.12414&rft_id=info%3Apmid%2F24494675&rft.externalDocID=24494675 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |