The consequences of pain in early life: injury-induced plasticity in developing pain pathways

Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European journal of neuroscience Jg. 39; H. 3; S. 344 - 352
Hauptverfasser: Schwaller, Fred, Fitzgerald, Maria
Format: Journal Article
Sprache:Englisch
Veröffentlicht: France Blackwell Publishing Ltd 01.02.2014
BlackWell Publishing Ltd
Schlagworte:
ISSN:0953-816X, 1460-9568, 1460-9568
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who have experienced neonatal injury display increased pain and injury‐induced hyperalgesia in the affected region but mild injury can also induce widespread baseline hyposensitivity across the rest of the body surface, suggesting the involvement of several underlying mechanisms, depending upon the type of early life experience. Peripheral nerve sprouting and dorsal horn central sensitization, disinhibition and neuroimmune priming are discussed in relation to the increased pain and hyperalgesia, while altered descending pain control systems driven, in part, by changes in the stress/HPA axis are discussed in relation to the widespread hypoalgesia. Finally, it is proposed that the endocannabinoid system deserves further attention in the search for mechanisms underlying injury‐induced changes in pain processing in infants and children. Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity.
AbstractList Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who have experienced neonatal injury display increased pain and injury‐induced hyperalgesia in the affected region but mild injury can also induce widespread baseline hyposensitivity across the rest of the body surface, suggesting the involvement of several underlying mechanisms, depending upon the type of early life experience. Peripheral nerve sprouting and dorsal horn central sensitization, disinhibition and neuroimmune priming are discussed in relation to the increased pain and hyperalgesia, while altered descending pain control systems driven, in part, by changes in the stress/HPA axis are discussed in relation to the widespread hypoalgesia. Finally, it is proposed that the endocannabinoid system deserves further attention in the search for mechanisms underlying injury‐induced changes in pain processing in infants and children. Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity.
Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who have experienced neonatal injury display increased pain and injury-induced hyperalgesia in the affected region but mild injury can also induce widespread baseline hyposensitivity across the rest of the body surface, suggesting the involvement of several underlying mechanisms, depending upon the type of early life experience. Peripheral nerve sprouting and dorsal horn central sensitization, disinhibition and neuroimmune priming are discussed in relation to the increased pain and hyperalgesia, while altered descending pain control systems driven, in part, by changes in the stress/HPA axis are discussed in relation to the widespread hypoalgesia. Finally, it is proposed that the endocannabinoid system deserves further attention in the search for mechanisms underlying injury-induced changes in pain processing in infants and children.
Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who have experienced neonatal injury display increased pain and injury-induced hyperalgesia in the affected region but mild injury can also induce widespread baseline hyposensitivity across the rest of the body surface, suggesting the involvement of several underlying mechanisms, depending upon the type of early life experience. Peripheral nerve sprouting and dorsal horn central sensitization, disinhibition and neuroimmune priming are discussed in relation to the increased pain and hyperalgesia, while altered descending pain control systems driven, in part, by changes in the stress/HPA axis are discussed in relation to the widespread hypoalgesia. Finally, it is proposed that the endocannabinoid system deserves further attention in the search for mechanisms underlying injury-induced changes in pain processing in infants and children. Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity.
Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who have experienced neonatal injury display increased pain and injury-induced hyperalgesia in the affected region but mild injury can also induce widespread baseline hyposensitivity across the rest of the body surface, suggesting the involvement of several underlying mechanisms, depending upon the type of early life experience. Peripheral nerve sprouting and dorsal horn central sensitization, disinhibition and neuroimmune priming are discussed in relation to the increased pain and hyperalgesia, while altered descending pain control systems driven, in part, by changes in the stress/HPA axis are discussed in relation to the widespread hypoalgesia. Finally, it is proposed that the endocannabinoid system deserves further attention in the search for mechanisms underlying injury-induced changes in pain processing in infants and children.Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental plasticity of nociceptive pathways in animal models and discuss the peripheral and central mechanisms that underlie this plasticity. Adults who have experienced neonatal injury display increased pain and injury-induced hyperalgesia in the affected region but mild injury can also induce widespread baseline hyposensitivity across the rest of the body surface, suggesting the involvement of several underlying mechanisms, depending upon the type of early life experience. Peripheral nerve sprouting and dorsal horn central sensitization, disinhibition and neuroimmune priming are discussed in relation to the increased pain and hyperalgesia, while altered descending pain control systems driven, in part, by changes in the stress/HPA axis are discussed in relation to the widespread hypoalgesia. Finally, it is proposed that the endocannabinoid system deserves further attention in the search for mechanisms underlying injury-induced changes in pain processing in infants and children.
Author Schwaller, Fred
Fitzgerald, Maria
Author_xml – sequence: 1
  givenname: Fred
  surname: Schwaller
  fullname: Schwaller, Fred
  organization: Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
– sequence: 2
  givenname: Maria
  surname: Fitzgerald
  fullname: Fitzgerald, Maria
  email: : Dr M. Fitzgerald, as above., m.fitzgerald@ucl.ac.uk
  organization: Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24494675$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9rFDEUxYNU7Lb64BeQedSHaZPJvxkfBCl1rawVpKIvEjLJnW7WbDJOZlrn23fW3S0qCoZAuOR3Dodzj9BBiAEQekrwCZnOKazCCSkYYQ_QjDCB84qL8gDNcMVpXhLx5RAdpbTCGJeC8UfosGCsYkLyGfp6tYTMxJDg-wDBQMpik7XahWy6oDs_Zt418HIaV0M35i7YwYDNWq9T74zrxw1o4QZ8bF243mpb3S9v9Zgeo4eN9gme7N5j9OnN-dXZ23zxYX5x9nqRG84LljNoqCVEsrpg1lDNK2q5lDUBzKxgGmPT8LKwQlBrJDHGatpgVpc11VDigh6jV1vfdqjXYA2EvtNetZ1b625UUTv1-09wS3UdbxQrBKuomAye7wy6OBWRerV2yYD3OkAckiIcc0q5kP-BsqoiRSHZBn32a6z7PPv6J-B0C5guptRBo6ZGde_iJqXzimC1WbCaFqx-LnhSvPhDsTf9G7tzv3Uexn-D6vzd5V6RbxUu9fDjXqG7b0pIKrn6fDlXHzmW8_cLoQi9A-YIxRs
CitedBy_id crossref_primary_10_1038_s41372_018_0193_9
crossref_primary_10_1016_j_neulet_2020_135350
crossref_primary_10_1016_j_expneurol_2015_07_017
crossref_primary_10_1016_j_pmn_2021_05_008
crossref_primary_10_1134_S0022093015040067
crossref_primary_10_1002_pbc_30315
crossref_primary_10_1016_j_bbi_2023_07_002
crossref_primary_10_1111_bcp_15834
crossref_primary_10_3390_diagnostics15070839
crossref_primary_10_1007_s11055_018_0549_9
crossref_primary_10_1007_s13193_022_01571_1
crossref_primary_10_1016_j_pmn_2021_05_003
crossref_primary_10_1111_ejn_12483
crossref_primary_10_1016_j_pedn_2022_02_004
crossref_primary_10_1111_ejn_13294
crossref_primary_10_1016_j_bja_2018_06_017
crossref_primary_10_1523_JNEUROSCI_0416_22_2022
crossref_primary_10_2147_JPR_S248042
crossref_primary_10_1016_j_jpain_2018_07_007
crossref_primary_10_1093_bja_aex238
crossref_primary_10_1155_2016_8458696
crossref_primary_10_3389_fped_2023_1148946
crossref_primary_10_1097_j_pain_0000000000000784
crossref_primary_10_1016_j_brainres_2022_147927
crossref_primary_10_1371_journal_pone_0246213
crossref_primary_10_1111_apa_13936
crossref_primary_10_1371_journal_pone_0290871
crossref_primary_10_1038_sdata_2018_248
crossref_primary_10_1007_s00482_018_0301_y
crossref_primary_10_1002_ejp_1656
crossref_primary_10_1016_j_jpain_2017_07_003
crossref_primary_10_1007_s11055_017_0493_0
crossref_primary_10_1080_03004430_2022_2117312
crossref_primary_10_1111_pan_13950
crossref_primary_10_1002_dneu_22583
crossref_primary_10_1016_j_pmn_2020_07_006
crossref_primary_10_1111_nicc_12636
crossref_primary_10_3389_fnins_2020_00722
crossref_primary_10_1002_jnr_23802
crossref_primary_10_1016_j_ijdevneu_2016_05_008
crossref_primary_10_1186_s13578_023_01106_3
crossref_primary_10_1113_EP085714
crossref_primary_10_1111_ejn_16170
crossref_primary_10_1134_S0022093022020053
crossref_primary_10_1155_2017_9253710
crossref_primary_10_1016_j_bbr_2020_112690
crossref_primary_10_1002_dev_22486
crossref_primary_10_1007_s00210_021_02086_2
crossref_primary_10_1016_j_aci_2019_05_003
crossref_primary_10_1177_13674935231195133
crossref_primary_10_1002_ejp_855
crossref_primary_10_1097_PR9_0000000000000684
crossref_primary_10_55275_JPOSNA_2022_0074
crossref_primary_10_1016_j_pmn_2021_09_007
crossref_primary_10_1016_j_neubiorev_2020_12_016
crossref_primary_10_1016_j_physbeh_2017_06_015
crossref_primary_10_1097_j_pain_0000000000001375
crossref_primary_10_1097_j_pain_0000000000003555
crossref_primary_10_1002_ejp_1233
crossref_primary_10_1038_s41390_024_03245_w
crossref_primary_10_1177_02601060251336823
crossref_primary_10_1016_j_pmn_2021_11_012
crossref_primary_10_1097_ALN_0000000000001017
crossref_primary_10_3389_fnhum_2019_00262
crossref_primary_10_3389_fped_2020_00030
crossref_primary_10_3389_fped_2021_568755
crossref_primary_10_1007_s00482_015_0036_y
crossref_primary_10_1016_j_bbi_2023_04_001
crossref_primary_10_3389_fphys_2021_660792
crossref_primary_10_1002_jdn_10185
crossref_primary_10_1016_j_physbeh_2024_114695
crossref_primary_10_3389_fnbeh_2021_691578
crossref_primary_10_3389_fanim_2021_759522
crossref_primary_10_1016_j_cobeha_2019_01_010
crossref_primary_10_1097_FTD_0000000000000763
crossref_primary_10_1038_s41372_020_00852_3
crossref_primary_10_1002_imhj_21636
crossref_primary_10_1111_cns_12490
crossref_primary_10_1002_ejp_1487
crossref_primary_10_1097_j_pain_0000000000002459
crossref_primary_10_1177_09732179231172280
crossref_primary_10_3390_children7070077
crossref_primary_10_1016_j_neuroscience_2016_07_026
crossref_primary_10_1016_j_expneurol_2016_07_022
crossref_primary_10_1016_j_pharmthera_2024_108687
crossref_primary_10_1172_JCI191931
crossref_primary_10_1002_dev_21777
crossref_primary_10_1002_dneu_22898
crossref_primary_10_3389_fnbeh_2017_00011
crossref_primary_10_3166_dea_2022_0266
crossref_primary_10_1093_pm_pnv059
crossref_primary_10_1016_j_neuint_2020_104686
crossref_primary_10_1007_s00482_016_0107_8
crossref_primary_10_1111_jsm_12703
crossref_primary_10_1002_jnr_24811
crossref_primary_10_1016_j_neulet_2018_11_045
crossref_primary_10_1038_s41390_021_01472_z
crossref_primary_10_1111_ejn_15153
crossref_primary_10_1016_j_pedn_2020_11_007
crossref_primary_10_1016_j_physbeh_2019_03_014
crossref_primary_10_1038_s41467_022_31505_y
crossref_primary_10_1038_s41598_017_05404_y
crossref_primary_10_1097_JPN_0000000000000267
crossref_primary_10_1007_s00103_016_2421_9
crossref_primary_10_1111_ijn_12695
crossref_primary_10_1016_j_psyneuen_2018_07_029
crossref_primary_10_1097_j_pain_0000000000003051
crossref_primary_10_1523_JNEUROSCI_0867_17_2017
crossref_primary_10_1016_j_jcms_2019_10_002
crossref_primary_10_1016_j_cophys_2019_06_002
crossref_primary_10_1111_pan_14042
crossref_primary_10_1016_j_pmn_2024_10_001
crossref_primary_10_1002_dneu_22789
crossref_primary_10_1016_j_jpain_2018_08_007
crossref_primary_10_1038_s41390_019_0420_x
crossref_primary_10_1097_ALN_0000000000000658
crossref_primary_10_1097_ALN_0000000000000659
crossref_primary_10_1016_j_expneurol_2015_06_020
crossref_primary_10_2196_13552
crossref_primary_10_1016_j_cobeha_2015_11_015
crossref_primary_10_1371_journal_pone_0301594
crossref_primary_10_3390_medicina54060094
crossref_primary_10_1007_s00011_021_01450_5
crossref_primary_10_1016_j_cub_2017_10_063
crossref_primary_10_1007_s11055_016_0258_1
crossref_primary_10_3389_fneur_2016_00180
crossref_primary_10_1080_09540261_2017_1320982
crossref_primary_10_1016_j_neulet_2024_138090
crossref_primary_10_1016_j_ijnurstu_2025_105031
crossref_primary_10_1038_s41390_021_01638_9
crossref_primary_10_1007_s11042_023_15403_z
crossref_primary_10_1016_j_neuroscience_2017_01_021
crossref_primary_10_1002_dev_21632
crossref_primary_10_1016_j_neuroscience_2017_06_044
crossref_primary_10_17816_MAJ164243_244
crossref_primary_10_1016_j_pedn_2019_04_015
crossref_primary_10_3389_frvir_2020_602299
crossref_primary_10_1016_j_neulet_2021_136382
crossref_primary_10_1113_JP283994
crossref_primary_10_1177_0020764018795211
crossref_primary_10_1016_j_pmn_2022_03_012
crossref_primary_10_2147_RRU_S444167
crossref_primary_10_1016_j_neuroscience_2024_08_028
crossref_primary_10_1186_s12969_019_0360_3
crossref_primary_10_1002_brb3_3309
crossref_primary_10_1016_j_neuroscience_2016_05_001
crossref_primary_10_1111_jne_12912
crossref_primary_10_1007_s00431_019_03475_9
crossref_primary_10_1016_j_neuroscience_2016_05_007
crossref_primary_10_1017_S1047951122003559
crossref_primary_10_1111_jep_13950
crossref_primary_10_1007_s10517_016_3502_3
crossref_primary_10_1038_s41390_020_01353_x
crossref_primary_10_1155_2020_7125060
crossref_primary_10_1016_j_jpain_2022_08_005
crossref_primary_10_1097_j_pain_0000000000001327
crossref_primary_10_1111_nicc_12811
crossref_primary_10_1016_j_earlhumdev_2024_106014
crossref_primary_10_1002_ejp_1319
crossref_primary_10_1097_PR9_0000000000001324
crossref_primary_10_1371_journal_pone_0233711
crossref_primary_10_3390_children3030016
crossref_primary_10_1016_j_earlhumdev_2019_104840
crossref_primary_10_1016_j_siny_2019_05_004
crossref_primary_10_1038_srep39159
crossref_primary_10_3389_fnins_2022_988096
crossref_primary_10_1016_j_pmn_2022_01_005
crossref_primary_10_1097_j_pain_0000000000001201
crossref_primary_10_1242_jeb_218008
crossref_primary_10_1097_AJP_0000000000000707
crossref_primary_10_1097_j_pain_0000000000001840
crossref_primary_10_1016_j_jpain_2025_105454
crossref_primary_10_1242_dmm_052062
crossref_primary_10_1016_j_ynpai_2018_01_001
crossref_primary_10_1016_j_ijdevneu_2019_05_001
crossref_primary_10_3389_fpain_2024_1396992
crossref_primary_10_1177_09732179221136963
crossref_primary_10_1002_pne2_12033
crossref_primary_10_1007_s40368_019_00438_4
crossref_primary_10_1007_s40140_016_0177_2
Cites_doi 10.1016/j.jchemneu.2010.01.004
10.1016/j.pain.2006.09.018
10.1016/j.jpain.2009.07.010
10.1093/med/9780199642656.003.0003
10.1016/j.neuroscience.2004.11.039
10.1016/S0306-4522(02)00129-X
10.1016/j.pain.2009.08.017
10.1016/0306-4522(84)90107-6
10.1097/AJP.0b013e3181e5bb00
10.1016/j.brainresrev.2007.08.005
10.1016/j.pain.2005.01.014
10.1016/j.coph.2011.10.012
10.1016/j.ejpain.2008.03.004
10.1111/ejn.12341
10.1159/000351121
10.1097/AJP.0b013e3181ed1058
10.1113/jphysiol.2003.043661
10.1054/jpai.2001.17697
10.1016/j.pain.2007.08.010
10.1016/j.ejpain.2009.05.005
10.1016/S0304-3959(03)00201-X
10.1152/jn.00520.2009
10.1097/ALN.0b013e3181870a32
10.1159/000126464
10.1016/j.pain.2008.11.008
10.1016/j.bbr.2008.03.031
10.1016/j.pain.2008.10.012
10.1016/j.cub.2011.08.010
10.1016/j.brainres.2010.06.042
10.1016/j.pain.2012.02.007
10.1016/j.pneurobio.2009.04.003
10.1016/j.pain.2011.07.021
10.1073/pnas.1118960109
10.1016/j.neulet.2010.12.050
10.1016/j.jpain.2006.01.450
10.1016/j.pain.2004.11.013
10.1146/annurev.neuro.24.1.677
10.1016/j.pain.2010.08.029
10.1016/j.jpain.2009.04.005
10.1002/syn.21640
10.1097/01.anes.0000267604.40258.d1
10.1186/1744-8069-7-51
10.1016/j.pain.2005.09.022
10.1017/S1740925X12000087
10.1016/j.psyneuen.2009.05.010
10.2174/187152709789824660
10.3389/neuro.08.031.2009
10.1002/cne.903580403
10.1152/ajpgi.00240.2001
10.1007/s00213-010-2009-2
10.1186/1744-8069-8-30
10.3389/fnins.2013.00109
10.1016/j.bbi.2005.08.004
10.1053/j.gastro.2010.03.003
10.1016/j.brainresbull.2010.07.007
10.1016/0169-328X(93)90189-V
10.1371/journal.pone.0076470
10.1038/sj.bjp.0707440
10.1093/bja/83.4.662
10.1002/dev.20014
10.1016/j.neulet.2011.06.047
10.1016/j.pain.2012.07.012
10.1016/j.pain.2009.05.020
10.1038/nchembio.552
10.1016/j.pediatrneurol.2012.10.016
10.1016/S0031-9384(98)00338-2
10.1080/10298420290030569
10.1053/gast.2000.19576
10.1371/journal.pone.0034316
10.1016/S0006-8993(03)02358-8
10.1016/j.pain.2011.11.011
10.1016/j.ejpain.2010.03.008
10.1186/1471-2202-13-87
10.1186/1744-8069-1-27
10.1016/j.pain.2009.03.022
10.1016/j.biopsych.2013.04.006
10.1093/brain/awr288
10.1016/j.brainresrev.2008.12.009
10.1111/nyas.12033
10.1038/nn1992
10.1523/JNEUROSCI.1551-12.2012
10.1002/ana.22267
10.1186/1744-9081-4-28
10.1002/dneu.22047
10.1016/j.pain.2010.09.030
10.1016/j.pain.2005.03.016
10.1126/science.277.5332.1659
10.1038/nrn2639
10.1016/j.ejpain.2005.12.005
10.1002/dev.20510
10.1523/JNEUROSCI.4569-09.2009
10.1523/JNEUROSCI.4106-09.2009
10.1016/j.ejpain.2006.12.009
10.1016/j.pain.2004.04.006
10.1113/jphysiol.2008.168013
10.1016/0165-0173(86)90010-X
10.1016/j.jpain.2005.07.009
10.1016/j.jpain.2007.07.001
10.1111/j.1460-9568.2005.04452.x
10.1016/S0031-9384(01)00432-2
10.1016/j.neuroimage.2010.04.253
10.1016/j.pain.2013.03.030
10.1126/science.3340858
10.1016/j.neuroscience.2012.10.057
10.1111/j.1365-2826.2012.02306.x
10.1016/j.psyneuen.2012.01.005
10.1097/ALN.0b013e318190bc16
10.1111/j.1749-6632.1994.tb39245.x
ContentType Journal Article
Copyright 2014 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Copyright © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2014
Copyright_xml – notice: 2014 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: Copyright © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2014
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1111/ejn.12414
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList

Neurosciences Abstracts
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 352
ExternalDocumentID PMC4264936
24494675
10_1111_ejn_12414
EJN12414
ark_67375_WNG_R507GML6_1
Genre article
Journal Article
Review
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0901269
– fundername: Medical Research Council
  grantid: MR/M006468/1
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RIG
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c5524-4ef3d1174b24dc3a593d577b1e04d64a00cf582d663dc71ccda3f04b8b3ae8023
IEDL.DBID 24P
ISICitedReferencesCount 194
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330558300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0953-816X
1460-9568
IngestDate Tue Nov 04 01:58:55 EST 2025
Sun Nov 09 12:20:25 EST 2025
Thu Oct 02 06:47:27 EDT 2025
Mon Jul 21 05:53:10 EDT 2025
Sat Nov 29 06:09:02 EST 2025
Tue Nov 18 21:58:04 EST 2025
Wed Jan 22 16:30:57 EST 2025
Sun Sep 21 06:19:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords experience dependent-plasticity
cannabinoids
hyperalgesia
descending pain control
newborn infant
Language English
License Attribution
2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5524-4ef3d1174b24dc3a593d577b1e04d64a00cf582d663dc71ccda3f04b8b3ae8023
Notes istex:941DC0F6B03464C902DF9986780C71F64385D5B4
ark:/67375/WNG-R507GML6-1
ArticleID:EJN12414
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.12414
PMID 24494675
PQID 1499122746
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4264936
proquest_miscellaneous_1505335676
proquest_miscellaneous_1499122746
pubmed_primary_24494675
crossref_citationtrail_10_1111_ejn_12414
crossref_primary_10_1111_ejn_12414
wiley_primary_10_1111_ejn_12414_EJN12414
istex_primary_ark_67375_WNG_R507GML6_1
PublicationCentury 2000
PublicationDate 2014-02
February 2014
2014-02-00
2014-Feb
20140201
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02
PublicationDecade 2010
PublicationPlace France
PublicationPlace_xml – name: France
– name: Oxford, UK
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2014
Publisher Blackwell Publishing Ltd
BlackWell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: BlackWell Publishing Ltd
References Huang, E.J. & Reichardt, L.F. (2001) Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci., 24, 677-736.
Howard, R.F., Walker, S.M., Michael Mota, P. & Fitzgerald, M. (2005) The ontogeny of neuropathic pain: postnatal onset of mechanical allodynia in rat spared nerve injury (SNI) and chronic constriction injury (CCI) models. Pain, 115, 382-389.
Alvarez, P., Green, P.G. & Levine, J.D. (2013) Stress in the adult rat exacerbates muscle pain induced by early-life stress. Biol. Psychiat., 74, 688-695.
Schmelzle-Lubiecki, B.M., Campbell, K.A.A., Howard, R.H., Franck, L. & Fitzgerald, M. (2007) Long-term consequences of early infant injury and trauma upon somatosensory processing. Eur. J. Pain Lond. Engl., 11, 799-809.
Staud, R., Nagel, S., Robinson, M.E. & Price, D.D. (2009) Enhanced central pain processing of fibromyalgia patients is maintained by muscle afferent input: a randomized, double-blind, placebo-controlled study. Pain, 145, 96-104.
Koch, S. & Fitzgerald, M. (2013) Activity dependent development of tactile and nociceptive spinal cord circuits. Ann. NY Acad. Sci., 1279, 97-102.
Woolf, C.J. (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain, 152, S2-S15.
Hathway, G.J., Vega-Avelaira, D. & Fitzgerald, M. (2012) A critical period in the supraspinal control of pain: opioid-dependent changes in brainstem rostroventral medulla function in preadolescence. Pain, 153, 775-783.
Lupien, S.J., McEwen, B.S., Gunnar, M.R. & Heim, C. (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci., 10, 434-445.
Long, L.E., Lind, J., Webster, M. & Weickert, C.S. (2012) Developmental trajectory of the endocannabinoid system in human dorsolateral prefrontal cortex. BMC Neurosci., 13, 87.
Buwembo, A., Long, H. & Walker, C.-D. (2012) Participation of endocannabinoids in rapid suppression of stress responses by glucocorticoids in neonates. Neuroscience, 249, 154-161.
Al-Chaer, E.D., Kawasaki, M. & Pasricha, P.J. (2000) A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology, 119, 1276-1285.
Li, J., Blankenship, M.L. & Baccei, M.L. (2013) Deficits in glycinergic inhibition within adult spinal nociceptive circuits after neonatal tissue damage. Pain, 154, 1129-1139.
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, D., Plotsky, P.M. & Meaney, M.J. (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659-1662.
Hohmeister, J., Demirakça, S., Zohsel, K., Flor, H. & Hermann, C. (2009) Responses to pain in school-aged children with experience in a neonatal intensive care unit: cognitive aspects and maternal influences. Eur. J. Pain, 13, 94-101.
Grunau, R.E., Tu, M.T., Whitfield, M.F., Oberlander, T.F., Weinberg, J., Yu, W., Thiessen, P., Gosse, G. & Scheifele, D. (2010) Cortisol, behavior, and heart rate reactivity to immunization pain at 4 months corrected age in infants born very preterm. Clin. J. Pain, 26, 698-704.
Reynolds, M.L. & Fitzgerald, M. (1995) Long-term sensory hyperinnervation following neonatal skin wounds. J. Comp. Neurol., 358, 487-498.
Spencer, S.J., Boissé, L., Mouihate, A. & Pittman, Q.J. (2006) Long term alterations in neuroimmune responses of female rats after neonatal exposure to lipopolysaccharide. Brain Behav. Immun., 20, 325-330.
Walker, A.K., Hawkins, G., Sominsky, L. & Hodgson, D.M. (2012) Transgenerational transmission of anxiety induced by neonatal exposure to lipopolysaccharide: implications for male and female germ lines. Psychoneuroendocrino., 37, 1320-1335.
Trang, T., Beggs, S. & Salter, M.W. (2011) Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron Glia Biol., 7, 99-108.
Mohamad, O., Chen, D., Zhang, L., Hofmann, C., Wei, L. & Yu, S.P. (2011) Erythropoietin reduces neuronal cell death and hyperalgesia induced by peripheral inflammatory pain in neonatal rats. Mol. Pain, 7, 51.
LaPrairie, J.L. & Murphy, A.Z. (2007) Female rats are more vulnerable to the long-term consequences of neonatal inflammatory injury. Pain, 132(Suppl 1), S124-S133.
Moss, A., Alvares, D., Meredith-Middleton, J., Robinson, M., Slater, R., Hunt, S.P. & Fitzgerald, M. (2005) Ephrin-A4 inhibits sensory neurite outgrowth and is regulated by neonatal skin wounding. Eur. J. Neurosci., 22, 2413-2421.
Vinall, J., Miller, S.P., Chau, V., Brummelte, S., Synnes, A.R. & Grunau, R.E. (2012) Neonatal pain in relation to postnatal growth in infants born very preterm. Pain, 153, 1374-1381.
Walker, S.M., Meredith-Middleton, J., Cooke-Yarborough, C. & Fitzgerald, M. (2003) Neonatal inflammation and primary afferent terminal plasticity in the rat dorsal horn. Pain, 105, 185-195.
Green, P.G., Chen, X., Alvarez, P., Ferrari, L.F. & Levine, J.D. (2011) Early-life stress produces muscle hyperalgesia and nociceptor sensitization in the adult rat. Pain, 152, 2549-2556.
Koch, S.C., Tochiki, K.K., Hirschberg, S. & Fitzgerald, M. (2012) C-fiber activity-dependent maturation of glycinergic inhibition in the spinal dorsal horn of the postnatal rat. Proc. Natl. Acad. Sci. USA, 109, 12201-12206.
DeBerry, J., Randich, A., Shaffer, A.D., Robbins, M.T. & Ness, T.J. (2010) Neonatal bladder inflammation produces functional changes and alters neuropeptide content in bladders of adult female rats. J. Pain Off. J. Am. Pain Soc., 11, 247-255.
Anseloni, V.C.Z., He, F., Novikova, S.I., Turnbach Robbins, M., Lidow, I.A., Ennis, M. & Lidow, M.S. (2005) Alterations in stress-associated behaviors and neurochemical markers in adult rats after neonatal short-lasting local inflammatory insult. Neuroscience, 131, 635-645.
Levine, S. (1994) The ontogeny of the hypothalamic-pituitary-adrenal axis. The influence of maternal factorsa. Ann. NY Acad. Sci., 746, 275-288.
Chen, J., Evans, A.N., Liu, Y., Honda, M., Saavedra, J.M. & Aguilera, G. (2012) Maternal deprivation in rats is associated with corticotrophin-releasing hormone (CRH) promoter hypomethylation and enhances CRH transcriptional responses to stress in adulthood. J. Neuroendocrinol., 24, 1055-1064.
Papaioannou, A., Dafni, U., Alikaridis, F., Bolaris, S. & Stylianopoulou, F. (2002) Effects of neonatal handling on basal and stress-induced monoamine levels in the male and female rat brain. Neuroscience, 114, 195-206.
Beggs, S., Currie, G., Salter, M.W., Fitzgerald, M. & Walker, S.M. (2012b) Priming of adult pain responses by neonatal pain experience: maintenance by central neuroimmune activity. Brain J. Neurol., 135, 404-417.
Beland, B. & Fitzgerald, M. (2001) Influence of peripheral inflammation on the postnatal maturation of primary sensory neuron phenotype in rats. J. Pain, 2, 36-45.
Fabrizi, L., Slater, R., Worley, A., Meek, J., Boyd, S., Olhede, S. & Fitzgerald, M. (2011) A shift in sensory processing that enables the developing human brain to discriminate touch from pain. Curr. Biol., 21, 1552-1558.
Faye, P.M., De Jonckheere, J., Logier, R., Kuissi, E., Jeanne, M., Rakza, T. & Storme, L. (2010) Newborn infant pain assessment using heart rate variability analysis. Clin. J. Pain, 26, 777-782.
Moss, A., Beggs, S., Vega-Avelaira, D., Costigan, M., Hathway, G.J., Salter, M.W. & Fitzgerald, M. (2007) Spinal microglia and neuropathic pain in young rats. Pain, 128, 215-224.
Boissé, L., Spencer, S.J., Mouihate, A., Vergnolle, N. & Pittman, Q.J. (2005) Neonatal immune challenge alters nociception in the adult rat. Pain, 119, 133-141.
Scholz, J. & Woolf, C.J. (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat. Neurosci., 10, 1361-1368.
Bhutta, A.T., Rovnaghi, C., Simpson, P.M., Gossett, J.M., Scalzo, F.M. & Anand, K.J. (2001) Interactions of inflammatory pain and morphine in infant rats: long-term behavioral effects. Physiol. Behav., 73, 51-58.
Walker, S.M., Tochiki, K.K. & Fitzgerald, M. (2009c) Hindpaw incision in early life increases the hyperalgesic response to repeat surgical injury: critical period and dependence on initial afferent activity. Pain, 147, 99-106.
Roizenblatt, S., Andersen, M.L., Bignotto, M., D'Almeida, V., Martins, P.J.F. & Tufik, S. (2010) Neonatal arthritis disturbs sleep and behaviour of adult rat offspring and their dams. Eur. J. Pain Lond. Engl., 14, 985-991.
Negrigo, A., Medeiros, M., Guinsburg, R. & Covolan, L. (2011) Long-term gender behavioral vulnerability after nociceptive neonatal formalin stimulation in rats. Neurosci. Lett., 490, 196-199.
Christianson, J.A., Bielefeldt, K., Malin, S.A. & Davis, B.M. (2010) Neonatal colon insult alters growth factor expression and TRPA1 responses in adult mice. Pain, 151, 540-549.
Beggs, S., Alvares, D., Moss, A., Currie, G., Middleton, J., Salter, M.W. & Fitzgerald, M. (2012a) A role for NT-3 in the hyperinnervation of neonatally wounded skin. Pain, 153, 2133-2139.
Costigan, M., Moss, A., Latremoliere, A., Johnston, C., Verma-Gandhu, M., Herbert, T.A., Barrett, L., Brenner, G.J., Vardeh, D., Woolf, C.J. & Fitzgerald, M. (2009) T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J. Neurosci. Off. J. Soc. Neurosci., 29, 14415-14422.
Wollgarten-Hadamek, I., Hohmeister, J., Demirakça, S., Zohsel, K., Flor, H. & Hermann, C. (2009) Do burn injuries during infancy affect pain and sensory sensitivity in later childhood? Pain, 141, 165-172.
Cornelissen, L., Fabrizi, L., Patten, D., Worley, A., Meek, J., Boyd, S., Slater, R. & Fitzgerald, M. (2013) Postnatal temporal, spatial and modality tuning of nociceptive cutaneous flexion reflexes in human infants. PLoS ONE, 8, e76470.
LaPrairie, J.L. & Murphy, A.Z. (2009) Neonatal injury alters adult pain sensitivity by increasing opioid tone in the periaqueductal gray. Front. Behav. Neurosci., 3, 31.
Levine, S. (2002) Regulation of the hypothalamic-pituitary-adrenal axis in the neonatal rat: the role of maternal behavior. Neur
2009; 88
2010; 11
2008; 191
2010; 14
2007; 106
2013; 67
1997; 277
2011; 53
2008; 109
2009; 110
2013; 7
2013; 8
2012; 13
2012a; 153
2012; 12
2012; 249
2003; 550
2009; 13
2010; 26
2006; 20
2009; 10
2009a; 587
2007; 8
2012; 24
2009b; 144
2009; 60
2005; 113
2010; 39
2005; 114
2005; 115
2000; 119
2004; 45
2005; 119
2002; 4
2008; 57
2012; 37
2007; 10
2007; 11
2001; 24
2003; 971
2011; 490
2012; 32
2009b; 141
2011; 7
2012; 109
1993; 57
2003; 105
2013; 73
2007; 152
2013; 74
2005; 6
2009; 102
2005; 1
2005; 131
2002; 114
2011; 15
1999; 83
2009a; 34
2008; 4
2011; 152
2005; 22
2012; 71
2012b; 135
2007; 132
1984; 13
2011; 21
2010; 151
2013; 154
1994; 746
2011; 214
2013; 1279
2010a; 52
2013; 48
2007; 128
1986; 396
2006; 7
1999; 66
1995; 358
2010b; 14
2009; 29
2010; 83
2011; 501
2004; 110
2012; 153
2002; 282
1993; 18
2010; 138
2013; 35
2010; 1349
2009; 145
2009; 8
2001; 2
2009c; 147
2009; 141
2013
2009; 3
2012; 7
2001; 73
1988; 239
2012; 8
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
Walker S.M. (e_1_2_7_94_1) 2013
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
Kwok C.H.T. (e_1_2_7_45_1) 2013
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
Wollgarten‐Hadamek I. (e_1_2_7_105_1) 2011; 15
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
Grunau R.E. (e_1_2_7_30_1) 2010; 26
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – reference: Walker, A.K., Nakamura, T., Byrne, R.J., Naicker, S., Tynan, R.J., Hunter, M. & Hodgson, D.M. (2009a) Neonatal lipopolysaccharide and adult stress exposure predisposes rats to anxiety-like behaviour and blunted corticosterone responses: implications for the double-hit hypothesis. Psychoneuroendocrino., 34, 1515-1525.
– reference: Leslie, A.T.F.S., Akers, K.G., Martinez-Canabal, A., Mello, L.E., Covolan, L. & Guinsburg, R. (2011) Neonatal inflammatory pain increases hippocampal neurogenesis in rat pups. Neurosci. Lett., 501, 78-82.
– reference: Perez, M., Benitez, S.U., Cartarozzi, L.P., del Bel, E., Guimarães, F.S. & Oliveira, A.L.R. (2013) Neuroprotection and reduction of glial reaction by cannabidiol treatment after sciatic nerve transection in neonatal rats. Eur. J. Neurosci., doi: 10.1111/ejn.12341. [Epub ahead of print].
– reference: Lupien, S.J., McEwen, B.S., Gunnar, M.R. & Heim, C. (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci., 10, 434-445.
– reference: Long, L.E., Lind, J., Webster, M. & Weickert, C.S. (2012) Developmental trajectory of the endocannabinoid system in human dorsolateral prefrontal cortex. BMC Neurosci., 13, 87.
– reference: Huang, E.J. & Reichardt, L.F. (2001) Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci., 24, 677-736.
– reference: Ren, K., Anseloni, V., Zou, S.-P., Wade, E., Novikova, S., Ennis, M., Traub, R., Gold, M., Dubner, R. & Lidow, M. (2004) Characterization of basal and re-inflammation-associated long-term alteration in pain responsivity following short-lasting neonatal local inflamatory insult. Pain, 110, 588-596.
– reference: Anand, K.J., Coskun, V., Thrivikraman, K.V., Nemeroff, C.B. & Plotsky, P.M. (1999) Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiol. Behav., 66, 627-637.
– reference: Beggs, S., Alvares, D., Moss, A., Currie, G., Middleton, J., Salter, M.W. & Fitzgerald, M. (2012a) A role for NT-3 in the hyperinnervation of neonatally wounded skin. Pain, 153, 2133-2139.
– reference: Hellman, K.M. & Mason, P. (2012) Opioids disrupt pro-nociceptive modulation mediated by raphe magnus. J. Neurosci. Off. J. Soc. Neurosci., 32, 13668-13678.
– reference: Li, J., Walker, S.M., Fitzgerald, M. & Baccei, M.L. (2009) Activity-dependent modulation of glutamatergic signaling in the developing rat dorsal horn by early tissue injury. J. Neurophysiol., 102, 2208-2219.
– reference: Moriceau, S., Shionoya, K., Jakubs, K. & Sullivan, R.M. (2009) Early-life stress disrupts attachment learning: the role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine. J. Neurosci. Off. J. Soc. Neurosci., 29, 15745-15755.
– reference: Faye, P.M., De Jonckheere, J., Logier, R., Kuissi, E., Jeanne, M., Rakza, T. & Storme, L. (2010) Newborn infant pain assessment using heart rate variability analysis. Clin. J. Pain, 26, 777-782.
– reference: Knaepen, L., Patijn, J., van Kleef, M., Mulder, M., Tibboel, D. & Joosten, E.A.J. (2013) Neonatal repetitive needle pricking: plasticity of the spinal nociceptive circuit and extended postoperative pain in later life. Dev. Neurobiol., 73, 85-97.
– reference: Scholz, J. & Woolf, C.J. (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat. Neurosci., 10, 1361-1368.
– reference: Walker, S.M., Meredith-Middleton, J., Cooke-Yarborough, C. & Fitzgerald, M. (2003) Neonatal inflammation and primary afferent terminal plasticity in the rat dorsal horn. Pain, 105, 185-195.
– reference: Trang, T., Beggs, S. & Salter, M.W. (2011) Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron Glia Biol., 7, 99-108.
– reference: Christianson, J.A., Bielefeldt, K., Malin, S.A. & Davis, B.M. (2010) Neonatal colon insult alters growth factor expression and TRPA1 responses in adult mice. Pain, 151, 540-549.
– reference: LaPrairie, J.L. & Murphy, A.Z. (2009) Neonatal injury alters adult pain sensitivity by increasing opioid tone in the periaqueductal gray. Front. Behav. Neurosci., 3, 31.
– reference: Levine, S. (2002) Regulation of the hypothalamic-pituitary-adrenal axis in the neonatal rat: the role of maternal behavior. Neurotox. Res., 4, 557-564.
– reference: Grunau, R.E., Tu, M.T., Whitfield, M.F., Oberlander, T.F., Weinberg, J., Yu, W., Thiessen, P., Gosse, G. & Scheifele, D. (2010) Cortisol, behavior, and heart rate reactivity to immunization pain at 4 months corrected age in infants born very preterm. Clin. J. Pain, 26, 698-704.
– reference: Peters, J.W.B., Schouw, R., Anand, K.J.S., van Dijk, M., Duivenvoorden, H.J. & Tibboel, D. (2005) Does neonatal surgery lead to increased pain sensitivity in later childhood? Pain, 114, 444-454.
– reference: Victoria, N.C., Inoue, K., Young, L.J. & Murphy, A.Z. (2013) A single neonatal injury induces life-long deficits in response to stress. Dev. Neurosci., 35, 326-327.
– reference: Lin, C. & Al-Chaer, E.D. (2003) Long-term sensitization of primary afferents in adult rats exposed to neonatal colon pain. Brain Res., 971, 73-82.
– reference: Weaver, S.A., Diorio, J. & Meaney, M.J. (2007) Maternal separation leads to persistent reductions in pain sensitivity in female rats. J. Pain Off. J. Am. Pain Soc., 8, 962-969.
– reference: Moss, A., Alvares, D., Meredith-Middleton, J., Robinson, M., Slater, R., Hunt, S.P. & Fitzgerald, M. (2005) Ephrin-A4 inhibits sensory neurite outgrowth and is regulated by neonatal skin wounding. Eur. J. Neurosci., 22, 2413-2421.
– reference: Al-Chaer, E.D., Kawasaki, M. & Pasricha, P.J. (2000) A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology, 119, 1276-1285.
– reference: Wang, J., Gu, C. & Al-Chaer, E.D. (2008) Altered behavior and digestive outcomes in adult male rats primed with minimal colon pain as neonates. Behav. Brain Funct., 4, 28.
– reference: Butler, R.K. & Finn, D.P. (2009) Stress-induced analgesia. Prog. Neurobiol., 88, 184-202.
– reference: Géranton, S.M. (2012) Targeting epigenetic mechanisms for pain relief. Curr. Opin. Pharmacol., 12, 35-41.
– reference: Alvarez, P., Green, P.G. & Levine, J.D. (2013) Stress in the adult rat exacerbates muscle pain induced by early-life stress. Biol. Psychiat., 74, 688-695.
– reference: Davis, E.P., Waffarn, F. & Sandman, C.A. (2011) Prenatal treatment with glucocorticoids sensitizes the hpa axis response to stress among full-term infants. Dev. Psychobiol., 53, 175-183.
– reference: Boissé, L., Spencer, S.J., Mouihate, A., Vergnolle, N. & Pittman, Q.J. (2005) Neonatal immune challenge alters nociception in the adult rat. Pain, 119, 133-141.
– reference: Hohmann, A.G., Neely, M.H., Piña, J. & Nackley, A.G. (2005) Neonatal chronic hind paw inflammation alters sensitization to intradermal capsaicin in adult rats: a behavioral and immunocytochemical study. J. Pain Off. J. Am. Pain Soc., 6, 798-808.
– reference: Meaney, M.J., Aitken, D.H., van Berkel, C., Bhatnagar, S. & Sapolsky, R.M. (1988) Effect of neonatal handling on age-related impairments associated with the hippocampus. Science, 239, 766-768.
– reference: Pryce, C.R. (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. Brain Res. Rev., 57, 596-605.
– reference: Koch, S. & Fitzgerald, M. (2013) Activity dependent development of tactile and nociceptive spinal cord circuits. Ann. NY Acad. Sci., 1279, 97-102.
– reference: Kwok, C.H.T., Devonshire, I.M., Bennett, A.J. & Hathway, G.J. (2013) Postnatal maturation of endogenous opioid systems within the periaqueductal grey and spinal dorsal horn of the rat. Pain, doi: 10.1016/j.pain.2013.09.022. [Epub ahead of print].
– reference: Wollgarten-Hadamek, I., Hohmeister, J., Demirakça, S., Zohsel, K., Flor, H. & Hermann, C. (2009) Do burn injuries during infancy affect pain and sensory sensitivity in later childhood? Pain, 141, 165-172.
– reference: Macrì, S., Chiarotti, F. & Würbel, H. (2008) Maternal separation and maternal care act independently on the development of HPA responses in male rats. Behav. Brain Res., 191, 227-234.
– reference: Beland, B. & Fitzgerald, M. (2001) Influence of peripheral inflammation on the postnatal maturation of primary sensory neuron phenotype in rats. J. Pain, 2, 36-45.
– reference: Slater, R., Worley, A., Fabrizi, L., Roberts, S., Meek, J., Boyd, S. & Fitzgerald, M. (2010b) Evoked potentials generated by noxious stimulation in the human infant brain. Eur. J. Pain Lond. Engl., 14, 321-326.
– reference: Brummelte, S., Grunau, R.E., Chau, V., Poskitt, K.J., Brant, R., Vinall, J., Gover, A., Synnes, A.R. & Miller, S.P. (2012) Procedural pain and brain development in premature newborns. Ann. Neurol., 71, 385-396.
– reference: Vega-Avelaira, D., McKelvey, R., Hathway, G. & Fitzgerald, M. (2012) The emergence of adolescent onset pain hypersensitivity following neonatal nerve injury. Mol. Pain, 8, 30.
– reference: Rüedi-Bettschen, D., Feldon, J. & Pryce, C.R. (2004) Circadian- and temperature-specific effects of early deprivation on rat maternal care and pup development: short-term markers for long-term effects. Dev. Psychobiol., 45, 59-71.
– reference: Xiong, W., Cheng, K., Cui, T., Godlewski, G., Rice, K.C., Xu, Y. & Zhang, L. (2011) Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. Nat. Chem. Biol., 7, 296-303.
– reference: Torsney, C. & Fitzgerald, M. (2003) Spinal dorsal horn cell receptive field size is increased in adult rats following neonatal hindpaw skin injury. J. Physiol., 550, 255-261.
– reference: Wollgarten-Hadamek, I., Hohmeister, J., Zohsel, K., Flor, H. & Hermann, C. (2011) Do school-aged children with burn injuries during infancy show stress-induced activation of pain inhibitory mechanisms? Eur. J. Pain Lond. Engl., 15, e1-e10.
– reference: Khasar, S.G., Dina, O.A., Green, P.G. & Levine, J.D. (2009) Sound stress-induced long-term enhancement of mechanical hyperalgesia in rats is maintained by sympathoadrenal catecholamines. J. Pain Off. J. Am. Pain Soc., 10, 1073-1077.
– reference: Walker, S.J. & Vrana, K.E. (1993) Pituitary corticotroph function during the stress hyporesponsive period in neonatal rats. Neuroendocrinology, 57, 1003-1010.
– reference: Koch, S.C., Tochiki, K.K., Hirschberg, S. & Fitzgerald, M. (2012) C-fiber activity-dependent maturation of glycinergic inhibition in the spinal dorsal horn of the postnatal rat. Proc. Natl. Acad. Sci. USA, 109, 12201-12206.
– reference: Anseloni, V.C.Z., He, F., Novikova, S.I., Turnbach Robbins, M., Lidow, I.A., Ennis, M. & Lidow, M.S. (2005) Alterations in stress-associated behaviors and neurochemical markers in adult rats after neonatal short-lasting local inflammatory insult. Neuroscience, 131, 635-645.
– reference: Fabrizi, L., Slater, R., Worley, A., Meek, J., Boyd, S., Olhede, S. & Fitzgerald, M. (2011) A shift in sensory processing that enables the developing human brain to discriminate touch from pain. Curr. Biol., 21, 1552-1558.
– reference: Rea, K., Roche, M. & Finn, D.P. (2007) Supraspinal modulation of pain by cannabinoids: the role of GABA and glutamate. Brit. J. Pharmacol., 152, 633-648.
– reference: Zwicker, J.G., Grunau, R.E., Adams, E., Chau, V., Brant, R., Poskitt, K.J., Synnes, A. & Miller, S.P. (2013) Score for neonatal acute physiology-II and neonatal pain predict corticospinal tract development in premature newborns. Pediatr. Neurol., 48, e1.
– reference: Walker, S.M., Franck, L.S., Fitzgerald, M., Myles, J., Stocks, J. & Marlow, N. (2009b) Long-term impact of neonatal intensive care and surgery on somatosensory perception in children born extremely preterm. Pain, 141, 79-87.
– reference: Hathway, G.J., Vega-Avelaira, D., Moss, A., Ingram, R. & Fitzgerald, M. (2009b) Brief, low frequency stimulation of rat peripheral C-fibres evokes prolonged microglial-induced central sensitization in adults but not in neonates. Pain, 144, 110-118.
– reference: Roizenblatt, S., Andersen, M.L., Bignotto, M., D'Almeida, V., Martins, P.J.F. & Tufik, S. (2010) Neonatal arthritis disturbs sleep and behaviour of adult rat offspring and their dams. Eur. J. Pain Lond. Engl., 14, 985-991.
– reference: Borsook, D., Becerra, L., Carlezon, W.A. Jr., Shaw, M., Renshaw, P., Elman, I. & Levine, J. (2007) Reward-aversion circuitry in analgesia and pain: implications for psychiatric disorders. Eur. J. Pain Lond. Engl., 11, 7-20.
– reference: Schmelzle-Lubiecki, B.M., Campbell, K.A.A., Howard, R.H., Franck, L. & Fitzgerald, M. (2007) Long-term consequences of early infant injury and trauma upon somatosensory processing. Eur. J. Pain Lond. Engl., 11, 799-809.
– reference: Hathway, G.J., Koch, S., Low, L. & Fitzgerald, M. (2009a) The changing balance of brainstem-spinal cord modulation of pain processing over the first weeks of rat postnatal life. J. Physiol., 587, 2927-2935.
– reference: Chen, J., Evans, A.N., Liu, Y., Honda, M., Saavedra, J.M. & Aguilera, G. (2012) Maternal deprivation in rats is associated with corticotrophin-releasing hormone (CRH) promoter hypomethylation and enhances CRH transcriptional responses to stress in adulthood. J. Neuroendocrinol., 24, 1055-1064.
– reference: Walker, A.K., Hawkins, G., Sominsky, L. & Hodgson, D.M. (2012) Transgenerational transmission of anxiety induced by neonatal exposure to lipopolysaccharide: implications for male and female germ lines. Psychoneuroendocrino., 37, 1320-1335.
– reference: Slater, R., Fabrizi, L., Worley, A., Meek, J., Boyd, S. & Fitzgerald, M. (2010a) Premature infants display increased noxious-evoked neuronal activity in the brain compared with healthy age-matched term-born infants. NeuroImage, 52, 583-589.
– reference: Randich, A., Uzzell, T., DeBerry, J.J. & Ness, T.J. (2006) Neonatal urinary bladder inflammation produces adult bladder hypersensitivity. J. Pain Off. J. Am. Pain Soc., 7, 469-479.
– reference: Plotsky, P.M. & Meaney, M.J. (1993) Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res. Mol. Brain Res., 18, 195-200.
– reference: De Lima, J., Alvares, D., Hatch, D.J. & Fitzgerald, M. (1999) Sensory hyperinnervation after neonatal skin wounding: effect of bupivacaine sciatic nerve block. Brit. J. Anaesth., 83, 662-664.
– reference: DeBerry, J., Randich, A., Shaffer, A.D., Robbins, M.T. & Ness, T.J. (2010) Neonatal bladder inflammation produces functional changes and alters neuropeptide content in bladders of adult female rats. J. Pain Off. J. Am. Pain Soc., 11, 247-255.
– reference: Zhang, Y.-H., Wang, X.-M. & Ennis, M. (2010) Effects of neonatal inflammation on descending modulation from the rostroventromedial medulla. Brain Res. Bull., 83, 16-22.
– reference: Woolf, C.J. (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain, 152, S2-S15.
– reference: Ririe, D.G., Bremner, L.R. & Fitzgerald, M. (2008) Comparison of the immediate effects of surgical incision on dorsal horn neuronal receptive field size and responses during postnatal development. Anesthesiology, 109, 698-706.
– reference: Buwembo, A., Long, H. & Walker, C.-D. (2012) Participation of endocannabinoids in rapid suppression of stress responses by glucocorticoids in neonates. Neuroscience, 249, 154-161.
– reference: Hathway, G.J., Vega-Avelaira, D. & Fitzgerald, M. (2012) A critical period in the supraspinal control of pain: opioid-dependent changes in brainstem rostroventral medulla function in preadolescence. Pain, 153, 775-783.
– reference: Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, D., Plotsky, P.M. & Meaney, M.J. (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659-1662.
– reference: Ren, K., Novikova, S.I., He, F., Dubner, R. & Lidow, M.S. (2005) Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats. Mol. Pain, 1, 27.
– reference: Sapolsky, R.M. & Meaney, M.J. (1986) Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Res., 396, 64-76.
– reference: Spencer, S.J., Boissé, L., Mouihate, A. & Pittman, Q.J. (2006) Long term alterations in neuroimmune responses of female rats after neonatal exposure to lipopolysaccharide. Brain Behav. Immun., 20, 325-330.
– reference: Howard, R.F., Walker, S.M., Michael Mota, P. & Fitzgerald, M. (2005) The ontogeny of neuropathic pain: postnatal onset of mechanical allodynia in rat spared nerve injury (SNI) and chronic constriction injury (CCI) models. Pain, 115, 382-389.
– reference: Green, P.G., Chen, X., Alvarez, P., Ferrari, L.F. & Levine, J.D. (2011) Early-life stress produces muscle hyperalgesia and nociceptor sensitization in the adult rat. Pain, 152, 2549-2556.
– reference: Beggs, S., Currie, G., Salter, M.W., Fitzgerald, M. & Walker, S.M. (2012b) Priming of adult pain responses by neonatal pain experience: maintenance by central neuroimmune activity. Brain J. Neurol., 135, 404-417.
– reference: LaPrairie, J.L. & Murphy, A.Z. (2007) Female rats are more vulnerable to the long-term consequences of neonatal inflammatory injury. Pain, 132(Suppl 1), S124-S133.
– reference: Negrigo, A., Medeiros, M., Guinsburg, R. & Covolan, L. (2011) Long-term gender behavioral vulnerability after nociceptive neonatal formalin stimulation in rats. Neurosci. Lett., 490, 196-199.
– reference: Vinall, J., Miller, S.P., Chau, V., Brummelte, S., Synnes, A.R. & Grunau, R.E. (2012) Neonatal pain in relation to postnatal growth in infants born very preterm. Pain, 153, 1374-1381.
– reference: Reynolds, M.L. & Fitzgerald, M. (1995) Long-term sensory hyperinnervation following neonatal skin wounds. J. Comp. Neurol., 358, 487-498.
– reference: Chu, Y.-C., Chan, K.-H., Tsou, M.-Y., Lin, S.-M., Hsieh, Y.-C. & Tao, Y.-X. (2007) Mechanical pain hypersensitivity after incisional surgery is enhanced in rats subjected to neonatal peripheral inflammation: effects of N-methyl-D-aspartate receptor antagonists. Anesthesiology, 106, 1204-1212.
– reference: Li, J., Blankenship, M.L. & Baccei, M.L. (2013) Deficits in glycinergic inhibition within adult spinal nociceptive circuits after neonatal tissue damage. Pain, 154, 1129-1139.
– reference: Fitzgerald, M. & Gibson, S. (1984) The postnatal physiological and neurochemical development of peripheral sensory C fibres. Neuroscience, 13, 933-944.
– reference: Gosselin, R.D., O'Connor, R.M., Tramullas, M., Julio-Pieper, M., Dinan, T.G. & Cryan, J.F. (2010) Riluzole normalizes early-life stress-induced visceral hypersensitivity in rats: role of spinal glutamate reuptake mechanisms. Gastroenterology, 138, 2418-2425.
– reference: Wen, Y.-R., Suter, M.R., Ji, R.-R., Yeh, G.-C., Wu, Y.-S., Wang, K.-C., Kohno, T., Sun, W.-Z. & Wang, C.-C. (2009) Activation of p38 mitogen-activated protein kinase in spinal microglia contributes to incision-induced mechanical allodynia. Anesthesiology, 110, 155-165.
– reference: Zavitsanou, K., Dalton, V.S., Walker, A.K., Weickert, C.S., Sominsky, L. & Hodgson, D.M. (2013) Neonatal lipopolysaccharide treatment has long-term effects on monoaminergic and cannabinoid receptors in the rat. Synapse, 67, 290-299.
– reference: Bhutta, A.T., Rovnaghi, C., Simpson, P.M., Gossett, J.M., Scalzo, F.M. & Anand, K.J. (2001) Interactions of inflammatory pain and morphine in infant rats: long-term behavioral effects. Physiol. Behav., 73, 51-58.
– reference: Hohmeister, J., Demirakça, S., Zohsel, K., Flor, H. & Hermann, C. (2009) Responses to pain in school-aged children with experience in a neonatal intensive care unit: cognitive aspects and maternal influences. Eur. J. Pain, 13, 94-101.
– reference: Moss, A., Beggs, S., Vega-Avelaira, D., Costigan, M., Hathway, G.J., Salter, M.W. & Fitzgerald, M. (2007) Spinal microglia and neuropathic pain in young rats. Pain, 128, 215-224.
– reference: Pechtel, P. & Pizzagalli, D.A. (2011) Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacology, 214, 55-70.
– reference: Heinricher, M.M., Tavares, I., Leith, J.L. & Lumb, B.M. (2009) Descending control of nociception: specificity, recruitment and plasticity. Brain Res. Rev., 60, 214-225.
– reference: Spencer, S.J. (2013) Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress. Front. Neurosci., 7, 109.
– reference: Guindon, J. & Hohmann, A.G. (2009) The endocannabinoid system and pain. CNS Neurol. Disord.-Dr., 8, 403-421.
– reference: Low, L.A. & Fitzgerald, M. (2012) Acute pain and a motivational pathway in adult rats: influence of early life pain experience. PLoS ONE, 7, e34316.
– reference: Papaioannou, A., Dafni, U., Alikaridis, F., Bolaris, S. & Stylianopoulou, F. (2002) Effects of neonatal handling on basal and stress-induced monoamine levels in the male and female rat brain. Neuroscience, 114, 195-206.
– reference: Suárez, J., Rivera, P., Llorente, R., Romero-Zerbo, S.Y., Bermúdez-Silva, F.J., de Fonseca, F.R. & Viveros, M.-P. (2010) Early maternal deprivation induces changes on the expression of 2-AG biosynthesis and degradation enzymes in neonatal rat hippocampus. Brain Res., 1349, 162-173.
– reference: Costigan, M., Moss, A., Latremoliere, A., Johnston, C., Verma-Gandhu, M., Herbert, T.A., Barrett, L., Brenner, G.J., Vardeh, D., Woolf, C.J. & Fitzgerald, M. (2009) T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J. Neurosci. Off. J. Soc. Neurosci., 29, 14415-14422.
– reference: Levine, S. (1994) The ontogeny of the hypothalamic-pituitary-adrenal axis. The influence of maternal factorsa. Ann. NY Acad. Sci., 746, 275-288.
– reference: Staud, R., Nagel, S., Robinson, M.E. & Price, D.D. (2009) Enhanced central pain processing of fibromyalgia patients is maintained by muscle afferent input: a randomized, double-blind, placebo-controlled study. Pain, 145, 96-104.
– reference: Mohamad, O., Chen, D., Zhang, L., Hofmann, C., Wei, L. & Yu, S.P. (2011) Erythropoietin reduces neuronal cell death and hyperalgesia induced by peripheral inflammatory pain in neonatal rats. Mol. Pain, 7, 51.
– reference: Walker, S.M., Tochiki, K.K. & Fitzgerald, M. (2009c) Hindpaw incision in early life increases the hyperalgesic response to repeat surgical injury: critical period and dependence on initial afferent activity. Pain, 147, 99-106.
– reference: Cornelissen, L., Fabrizi, L., Patten, D., Worley, A., Meek, J., Boyd, S., Slater, R. & Fitzgerald, M. (2013) Postnatal temporal, spatial and modality tuning of nociceptive cutaneous flexion reflexes in human infants. PLoS ONE, 8, e76470.
– reference: Sternberg, W.F., Scorr, L., Smith, L.D., Ridgway, C.G. & Stout, M. (2005) Long-term effects of neonatal surgery on adulthood pain behavior. Pain, 113, 347-353.
– reference: Coutinho, S.V., Plotsky, P.M., Sablad, M., Miller, J.C., Zhou, H., Bayati, A.I., McRoberts, J.A. & Mayer, E.A. (2002) Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat. Am. J. Physiol.-Gastr. L., 282, G307-G316.
– reference: Zavitsanou, K., Dalton, V.S., Wang, H., Newson, P. & Chahl, L.A. (2010) Receptor changes in brain tissue of rats treated as neonates with capsaicin. J. Chem. Neuroanat., 39, 248-255.
– volume: 154
  start-page: 1129
  year: 2013
  end-page: 1139
  article-title: Deficits in glycinergic inhibition within adult spinal nociceptive circuits after neonatal tissue damage
  publication-title: Pain
– volume: 48
  start-page: e1
  year: 2013
  article-title: Score for neonatal acute physiology‐II and neonatal pain predict corticospinal tract development in premature newborns
  publication-title: Pediatr. Neurol.
– volume: 239
  start-page: 766
  year: 1988
  end-page: 768
  article-title: Effect of neonatal handling on age‐related impairments associated with the hippocampus
  publication-title: Science
– volume: 113
  start-page: 347
  year: 2005
  end-page: 353
  article-title: Long‐term effects of neonatal surgery on adulthood pain behavior
  publication-title: Pain
– volume: 73
  start-page: 51
  year: 2001
  end-page: 58
  article-title: Interactions of inflammatory pain and morphine in infant rats: long‐term behavioral effects
  publication-title: Physiol. Behav.
– volume: 8
  start-page: 403
  year: 2009
  end-page: 421
  article-title: The endocannabinoid system and pain
  publication-title: CNS Neurol. Disord.‐Dr.
– volume: 13
  start-page: 94
  year: 2009
  end-page: 101
  article-title: Responses to pain in school‐aged children with experience in a neonatal intensive care unit: cognitive aspects and maternal influences
  publication-title: Eur. J. Pain
– volume: 26
  start-page: 777
  year: 2010
  end-page: 782
  article-title: Newborn infant pain assessment using heart rate variability analysis
  publication-title: Clin. J. Pain
– volume: 971
  start-page: 73
  year: 2003
  end-page: 82
  article-title: Long‐term sensitization of primary afferents in adult rats exposed to neonatal colon pain
  publication-title: Brain Res.
– volume: 71
  start-page: 385
  year: 2012
  end-page: 396
  article-title: Procedural pain and brain development in premature newborns
  publication-title: Ann. Neurol.
– volume: 11
  start-page: 7
  year: 2007
  end-page: 20
  article-title: Reward‐aversion circuitry in analgesia and pain: implications for psychiatric disorders
  publication-title: Eur. J. Pain Lond. Engl.
– volume: 106
  start-page: 1204
  year: 2007
  end-page: 1212
  article-title: Mechanical pain hypersensitivity after incisional surgery is enhanced in rats subjected to neonatal peripheral inflammation: effects of N‐methyl‐D‐aspartate receptor antagonists
  publication-title: Anesthesiology
– volume: 4
  start-page: 28
  year: 2008
  article-title: Altered behavior and digestive outcomes in adult male rats primed with minimal colon pain as neonates
  publication-title: Behav. Brain Funct.
– volume: 7
  start-page: 296
  year: 2011
  end-page: 303
  article-title: Cannabinoid potentiation of glycine receptors contributes to cannabis‐induced analgesia
  publication-title: Nat. Chem. Biol.
– volume: 152
  start-page: S2
  year: 2011
  end-page: S15
  article-title: Central sensitization: implications for the diagnosis and treatment of pain
  publication-title: Pain
– volume: 1
  start-page: 27
  year: 2005
  article-title: Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats
  publication-title: Mol. Pain
– volume: 14
  start-page: 321
  year: 2010b
  end-page: 326
  article-title: Evoked potentials generated by noxious stimulation in the human infant brain
  publication-title: Eur. J. Pain Lond. Engl.
– volume: 39
  start-page: 248
  year: 2010
  end-page: 255
  article-title: Receptor changes in brain tissue of rats treated as neonates with capsaicin
  publication-title: J. Chem. Neuroanat.
– volume: 7
  start-page: e34316
  year: 2012
  article-title: Acute pain and a motivational pathway in adult rats: influence of early life pain experience
  publication-title: PLoS ONE
– volume: 21
  start-page: 1552
  year: 2011
  end-page: 1558
  article-title: A shift in sensory processing that enables the developing human brain to discriminate touch from pain
  publication-title: Curr. Biol.
– volume: 60
  start-page: 214
  year: 2009
  end-page: 225
  article-title: Descending control of nociception: specificity, recruitment and plasticity
  publication-title: Brain Res. Rev.
– volume: 29
  start-page: 15745
  year: 2009
  end-page: 15755
  article-title: Early‐life stress disrupts attachment learning: the role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine
  publication-title: J. Neurosci. Off. J. Soc. Neurosci.
– volume: 11
  start-page: 799
  year: 2007
  end-page: 809
  article-title: Long‐term consequences of early infant injury and trauma upon somatosensory processing
  publication-title: Eur. J. Pain Lond. Engl.
– volume: 587
  start-page: 2927
  year: 2009a
  end-page: 2935
  article-title: The changing balance of brainstem–spinal cord modulation of pain processing over the first weeks of rat postnatal life
  publication-title: J. Physiol.
– volume: 7
  start-page: 109
  year: 2013
  article-title: Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress
  publication-title: Front. Neurosci.
– volume: 153
  start-page: 2133
  year: 2012a
  end-page: 2139
  article-title: A role for NT‐3 in the hyperinnervation of neonatally wounded skin
  publication-title: Pain
– volume: 144
  start-page: 110
  year: 2009b
  end-page: 118
  article-title: Brief, low frequency stimulation of rat peripheral C‐fibres evokes prolonged microglial‐induced central sensitization in adults but not in neonates
  publication-title: Pain
– volume: 73
  start-page: 85
  year: 2013
  end-page: 97
  article-title: Neonatal repetitive needle pricking: plasticity of the spinal nociceptive circuit and extended postoperative pain in later life
  publication-title: Dev. Neurobiol.
– volume: 2
  start-page: 36
  year: 2001
  end-page: 45
  article-title: Influence of peripheral inflammation on the postnatal maturation of primary sensory neuron phenotype in rats
  publication-title: J. Pain
– volume: 132
  start-page: S124
  issue: Suppl 1
  year: 2007
  end-page: S133
  article-title: Female rats are more vulnerable to the long‐term consequences of neonatal inflammatory injury
  publication-title: Pain
– volume: 45
  start-page: 59
  year: 2004
  end-page: 71
  article-title: Circadian‐ and temperature‐specific effects of early deprivation on rat maternal care and pup development: short‐term markers for long‐term effects
  publication-title: Dev. Psychobiol.
– start-page: 20
  year: 2013
  end-page: 29
– volume: 10
  start-page: 434
  year: 2009
  end-page: 445
  article-title: Effects of stress throughout the lifespan on the brain, behaviour and cognition
  publication-title: Nat. Rev. Neurosci.
– volume: 24
  start-page: 1055
  year: 2012
  end-page: 1064
  article-title: Maternal deprivation in rats is associated with corticotrophin‐releasing hormone (CRH) promoter hypomethylation and enhances CRH transcriptional responses to stress in adulthood
  publication-title: J. Neuroendocrinol.
– volume: 214
  start-page: 55
  year: 2011
  end-page: 70
  article-title: Effects of early life stress on cognitive and affective function: an integrated review of human literature
  publication-title: Psychopharmacology
– volume: 3
  start-page: 31
  year: 2009
  article-title: Neonatal injury alters adult pain sensitivity by increasing opioid tone in the periaqueductal gray
  publication-title: Front. Behav. Neurosci.
– volume: 52
  start-page: 583
  year: 2010a
  end-page: 589
  article-title: Premature infants display increased noxious‐evoked neuronal activity in the brain compared with healthy age‐matched term‐born infants
  publication-title: NeuroImage
– volume: 88
  start-page: 184
  year: 2009
  end-page: 202
  article-title: Stress‐induced analgesia
  publication-title: Prog. Neurobiol.
– volume: 131
  start-page: 635
  year: 2005
  end-page: 645
  article-title: Alterations in stress‐associated behaviors and neurochemical markers in adult rats after neonatal short‐lasting local inflammatory insult
  publication-title: Neuroscience
– volume: 24
  start-page: 677
  year: 2001
  end-page: 736
  article-title: Neurotrophins: roles in neuronal development and function
  publication-title: Annu. Rev. Neurosci.
– volume: 550
  start-page: 255
  year: 2003
  end-page: 261
  article-title: Spinal dorsal horn cell receptive field size is increased in adult rats following neonatal hindpaw skin injury
  publication-title: J. Physiol.
– volume: 114
  start-page: 195
  year: 2002
  end-page: 206
  article-title: Effects of neonatal handling on basal and stress‐induced monoamine levels in the male and female rat brain
  publication-title: Neuroscience
– volume: 114
  start-page: 444
  year: 2005
  end-page: 454
  article-title: Does neonatal surgery lead to increased pain sensitivity in later childhood?
  publication-title: Pain
– volume: 7
  start-page: 51
  year: 2011
  article-title: Erythropoietin reduces neuronal cell death and hyperalgesia induced by peripheral inflammatory pain in neonatal rats
  publication-title: Mol. Pain
– volume: 11
  start-page: 247
  year: 2010
  end-page: 255
  article-title: Neonatal bladder inflammation produces functional changes and alters neuropeptide content in bladders of adult female rats
  publication-title: J. Pain Off. J. Am. Pain Soc.
– volume: 282
  start-page: G307
  year: 2002
  end-page: G316
  article-title: Neonatal maternal separation alters stress‐induced responses to viscerosomatic nociceptive stimuli in rat
  publication-title: Am. J. Physiol.‐Gastr. L.
– volume: 26
  start-page: 698
  year: 2010
  end-page: 704
  article-title: Cortisol, behavior, and heart rate reactivity to immunization pain at 4 months corrected age in infants born very preterm
  publication-title: Clin. J. Pain
– volume: 119
  start-page: 1276
  year: 2000
  end-page: 1285
  article-title: A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development
  publication-title: Gastroenterology
– volume: 37
  start-page: 1320
  year: 2012
  end-page: 1335
  article-title: Transgenerational transmission of anxiety induced by neonatal exposure to lipopolysaccharide: implications for male and female germ lines
  publication-title: Psychoneuroendocrino.
– volume: 57
  start-page: 1003
  year: 1993
  end-page: 1010
  article-title: Pituitary corticotroph function during the stress hyporesponsive period in neonatal rats
  publication-title: Neuroendocrinology
– volume: 4
  start-page: 557
  year: 2002
  end-page: 564
  article-title: Regulation of the hypothalamic‐pituitary‐adrenal axis in the neonatal rat: the role of maternal behavior
  publication-title: Neurotox. Res.
– volume: 35
  start-page: 326
  year: 2013
  end-page: 327
  article-title: A single neonatal injury induces life‐long deficits in response to stress
  publication-title: Dev. Neurosci.
– year: 2013
  article-title: Neuroprotection and reduction of glial reaction by cannabidiol treatment after sciatic nerve transection in neonatal rats
  publication-title: Eur. J. Neurosci.
– volume: 14
  start-page: 985
  year: 2010
  end-page: 991
  article-title: Neonatal arthritis disturbs sleep and behaviour of adult rat offspring and their dams
  publication-title: Eur. J. Pain Lond. Engl.
– volume: 249
  start-page: 154
  year: 2012
  end-page: 161
  article-title: Participation of endocannabinoids in rapid suppression of stress responses by glucocorticoids in neonates
  publication-title: Neuroscience
– volume: 153
  start-page: 1374
  year: 2012
  end-page: 1381
  article-title: Neonatal pain in relation to postnatal growth in infants born very preterm
  publication-title: Pain
– volume: 83
  start-page: 662
  year: 1999
  end-page: 664
  article-title: Sensory hyperinnervation after neonatal skin wounding: effect of bupivacaine sciatic nerve block
  publication-title: Brit. J. Anaesth.
– volume: 8
  start-page: e76470
  year: 2013
  article-title: Postnatal temporal, spatial and modality tuning of nociceptive cutaneous flexion reflexes in human infants
  publication-title: PLoS ONE
– volume: 7
  start-page: 99
  year: 2011
  end-page: 108
  article-title: Brain‐derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain
  publication-title: Neuron Glia Biol.
– volume: 490
  start-page: 196
  year: 2011
  end-page: 199
  article-title: Long‐term gender behavioral vulnerability after nociceptive neonatal formalin stimulation in rats
  publication-title: Neurosci. Lett.
– volume: 153
  start-page: 775
  year: 2012
  end-page: 783
  article-title: A critical period in the supraspinal control of pain: opioid‐dependent changes in brainstem rostroventral medulla function in preadolescence
  publication-title: Pain
– volume: 6
  start-page: 798
  year: 2005
  end-page: 808
  article-title: Neonatal chronic hind paw inflammation alters sensitization to intradermal capsaicin in adult rats: a behavioral and immunocytochemical study
  publication-title: J. Pain Off. J. Am. Pain Soc.
– volume: 501
  start-page: 78
  year: 2011
  end-page: 82
  article-title: Neonatal inflammatory pain increases hippocampal neurogenesis in rat pups
  publication-title: Neurosci. Lett.
– volume: 138
  start-page: 2418
  year: 2010
  end-page: 2425
  article-title: Riluzole normalizes early‐life stress‐induced visceral hypersensitivity in rats: role of spinal glutamate reuptake mechanisms
  publication-title: Gastroenterology
– volume: 109
  start-page: 698
  year: 2008
  end-page: 706
  article-title: Comparison of the immediate effects of surgical incision on dorsal horn neuronal receptive field size and responses during postnatal development
  publication-title: Anesthesiology
– volume: 191
  start-page: 227
  year: 2008
  end-page: 234
  article-title: Maternal separation and maternal care act independently on the development of HPA responses in male rats
  publication-title: Behav. Brain Res.
– volume: 32
  start-page: 13668
  year: 2012
  end-page: 13678
  article-title: Opioids disrupt pro‐nociceptive modulation mediated by raphe magnus
  publication-title: J. Neurosci. Off. J. Soc. Neurosci.
– volume: 151
  start-page: 540
  year: 2010
  end-page: 549
  article-title: Neonatal colon insult alters growth factor expression and TRPA1 responses in adult mice
  publication-title: Pain
– volume: 119
  start-page: 133
  year: 2005
  end-page: 141
  article-title: Neonatal immune challenge alters nociception in the adult rat
  publication-title: Pain
– volume: 12
  start-page: 35
  year: 2012
  end-page: 41
  article-title: Targeting epigenetic mechanisms for pain relief
  publication-title: Curr. Opin. Pharmacol.
– volume: 109
  start-page: 12201
  year: 2012
  end-page: 12206
  article-title: C‐fiber activity‐dependent maturation of glycinergic inhibition in the spinal dorsal horn of the postnatal rat
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 53
  start-page: 175
  year: 2011
  end-page: 183
  article-title: Prenatal treatment with glucocorticoids sensitizes the hpa axis response to stress among full‐term infants
  publication-title: Dev. Psychobiol.
– volume: 145
  start-page: 96
  year: 2009
  end-page: 104
  article-title: Enhanced central pain processing of fibromyalgia patients is maintained by muscle afferent input: a randomized, double‐blind, placebo‐controlled study
  publication-title: Pain
– volume: 746
  start-page: 275
  year: 1994
  end-page: 288
  article-title: The ontogeny of the hypothalamic‐pituitary‐adrenal axis. The influence of maternal factorsa
  publication-title: Ann. NY Acad. Sci.
– volume: 57
  start-page: 596
  year: 2008
  end-page: 605
  article-title: Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter‐species and intra‐species differences
  publication-title: Brain Res. Rev.
– volume: 105
  start-page: 185
  year: 2003
  end-page: 195
  article-title: Neonatal inflammation and primary afferent terminal plasticity in the rat dorsal horn
  publication-title: Pain
– volume: 358
  start-page: 487
  year: 1995
  end-page: 498
  article-title: Long‐term sensory hyperinnervation following neonatal skin wounds
  publication-title: J. Comp. Neurol.
– volume: 102
  start-page: 2208
  year: 2009
  end-page: 2219
  article-title: Activity‐dependent modulation of glutamatergic signaling in the developing rat dorsal horn by early tissue injury
  publication-title: J. Neurophysiol.
– volume: 20
  start-page: 325
  year: 2006
  end-page: 330
  article-title: Long term alterations in neuroimmune responses of female rats after neonatal exposure to lipopolysaccharide
  publication-title: Brain Behav. Immun.
– volume: 66
  start-page: 627
  year: 1999
  end-page: 637
  article-title: Long‐term behavioral effects of repetitive pain in neonatal rat pups
  publication-title: Physiol. Behav.
– year: 2013
  article-title: Postnatal maturation of endogenous opioid systems within the periaqueductal grey and spinal dorsal horn of the rat
  publication-title: Pain
– volume: 128
  start-page: 215
  year: 2007
  end-page: 224
  article-title: Spinal microglia and neuropathic pain in young rats
  publication-title: Pain
– volume: 277
  start-page: 1659
  year: 1997
  end-page: 1662
  article-title: Maternal care, hippocampal glucocorticoid receptors, and hypothalamic‐pituitary‐adrenal responses to stress
  publication-title: Science
– volume: 15
  start-page: e1
  year: 2011
  end-page: e10
  article-title: Do school‐aged children with burn injuries during infancy show stress‐induced activation of pain inhibitory mechanisms?
  publication-title: Eur. J. Pain Lond. Engl.
– volume: 83
  start-page: 16
  year: 2010
  end-page: 22
  article-title: Effects of neonatal inflammation on descending modulation from the rostroventromedial medulla
  publication-title: Brain Res. Bull.
– volume: 110
  start-page: 155
  year: 2009
  end-page: 165
  article-title: Activation of p38 mitogen‐activated protein kinase in spinal microglia contributes to incision‐induced mechanical allodynia
  publication-title: Anesthesiology
– volume: 22
  start-page: 2413
  year: 2005
  end-page: 2421
  article-title: Ephrin‐A4 inhibits sensory neurite outgrowth and is regulated by neonatal skin wounding
  publication-title: Eur. J. Neurosci.
– volume: 152
  start-page: 2549
  year: 2011
  end-page: 2556
  article-title: Early‐life stress produces muscle hyperalgesia and nociceptor sensitization in the adult rat
  publication-title: Pain
– volume: 34
  start-page: 1515
  year: 2009a
  end-page: 1525
  article-title: Neonatal lipopolysaccharide and adult stress exposure predisposes rats to anxiety‐like behaviour and blunted corticosterone responses: implications for the double‐hit hypothesis
  publication-title: Psychoneuroendocrino.
– volume: 13
  start-page: 933
  year: 1984
  end-page: 944
  article-title: The postnatal physiological and neurochemical development of peripheral sensory C fibres
  publication-title: Neuroscience
– volume: 135
  start-page: 404
  year: 2012b
  end-page: 417
  article-title: Priming of adult pain responses by neonatal pain experience: maintenance by central neuroimmune activity
  publication-title: Brain J. Neurol.
– volume: 147
  start-page: 99
  year: 2009c
  end-page: 106
  article-title: Hindpaw incision in early life increases the hyperalgesic response to repeat surgical injury: critical period and dependence on initial afferent activity
  publication-title: Pain
– volume: 13
  start-page: 87
  year: 2012
  article-title: Developmental trajectory of the endocannabinoid system in human dorsolateral prefrontal cortex
  publication-title: BMC Neurosci.
– volume: 67
  start-page: 290
  year: 2013
  end-page: 299
  article-title: Neonatal lipopolysaccharide treatment has long‐term effects on monoaminergic and cannabinoid receptors in the rat
  publication-title: Synapse
– volume: 7
  start-page: 469
  year: 2006
  end-page: 479
  article-title: Neonatal urinary bladder inflammation produces adult bladder hypersensitivity
  publication-title: J. Pain Off. J. Am. Pain Soc.
– volume: 8
  start-page: 962
  year: 2007
  end-page: 969
  article-title: Maternal separation leads to persistent reductions in pain sensitivity in female rats
  publication-title: J. Pain Off. J. Am. Pain Soc.
– volume: 29
  start-page: 14415
  year: 2009
  end-page: 14422
  article-title: T‐cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain‐like hypersensitivity
  publication-title: J. Neurosci. Off. J. Soc. Neurosci.
– volume: 152
  start-page: 633
  year: 2007
  end-page: 648
  article-title: Supraspinal modulation of pain by cannabinoids: the role of GABA and glutamate
  publication-title: Brit. J. Pharmacol.
– volume: 110
  start-page: 588
  year: 2004
  end-page: 596
  article-title: Characterization of basal and re‐inflammation‐associated long‐term alteration in pain responsivity following short‐lasting neonatal local inflamatory insult
  publication-title: Pain
– volume: 1279
  start-page: 97
  year: 2013
  end-page: 102
  article-title: Activity dependent development of tactile and nociceptive spinal cord circuits
  publication-title: Ann. NY Acad. Sci.
– volume: 1349
  start-page: 162
  year: 2010
  end-page: 173
  article-title: Early maternal deprivation induces changes on the expression of 2‐AG biosynthesis and degradation enzymes in neonatal rat hippocampus
  publication-title: Brain Res.
– volume: 141
  start-page: 79
  year: 2009b
  end-page: 87
  article-title: Long‐term impact of neonatal intensive care and surgery on somatosensory perception in children born extremely preterm
  publication-title: Pain
– volume: 115
  start-page: 382
  year: 2005
  end-page: 389
  article-title: The ontogeny of neuropathic pain: postnatal onset of mechanical allodynia in rat spared nerve injury (SNI) and chronic constriction injury (CCI) models
  publication-title: Pain
– volume: 10
  start-page: 1073
  year: 2009
  end-page: 1077
  article-title: Sound stress‐induced long‐term enhancement of mechanical hyperalgesia in rats is maintained by sympathoadrenal catecholamines
  publication-title: J. Pain Off. J. Am. Pain Soc.
– volume: 10
  start-page: 1361
  year: 2007
  end-page: 1368
  article-title: The neuropathic pain triad: neurons, immune cells and glia
  publication-title: Nat. Neurosci.
– volume: 18
  start-page: 195
  year: 1993
  end-page: 200
  article-title: Early, postnatal experience alters hypothalamic corticotropin‐releasing factor (CRF) mRNA, median eminence CRF content and stress‐induced release in adult rats
  publication-title: Brain Res. Mol. Brain Res.
– volume: 141
  start-page: 165
  year: 2009
  end-page: 172
  article-title: Do burn injuries during infancy affect pain and sensory sensitivity in later childhood?
  publication-title: Pain
– volume: 396
  start-page: 64
  year: 1986
  end-page: 76
  article-title: Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period
  publication-title: Brain Res.
– volume: 74
  start-page: 688
  year: 2013
  end-page: 695
  article-title: Stress in the adult rat exacerbates muscle pain induced by early‐life stress
  publication-title: Biol. Psychiat.
– volume: 8
  start-page: 30
  year: 2012
  article-title: The emergence of adolescent onset pain hypersensitivity following neonatal nerve injury
  publication-title: Mol. Pain
– ident: e_1_2_7_108_1
  doi: 10.1016/j.jchemneu.2010.01.004
– ident: e_1_2_7_63_1
  doi: 10.1016/j.pain.2006.09.018
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jpain.2009.07.010
– start-page: 20
  volume-title: Oxford Textbook of Paediatric Pain
  year: 2013
  ident: e_1_2_7_94_1
  doi: 10.1093/med/9780199642656.003.0003
– ident: e_1_2_7_5_1
  doi: 10.1016/j.neuroscience.2004.11.039
– ident: e_1_2_7_65_1
  doi: 10.1016/S0306-4522(02)00129-X
– ident: e_1_2_7_99_1
  doi: 10.1016/j.pain.2009.08.017
– ident: e_1_2_7_26_1
  doi: 10.1016/0306-4522(84)90107-6
– volume: 26
  start-page: 698
  year: 2010
  ident: e_1_2_7_30_1
  article-title: Cortisol, behavior, and heart rate reactivity to immunization pain at 4 months corrected age in infants born very preterm
  publication-title: Clin. J. Pain
  doi: 10.1097/AJP.0b013e3181e5bb00
– ident: e_1_2_7_70_1
  doi: 10.1016/j.brainresrev.2007.08.005
– ident: e_1_2_7_68_1
  doi: 10.1016/j.pain.2005.01.014
– ident: e_1_2_7_27_1
  doi: 10.1016/j.coph.2011.10.012
– ident: e_1_2_7_38_1
  doi: 10.1016/j.ejpain.2008.03.004
– ident: e_1_2_7_67_1
  doi: 10.1111/ejn.12341
– ident: e_1_2_7_92_1
  doi: 10.1159/000351121
– ident: e_1_2_7_25_1
  doi: 10.1097/AJP.0b013e3181ed1058
– ident: e_1_2_7_89_1
  doi: 10.1113/jphysiol.2003.043661
– ident: e_1_2_7_8_1
  doi: 10.1054/jpai.2001.17697
– ident: e_1_2_7_46_1
  doi: 10.1016/j.pain.2007.08.010
– ident: e_1_2_7_83_1
  doi: 10.1016/j.ejpain.2009.05.005
– ident: e_1_2_7_96_1
  doi: 10.1016/S0304-3959(03)00201-X
– ident: e_1_2_7_51_1
  doi: 10.1152/jn.00520.2009
– ident: e_1_2_7_76_1
  doi: 10.1097/ALN.0b013e3181870a32
– ident: e_1_2_7_95_1
  doi: 10.1159/000126464
– ident: e_1_2_7_104_1
  doi: 10.1016/j.pain.2008.11.008
– ident: e_1_2_7_58_1
  doi: 10.1016/j.bbr.2008.03.031
– volume: 15
  start-page: e1
  year: 2011
  ident: e_1_2_7_105_1
  article-title: Do school‐aged children with burn injuries during infancy show stress‐induced activation of pain inhibitory mechanisms?
  publication-title: Eur. J. Pain Lond. Engl.
– ident: e_1_2_7_98_1
  doi: 10.1016/j.pain.2008.10.012
– ident: e_1_2_7_24_1
  doi: 10.1016/j.cub.2011.08.010
– ident: e_1_2_7_88_1
  doi: 10.1016/j.brainres.2010.06.042
– ident: e_1_2_7_93_1
  doi: 10.1016/j.pain.2012.02.007
– ident: e_1_2_7_13_1
  doi: 10.1016/j.pneurobio.2009.04.003
– ident: e_1_2_7_29_1
  doi: 10.1016/j.pain.2011.07.021
– ident: e_1_2_7_44_1
  doi: 10.1073/pnas.1118960109
– ident: e_1_2_7_64_1
  doi: 10.1016/j.neulet.2010.12.050
– ident: e_1_2_7_71_1
  doi: 10.1016/j.jpain.2006.01.450
– ident: e_1_2_7_87_1
  doi: 10.1016/j.pain.2004.11.013
– ident: e_1_2_7_40_1
  doi: 10.1146/annurev.neuro.24.1.677
– ident: e_1_2_7_16_1
  doi: 10.1016/j.pain.2010.08.029
– ident: e_1_2_7_41_1
  doi: 10.1016/j.jpain.2009.04.005
– ident: e_1_2_7_109_1
  doi: 10.1002/syn.21640
– ident: e_1_2_7_17_1
  doi: 10.1097/01.anes.0000267604.40258.d1
– ident: e_1_2_7_60_1
  doi: 10.1186/1744-8069-7-51
– ident: e_1_2_7_10_1
  doi: 10.1016/j.pain.2005.09.022
– ident: e_1_2_7_90_1
  doi: 10.1017/S1740925X12000087
– ident: e_1_2_7_97_1
  doi: 10.1016/j.psyneuen.2009.05.010
– ident: e_1_2_7_31_1
  doi: 10.2174/187152709789824660
– ident: e_1_2_7_47_1
  doi: 10.3389/neuro.08.031.2009
– ident: e_1_2_7_75_1
  doi: 10.1002/cne.903580403
– ident: e_1_2_7_20_1
  doi: 10.1152/ajpgi.00240.2001
– ident: e_1_2_7_66_1
  doi: 10.1007/s00213-010-2009-2
– ident: e_1_2_7_91_1
  doi: 10.1186/1744-8069-8-30
– ident: e_1_2_7_84_1
  doi: 10.3389/fnins.2013.00109
– ident: e_1_2_7_85_1
  doi: 10.1016/j.bbi.2005.08.004
– ident: e_1_2_7_28_1
  doi: 10.1053/j.gastro.2010.03.003
– ident: e_1_2_7_110_1
  doi: 10.1016/j.brainresbull.2010.07.007
– ident: e_1_2_7_69_1
  doi: 10.1016/0169-328X(93)90189-V
– year: 2013
  ident: e_1_2_7_45_1
  article-title: Postnatal maturation of endogenous opioid systems within the periaqueductal grey and spinal dorsal horn of the rat
  publication-title: Pain
– ident: e_1_2_7_18_1
  doi: 10.1371/journal.pone.0076470
– ident: e_1_2_7_72_1
  doi: 10.1038/sj.bjp.0707440
– ident: e_1_2_7_22_1
  doi: 10.1093/bja/83.4.662
– ident: e_1_2_7_78_1
  doi: 10.1002/dev.20014
– ident: e_1_2_7_48_1
  doi: 10.1016/j.neulet.2011.06.047
– ident: e_1_2_7_6_1
  doi: 10.1016/j.pain.2012.07.012
– ident: e_1_2_7_86_1
  doi: 10.1016/j.pain.2009.05.020
– ident: e_1_2_7_107_1
  doi: 10.1038/nchembio.552
– ident: e_1_2_7_111_1
  doi: 10.1016/j.pediatrneurol.2012.10.016
– ident: e_1_2_7_4_1
  doi: 10.1016/S0031-9384(98)00338-2
– ident: e_1_2_7_50_1
  doi: 10.1080/10298420290030569
– ident: e_1_2_7_2_1
  doi: 10.1053/gast.2000.19576
– ident: e_1_2_7_56_1
  doi: 10.1371/journal.pone.0034316
– ident: e_1_2_7_53_1
  doi: 10.1016/S0006-8993(03)02358-8
– ident: e_1_2_7_34_1
  doi: 10.1016/j.pain.2011.11.011
– ident: e_1_2_7_77_1
  doi: 10.1016/j.ejpain.2010.03.008
– ident: e_1_2_7_55_1
  doi: 10.1186/1471-2202-13-87
– ident: e_1_2_7_74_1
  doi: 10.1186/1744-8069-1-27
– ident: e_1_2_7_33_1
  doi: 10.1016/j.pain.2009.03.022
– ident: e_1_2_7_3_1
  doi: 10.1016/j.biopsych.2013.04.006
– ident: e_1_2_7_7_1
  doi: 10.1093/brain/awr288
– ident: e_1_2_7_35_1
  doi: 10.1016/j.brainresrev.2008.12.009
– ident: e_1_2_7_43_1
  doi: 10.1111/nyas.12033
– ident: e_1_2_7_81_1
  doi: 10.1038/nn1992
– ident: e_1_2_7_36_1
  doi: 10.1523/JNEUROSCI.1551-12.2012
– ident: e_1_2_7_12_1
  doi: 10.1002/ana.22267
– ident: e_1_2_7_101_1
  doi: 10.1186/1744-9081-4-28
– ident: e_1_2_7_42_1
  doi: 10.1002/dneu.22047
– ident: e_1_2_7_106_1
  doi: 10.1016/j.pain.2010.09.030
– ident: e_1_2_7_39_1
  doi: 10.1016/j.pain.2005.03.016
– ident: e_1_2_7_54_1
  doi: 10.1126/science.277.5332.1659
– ident: e_1_2_7_57_1
  doi: 10.1038/nrn2639
– ident: e_1_2_7_11_1
  doi: 10.1016/j.ejpain.2005.12.005
– ident: e_1_2_7_21_1
  doi: 10.1002/dev.20510
– ident: e_1_2_7_19_1
  doi: 10.1523/JNEUROSCI.4569-09.2009
– ident: e_1_2_7_61_1
  doi: 10.1523/JNEUROSCI.4106-09.2009
– ident: e_1_2_7_80_1
  doi: 10.1016/j.ejpain.2006.12.009
– ident: e_1_2_7_73_1
  doi: 10.1016/j.pain.2004.04.006
– ident: e_1_2_7_32_1
  doi: 10.1113/jphysiol.2008.168013
– ident: e_1_2_7_79_1
  doi: 10.1016/0165-0173(86)90010-X
– ident: e_1_2_7_37_1
  doi: 10.1016/j.jpain.2005.07.009
– ident: e_1_2_7_102_1
  doi: 10.1016/j.jpain.2007.07.001
– ident: e_1_2_7_62_1
  doi: 10.1111/j.1460-9568.2005.04452.x
– ident: e_1_2_7_9_1
  doi: 10.1016/S0031-9384(01)00432-2
– ident: e_1_2_7_82_1
  doi: 10.1016/j.neuroimage.2010.04.253
– ident: e_1_2_7_52_1
  doi: 10.1016/j.pain.2013.03.030
– ident: e_1_2_7_59_1
  doi: 10.1126/science.3340858
– ident: e_1_2_7_14_1
  doi: 10.1016/j.neuroscience.2012.10.057
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1365-2826.2012.02306.x
– ident: e_1_2_7_100_1
  doi: 10.1016/j.psyneuen.2012.01.005
– ident: e_1_2_7_103_1
  doi: 10.1097/ALN.0b013e318190bc16
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1749-6632.1994.tb39245.x
SSID ssj0008645
Score 2.5268486
SecondaryResourceType review_article
Snippet Pain in infancy influences pain reactivity in later life, but how and why this occurs is poorly understood. Here we review the evidence for developmental...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 344
SubjectTerms Animal models
Animals
cannabinoids
descending pain control
Endocannabinoids - metabolism
experience dependent-plasticity
Humans
hyperalgesia
Hyperalgesia - metabolism
Hyperalgesia - physiopathology
Nervous System - growth & development
Nervous System - metabolism
Nervous System - physiopathology
Neuralgia - metabolism
Neuralgia - physiopathology
Neuronal Plasticity
newborn infant
Special Issue: Neurobiology of Pain
Trauma, Nervous System - metabolism
Trauma, Nervous System - physiopathology
Title The consequences of pain in early life: injury-induced plasticity in developing pain pathways
URI https://api.istex.fr/ark:/67375/WNG-R507GML6-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.12414
https://www.ncbi.nlm.nih.gov/pubmed/24494675
https://www.proquest.com/docview/1499122746
https://www.proquest.com/docview/1505335676
https://pubmed.ncbi.nlm.nih.gov/PMC4264936
Volume 39
WOSCitedRecordID wos000330558300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1460-9568
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008645
  issn: 0953-816X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL2aViR4YbDBKB-TQWjaS5AT27EDT9NYh9CopomJvkW244iOkVZtN-gbP4HfyC_h2mlCKwZCQoqiRLlOFPvYPje5PhfguUmVizOrIstKFXGNMNY2KSPGRSJtKZRVJiSbkP2-GgyykzV41ayFqfUh2g9uvmeE8dp3cG2mS53cnVcvcHLySaw7ccykh3TCT9phWKUhQ7HXU4tUnA4WskI-jKctujIZdXy9fr2Oaf4eMLlMZMNM1Nv4r3e4A7cXBJTs14i5C2uu2oSt_Qqd789zsktCSGj41r4JNw-adHBbkCOgiF2KvSajkoz1sCK4OS-TTC6GpXuJp-fYTj--fUdvH3FTkDESdB-7PZt701-rtOrSPiXyFz2f3oOz3uH7gzfRIjtDZIVIeMRdyYoYHRqT8MIyLTJWCClN7CgvUq4p9U2dFEhpCitjawvNSsqNMkw7Lzt3H9arUeUeAHFOyTIzNEuk4ZYqbUpKnWVO00RzZruw1zRTbhfS5T6DxkXeuDBYkXmoyC48a03HtV7HdUa7oa1bCz355APcpMg_9I_yU-TIR--O0zzuwtMGDDlWt_-Xois3upyix4TEOkGXPv2LjfALnUUq0Wa7BlD7RGRVGc5RogtyBVqtgZf9Xr1SDT8G-W_PYTOG99wL0Prza-aHb_vh4OG_mz6CW0gJeR2X_hjWZ5NL9wRu2KvZcDrZCT0M93KgdqDz-rR3dvwTJHIuEg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6aWqTxMmDjUq4BoWkvQUlsxw7iZRrrBnQRmjbRN8txHNFtpFXbAX3jJ_Ab-SUcOxdaMRASUh4S5TiR7c_xd5zj7wA8z2JhwkQLX5NC-FQhjJWOCp9QFnFdMKFF5pJN8DQVw2Hyfg1eNXthKn2IdsHNjgz3vbYD3C5IL41yc1a-wNnJZrHuUoQR60D39XH_dNB-iUXskhRbSTVfhPGwVhaykTxt4ZX5qGub9utVZPP3mMllLusmo_6N_6vGTdioSai3W6HmFqyZchO2dkt0wD8tvG3PhYW69fZNWN9rUsJtgURQeXop_tobF95EjUoPD2Olkr2LUWFe4uUZ9tWPb9_R40fs5N4ESbqN354vrOmvnVpVaZsW-YtazG7DaX__ZO_QrzM0-JqxiPrUFCQP0anJIpprolhCcsZ5FpqA5jFVQWC7O8qR1uSah1rnihQBzURGlLHSc3egU45Lcw88YwQvkixIIp5RHQiVFUFgNDEqiBQlugc7TT9JXcuX2ywaF7JxY7AhpWvIHjxrTSeVZsdVRtuus1sLNT23QW6cyQ_pgTxGnnxwNIhl2IOnDRokNrf9n6JKM76codeE5DpCtz7-iw2zm51ZzNHmboWg9o3IrBKcp1gP-Aq2WgMr_b16pxx9dBLglscmBJ-547D152rK_bepO7n_76ZPYP3w5GggB2_Sdw_gOlJEWsWpP4TOfHppHsE1_Xk-mk0f1wPuJ9VFMQc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VLQIuPFoey9MgVPUSlMR27KBeqtItj7JaIRB7sxzHFltKdrW7BfbGT-A39pcwdjZhVxSEhJRDokwSeWZsf-OMvwF4UmTSJrmRkaFORkyjG2uTuogyngrjuDSyCMUmRK8nB4O8vwa7zV6Ymh-iXXDzPSOM176D23Hplnq5Pa6e4uzkq1hvMI5jrOd1Zv12HJZZKFHsCdUimWSDBa-Qz-NpH12ZjTa8Yr-dBzV_z5hcRrJhKupe_b9GXIMrCwhK9mqfuQ5rttqErb0Kw-_Pc7JNQlJoWG3fhEv7TUG4LVDoUsQsZV-TkSNjPawIHtYTJZOTobPP8PIYLXX2_QfG--g5JRkjRPfZ27O5F_21T6t-2hdF_qrn0xvwvnvwbv9FtKjPEBnOUxYx62iZYEhTpKw0VPOcllyIIrExKzOm49gbOy0R1JRGJMaUmrqYFbKg2nriuZuwXo0qexuItVK4vIjzVBTMxFIXLo6toVbHqWbUdGCnsZMyC_JyX0PjRDVBDCpSBUV24HErOq4ZO84T2g7GbiX05JNPcRNcfegdqreIkg_fHGUq6cCjxhsUqtv_TdGVHZ1OMWZCaJ1iUJ_9RYb7rc48Eyhzq_ag9ouIq3KcpXgHxIpvtQKe-Hv1TjX8GAjAPYrNKb5zJ_jWn5upDl71wsmdfxd9CBf7z7vq6GXv9V24jPiQ1Unq92B9Njm19-GC-TIbTicPQm_7CcHELvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+consequences+of+pain+in+early+life%3A+injury-induced+plasticity+in+developing+pain+pathways&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Schwaller%2C+Fred&rft.au=Fitzgerald%2C+Maria&rft.date=2014-02-01&rft.eissn=1460-9568&rft.volume=39&rft.issue=3&rft.spage=344&rft_id=info:doi/10.1111%2Fejn.12414&rft_id=info%3Apmid%2F24494675&rft.externalDocID=24494675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon