Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: Apoptotic bodies, microvesicles, and exosomes

BACKGROUND Extracellular vesicles (EVs) are cell‐derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific...

Full description

Saved in:
Bibliographic Details
Published in:The Prostate Vol. 74; no. 14; pp. 1379 - 1390
Main Authors: Lázaro-Ibáñez, Elisa, Sanz-Garcia, Andres, Visakorpi, Tapio, Escobedo-Lucea, Carmen, Siljander, Pia, Ayuso-Sacido, Ángel, Yliperttula, Marjo
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01.10.2014
Wiley Subscription Services, Inc
BlackWell Publishing Ltd
Subjects:
ISSN:0270-4137, 1097-0045, 1097-0045
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract BACKGROUND Extracellular vesicles (EVs) are cell‐derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell‐derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments. METHODS EV subpopulations were isolated from three PCa cell lines (LNCaP, PC‐3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing. RESULTS We report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell‐derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell‐dependently packed into the EV subtypes. CONCLUSIONS EVs derived from PCa cell lines and human plasma samples contain double‐stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics. Prostate 74:1379–1390, 2014. © 2014 The Authors. The Prostate published by Wiley Periodicals, Inc.
AbstractList Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell-derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments.BACKGROUNDExtracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell-derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments.EV subpopulations were isolated from three PCa cell lines (LNCaP, PC-3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing.METHODSEV subpopulations were isolated from three PCa cell lines (LNCaP, PC-3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing.We report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell-derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell-dependently packed into the EV subtypes.RESULTSWe report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell-derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell-dependently packed into the EV subtypes.EVs derived from PCa cell lines and human plasma samples contain double-stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics.CONCLUSIONSEVs derived from PCa cell lines and human plasma samples contain double-stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics.
BACKGROUND Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell-derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments. METHODS EV subpopulations were isolated from three PCa cell lines (LNCaP, PC-3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing. RESULTS We report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell-derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell-dependently packed into the EV subtypes. CONCLUSIONS EVs derived from PCa cell lines and human plasma samples contain double-stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics. Prostate 74:1379-1390, 2014. © 2014 The Authors. The Prostate published by Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell-derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments. EV subpopulations were isolated from three PCa cell lines (LNCaP, PC-3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing. We report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell-derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell-dependently packed into the EV subtypes. EVs derived from PCa cell lines and human plasma samples contain double-stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics.
BACKGROUND Extracellular vesicles (EVs) are cell‐derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell‐derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments. METHODS EV subpopulations were isolated from three PCa cell lines (LNCaP, PC‐3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing. RESULTS We report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell‐derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell‐dependently packed into the EV subtypes. CONCLUSIONS EVs derived from PCa cell lines and human plasma samples contain double‐stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics. Prostate 74:1379–1390, 2014. © 2014 The Authors. The Prostate published by Wiley Periodicals, Inc.
Author Siljander, Pia
Ayuso-Sacido, Ángel
Visakorpi, Tapio
Lázaro-Ibáñez, Elisa
Yliperttula, Marjo
Escobedo-Lucea, Carmen
Sanz-Garcia, Andres
Author_xml – sequence: 1
  givenname: Elisa
  surname: Lázaro-Ibáñez
  fullname: Lázaro-Ibáñez, Elisa
  organization: Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
– sequence: 2
  givenname: Andres
  surname: Sanz-Garcia
  fullname: Sanz-Garcia, Andres
  organization: Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
– sequence: 3
  givenname: Tapio
  surname: Visakorpi
  fullname: Visakorpi, Tapio
  organization: Institute of Biomedical Technology and BioMediTech, University of Tampere and Tampere University Hospital, Tampere, Finland
– sequence: 4
  givenname: Carmen
  surname: Escobedo-Lucea
  fullname: Escobedo-Lucea, Carmen
  organization: Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
– sequence: 5
  givenname: Pia
  surname: Siljander
  fullname: Siljander, Pia
  organization: Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
– sequence: 6
  givenname: Ángel
  surname: Ayuso-Sacido
  fullname: Ayuso-Sacido, Ángel
  email: marjo.yliperttula@helsinki.fi
  organization: Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
– sequence: 7
  givenname: Marjo
  surname: Yliperttula
  fullname: Yliperttula, Marjo
  email: marjo.yliperttula@helsinki.fi
  organization: Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25111183$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhoNU7LZ64w-QgDcinZqPyWTihbC0dhVKW_yg4E3IZjJt6kwyJpna_gD_t5ndbtEi5iaEPO-bc_KeHbDlvDMAPMdoHyNE3gzBx31CakYfgRlGghcIlWwLzBDhqCgx5dtgJ8YrhDKOyBOwTRjOq6Yz8OvQtq0JxiV4cXgyh9q7NB2sg-nSwDguBz-MnUrWuwh9C6fHkkoGauW0CdDcpKC06boMBXhtotWdiW_hPOuST1bDpW-siXuwtzr4DbAHlWuy2Effm_gUPG5VF82zu30XfD16_-XgQ3F8uvh4MD8uNGOEFpzyyjBVKtqQusJCCIaWrcYlaUWjlSk5pUyLpq5UKyquqrpcNlxzrkTZZIbugndr32Fc9qbRudOgOjkE26twK72y8u8bZy_lhb-WJcVEVGU2eHVnEPyP0cQkexun7pUzfowSM8YqglFJMvryAXrlx-Bye5nKDKvFinrxZ0X3pWwSygBaA_nzYgymldqmVRy5QNtJjOQ0BHLKRa6GIEteP5BsXP8J4zX803bm9j-kPPt0-nmjKdYaG5O5udeo8F1WOSMmz08W8oie8fPFNyEX9DegONR_
CODEN PRSTDS
CitedBy_id crossref_primary_10_1002_jcp_29153
crossref_primary_10_1172_JCI81136
crossref_primary_10_4103_ejim_ejim_67_19
crossref_primary_10_3389_fcell_2022_752818
crossref_primary_10_3390_biomedicines10102485
crossref_primary_10_1016_j_eururo_2016_02_046
crossref_primary_10_1002_path_6138
crossref_primary_10_3390_life11050381
crossref_primary_10_1515_cclm_2017_0560
crossref_primary_10_1007_s00432_022_04391_6
crossref_primary_10_1038_leu_2017_91
crossref_primary_10_1186_s40364_024_00661_2
crossref_primary_10_1016_j_bcp_2023_115739
crossref_primary_10_3389_fonc_2025_1555963
crossref_primary_10_1002_jcp_25240
crossref_primary_10_3390_vaccines12020200
crossref_primary_10_3389_fonc_2023_1201554
crossref_primary_10_1186_s12885_017_3087_x
crossref_primary_10_1016_j_bpg_2021_101731
crossref_primary_10_1159_000497748
crossref_primary_10_3390_ph14020128
crossref_primary_10_3390_cancers11070891
crossref_primary_10_1080_09537104_2016_1265926
crossref_primary_10_1007_s12015_016_9715_z
crossref_primary_10_4251_wjgo_v13_i11_1561
crossref_primary_10_1016_j_cytogfr_2019_12_007
crossref_primary_10_1038_s41416_021_01610_8
crossref_primary_10_3389_fonc_2022_869706
crossref_primary_10_1038_s41419_020_02803_4
crossref_primary_10_1002_jex2_51
crossref_primary_10_1038_s41598_017_08392_1
crossref_primary_10_1002_1878_0261_12777
crossref_primary_10_3390_cancers13061407
crossref_primary_10_1186_s12907_015_0005_5
crossref_primary_10_3390_cancers15112970
crossref_primary_10_1038_s41598_020_65640_7
crossref_primary_10_1186_s12920_019_0590_8
crossref_primary_10_1080_20013078_2019_1656993
crossref_primary_10_1159_000480424
crossref_primary_10_3390_ijms26094302
crossref_primary_10_3389_fcell_2022_1028854
crossref_primary_10_1016_j_yexcr_2016_10_012
crossref_primary_10_3390_cancers13153791
crossref_primary_10_3390_genes11020203
crossref_primary_10_3402_jev_v4_28533
crossref_primary_10_1002_smll_201601815
crossref_primary_10_2478_aoas_2022_0072
crossref_primary_10_1080_20013078_2016_1267896
crossref_primary_10_1155_2015_634865
crossref_primary_10_1038_pcan_2015_17
crossref_primary_10_3389_fgene_2024_1338468
crossref_primary_10_1002_elps_202000223
crossref_primary_10_1186_s12950_024_00381_2
crossref_primary_10_1080_20013078_2018_1505403
crossref_primary_10_1159_000444502
crossref_primary_10_1227_neu_0000000000002393
crossref_primary_10_3389_fonc_2018_00221
crossref_primary_10_3389_fonc_2018_00222
crossref_primary_10_1002_jev2_12268
crossref_primary_10_1189_jlb_3A1116_483R
crossref_primary_10_4251_wjgo_v17_i8_106663
crossref_primary_10_3390_antiox13121493
crossref_primary_10_3390_cancers12113292
crossref_primary_10_1038_pcan_2017_7
crossref_primary_10_1007_s00018_018_2773_4
crossref_primary_10_3390_ijms21155359
crossref_primary_10_1007_s10555_024_10210_w
crossref_primary_10_1161_CIRCRESAHA_117_309417
crossref_primary_10_5772_60522
crossref_primary_10_3390_cells7080093
crossref_primary_10_1038_s41598_022_23204_x
crossref_primary_10_1038_s43018_024_00862_6
crossref_primary_10_1155_2018_6392198
crossref_primary_10_3390_ijms23137138
crossref_primary_10_3390_ijms23010008
crossref_primary_10_1371_journal_pntd_0007191
crossref_primary_10_1016_j_bioactmat_2021_03_015
crossref_primary_10_1002_hep_29605
crossref_primary_10_3390_cancers14184504
crossref_primary_10_1002_jev2_12270
crossref_primary_10_1016_j_gene_2025_149640
crossref_primary_10_3390_pr9020224
crossref_primary_10_1007_s00018_016_2309_8
crossref_primary_10_1038_s41420_022_00900_1
crossref_primary_10_3389_fonc_2016_00125
crossref_primary_10_1038_s41419_024_07003_y
crossref_primary_10_1186_1471_2407_14_930
crossref_primary_10_3389_fphar_2022_923232
crossref_primary_10_1007_s44258_024_00039_x
crossref_primary_10_1080_20013078_2017_1302705
crossref_primary_10_3389_fphar_2021_671298
crossref_primary_10_1186_s12951_025_03326_w
crossref_primary_10_1210_endocr_bqab139
crossref_primary_10_1111_cpr_12659
crossref_primary_10_1007_s00011_025_02053_0
crossref_primary_10_1016_j_brainres_2014_09_070
crossref_primary_10_3389_fmolb_2022_939050
crossref_primary_10_1042_BST20200225
crossref_primary_10_3390_ijms21218260
crossref_primary_10_3389_fcvm_2017_00071
crossref_primary_10_1038_srep35250
crossref_primary_10_7554_eLife_88008_4
crossref_primary_10_1038_s12276_019_0213_7
crossref_primary_10_1186_s12964_023_01251_9
crossref_primary_10_1186_s40880_015_0051_5
crossref_primary_10_3390_ijms22126258
crossref_primary_10_1002_pmic_201800169
crossref_primary_10_3389_fmolb_2023_1279854
crossref_primary_10_1038_s41431_018_0132_4
crossref_primary_10_1186_s12885_016_2783_2
crossref_primary_10_1093_burnst_tkae021
crossref_primary_10_1002_advs_202501792
crossref_primary_10_3389_fimmu_2023_1120175
crossref_primary_10_3389_fphar_2019_01608
crossref_primary_10_1016_j_semcancer_2022_11_003
crossref_primary_10_3389_fgene_2023_1138625
crossref_primary_10_3390_ijms17020170
crossref_primary_10_1016_j_bbalip_2020_158856
crossref_primary_10_1210_me_2015_1206
crossref_primary_10_3390_ijms17020175
crossref_primary_10_1016_j_neurobiolaging_2018_10_006
crossref_primary_10_1158_0008_5472_CAN_18_0608
crossref_primary_10_3390_ijms20061349
crossref_primary_10_3390_ijms26062640
crossref_primary_10_1016_j_jot_2025_03_009
crossref_primary_10_3390_genes12020173
crossref_primary_10_1016_j_bioactmat_2023_09_018
crossref_primary_10_3390_cancers13153827
crossref_primary_10_1016_j_bbrc_2018_03_107
crossref_primary_10_1080_20013078_2017_1354645
crossref_primary_10_1177_15353702211021022
crossref_primary_10_1016_j_coph_2016_06_003
crossref_primary_10_1016_j_mam_2017_11_012
crossref_primary_10_1016_j_bioactmat_2021_01_009
crossref_primary_10_1016_j_pharmthera_2018_08_002
crossref_primary_10_1002_jev2_12194
crossref_primary_10_3389_fonc_2019_00931
crossref_primary_10_1038_s41598_020_73350_3
crossref_primary_10_1016_j_mam_2017_11_009
crossref_primary_10_1016_j_mam_2018_02_002
crossref_primary_10_1186_s12943_022_01710_w
crossref_primary_10_1089_dna_2019_5005
crossref_primary_10_1210_er_2017_00229
crossref_primary_10_3390_ijms222212246
crossref_primary_10_1007_s40620_017_0425_7
crossref_primary_10_3402_jev_v5_31488
crossref_primary_10_1080_20013078_2019_1608786
crossref_primary_10_3390_ijms25094761
crossref_primary_10_1016_j_jconrel_2015_09_031
crossref_primary_10_3389_fendo_2023_1205385
crossref_primary_10_3390_cancers15174329
crossref_primary_10_3390_cancers14030532
crossref_primary_10_1038_s12276_019_0226_2
crossref_primary_10_3390_cancers16132462
crossref_primary_10_1002_mco2_70009
crossref_primary_10_3389_fneur_2019_01241
crossref_primary_10_1002_pros_23101
crossref_primary_10_1186_s13287_017_0628_9
crossref_primary_10_3389_fmicb_2017_00377
crossref_primary_10_1111_sji_12651
crossref_primary_10_1080_07853890_2024_2426770
crossref_primary_10_1371_journal_pone_0132001
crossref_primary_10_1371_journal_pone_0163665
crossref_primary_10_1038_s41416_021_01668_4
crossref_primary_10_1073_pnas_1418401112
crossref_primary_10_1155_2015_613536
crossref_primary_10_15252_embj_2021109288
crossref_primary_10_3389_fcimb_2020_00076
crossref_primary_10_1002_1878_0261_12807
crossref_primary_10_3390_cancers14133258
crossref_primary_10_7554_eLife_88008
crossref_primary_10_3390_cancers13225825
crossref_primary_10_1002_biof_2036
crossref_primary_10_1016_j_drup_2019_100647
crossref_primary_10_3402_jev_v4_27066
crossref_primary_10_3389_fimmu_2015_00006
crossref_primary_10_1080_20013078_2020_1747206
crossref_primary_10_1016_j_semcdb_2017_01_003
crossref_primary_10_1016_j_addr_2021_114001
crossref_primary_10_1089_dna_2021_0488
crossref_primary_10_1021_acsami_3c14592
crossref_primary_10_3390_ijms18040717
crossref_primary_10_1016_j_micron_2022_103341
crossref_primary_10_1242_jcs_235085
crossref_primary_10_1016_j_ejps_2016_09_008
crossref_primary_10_1002_jex2_115
crossref_primary_10_3390_ijms20122890
crossref_primary_10_3390_cancers15051456
crossref_primary_10_3389_fcell_2020_622048
crossref_primary_10_3390_vaccines10111877
crossref_primary_10_1016_S1875_5364_24_60726_0
crossref_primary_10_1016_j_cca_2025_120125
crossref_primary_10_1016_j_heliyon_2023_e14986
crossref_primary_10_1186_s12964_025_02250_8
crossref_primary_10_3390_ijms23031461
Cites_doi 10.1002/pros.22480
10.1016/j.tcb.2008.11.003
10.1371/journal.pbio.1001450
10.1073/pnas.101129998
10.1371/journal.pone.0070047
10.1038/sj.bjc.6605058
10.1186/1479-5876-7-4
10.1038/ncomms1180
10.1042/CS20120309
10.1038/ncb1800
10.1038/ncb1725
10.1182/blood-2003-10-3614
10.1126/science.275.5308.1943
10.1038/ng0497-356
10.1016/j.ccr.2010.05.026
10.1007/s00702-009-0288-8
10.1002/pros.20921
10.1038/nm.2753
10.1038/sj.leu.2404132
10.1038/ncb1596
10.1016/j.bbagrm.2012.08.016
10.1074/mcp.M800443-MCP200
10.1158/0008-5472.CAN-08-3860
ContentType Journal Article
Copyright 2014 The Authors. published by Wiley Periodicals, Inc.
2014 The Authors. The Prostate published by Wiley Periodicals, Inc.
2014 The Authors. published by Wiley Periodicals, Inc. 2014
Copyright_xml – notice: 2014 The Authors. published by Wiley Periodicals, Inc.
– notice: 2014 The Authors. The Prostate published by Wiley Periodicals, Inc.
– notice: 2014 The Authors. published by Wiley Periodicals, Inc. 2014
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
DOI 10.1002/pros.22853
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-0045
EndPage 1390
ExternalDocumentID PMC4312964
3433111321
25111183
10_1002_pros_22853
PROS22853
ark_67375_WNG_F3P7WGZ9_G
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Magnus Ehrnrooth Foundation
– fundername: Medicinska Understödsföreningen Liv och Hälsa r.f.
– fundername: Finnish Cultural Foundation
  funderid: 00130502
– fundername: Academy of Finland Research Fellow
  funderid: 273689–266486
– fundername: Academy of Finland
  funderid: 259990
– fundername: Carlos III Health Institute
  funderid: PI10/01069; CP11/00147
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6P
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
WWO
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5523-7376e5a4a3d286199950bfc142f9dcae47335c9d86af967a684bd7c77a94d2f93
IEDL.DBID 24P
ISICitedReferencesCount 231
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341019400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0270-4137
1097-0045
IngestDate Tue Nov 04 02:00:31 EST 2025
Fri Jul 11 09:55:53 EDT 2025
Sat Nov 29 14:51:51 EST 2025
Thu Apr 03 07:04:15 EDT 2025
Sat Nov 29 01:36:51 EST 2025
Tue Nov 18 21:51:30 EST 2025
Wed Jan 22 16:57:25 EST 2025
Sun Sep 21 06:16:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/3.0
http://doi.wiley.com/10.1002/tdm_license_1.1
2014 The Authors. The Prostate published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5523-7376e5a4a3d286199950bfc142f9dcae47335c9d86af967a684bd7c77a94d2f93
Notes ArticleID:PROS22853
Academy of Finland - No. 259990
Academy of Finland Research Fellow - No. 273689-266486
Finnish Cultural Foundation - No. 00130502
ark:/67375/WNG-F3P7WGZ9-G
Carlos III Health Institute - No. PI10/01069; No. CP11/00147
istex:C7B7F9FEA495F8F88F1860A685EBCA77312FA9A2
Magnus Ehrnrooth Foundation
Medicinska Understödsföreningen Liv och Hälsa r.f.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Grant sponsor: Finnish Cultural Foundation; Grant number: 00130502; Grant sponsor: Academy of Finland Research Fellow; Grant number: 273689–266486; Grant sponsor: Magnus Ehrnrooth Foundation; Grant sponsor: Medicinska Understödsföreningen Liv och Hälsa r.f.; Grant sponsor: Carlos III Health Institute; Grant numbers: PI10/01069; CP11/00147; Grant sponsor: Academy of Finland; Grant number: 259990.
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpros.22853
PMID 25111183
PQID 1562158942
PQPubID 1016443
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4312964
proquest_miscellaneous_1555621042
proquest_journals_1562158942
pubmed_primary_25111183
crossref_citationtrail_10_1002_pros_22853
crossref_primary_10_1002_pros_22853
wiley_primary_10_1002_pros_22853_PROS22853
istex_primary_ark_67375_WNG_F3P7WGZ9_G
PublicationCentury 2000
PublicationDate October 2014
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: October 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
– name: Oxford, UK
PublicationTitle The Prostate
PublicationTitleAlternate Prostate
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
BlackWell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: BlackWell Publishing Ltd
References Gabriel K, Ingram A, Austin R, Kapoor A, Tang D, Majeed F, Qureshi T, Al-Nedawi K. Regulation of the tumor suppressor PTEN through exosomes: A diagnostic potential for prostate cancer. PLoS ONE 2013; 8(7):e70047.
Spans L, Atak ZK, Van Nieuwerburgh F, Deforce D, Lerut E, Aerts S, Claessens F. Variations in the exome of the LNCaP prostate cancer cell line. Prostate 2012; 72(12):1317-1327.
Bobrie A, Colombo M, Krumeich S, Raposo G, Thery C. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. Journal of Extracellular Vesicles 2012; 16:1.
Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18(1):11-22.
Hessvik NP, Phuyal S, Brech A, Sandvig K, Llorente A. Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochim Biophys Acta 2012; 1819(11-12):1154-1163.
Ronquist KG, Ronquist G, Carlsson L, Larsson A. Human prostasomes contain chromosomal DNA. Prostate 2009; 69(7):737-743.
Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2011; 2:180.
Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM. Microparticles: Biomarkers and beyond. Clin Sci 2013; 124(7-8):423-441.
Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: Artefacts no more. Trends Cell Biol 2009; 19(2):43-51.
Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008; 10(5):619-624.
Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borràs FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A, Cocucci E, Falcon-Perez JM, Gabrielsson S, Gho YS, Gupta D, Harsha HC, Hendrix A, Hill AF, Inal JM, Jenster G, Krämer-Albers EM, Lim SK, Llorente A, Lötvall J, Marcilla A, Mincheva-Nilsson L, Nazarenko I, Nieuwland R, Nolte-'t Hoen EN, Pandey A, Patel T, Piper MG, Pluchino S, Prasad TS, Rajendran L, Raposo G, Record M, Reid GE, Sánchez-Madrid F, Schiffelers RM, Siljander P, Stensballe A, Stoorvogel W, Taylor D, Thery C, Valadi H, van Balkom BW, Vázquez J, Vidal M, Wauben MH, Yáñez-Mó M, Zoeller M, Mathivanan S. Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biol 2012; 10(12):e1001450.
Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 2010; 117(1):1-4.
Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, True LD, Rubin MA, Adam RM, Beroukhim R, Demichelis F, Freeman MR. Oncosome formation in prostate cancer: Association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 2009; 69(13):5601-5609.
Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18(6):883.
Mitchell PJ, Welton J, Staffurth J, Court J, Mason MD, Tabi Z, Clayton A. Can urinary exosomes act as treatment response markers in prostate cancer? J Transl Med 2009; 7:4.
D'Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: Shedding light on novel microenvironment modulators and prospective. Cancer Biomarkers 2012; 26(12):1287-1299.
Jansen FH, Krijgsveld J, van Rijswijk A, van den Bemd GJ, van den Berg MS, van Weerden WM, Willemsen R, Dekker LJ, Luider TM, Jenster G. Exosomal secretion of cytoplasmic prostate cancer xenograft-derived proteins. Mol Cell Proteomics 2009; 8(6):1192-1205.
Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman M, Spetz A, Holmgren L. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA 2001; 98(11):6407-6411.
Hristov M, Erl W, Linder S, Weber PC. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 2004; 104(9):2761-2766.
Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10(12):1470-1476.
Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, Zhang J, Weitz J, Chin L, Futreal A, Kalluri R. Identification of double stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 2014; 288(12):26888-26897.
Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15(4):356-362.
Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006; 20(5):847-856.
Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275(5308):1943-1947.
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6):654-659.
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29(6):2001-2007.
Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XO, Widmark A. Prostate cancer-derived urine exosomes: A novel approach to biomarkers for prostate cancer. Br J Cancer 2009; 100(10):1603-1607.
2009; 69
2004; 104
2011; 2
2010; 18
1997; 275
2013; 124
2008; 10
2012; 18
2012; 16
2001; 29
2013; 8
2012; 10
2012; 72
2006; 20
2010; 117
1997; 15
2009; 100
2007; 9
2009; 8
2009; 7
2012; 1819
2012; 26
2009; 19
2014; 288
2001; 98
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
D'Souza‐Schorey C (e_1_2_7_9_1) 2012; 26
Kahlert C (e_1_2_7_25_1) 2014; 288
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Pfaffl MW (e_1_2_7_15_1) 2001; 29
Bobrie A (e_1_2_7_4_1) 2012; 16
17486113 - Nat Cell Biol. 2007 Jun;9(6):654-9
20579941 - Cancer Cell. 2010 Jul 13;18(1):11-22
18425114 - Nat Cell Biol. 2008 May;10(5):619-24
22982408 - Biochim Biophys Acta. 2012 Nov-Dec;1819(11-12):1154-63
23936141 - PLoS One. 2013;8(7):e70047
21285958 - Nat Commun. 2011;2:180
15242875 - Blood. 2004 Nov 1;104(9):2761-6
19401683 - Br J Cancer. 2009 May 19;100(10):1603-7
11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45
16453000 - Leukemia. 2006 May;20(5):847-56
24009879 - J Extracell Vesicles. 2012 Apr 16;1:null
23249271 - Clin Sci (Lond). 2013 Apr;124(7):423-41
19011622 - Nat Cell Biol. 2008 Dec;10(12):1470-6
19143024 - Prostate. 2009 May 15;69(7):737-43
23271954 - PLoS Biol. 2012;10(12):e1001450
9072974 - Science. 1997 Mar 28;275(5308):1943-7
24398677 - J Biol Chem. 2014 Feb 14;289(7):3869-75
19138409 - J Transl Med. 2009;7:4
19680595 - J Neural Transm (Vienna). 2010 Jan;117(1):1-4
19549916 - Cancer Res. 2009 Jul 1;69(13):5601-9
19204029 - Mol Cell Proteomics. 2009 Jun;8(6):1192-205
22213130 - Prostate. 2012 Sep 1;72(12):1317-27
19144520 - Trends Cell Biol. 2009 Feb;19(2):43-51
11353826 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):6407-11
9090379 - Nat Genet. 1997 Apr;15(4):356-62
22713869 - Genes Dev. 2012 Jun 15;26(12):1287-99
22635005 - Nat Med. 2012 Jun;18(6):883-91
References_xml – reference: Jansen FH, Krijgsveld J, van Rijswijk A, van den Bemd GJ, van den Berg MS, van Weerden WM, Willemsen R, Dekker LJ, Luider TM, Jenster G. Exosomal secretion of cytoplasmic prostate cancer xenograft-derived proteins. Mol Cell Proteomics 2009; 8(6):1192-1205.
– reference: Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM. Microparticles: Biomarkers and beyond. Clin Sci 2013; 124(7-8):423-441.
– reference: Bobrie A, Colombo M, Krumeich S, Raposo G, Thery C. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. Journal of Extracellular Vesicles 2012; 16:1.
– reference: Mitchell PJ, Welton J, Staffurth J, Court J, Mason MD, Tabi Z, Clayton A. Can urinary exosomes act as treatment response markers in prostate cancer? J Transl Med 2009; 7:4.
– reference: Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18(6):883.
– reference: Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XO, Widmark A. Prostate cancer-derived urine exosomes: A novel approach to biomarkers for prostate cancer. Br J Cancer 2009; 100(10):1603-1607.
– reference: Ronquist KG, Ronquist G, Carlsson L, Larsson A. Human prostasomes contain chromosomal DNA. Prostate 2009; 69(7):737-743.
– reference: Hristov M, Erl W, Linder S, Weber PC. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 2004; 104(9):2761-2766.
– reference: Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10(12):1470-1476.
– reference: Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 2010; 117(1):1-4.
– reference: Hessvik NP, Phuyal S, Brech A, Sandvig K, Llorente A. Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochim Biophys Acta 2012; 1819(11-12):1154-1163.
– reference: Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: Artefacts no more. Trends Cell Biol 2009; 19(2):43-51.
– reference: Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006; 20(5):847-856.
– reference: Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2011; 2:180.
– reference: Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borràs FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A, Cocucci E, Falcon-Perez JM, Gabrielsson S, Gho YS, Gupta D, Harsha HC, Hendrix A, Hill AF, Inal JM, Jenster G, Krämer-Albers EM, Lim SK, Llorente A, Lötvall J, Marcilla A, Mincheva-Nilsson L, Nazarenko I, Nieuwland R, Nolte-'t Hoen EN, Pandey A, Patel T, Piper MG, Pluchino S, Prasad TS, Rajendran L, Raposo G, Record M, Reid GE, Sánchez-Madrid F, Schiffelers RM, Siljander P, Stensballe A, Stoorvogel W, Taylor D, Thery C, Valadi H, van Balkom BW, Vázquez J, Vidal M, Wauben MH, Yáñez-Mó M, Zoeller M, Mathivanan S. Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biol 2012; 10(12):e1001450.
– reference: Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15(4):356-362.
– reference: Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18(1):11-22.
– reference: Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, True LD, Rubin MA, Adam RM, Beroukhim R, Demichelis F, Freeman MR. Oncosome formation in prostate cancer: Association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 2009; 69(13):5601-5609.
– reference: Spans L, Atak ZK, Van Nieuwerburgh F, Deforce D, Lerut E, Aerts S, Claessens F. Variations in the exome of the LNCaP prostate cancer cell line. Prostate 2012; 72(12):1317-1327.
– reference: Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, Zhang J, Weitz J, Chin L, Futreal A, Kalluri R. Identification of double stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 2014; 288(12):26888-26897.
– reference: D'Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: Shedding light on novel microenvironment modulators and prospective. Cancer Biomarkers 2012; 26(12):1287-1299.
– reference: Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29(6):2001-2007.
– reference: Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008; 10(5):619-624.
– reference: Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275(5308):1943-1947.
– reference: Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman M, Spetz A, Holmgren L. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA 2001; 98(11):6407-6411.
– reference: Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6):654-659.
– reference: Gabriel K, Ingram A, Austin R, Kapoor A, Tang D, Majeed F, Qureshi T, Al-Nedawi K. Regulation of the tumor suppressor PTEN through exosomes: A diagnostic potential for prostate cancer. PLoS ONE 2013; 8(7):e70047.
– volume: 2
  start-page: 180
  year: 2011
  article-title: Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences
  publication-title: Nat Commun
– volume: 18
  start-page: 883
  issue: 6
  year: 2012
  article-title: Melanoma exosomes educate bone marrow progenitor cells toward a pro‐metastatic phenotype through MET
  publication-title: Nat Med
– volume: 26
  start-page: 1287
  issue: 12
  year: 2012
  end-page: 1299
  article-title: Tumor‐derived microvesicles: Shedding light on novel microenvironment modulators and prospective
  publication-title: Cancer Biomarkers
– volume: 18
  start-page: 11
  issue: 1
  year: 2010
  end-page: 22
  article-title: Integrative genomic profiling of human prostate cancer
  publication-title: Cancer Cell
– volume: 8
  start-page: e70047
  issue: 7
  year: 2013
  article-title: Regulation of the tumor suppressor PTEN through exosomes: A diagnostic potential for prostate cancer
  publication-title: PLoS ONE
– volume: 288
  start-page: 26888
  issue: 12
  year: 2014
  end-page: 26897
  article-title: Identification of double stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer
  publication-title: J Biol Chem
– volume: 124
  start-page: 423
  issue: 7–8
  year: 2013
  end-page: 441
  article-title: Microparticles: Biomarkers and beyond
  publication-title: Clin Sci
– volume: 10
  start-page: 1470
  issue: 12
  year: 2008
  end-page: 1476
  article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers
  publication-title: Nat Cell Biol
– volume: 72
  start-page: 1317
  issue: 12
  year: 2012
  end-page: 1327
  article-title: Variations in the exome of the LNCaP prostate cancer cell line
  publication-title: Prostate
– volume: 104
  start-page: 2761
  issue: 9
  year: 2004
  end-page: 2766
  article-title: Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro
  publication-title: Blood
– volume: 275
  start-page: 1943
  issue: 5308
  year: 1997
  end-page: 1947
  article-title: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer
  publication-title: Science
– volume: 100
  start-page: 1603
  issue: 10
  year: 2009
  end-page: 1607
  article-title: Prostate cancer‐derived urine exosomes: A novel approach to biomarkers for prostate cancer
  publication-title: Br J Cancer
– volume: 69
  start-page: 737
  issue: 7
  year: 2009
  end-page: 743
  article-title: Human prostasomes contain chromosomal DNA
  publication-title: Prostate
– volume: 10
  start-page: e1001450
  issue: 12
  year: 2012
  article-title: Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation
  publication-title: PLoS Biol
– volume: 10
  start-page: 619
  issue: 5
  year: 2008
  end-page: 624
  article-title: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells
  publication-title: Nat Cell Biol
– volume: 16
  start-page: 1
  year: 2012
  article-title: Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation
  publication-title: Journal of Extracellular Vesicles
– volume: 9
  start-page: 654
  issue: 6
  year: 2007
  end-page: 659
  article-title: Exosome‐mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
  publication-title: Nat Cell Biol
– volume: 8
  start-page: 1192
  issue: 6
  year: 2009
  end-page: 1205
  article-title: Exosomal secretion of cytoplasmic prostate cancer xenograft‐derived proteins
  publication-title: Mol Cell Proteomics
– volume: 69
  start-page: 5601
  issue: 13
  year: 2009
  end-page: 5609
  article-title: Oncosome formation in prostate cancer: Association with a region of frequent chromosomal deletion in metastatic disease
  publication-title: Cancer Res
– volume: 29
  start-page: 2001
  issue: 6
  year: 2001
  end-page: 2007
  article-title: A new mathematical model for relative quantification in real‐time RT‐PCR
  publication-title: Nucleic Acids Res
– volume: 19
  start-page: 43
  issue: 2
  year: 2009
  end-page: 51
  article-title: Shedding microvesicles: Artefacts no more
  publication-title: Trends Cell Biol
– volume: 117
  start-page: 1
  issue: 1
  year: 2010
  end-page: 4
  article-title: Astrocytes and glioblastoma cells release exosomes carrying mtDNA
  publication-title: J Neural Transm
– volume: 1819
  start-page: 1154
  issue: 11–12
  year: 2012
  end-page: 1163
  article-title: Profiling of microRNAs in exosomes released from PC‐3 prostate cancer cells
  publication-title: Biochim Biophys Acta
– volume: 15
  start-page: 356
  issue: 4
  year: 1997
  end-page: 362
  article-title: Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers
  publication-title: Nat Genet
– volume: 98
  start-page: 6407
  issue: 11
  year: 2001
  end-page: 6411
  article-title: Horizontal transfer of oncogenes by uptake of apoptotic bodies
  publication-title: Proc Natl Acad Sci USA
– volume: 20
  start-page: 847
  issue: 5
  year: 2006
  end-page: 856
  article-title: Embryonic stem cell‐derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery
  publication-title: Leukemia
– volume: 7
  start-page: 4
  year: 2009
  article-title: Can urinary exosomes act as treatment response markers in prostate cancer
  publication-title: J Transl Med
– ident: e_1_2_7_18_1
  doi: 10.1002/pros.22480
– ident: e_1_2_7_22_1
  doi: 10.1016/j.tcb.2008.11.003
– volume: 29
  start-page: 2001
  issue: 6
  year: 2001
  ident: e_1_2_7_15_1
  article-title: A new mathematical model for relative quantification in real‐time RT‐PCR
  publication-title: Nucleic Acids Res
– ident: e_1_2_7_2_1
  doi: 10.1371/journal.pbio.1001450
– ident: e_1_2_7_6_1
  doi: 10.1073/pnas.101129998
– ident: e_1_2_7_14_1
  doi: 10.1371/journal.pone.0070047
– ident: e_1_2_7_10_1
  doi: 10.1038/sj.bjc.6605058
– ident: e_1_2_7_11_1
  doi: 10.1186/1479-5876-7-4
– ident: e_1_2_7_24_1
  doi: 10.1038/ncomms1180
– volume: 288
  start-page: 26888
  issue: 12
  year: 2014
  ident: e_1_2_7_25_1
  article-title: Identification of double stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer
  publication-title: J Biol Chem
– ident: e_1_2_7_3_1
  doi: 10.1042/CS20120309
– ident: e_1_2_7_27_1
  doi: 10.1038/ncb1800
– ident: e_1_2_7_8_1
  doi: 10.1038/ncb1725
– volume: 26
  start-page: 1287
  issue: 12
  year: 2012
  ident: e_1_2_7_9_1
  article-title: Tumor‐derived microvesicles: Shedding light on novel microenvironment modulators and prospective
  publication-title: Cancer Biomarkers
– ident: e_1_2_7_5_1
  doi: 10.1182/blood-2003-10-3614
– ident: e_1_2_7_17_1
  doi: 10.1126/science.275.5308.1943
– ident: e_1_2_7_16_1
  doi: 10.1038/ng0497-356
– ident: e_1_2_7_26_1
  doi: 10.1016/j.ccr.2010.05.026
– ident: e_1_2_7_23_1
  doi: 10.1007/s00702-009-0288-8
– ident: e_1_2_7_13_1
  doi: 10.1002/pros.20921
– ident: e_1_2_7_28_1
  doi: 10.1038/nm.2753
– ident: e_1_2_7_20_1
  doi: 10.1038/sj.leu.2404132
– ident: e_1_2_7_19_1
  doi: 10.1038/ncb1596
– ident: e_1_2_7_21_1
  doi: 10.1016/j.bbagrm.2012.08.016
– ident: e_1_2_7_12_1
  doi: 10.1074/mcp.M800443-MCP200
– ident: e_1_2_7_7_1
  doi: 10.1158/0008-5472.CAN-08-3860
– volume: 16
  start-page: 1
  year: 2012
  ident: e_1_2_7_4_1
  article-title: Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation
  publication-title: Journal of Extracellular Vesicles
– reference: 22713869 - Genes Dev. 2012 Jun 15;26(12):1287-99
– reference: 19011622 - Nat Cell Biol. 2008 Dec;10(12):1470-6
– reference: 16453000 - Leukemia. 2006 May;20(5):847-56
– reference: 11353826 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):6407-11
– reference: 23249271 - Clin Sci (Lond). 2013 Apr;124(7):423-41
– reference: 19143024 - Prostate. 2009 May 15;69(7):737-43
– reference: 22635005 - Nat Med. 2012 Jun;18(6):883-91
– reference: 19680595 - J Neural Transm (Vienna). 2010 Jan;117(1):1-4
– reference: 19401683 - Br J Cancer. 2009 May 19;100(10):1603-7
– reference: 24009879 - J Extracell Vesicles. 2012 Apr 16;1:null
– reference: 9072974 - Science. 1997 Mar 28;275(5308):1943-7
– reference: 19549916 - Cancer Res. 2009 Jul 1;69(13):5601-9
– reference: 23936141 - PLoS One. 2013;8(7):e70047
– reference: 17486113 - Nat Cell Biol. 2007 Jun;9(6):654-9
– reference: 19204029 - Mol Cell Proteomics. 2009 Jun;8(6):1192-205
– reference: 22213130 - Prostate. 2012 Sep 1;72(12):1317-27
– reference: 21285958 - Nat Commun. 2011;2:180
– reference: 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45
– reference: 23271954 - PLoS Biol. 2012;10(12):e1001450
– reference: 22982408 - Biochim Biophys Acta. 2012 Nov-Dec;1819(11-12):1154-63
– reference: 9090379 - Nat Genet. 1997 Apr;15(4):356-62
– reference: 19144520 - Trends Cell Biol. 2009 Feb;19(2):43-51
– reference: 20579941 - Cancer Cell. 2010 Jul 13;18(1):11-22
– reference: 15242875 - Blood. 2004 Nov 1;104(9):2761-6
– reference: 24398677 - J Biol Chem. 2014 Feb 14;289(7):3869-75
– reference: 18425114 - Nat Cell Biol. 2008 May;10(5):619-24
– reference: 19138409 - J Transl Med. 2009;7:4
SSID ssj0010002
Score 2.547612
Snippet BACKGROUND Extracellular vesicles (EVs) are cell‐derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of...
Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their...
BACKGROUND Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1379
SubjectTerms Apoptosis - genetics
Case-Control Studies
Cell Line, Tumor
DNA, Neoplasm - genetics
DNA, Neoplasm - metabolism
Exosomes - genetics
Exosomes - metabolism
Genes, p53
Humans
Male
Original
Prostatic Neoplasms - blood
Prostatic Neoplasms - genetics
Prostatic Neoplasms - metabolism
Prostatic Neoplasms - pathology
PTEN Phosphohydrolase - genetics
Title Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: Apoptotic bodies, microvesicles, and exosomes
URI https://api.istex.fr/ark:/67375/WNG-F3P7WGZ9-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpros.22853
https://www.ncbi.nlm.nih.gov/pubmed/25111183
https://www.proquest.com/docview/1562158942
https://www.proquest.com/docview/1555621042
https://pubmed.ncbi.nlm.nih.gov/PMC4312964
Volume 74
WOSCitedRecordID wos000341019400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0045
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010002
  issn: 0270-4137
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGitBe-P4IjMkIhARaWGI7cYJ4qSgtD6NUg20VL5YTO6OCJVPTTvwD_N_cOWlGxYSEeIkS-efEdu7su_iXO0KeaZHpnMXGz7gJfEyv7SdRYsDnkZbpIDapY1Ue7cvxOJlO08kGebP6F6aJD9F9cEPNcPM1KrjO6r2LoKEwwdSvGIPl5grphSFPMHEDE5NuDwGV3X1hkdCIkMsuOCnbu6i7thz1cGR_XGZr_kmZ_N2UdWvR8Mb_9eImud7aoLTfCM0tsmHL2-Tah3aX_Q75OWizpizoyWDcp0hnx4tZScFcpPUyO-vSftW0KijeHo1WmqMMzSlM-HONWwLIcaXntnbcu9e0D_UWFTyVZhWyF3fpKfIBV4BdqksDlau6OrX1XXI4fPf57Xu_Tdfg5xG4s76EucpGWmhuWBJjeIMoyIo8FKxITa6tkJxHeWqSWBdpLHWciMzIXEqdCgMYfo9sllVpHxAaGxtauFFki1hoE2Y64EzCiUlZmGXcIy9Wb03lbSxzTKnxXTVRmJnCjis3rh552mHPmggel6Keu5ffQfT8G3LeZKSOxyM15BN5PPqSqpFHtlfSoVp1rxU4wWA6JalgHnnSFYOi4lDr0lZLxESIChBzvxGm7mHo54GnB62Qa2LWATAI-HpJOfvqgoGDAYg75x556cTsL11Uk4OPn9zZw38BPyJbYCSKhsC4TTYX86V9TK7m54tZPd9xKgdHOU12SG9wMDzc_wX-gDUz
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tb9MwELZgRcAX3geBAUYgJNDCEseJE75VlHaIrlR7YdO-WE7sQAVLpqSd-AP8b-6cNKNiQkJ8c5THTuzc2Xf2kztCXiieqoxF2k0D7bmYXtuNw1iDzyMMU16kE8uq_DwWk0l8dJRMW24O_gvTxIfoNtxQM-x8jQqOG9Jb51FDYYap3zAG681l0uMgRyDgvcHu8GDcHSOgvttNFgHv4Qeii0_Kts5rr6xIPRzcHxeZm3-yJn-3Zu1yNLz5nx25RW60dijtN4Jzm1wyxR1ydac9ab9Lfg7azClz-mUw6VOktOPFrKBgMtJ6kZ52qb9qWuYUm0fDlWYoRxWFSb9SeCyAPFd6ZmrLv3tL-1BvXsJTaVoig3GTniAncAnYpKrQULmsyxNT3yMHw_f777bdNmWDm4Xg0roC5isTKq4CzeIIQxyEXppnPmd5ojNluAiCMEt0HKk8iYSKYp5qkQmhEq4BE6yTtaIszANCI218Aw2FJo-40n6qvIAJKOiE-WkaOOTV8rPJrI1njmk1vssmEjOT2HFpx9UhzzvsaRPF40LUS_v1O4iqviHvTYTycDKSw2AqDkfHiRw5ZGMpHrJV-VqCIwzmU5xw5pBn3W1QVhxqVZhygZgQUR5i7jfS1D0MfT3w9uAtxIqcdQAMBL56p5h9tQHBwQjE03OHvLZy9pcuyunupz1bevgv4Kfk2vb-zliOP0w-PiLXwWjkDaFxg6zNq4V5TK5kZ_NZXT1pNfAX7eg4MQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLWgRdNe-GYEBhiBkEALS5wPJ7xVlBRECdVgbOLFcmIHKlhSJe3EH-B_c6-TZlRMSIi3VDlOYude-9749FxCHks_kzkLlZ15yrGxvLYdBZGCnIdrJp1QxYZV-WnK0zQ6Po5nHTcH_wvT6kP0H9zQM8x8jQ6uF6rYP1MNhRmmec4YrDcXydDHKjIDMhwfJIfTfhsB_d18ZOHwHK7He31Stn_WemNFGuLg_jgv3PyTNfl7NGuWo-TKf3bkKrncxaF01BrONXJBl9fJ1rtup_0G-TnuKqcs6ZdxOqJIaccf85JCyEibVbboS381tCooXh4DV5qjHdUUJv1a4rYA8lzpqW4M_-4FHUG7ZQV3pVmFDMY9eoKcwDVgj8pSQeOqqU50c5McJq8-vnxtdyUb7DyAlNbmMF_pQPrSUywKUeIgcLIid31WxCqX2ueeF-SxikJZxCGXYeRniuecy9hXgPFukUFZlfo2oaHSroYLBboIfancTDoe43CgYuZmmWeRp-vXJvJOzxzLanwXrRIzE9hxYcbVIo967KJV8TgX9cS8_R4i62_Ie-OBOEonIvFm_GjyORYTi-yuzUN0Lt8ISIQhfIpin1nkYX8anBWHWpa6WiEmQJSDmJ3WmvqbYa4H2R48Bd-wsx6AQuCbZ8r5VyMIDkEg7p5b5Jmxs790UcwO3n8wR3f-BfyAbM3GiZi-Sd_eJdsQM_otn3GXDJb1St8jl_LT5byp73cO-AsqTjes
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+gDNA+content+in+the+subpopulations+of+prostate+cancer+extracellular+vesicles%3A+apoptotic+bodies%2C+microvesicles%2C+and+exosomes&rft.jtitle=The+Prostate&rft.au=L%C3%A1zaro-Ib%C3%A1%C3%B1ez%2C+Elisa&rft.au=Sanz-Garcia%2C+Andres&rft.au=Visakorpi%2C+Tapio&rft.au=Escobedo-Lucea%2C+Carmen&rft.date=2014-10-01&rft.eissn=1097-0045&rft.volume=74&rft.issue=14&rft.spage=1379&rft_id=info:doi/10.1002%2Fpros.22853&rft_id=info%3Apmid%2F25111183&rft.externalDocID=25111183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-4137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-4137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-4137&client=summon