Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: Apoptotic bodies, microvesicles, and exosomes
BACKGROUND Extracellular vesicles (EVs) are cell‐derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific...
Saved in:
| Published in: | The Prostate Vol. 74; no. 14; pp. 1379 - 1390 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Blackwell Publishing Ltd
01.10.2014
Wiley Subscription Services, Inc BlackWell Publishing Ltd |
| Subjects: | |
| ISSN: | 0270-4137, 1097-0045, 1097-0045 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | BACKGROUND
Extracellular vesicles (EVs) are cell‐derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell‐derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments.
METHODS
EV subpopulations were isolated from three PCa cell lines (LNCaP, PC‐3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing.
RESULTS
We report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell‐derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell‐dependently packed into the EV subtypes.
CONCLUSIONS
EVs derived from PCa cell lines and human plasma samples contain double‐stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics. Prostate 74:1379–1390, 2014. © 2014 The Authors. The Prostate published by Wiley Periodicals, Inc. |
|---|---|
| AbstractList | Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell-derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments.BACKGROUNDExtracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell-derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments.EV subpopulations were isolated from three PCa cell lines (LNCaP, PC-3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing.METHODSEV subpopulations were isolated from three PCa cell lines (LNCaP, PC-3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing.We report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell-derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell-dependently packed into the EV subtypes.RESULTSWe report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell-derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell-dependently packed into the EV subtypes.EVs derived from PCa cell lines and human plasma samples contain double-stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics.CONCLUSIONSEVs derived from PCa cell lines and human plasma samples contain double-stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics. BACKGROUND Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell-derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments. METHODS EV subpopulations were isolated from three PCa cell lines (LNCaP, PC-3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing. RESULTS We report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell-derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell-dependently packed into the EV subtypes. CONCLUSIONS EVs derived from PCa cell lines and human plasma samples contain double-stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics. Prostate 74:1379-1390, 2014. © 2014 The Authors. The Prostate published by Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell-derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments. EV subpopulations were isolated from three PCa cell lines (LNCaP, PC-3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing. We report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell-derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell-dependently packed into the EV subtypes. EVs derived from PCa cell lines and human plasma samples contain double-stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics. BACKGROUND Extracellular vesicles (EVs) are cell‐derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell‐derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments. METHODS EV subpopulations were isolated from three PCa cell lines (LNCaP, PC‐3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing. RESULTS We report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell‐derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell‐dependently packed into the EV subtypes. CONCLUSIONS EVs derived from PCa cell lines and human plasma samples contain double‐stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics. Prostate 74:1379–1390, 2014. © 2014 The Authors. The Prostate published by Wiley Periodicals, Inc. |
| Author | Siljander, Pia Ayuso-Sacido, Ángel Visakorpi, Tapio Lázaro-Ibáñez, Elisa Yliperttula, Marjo Escobedo-Lucea, Carmen Sanz-Garcia, Andres |
| Author_xml | – sequence: 1 givenname: Elisa surname: Lázaro-Ibáñez fullname: Lázaro-Ibáñez, Elisa organization: Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland – sequence: 2 givenname: Andres surname: Sanz-Garcia fullname: Sanz-Garcia, Andres organization: Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland – sequence: 3 givenname: Tapio surname: Visakorpi fullname: Visakorpi, Tapio organization: Institute of Biomedical Technology and BioMediTech, University of Tampere and Tampere University Hospital, Tampere, Finland – sequence: 4 givenname: Carmen surname: Escobedo-Lucea fullname: Escobedo-Lucea, Carmen organization: Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland – sequence: 5 givenname: Pia surname: Siljander fullname: Siljander, Pia organization: Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland – sequence: 6 givenname: Ángel surname: Ayuso-Sacido fullname: Ayuso-Sacido, Ángel email: marjo.yliperttula@helsinki.fi organization: Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland – sequence: 7 givenname: Marjo surname: Yliperttula fullname: Yliperttula, Marjo email: marjo.yliperttula@helsinki.fi organization: Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25111183$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kl1rFDEUhoNU7LZ64w-QgDcinZqPyWTihbC0dhVKW_yg4E3IZjJt6kwyJpna_gD_t5ndbtEi5iaEPO-bc_KeHbDlvDMAPMdoHyNE3gzBx31CakYfgRlGghcIlWwLzBDhqCgx5dtgJ8YrhDKOyBOwTRjOq6Yz8OvQtq0JxiV4cXgyh9q7NB2sg-nSwDguBz-MnUrWuwh9C6fHkkoGauW0CdDcpKC06boMBXhtotWdiW_hPOuST1bDpW-siXuwtzr4DbAHlWuy2Effm_gUPG5VF82zu30XfD16_-XgQ3F8uvh4MD8uNGOEFpzyyjBVKtqQusJCCIaWrcYlaUWjlSk5pUyLpq5UKyquqrpcNlxzrkTZZIbugndr32Fc9qbRudOgOjkE26twK72y8u8bZy_lhb-WJcVEVGU2eHVnEPyP0cQkexun7pUzfowSM8YqglFJMvryAXrlx-Bye5nKDKvFinrxZ0X3pWwSygBaA_nzYgymldqmVRy5QNtJjOQ0BHLKRa6GIEteP5BsXP8J4zX803bm9j-kPPt0-nmjKdYaG5O5udeo8F1WOSMmz08W8oie8fPFNyEX9DegONR_ |
| CODEN | PRSTDS |
| CitedBy_id | crossref_primary_10_1002_jcp_29153 crossref_primary_10_1172_JCI81136 crossref_primary_10_4103_ejim_ejim_67_19 crossref_primary_10_3389_fcell_2022_752818 crossref_primary_10_3390_biomedicines10102485 crossref_primary_10_1016_j_eururo_2016_02_046 crossref_primary_10_1002_path_6138 crossref_primary_10_3390_life11050381 crossref_primary_10_1515_cclm_2017_0560 crossref_primary_10_1007_s00432_022_04391_6 crossref_primary_10_1038_leu_2017_91 crossref_primary_10_1186_s40364_024_00661_2 crossref_primary_10_1016_j_bcp_2023_115739 crossref_primary_10_3389_fonc_2025_1555963 crossref_primary_10_1002_jcp_25240 crossref_primary_10_3390_vaccines12020200 crossref_primary_10_3389_fonc_2023_1201554 crossref_primary_10_1186_s12885_017_3087_x crossref_primary_10_1016_j_bpg_2021_101731 crossref_primary_10_1159_000497748 crossref_primary_10_3390_ph14020128 crossref_primary_10_3390_cancers11070891 crossref_primary_10_1080_09537104_2016_1265926 crossref_primary_10_1007_s12015_016_9715_z crossref_primary_10_4251_wjgo_v13_i11_1561 crossref_primary_10_1016_j_cytogfr_2019_12_007 crossref_primary_10_1038_s41416_021_01610_8 crossref_primary_10_3389_fonc_2022_869706 crossref_primary_10_1038_s41419_020_02803_4 crossref_primary_10_1002_jex2_51 crossref_primary_10_1038_s41598_017_08392_1 crossref_primary_10_1002_1878_0261_12777 crossref_primary_10_3390_cancers13061407 crossref_primary_10_1186_s12907_015_0005_5 crossref_primary_10_3390_cancers15112970 crossref_primary_10_1038_s41598_020_65640_7 crossref_primary_10_1186_s12920_019_0590_8 crossref_primary_10_1080_20013078_2019_1656993 crossref_primary_10_1159_000480424 crossref_primary_10_3390_ijms26094302 crossref_primary_10_3389_fcell_2022_1028854 crossref_primary_10_1016_j_yexcr_2016_10_012 crossref_primary_10_3390_cancers13153791 crossref_primary_10_3390_genes11020203 crossref_primary_10_3402_jev_v4_28533 crossref_primary_10_1002_smll_201601815 crossref_primary_10_2478_aoas_2022_0072 crossref_primary_10_1080_20013078_2016_1267896 crossref_primary_10_1155_2015_634865 crossref_primary_10_1038_pcan_2015_17 crossref_primary_10_3389_fgene_2024_1338468 crossref_primary_10_1002_elps_202000223 crossref_primary_10_1186_s12950_024_00381_2 crossref_primary_10_1080_20013078_2018_1505403 crossref_primary_10_1159_000444502 crossref_primary_10_1227_neu_0000000000002393 crossref_primary_10_3389_fonc_2018_00221 crossref_primary_10_3389_fonc_2018_00222 crossref_primary_10_1002_jev2_12268 crossref_primary_10_1189_jlb_3A1116_483R crossref_primary_10_4251_wjgo_v17_i8_106663 crossref_primary_10_3390_antiox13121493 crossref_primary_10_3390_cancers12113292 crossref_primary_10_1038_pcan_2017_7 crossref_primary_10_1007_s00018_018_2773_4 crossref_primary_10_3390_ijms21155359 crossref_primary_10_1007_s10555_024_10210_w crossref_primary_10_1161_CIRCRESAHA_117_309417 crossref_primary_10_5772_60522 crossref_primary_10_3390_cells7080093 crossref_primary_10_1038_s41598_022_23204_x crossref_primary_10_1038_s43018_024_00862_6 crossref_primary_10_1155_2018_6392198 crossref_primary_10_3390_ijms23137138 crossref_primary_10_3390_ijms23010008 crossref_primary_10_1371_journal_pntd_0007191 crossref_primary_10_1016_j_bioactmat_2021_03_015 crossref_primary_10_1002_hep_29605 crossref_primary_10_3390_cancers14184504 crossref_primary_10_1002_jev2_12270 crossref_primary_10_1016_j_gene_2025_149640 crossref_primary_10_3390_pr9020224 crossref_primary_10_1007_s00018_016_2309_8 crossref_primary_10_1038_s41420_022_00900_1 crossref_primary_10_3389_fonc_2016_00125 crossref_primary_10_1038_s41419_024_07003_y crossref_primary_10_1186_1471_2407_14_930 crossref_primary_10_3389_fphar_2022_923232 crossref_primary_10_1007_s44258_024_00039_x crossref_primary_10_1080_20013078_2017_1302705 crossref_primary_10_3389_fphar_2021_671298 crossref_primary_10_1186_s12951_025_03326_w crossref_primary_10_1210_endocr_bqab139 crossref_primary_10_1111_cpr_12659 crossref_primary_10_1007_s00011_025_02053_0 crossref_primary_10_1016_j_brainres_2014_09_070 crossref_primary_10_3389_fmolb_2022_939050 crossref_primary_10_1042_BST20200225 crossref_primary_10_3390_ijms21218260 crossref_primary_10_3389_fcvm_2017_00071 crossref_primary_10_1038_srep35250 crossref_primary_10_7554_eLife_88008_4 crossref_primary_10_1038_s12276_019_0213_7 crossref_primary_10_1186_s12964_023_01251_9 crossref_primary_10_1186_s40880_015_0051_5 crossref_primary_10_3390_ijms22126258 crossref_primary_10_1002_pmic_201800169 crossref_primary_10_3389_fmolb_2023_1279854 crossref_primary_10_1038_s41431_018_0132_4 crossref_primary_10_1186_s12885_016_2783_2 crossref_primary_10_1093_burnst_tkae021 crossref_primary_10_1002_advs_202501792 crossref_primary_10_3389_fimmu_2023_1120175 crossref_primary_10_3389_fphar_2019_01608 crossref_primary_10_1016_j_semcancer_2022_11_003 crossref_primary_10_3389_fgene_2023_1138625 crossref_primary_10_3390_ijms17020170 crossref_primary_10_1016_j_bbalip_2020_158856 crossref_primary_10_1210_me_2015_1206 crossref_primary_10_3390_ijms17020175 crossref_primary_10_1016_j_neurobiolaging_2018_10_006 crossref_primary_10_1158_0008_5472_CAN_18_0608 crossref_primary_10_3390_ijms20061349 crossref_primary_10_3390_ijms26062640 crossref_primary_10_1016_j_jot_2025_03_009 crossref_primary_10_3390_genes12020173 crossref_primary_10_1016_j_bioactmat_2023_09_018 crossref_primary_10_3390_cancers13153827 crossref_primary_10_1016_j_bbrc_2018_03_107 crossref_primary_10_1080_20013078_2017_1354645 crossref_primary_10_1177_15353702211021022 crossref_primary_10_1016_j_coph_2016_06_003 crossref_primary_10_1016_j_mam_2017_11_012 crossref_primary_10_1016_j_bioactmat_2021_01_009 crossref_primary_10_1016_j_pharmthera_2018_08_002 crossref_primary_10_1002_jev2_12194 crossref_primary_10_3389_fonc_2019_00931 crossref_primary_10_1038_s41598_020_73350_3 crossref_primary_10_1016_j_mam_2017_11_009 crossref_primary_10_1016_j_mam_2018_02_002 crossref_primary_10_1186_s12943_022_01710_w crossref_primary_10_1089_dna_2019_5005 crossref_primary_10_1210_er_2017_00229 crossref_primary_10_3390_ijms222212246 crossref_primary_10_1007_s40620_017_0425_7 crossref_primary_10_3402_jev_v5_31488 crossref_primary_10_1080_20013078_2019_1608786 crossref_primary_10_3390_ijms25094761 crossref_primary_10_1016_j_jconrel_2015_09_031 crossref_primary_10_3389_fendo_2023_1205385 crossref_primary_10_3390_cancers15174329 crossref_primary_10_3390_cancers14030532 crossref_primary_10_1038_s12276_019_0226_2 crossref_primary_10_3390_cancers16132462 crossref_primary_10_1002_mco2_70009 crossref_primary_10_3389_fneur_2019_01241 crossref_primary_10_1002_pros_23101 crossref_primary_10_1186_s13287_017_0628_9 crossref_primary_10_3389_fmicb_2017_00377 crossref_primary_10_1111_sji_12651 crossref_primary_10_1080_07853890_2024_2426770 crossref_primary_10_1371_journal_pone_0132001 crossref_primary_10_1371_journal_pone_0163665 crossref_primary_10_1038_s41416_021_01668_4 crossref_primary_10_1073_pnas_1418401112 crossref_primary_10_1155_2015_613536 crossref_primary_10_15252_embj_2021109288 crossref_primary_10_3389_fcimb_2020_00076 crossref_primary_10_1002_1878_0261_12807 crossref_primary_10_3390_cancers14133258 crossref_primary_10_7554_eLife_88008 crossref_primary_10_3390_cancers13225825 crossref_primary_10_1002_biof_2036 crossref_primary_10_1016_j_drup_2019_100647 crossref_primary_10_3402_jev_v4_27066 crossref_primary_10_3389_fimmu_2015_00006 crossref_primary_10_1080_20013078_2020_1747206 crossref_primary_10_1016_j_semcdb_2017_01_003 crossref_primary_10_1016_j_addr_2021_114001 crossref_primary_10_1089_dna_2021_0488 crossref_primary_10_1021_acsami_3c14592 crossref_primary_10_3390_ijms18040717 crossref_primary_10_1016_j_micron_2022_103341 crossref_primary_10_1242_jcs_235085 crossref_primary_10_1016_j_ejps_2016_09_008 crossref_primary_10_1002_jex2_115 crossref_primary_10_3390_ijms20122890 crossref_primary_10_3390_cancers15051456 crossref_primary_10_3389_fcell_2020_622048 crossref_primary_10_3390_vaccines10111877 crossref_primary_10_1016_S1875_5364_24_60726_0 crossref_primary_10_1016_j_cca_2025_120125 crossref_primary_10_1016_j_heliyon_2023_e14986 crossref_primary_10_1186_s12964_025_02250_8 crossref_primary_10_3390_ijms23031461 |
| Cites_doi | 10.1002/pros.22480 10.1016/j.tcb.2008.11.003 10.1371/journal.pbio.1001450 10.1073/pnas.101129998 10.1371/journal.pone.0070047 10.1038/sj.bjc.6605058 10.1186/1479-5876-7-4 10.1038/ncomms1180 10.1042/CS20120309 10.1038/ncb1800 10.1038/ncb1725 10.1182/blood-2003-10-3614 10.1126/science.275.5308.1943 10.1038/ng0497-356 10.1016/j.ccr.2010.05.026 10.1007/s00702-009-0288-8 10.1002/pros.20921 10.1038/nm.2753 10.1038/sj.leu.2404132 10.1038/ncb1596 10.1016/j.bbagrm.2012.08.016 10.1074/mcp.M800443-MCP200 10.1158/0008-5472.CAN-08-3860 |
| ContentType | Journal Article |
| Copyright | 2014 The Authors. published by Wiley Periodicals, Inc. 2014 The Authors. The Prostate published by Wiley Periodicals, Inc. 2014 The Authors. published by Wiley Periodicals, Inc. 2014 |
| Copyright_xml | – notice: 2014 The Authors. published by Wiley Periodicals, Inc. – notice: 2014 The Authors. The Prostate published by Wiley Periodicals, Inc. – notice: 2014 The Authors. published by Wiley Periodicals, Inc. 2014 |
| DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TO 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
| DOI | 10.1002/pros.22853 |
| DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1097-0045 |
| EndPage | 1390 |
| ExternalDocumentID | PMC4312964 3433111321 25111183 10_1002_pros_22853 PROS22853 ark_67375_WNG_F3P7WGZ9_G |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Magnus Ehrnrooth Foundation – fundername: Medicinska Understödsföreningen Liv och Hälsa r.f. – fundername: Finnish Cultural Foundation funderid: 00130502 – fundername: Academy of Finland Research Fellow funderid: 273689–266486 – fundername: Academy of Finland funderid: 259990 – fundername: Carlos III Health Institute funderid: PI10/01069; CP11/00147 |
| GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6P MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WUP WWO AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7T5 7TO 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c5523-7376e5a4a3d286199950bfc142f9dcae47335c9d86af967a684bd7c77a94d2f93 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 231 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341019400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0270-4137 1097-0045 |
| IngestDate | Tue Nov 04 02:00:31 EST 2025 Fri Jul 11 09:55:53 EDT 2025 Sat Nov 29 14:51:51 EST 2025 Thu Apr 03 07:04:15 EDT 2025 Sat Nov 29 01:36:51 EST 2025 Tue Nov 18 21:51:30 EST 2025 Wed Jan 22 16:57:25 EST 2025 Sun Sep 21 06:16:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs http://creativecommons.org/licenses/by-nc-nd/3.0 http://doi.wiley.com/10.1002/tdm_license_1.1 2014 The Authors. The Prostate published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5523-7376e5a4a3d286199950bfc142f9dcae47335c9d86af967a684bd7c77a94d2f93 |
| Notes | ArticleID:PROS22853 Academy of Finland - No. 259990 Academy of Finland Research Fellow - No. 273689-266486 Finnish Cultural Foundation - No. 00130502 ark:/67375/WNG-F3P7WGZ9-G Carlos III Health Institute - No. PI10/01069; No. CP11/00147 istex:C7B7F9FEA495F8F88F1860A685EBCA77312FA9A2 Magnus Ehrnrooth Foundation Medicinska Understödsföreningen Liv och Hälsa r.f. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Grant sponsor: Finnish Cultural Foundation; Grant number: 00130502; Grant sponsor: Academy of Finland Research Fellow; Grant number: 273689–266486; Grant sponsor: Magnus Ehrnrooth Foundation; Grant sponsor: Medicinska Understödsföreningen Liv och Hälsa r.f.; Grant sponsor: Carlos III Health Institute; Grant numbers: PI10/01069; CP11/00147; Grant sponsor: Academy of Finland; Grant number: 259990. |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpros.22853 |
| PMID | 25111183 |
| PQID | 1562158942 |
| PQPubID | 1016443 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4312964 proquest_miscellaneous_1555621042 proquest_journals_1562158942 pubmed_primary_25111183 crossref_citationtrail_10_1002_pros_22853 crossref_primary_10_1002_pros_22853 wiley_primary_10_1002_pros_22853_PROS22853 istex_primary_ark_67375_WNG_F3P7WGZ9_G |
| PublicationCentury | 2000 |
| PublicationDate | October 2014 |
| PublicationDateYYYYMMDD | 2014-10-01 |
| PublicationDate_xml | – month: 10 year: 2014 text: October 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken – name: Oxford, UK |
| PublicationTitle | The Prostate |
| PublicationTitleAlternate | Prostate |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc BlackWell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: BlackWell Publishing Ltd |
| References | Gabriel K, Ingram A, Austin R, Kapoor A, Tang D, Majeed F, Qureshi T, Al-Nedawi K. Regulation of the tumor suppressor PTEN through exosomes: A diagnostic potential for prostate cancer. PLoS ONE 2013; 8(7):e70047. Spans L, Atak ZK, Van Nieuwerburgh F, Deforce D, Lerut E, Aerts S, Claessens F. Variations in the exome of the LNCaP prostate cancer cell line. Prostate 2012; 72(12):1317-1327. Bobrie A, Colombo M, Krumeich S, Raposo G, Thery C. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. Journal of Extracellular Vesicles 2012; 16:1. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18(1):11-22. Hessvik NP, Phuyal S, Brech A, Sandvig K, Llorente A. Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochim Biophys Acta 2012; 1819(11-12):1154-1163. Ronquist KG, Ronquist G, Carlsson L, Larsson A. Human prostasomes contain chromosomal DNA. Prostate 2009; 69(7):737-743. Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2011; 2:180. Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM. Microparticles: Biomarkers and beyond. Clin Sci 2013; 124(7-8):423-441. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: Artefacts no more. Trends Cell Biol 2009; 19(2):43-51. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008; 10(5):619-624. Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borràs FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A, Cocucci E, Falcon-Perez JM, Gabrielsson S, Gho YS, Gupta D, Harsha HC, Hendrix A, Hill AF, Inal JM, Jenster G, Krämer-Albers EM, Lim SK, Llorente A, Lötvall J, Marcilla A, Mincheva-Nilsson L, Nazarenko I, Nieuwland R, Nolte-'t Hoen EN, Pandey A, Patel T, Piper MG, Pluchino S, Prasad TS, Rajendran L, Raposo G, Record M, Reid GE, Sánchez-Madrid F, Schiffelers RM, Siljander P, Stensballe A, Stoorvogel W, Taylor D, Thery C, Valadi H, van Balkom BW, Vázquez J, Vidal M, Wauben MH, Yáñez-Mó M, Zoeller M, Mathivanan S. Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biol 2012; 10(12):e1001450. Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 2010; 117(1):1-4. Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, True LD, Rubin MA, Adam RM, Beroukhim R, Demichelis F, Freeman MR. Oncosome formation in prostate cancer: Association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 2009; 69(13):5601-5609. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18(6):883. Mitchell PJ, Welton J, Staffurth J, Court J, Mason MD, Tabi Z, Clayton A. Can urinary exosomes act as treatment response markers in prostate cancer? J Transl Med 2009; 7:4. D'Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: Shedding light on novel microenvironment modulators and prospective. Cancer Biomarkers 2012; 26(12):1287-1299. Jansen FH, Krijgsveld J, van Rijswijk A, van den Bemd GJ, van den Berg MS, van Weerden WM, Willemsen R, Dekker LJ, Luider TM, Jenster G. Exosomal secretion of cytoplasmic prostate cancer xenograft-derived proteins. Mol Cell Proteomics 2009; 8(6):1192-1205. Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman M, Spetz A, Holmgren L. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA 2001; 98(11):6407-6411. Hristov M, Erl W, Linder S, Weber PC. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 2004; 104(9):2761-2766. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10(12):1470-1476. Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, Zhang J, Weitz J, Chin L, Futreal A, Kalluri R. Identification of double stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 2014; 288(12):26888-26897. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15(4):356-362. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006; 20(5):847-856. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275(5308):1943-1947. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6):654-659. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29(6):2001-2007. Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XO, Widmark A. Prostate cancer-derived urine exosomes: A novel approach to biomarkers for prostate cancer. Br J Cancer 2009; 100(10):1603-1607. 2009; 69 2004; 104 2011; 2 2010; 18 1997; 275 2013; 124 2008; 10 2012; 18 2012; 16 2001; 29 2013; 8 2012; 10 2012; 72 2006; 20 2010; 117 1997; 15 2009; 100 2007; 9 2009; 8 2009; 7 2012; 1819 2012; 26 2009; 19 2014; 288 2001; 98 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 D'Souza‐Schorey C (e_1_2_7_9_1) 2012; 26 Kahlert C (e_1_2_7_25_1) 2014; 288 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 Pfaffl MW (e_1_2_7_15_1) 2001; 29 Bobrie A (e_1_2_7_4_1) 2012; 16 17486113 - Nat Cell Biol. 2007 Jun;9(6):654-9 20579941 - Cancer Cell. 2010 Jul 13;18(1):11-22 18425114 - Nat Cell Biol. 2008 May;10(5):619-24 22982408 - Biochim Biophys Acta. 2012 Nov-Dec;1819(11-12):1154-63 23936141 - PLoS One. 2013;8(7):e70047 21285958 - Nat Commun. 2011;2:180 15242875 - Blood. 2004 Nov 1;104(9):2761-6 19401683 - Br J Cancer. 2009 May 19;100(10):1603-7 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 16453000 - Leukemia. 2006 May;20(5):847-56 24009879 - J Extracell Vesicles. 2012 Apr 16;1:null 23249271 - Clin Sci (Lond). 2013 Apr;124(7):423-41 19011622 - Nat Cell Biol. 2008 Dec;10(12):1470-6 19143024 - Prostate. 2009 May 15;69(7):737-43 23271954 - PLoS Biol. 2012;10(12):e1001450 9072974 - Science. 1997 Mar 28;275(5308):1943-7 24398677 - J Biol Chem. 2014 Feb 14;289(7):3869-75 19138409 - J Transl Med. 2009;7:4 19680595 - J Neural Transm (Vienna). 2010 Jan;117(1):1-4 19549916 - Cancer Res. 2009 Jul 1;69(13):5601-9 19204029 - Mol Cell Proteomics. 2009 Jun;8(6):1192-205 22213130 - Prostate. 2012 Sep 1;72(12):1317-27 19144520 - Trends Cell Biol. 2009 Feb;19(2):43-51 11353826 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):6407-11 9090379 - Nat Genet. 1997 Apr;15(4):356-62 22713869 - Genes Dev. 2012 Jun 15;26(12):1287-99 22635005 - Nat Med. 2012 Jun;18(6):883-91 |
| References_xml | – reference: Jansen FH, Krijgsveld J, van Rijswijk A, van den Bemd GJ, van den Berg MS, van Weerden WM, Willemsen R, Dekker LJ, Luider TM, Jenster G. Exosomal secretion of cytoplasmic prostate cancer xenograft-derived proteins. Mol Cell Proteomics 2009; 8(6):1192-1205. – reference: Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM. Microparticles: Biomarkers and beyond. Clin Sci 2013; 124(7-8):423-441. – reference: Bobrie A, Colombo M, Krumeich S, Raposo G, Thery C. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. Journal of Extracellular Vesicles 2012; 16:1. – reference: Mitchell PJ, Welton J, Staffurth J, Court J, Mason MD, Tabi Z, Clayton A. Can urinary exosomes act as treatment response markers in prostate cancer? J Transl Med 2009; 7:4. – reference: Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18(6):883. – reference: Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XO, Widmark A. Prostate cancer-derived urine exosomes: A novel approach to biomarkers for prostate cancer. Br J Cancer 2009; 100(10):1603-1607. – reference: Ronquist KG, Ronquist G, Carlsson L, Larsson A. Human prostasomes contain chromosomal DNA. Prostate 2009; 69(7):737-743. – reference: Hristov M, Erl W, Linder S, Weber PC. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 2004; 104(9):2761-2766. – reference: Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10(12):1470-1476. – reference: Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 2010; 117(1):1-4. – reference: Hessvik NP, Phuyal S, Brech A, Sandvig K, Llorente A. Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochim Biophys Acta 2012; 1819(11-12):1154-1163. – reference: Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: Artefacts no more. Trends Cell Biol 2009; 19(2):43-51. – reference: Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006; 20(5):847-856. – reference: Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2011; 2:180. – reference: Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borràs FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A, Cocucci E, Falcon-Perez JM, Gabrielsson S, Gho YS, Gupta D, Harsha HC, Hendrix A, Hill AF, Inal JM, Jenster G, Krämer-Albers EM, Lim SK, Llorente A, Lötvall J, Marcilla A, Mincheva-Nilsson L, Nazarenko I, Nieuwland R, Nolte-'t Hoen EN, Pandey A, Patel T, Piper MG, Pluchino S, Prasad TS, Rajendran L, Raposo G, Record M, Reid GE, Sánchez-Madrid F, Schiffelers RM, Siljander P, Stensballe A, Stoorvogel W, Taylor D, Thery C, Valadi H, van Balkom BW, Vázquez J, Vidal M, Wauben MH, Yáñez-Mó M, Zoeller M, Mathivanan S. Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biol 2012; 10(12):e1001450. – reference: Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15(4):356-362. – reference: Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18(1):11-22. – reference: Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, True LD, Rubin MA, Adam RM, Beroukhim R, Demichelis F, Freeman MR. Oncosome formation in prostate cancer: Association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 2009; 69(13):5601-5609. – reference: Spans L, Atak ZK, Van Nieuwerburgh F, Deforce D, Lerut E, Aerts S, Claessens F. Variations in the exome of the LNCaP prostate cancer cell line. Prostate 2012; 72(12):1317-1327. – reference: Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, Zhang J, Weitz J, Chin L, Futreal A, Kalluri R. Identification of double stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 2014; 288(12):26888-26897. – reference: D'Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: Shedding light on novel microenvironment modulators and prospective. Cancer Biomarkers 2012; 26(12):1287-1299. – reference: Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29(6):2001-2007. – reference: Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008; 10(5):619-624. – reference: Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275(5308):1943-1947. – reference: Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman M, Spetz A, Holmgren L. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA 2001; 98(11):6407-6411. – reference: Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6):654-659. – reference: Gabriel K, Ingram A, Austin R, Kapoor A, Tang D, Majeed F, Qureshi T, Al-Nedawi K. Regulation of the tumor suppressor PTEN through exosomes: A diagnostic potential for prostate cancer. PLoS ONE 2013; 8(7):e70047. – volume: 2 start-page: 180 year: 2011 article-title: Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences publication-title: Nat Commun – volume: 18 start-page: 883 issue: 6 year: 2012 article-title: Melanoma exosomes educate bone marrow progenitor cells toward a pro‐metastatic phenotype through MET publication-title: Nat Med – volume: 26 start-page: 1287 issue: 12 year: 2012 end-page: 1299 article-title: Tumor‐derived microvesicles: Shedding light on novel microenvironment modulators and prospective publication-title: Cancer Biomarkers – volume: 18 start-page: 11 issue: 1 year: 2010 end-page: 22 article-title: Integrative genomic profiling of human prostate cancer publication-title: Cancer Cell – volume: 8 start-page: e70047 issue: 7 year: 2013 article-title: Regulation of the tumor suppressor PTEN through exosomes: A diagnostic potential for prostate cancer publication-title: PLoS ONE – volume: 288 start-page: 26888 issue: 12 year: 2014 end-page: 26897 article-title: Identification of double stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer publication-title: J Biol Chem – volume: 124 start-page: 423 issue: 7–8 year: 2013 end-page: 441 article-title: Microparticles: Biomarkers and beyond publication-title: Clin Sci – volume: 10 start-page: 1470 issue: 12 year: 2008 end-page: 1476 article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers publication-title: Nat Cell Biol – volume: 72 start-page: 1317 issue: 12 year: 2012 end-page: 1327 article-title: Variations in the exome of the LNCaP prostate cancer cell line publication-title: Prostate – volume: 104 start-page: 2761 issue: 9 year: 2004 end-page: 2766 article-title: Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro publication-title: Blood – volume: 275 start-page: 1943 issue: 5308 year: 1997 end-page: 1947 article-title: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer publication-title: Science – volume: 100 start-page: 1603 issue: 10 year: 2009 end-page: 1607 article-title: Prostate cancer‐derived urine exosomes: A novel approach to biomarkers for prostate cancer publication-title: Br J Cancer – volume: 69 start-page: 737 issue: 7 year: 2009 end-page: 743 article-title: Human prostasomes contain chromosomal DNA publication-title: Prostate – volume: 10 start-page: e1001450 issue: 12 year: 2012 article-title: Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation publication-title: PLoS Biol – volume: 10 start-page: 619 issue: 5 year: 2008 end-page: 624 article-title: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells publication-title: Nat Cell Biol – volume: 16 start-page: 1 year: 2012 article-title: Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation publication-title: Journal of Extracellular Vesicles – volume: 9 start-page: 654 issue: 6 year: 2007 end-page: 659 article-title: Exosome‐mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nat Cell Biol – volume: 8 start-page: 1192 issue: 6 year: 2009 end-page: 1205 article-title: Exosomal secretion of cytoplasmic prostate cancer xenograft‐derived proteins publication-title: Mol Cell Proteomics – volume: 69 start-page: 5601 issue: 13 year: 2009 end-page: 5609 article-title: Oncosome formation in prostate cancer: Association with a region of frequent chromosomal deletion in metastatic disease publication-title: Cancer Res – volume: 29 start-page: 2001 issue: 6 year: 2001 end-page: 2007 article-title: A new mathematical model for relative quantification in real‐time RT‐PCR publication-title: Nucleic Acids Res – volume: 19 start-page: 43 issue: 2 year: 2009 end-page: 51 article-title: Shedding microvesicles: Artefacts no more publication-title: Trends Cell Biol – volume: 117 start-page: 1 issue: 1 year: 2010 end-page: 4 article-title: Astrocytes and glioblastoma cells release exosomes carrying mtDNA publication-title: J Neural Transm – volume: 1819 start-page: 1154 issue: 11–12 year: 2012 end-page: 1163 article-title: Profiling of microRNAs in exosomes released from PC‐3 prostate cancer cells publication-title: Biochim Biophys Acta – volume: 15 start-page: 356 issue: 4 year: 1997 end-page: 362 article-title: Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers publication-title: Nat Genet – volume: 98 start-page: 6407 issue: 11 year: 2001 end-page: 6411 article-title: Horizontal transfer of oncogenes by uptake of apoptotic bodies publication-title: Proc Natl Acad Sci USA – volume: 20 start-page: 847 issue: 5 year: 2006 end-page: 856 article-title: Embryonic stem cell‐derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery publication-title: Leukemia – volume: 7 start-page: 4 year: 2009 article-title: Can urinary exosomes act as treatment response markers in prostate cancer publication-title: J Transl Med – ident: e_1_2_7_18_1 doi: 10.1002/pros.22480 – ident: e_1_2_7_22_1 doi: 10.1016/j.tcb.2008.11.003 – volume: 29 start-page: 2001 issue: 6 year: 2001 ident: e_1_2_7_15_1 article-title: A new mathematical model for relative quantification in real‐time RT‐PCR publication-title: Nucleic Acids Res – ident: e_1_2_7_2_1 doi: 10.1371/journal.pbio.1001450 – ident: e_1_2_7_6_1 doi: 10.1073/pnas.101129998 – ident: e_1_2_7_14_1 doi: 10.1371/journal.pone.0070047 – ident: e_1_2_7_10_1 doi: 10.1038/sj.bjc.6605058 – ident: e_1_2_7_11_1 doi: 10.1186/1479-5876-7-4 – ident: e_1_2_7_24_1 doi: 10.1038/ncomms1180 – volume: 288 start-page: 26888 issue: 12 year: 2014 ident: e_1_2_7_25_1 article-title: Identification of double stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer publication-title: J Biol Chem – ident: e_1_2_7_3_1 doi: 10.1042/CS20120309 – ident: e_1_2_7_27_1 doi: 10.1038/ncb1800 – ident: e_1_2_7_8_1 doi: 10.1038/ncb1725 – volume: 26 start-page: 1287 issue: 12 year: 2012 ident: e_1_2_7_9_1 article-title: Tumor‐derived microvesicles: Shedding light on novel microenvironment modulators and prospective publication-title: Cancer Biomarkers – ident: e_1_2_7_5_1 doi: 10.1182/blood-2003-10-3614 – ident: e_1_2_7_17_1 doi: 10.1126/science.275.5308.1943 – ident: e_1_2_7_16_1 doi: 10.1038/ng0497-356 – ident: e_1_2_7_26_1 doi: 10.1016/j.ccr.2010.05.026 – ident: e_1_2_7_23_1 doi: 10.1007/s00702-009-0288-8 – ident: e_1_2_7_13_1 doi: 10.1002/pros.20921 – ident: e_1_2_7_28_1 doi: 10.1038/nm.2753 – ident: e_1_2_7_20_1 doi: 10.1038/sj.leu.2404132 – ident: e_1_2_7_19_1 doi: 10.1038/ncb1596 – ident: e_1_2_7_21_1 doi: 10.1016/j.bbagrm.2012.08.016 – ident: e_1_2_7_12_1 doi: 10.1074/mcp.M800443-MCP200 – ident: e_1_2_7_7_1 doi: 10.1158/0008-5472.CAN-08-3860 – volume: 16 start-page: 1 year: 2012 ident: e_1_2_7_4_1 article-title: Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation publication-title: Journal of Extracellular Vesicles – reference: 22713869 - Genes Dev. 2012 Jun 15;26(12):1287-99 – reference: 19011622 - Nat Cell Biol. 2008 Dec;10(12):1470-6 – reference: 16453000 - Leukemia. 2006 May;20(5):847-56 – reference: 11353826 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):6407-11 – reference: 23249271 - Clin Sci (Lond). 2013 Apr;124(7):423-41 – reference: 19143024 - Prostate. 2009 May 15;69(7):737-43 – reference: 22635005 - Nat Med. 2012 Jun;18(6):883-91 – reference: 19680595 - J Neural Transm (Vienna). 2010 Jan;117(1):1-4 – reference: 19401683 - Br J Cancer. 2009 May 19;100(10):1603-7 – reference: 24009879 - J Extracell Vesicles. 2012 Apr 16;1:null – reference: 9072974 - Science. 1997 Mar 28;275(5308):1943-7 – reference: 19549916 - Cancer Res. 2009 Jul 1;69(13):5601-9 – reference: 23936141 - PLoS One. 2013;8(7):e70047 – reference: 17486113 - Nat Cell Biol. 2007 Jun;9(6):654-9 – reference: 19204029 - Mol Cell Proteomics. 2009 Jun;8(6):1192-205 – reference: 22213130 - Prostate. 2012 Sep 1;72(12):1317-27 – reference: 21285958 - Nat Commun. 2011;2:180 – reference: 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 – reference: 23271954 - PLoS Biol. 2012;10(12):e1001450 – reference: 22982408 - Biochim Biophys Acta. 2012 Nov-Dec;1819(11-12):1154-63 – reference: 9090379 - Nat Genet. 1997 Apr;15(4):356-62 – reference: 19144520 - Trends Cell Biol. 2009 Feb;19(2):43-51 – reference: 20579941 - Cancer Cell. 2010 Jul 13;18(1):11-22 – reference: 15242875 - Blood. 2004 Nov 1;104(9):2761-6 – reference: 24398677 - J Biol Chem. 2014 Feb 14;289(7):3869-75 – reference: 18425114 - Nat Cell Biol. 2008 May;10(5):619-24 – reference: 19138409 - J Transl Med. 2009;7:4 |
| SSID | ssj0010002 |
| Score | 2.547612 |
| Snippet | BACKGROUND
Extracellular vesicles (EVs) are cell‐derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of... Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their... BACKGROUND Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of... |
| SourceID | pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1379 |
| SubjectTerms | Apoptosis - genetics Case-Control Studies Cell Line, Tumor DNA, Neoplasm - genetics DNA, Neoplasm - metabolism Exosomes - genetics Exosomes - metabolism Genes, p53 Humans Male Original Prostatic Neoplasms - blood Prostatic Neoplasms - genetics Prostatic Neoplasms - metabolism Prostatic Neoplasms - pathology PTEN Phosphohydrolase - genetics |
| Title | Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: Apoptotic bodies, microvesicles, and exosomes |
| URI | https://api.istex.fr/ark:/67375/WNG-F3P7WGZ9-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpros.22853 https://www.ncbi.nlm.nih.gov/pubmed/25111183 https://www.proquest.com/docview/1562158942 https://www.proquest.com/docview/1555621042 https://pubmed.ncbi.nlm.nih.gov/PMC4312964 |
| Volume | 74 |
| WOSCitedRecordID | wos000341019400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0045 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010002 issn: 0270-4137 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGitBe-P4IjMkIhARaWGI7cYJ4qSgtD6NUg20VL5YTO6OCJVPTTvwD_N_cOWlGxYSEeIkS-efEdu7su_iXO0KeaZHpnMXGz7gJfEyv7SdRYsDnkZbpIDapY1Ue7cvxOJlO08kGebP6F6aJD9F9cEPNcPM1KrjO6r2LoKEwwdSvGIPl5grphSFPMHEDE5NuDwGV3X1hkdCIkMsuOCnbu6i7thz1cGR_XGZr_kmZ_N2UdWvR8Mb_9eImud7aoLTfCM0tsmHL2-Tah3aX_Q75OWizpizoyWDcp0hnx4tZScFcpPUyO-vSftW0KijeHo1WmqMMzSlM-HONWwLIcaXntnbcu9e0D_UWFTyVZhWyF3fpKfIBV4BdqksDlau6OrX1XXI4fPf57Xu_Tdfg5xG4s76EucpGWmhuWBJjeIMoyIo8FKxITa6tkJxHeWqSWBdpLHWciMzIXEqdCgMYfo9sllVpHxAaGxtauFFki1hoE2Y64EzCiUlZmGXcIy9Wb03lbSxzTKnxXTVRmJnCjis3rh552mHPmggel6Keu5ffQfT8G3LeZKSOxyM15BN5PPqSqpFHtlfSoVp1rxU4wWA6JalgHnnSFYOi4lDr0lZLxESIChBzvxGm7mHo54GnB62Qa2LWATAI-HpJOfvqgoGDAYg75x556cTsL11Uk4OPn9zZw38BPyJbYCSKhsC4TTYX86V9TK7m54tZPd9xKgdHOU12SG9wMDzc_wX-gDUz |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tb9MwELZgRcAX3geBAUYgJNDCEseJE75VlHaIrlR7YdO-WE7sQAVLpqSd-AP8b-6cNKNiQkJ8c5THTuzc2Xf2kztCXiieqoxF2k0D7bmYXtuNw1iDzyMMU16kE8uq_DwWk0l8dJRMW24O_gvTxIfoNtxQM-x8jQqOG9Jb51FDYYap3zAG681l0uMgRyDgvcHu8GDcHSOgvttNFgHv4Qeii0_Kts5rr6xIPRzcHxeZm3-yJn-3Zu1yNLz5nx25RW60dijtN4Jzm1wyxR1ydac9ab9Lfg7azClz-mUw6VOktOPFrKBgMtJ6kZ52qb9qWuYUm0fDlWYoRxWFSb9SeCyAPFd6ZmrLv3tL-1BvXsJTaVoig3GTniAncAnYpKrQULmsyxNT3yMHw_f777bdNmWDm4Xg0roC5isTKq4CzeIIQxyEXppnPmd5ojNluAiCMEt0HKk8iYSKYp5qkQmhEq4BE6yTtaIszANCI218Aw2FJo-40n6qvIAJKOiE-WkaOOTV8rPJrI1njmk1vssmEjOT2HFpx9UhzzvsaRPF40LUS_v1O4iqviHvTYTycDKSw2AqDkfHiRw5ZGMpHrJV-VqCIwzmU5xw5pBn3W1QVhxqVZhygZgQUR5i7jfS1D0MfT3w9uAtxIqcdQAMBL56p5h9tQHBwQjE03OHvLZy9pcuyunupz1bevgv4Kfk2vb-zliOP0w-PiLXwWjkDaFxg6zNq4V5TK5kZ_NZXT1pNfAX7eg4MQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLWgRdNe-GYEBhiBkEALS5wPJ7xVlBRECdVgbOLFcmIHKlhSJe3EH-B_c6-TZlRMSIi3VDlOYude-9749FxCHks_kzkLlZ15yrGxvLYdBZGCnIdrJp1QxYZV-WnK0zQ6Po5nHTcH_wvT6kP0H9zQM8x8jQ6uF6rYP1MNhRmmec4YrDcXydDHKjIDMhwfJIfTfhsB_d18ZOHwHK7He31Stn_WemNFGuLg_jgv3PyTNfl7NGuWo-TKf3bkKrncxaF01BrONXJBl9fJ1rtup_0G-TnuKqcs6ZdxOqJIaccf85JCyEibVbboS381tCooXh4DV5qjHdUUJv1a4rYA8lzpqW4M_-4FHUG7ZQV3pVmFDMY9eoKcwDVgj8pSQeOqqU50c5McJq8-vnxtdyUb7DyAlNbmMF_pQPrSUywKUeIgcLIid31WxCqX2ueeF-SxikJZxCGXYeRniuecy9hXgPFukUFZlfo2oaHSroYLBboIfancTDoe43CgYuZmmWeRp-vXJvJOzxzLanwXrRIzE9hxYcbVIo967KJV8TgX9cS8_R4i62_Ie-OBOEonIvFm_GjyORYTi-yuzUN0Lt8ISIQhfIpin1nkYX8anBWHWpa6WiEmQJSDmJ3WmvqbYa4H2R48Bd-wsx6AQuCbZ8r5VyMIDkEg7p5b5Jmxs790UcwO3n8wR3f-BfyAbM3GiZi-Sd_eJdsQM_otn3GXDJb1St8jl_LT5byp73cO-AsqTjes |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+gDNA+content+in+the+subpopulations+of+prostate+cancer+extracellular+vesicles%3A+apoptotic+bodies%2C+microvesicles%2C+and+exosomes&rft.jtitle=The+Prostate&rft.au=L%C3%A1zaro-Ib%C3%A1%C3%B1ez%2C+Elisa&rft.au=Sanz-Garcia%2C+Andres&rft.au=Visakorpi%2C+Tapio&rft.au=Escobedo-Lucea%2C+Carmen&rft.date=2014-10-01&rft.eissn=1097-0045&rft.volume=74&rft.issue=14&rft.spage=1379&rft_id=info:doi/10.1002%2Fpros.22853&rft_id=info%3Apmid%2F25111183&rft.externalDocID=25111183 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-4137&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-4137&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-4137&client=summon |