Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling
The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distribu...
Saved in:
| Published in: | Biomedical engineering online Vol. 5; no. 1; p. 40 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
BioMed Central
16.06.2006
BMC |
| Subjects: | |
| ISSN: | 1475-925X, 1475-925X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation.
In the current investigation, we tested the hypothesis that acute changes in stent-induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques.
Implantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm2 along the pericardial luminal surface and 4.26 to 4.88 dynes/cm2 along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm2 observed throughout the stented region of a straight vessel implanted with an equivalent stent.
The current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis. |
|---|---|
| AbstractList | Abstract Background The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation. Methods In the current investigation, we tested the hypothesis that acute changes in stent-induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques. Results Implantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm2 along the pericardial luminal surface and 4.26 to 4.88 dynes/cm2 along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm2 observed throughout the stented region of a straight vessel implanted with an equivalent stent. Conclusion The current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis. The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation. In the current investigation, we tested the hypothesis that acute changes in stent-induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques. Implantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm2 along the pericardial luminal surface and 4.26 to 4.88 dynes/cm2 along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm2 observed throughout the stented region of a straight vessel implanted with an equivalent stent. The current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis. The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation.BACKGROUNDThe success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation.In the current investigation, we tested the hypothesis that acute changes in stent-induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques.METHODSIn the current investigation, we tested the hypothesis that acute changes in stent-induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques.Implantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm2 along the pericardial luminal surface and 4.26 to 4.88 dynes/cm2 along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm2 observed throughout the stented region of a straight vessel implanted with an equivalent stent.RESULTSImplantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm2 along the pericardial luminal surface and 4.26 to 4.88 dynes/cm2 along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm2 observed throughout the stented region of a straight vessel implanted with an equivalent stent.The current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis.CONCLUSIONThe current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis. Background - The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation. Methods In the current investigation, we tested the hypothesis that acute changes in stent- induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques. Results Implantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm super(2 )along the pericardial luminal surface and 4.26 to 4.88 dynes/cm super(2 )along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm super(2 )observed throughout the stented region of a straight vessel implanted with an equivalent stent. Conclusion The current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis. |
| ArticleNumber | 40 |
| Author | Olson, Lars E LaDisa, John F Warltier, David C Kersten, Judy R Pagel, Paul S Douglas, Hettrick A |
| AuthorAffiliation | 5 Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, USA 4 Department of Pharmacology and Toxicology, the Medical College of Wisconsin and the Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA 1 Department of Pediatrics (Division of Cardiology), Stanford University, Stanford, California, USA 2 Department of Anesthesiology, the Medical College of Wisconsin and the Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA 3 Department of Medicine (Division of Cardiovascular Diseases), the Medical College of Wisconsin and the Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA |
| AuthorAffiliation_xml | – name: 2 Department of Anesthesiology, the Medical College of Wisconsin and the Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA – name: 5 Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, USA – name: 1 Department of Pediatrics (Division of Cardiology), Stanford University, Stanford, California, USA – name: 3 Department of Medicine (Division of Cardiovascular Diseases), the Medical College of Wisconsin and the Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA – name: 4 Department of Pharmacology and Toxicology, the Medical College of Wisconsin and the Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA |
| Author_xml | – sequence: 1 givenname: John F surname: LaDisa fullname: LaDisa, John F – sequence: 2 givenname: Lars E surname: Olson fullname: Olson, Lars E – sequence: 3 givenname: Hettrick A surname: Douglas fullname: Douglas, Hettrick A – sequence: 4 givenname: David C surname: Warltier fullname: Warltier, David C – sequence: 5 givenname: Judy R surname: Kersten fullname: Kersten, Judy R – sequence: 6 givenname: Paul S surname: Pagel fullname: Pagel, Paul S |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16780592$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1v1DAQhiNURD_gyhH5xC3FTuwk5oBUla9KlbiAxM1y7MmuKydebGfR_lF-D7ObsmoREidbnnee95VnzouTKUxQFC8ZvWSsa94w3opSVuJ7KUpOnxRnx4eTB_fT4jylO0orShv5rDhlTdtRIauz4teVzxB1dmFKxE0kwgqv2pOtTmb2OpIVhBFy3JFNDHY2YEm_I3kNIUJ2BpUpw5SJGzdeT_lAQtDgZ5gMEOtSjq6fF4MwkJ_aY8sakIwVSOkt0ei3S-5Q1sTMcYsmJkTMgbY6YsAdmZObVqR-j4VxMy8-aI4-zhK7m_ToTCJjsOBR-Lx4Omif4MX9eVF8-_jh6_Xn8vbLp5vrq9vSCMFyaYXkYJiu5cChHXTdDLJuaFXD0Awa2s4yLmgvrOCyY1z2DFhXQQ2i7UFbqC-Km4Vrg75Tm-hGjKyCdurwEOJKYX5nPChdcWFpPZi2F1xbKRuwrBVdpwdeN7pH1ruFtZn7EazBX43aP4I-rkxurVZhq5gQlDOKgNf3gBh-zJCyGl0y4HEuEOakmq4VDe3Yf4VMcsk7ylH46mGkY5Y_-4MCvghMDClFGJRxy2wwofOKUbVfU7XfRLXfRCUU3ye9_KvtSP53w2_6QPHU |
| CitedBy_id | crossref_primary_10_1177_1708538115598726 crossref_primary_10_1111_jcmm_13936 crossref_primary_10_3389_fphys_2018_01862 crossref_primary_10_2478_jtim_2019_0005 crossref_primary_10_1002_ccd_27520 crossref_primary_10_1016_j_jacasi_2025_05_012 crossref_primary_10_1109_RBME_2020_3011182 crossref_primary_10_1007_s10439_015_1414_4 crossref_primary_10_1016_j_medengphy_2023_103966 crossref_primary_10_1016_j_heliyon_2024_e39452 crossref_primary_10_1080_10255842_2017_1289374 crossref_primary_10_1016_j_jbiomech_2009_10_015 crossref_primary_10_1007_s10439_010_0238_5 crossref_primary_10_3390_fluids6020053 crossref_primary_10_1177_1538574412436699 crossref_primary_10_1016_j_jmst_2015_12_018 crossref_primary_10_1109_TBME_2014_2310954 crossref_primary_10_1016_j_medengphy_2014_05_011 crossref_primary_10_1016_j_jbiomech_2016_03_038 crossref_primary_10_1016_S1885_5857_09_72359_X crossref_primary_10_1016_j_compbiomed_2010_02_005 crossref_primary_10_2217_fca_11_85 crossref_primary_10_1016_j_pharmthera_2011_12_006 crossref_primary_10_1111_j_1540_8183_2010_00572_x crossref_primary_10_1016_j_jcin_2013_04_002 crossref_primary_10_1080_14779072_2021_1856657 crossref_primary_10_1016_j_biomaterials_2009_09_079 crossref_primary_10_3389_fcvm_2024_1392702 crossref_primary_10_3390_polym14091755 crossref_primary_10_1186_1475_925X_8_8 crossref_primary_10_1016_j_jbiomech_2013_10_048 crossref_primary_10_1016_j_ejvs_2013_09_029 crossref_primary_10_1155_2022_6951302 crossref_primary_10_1007_s10439_015_1476_3 crossref_primary_10_1016_j_atherosclerosis_2008_05_044 crossref_primary_10_1016_j_atherosclerosis_2010_09_007 crossref_primary_10_1007_s11517_016_1574_x crossref_primary_10_1016_j_jacc_2008_04_030 crossref_primary_10_1016_j_jacc_2018_03_452 crossref_primary_10_1007_s10554_009_9529_z crossref_primary_10_1016_j_euromechflu_2016_11_007 crossref_primary_10_1111_j_1540_8183_2010_00571_x crossref_primary_10_3390_bioengineering10020146 crossref_primary_10_3233_CH_201025 crossref_primary_10_1007_s10439_010_9903_y crossref_primary_10_1080_10255842_2017_1382483 crossref_primary_10_1007_s40430_024_05308_9 crossref_primary_10_1038_s41598_025_09613_8 crossref_primary_10_1016_j_carrev_2021_04_003 crossref_primary_10_1089_ten_tec_2020_0327 crossref_primary_10_1007_s10439_015_1483_4 crossref_primary_10_1080_10407782_2011_541147 crossref_primary_10_3390_app9071341 crossref_primary_10_1177_147323000803600507 crossref_primary_10_1371_journal_pone_0058147 crossref_primary_10_1161_SVIN_122_000792 crossref_primary_10_1038_nprot_2014_091 crossref_primary_10_1097_MD_0000000000010518 crossref_primary_10_1007_s13239_010_0028_0 crossref_primary_10_1016_j_ddmec_2007_10_007 crossref_primary_10_3390_bioengineering12040386 crossref_primary_10_1093_eurheartj_ehx810 crossref_primary_10_1007_s11042_023_17765_w crossref_primary_10_1016_j_jocn_2013_03_042 crossref_primary_10_1161_CIRCINTERVENTIONS_115_002427 crossref_primary_10_1177_159101990701300303 crossref_primary_10_1016_j_medengphy_2019_07_017 crossref_primary_10_1007_s13239_012_0109_3 crossref_primary_10_1161_ATVBAHA_107_144220 crossref_primary_10_3390_fluids9070157 crossref_primary_10_1016_j_jbiomech_2017_09_016 crossref_primary_10_1002_adfm_202303717 crossref_primary_10_1088_1361_6579_ade652 crossref_primary_10_1016_j_jvssci_2023_100116 crossref_primary_10_1111_j_1540_8183_2009_00449_x |
| Cites_doi | 10.1001/jama.282.21.2035 10.1161/01.ATV.12.11.1254 10.1115/1.1289989 10.1016/S0021-9290(00)00066-X 10.1016/0021-9150(94)90207-0 10.1136/heart.89.2.133 10.1177/15266028040110S621 10.1161/01.CIR.95.2.438 10.1161/01.CIR.103.13.1740 10.1146/annurev.fluid.34.082401.165302 10.1016/1350-4533(95)00045-3 10.1115/1.1395573 10.1016/0021-9290(93)90089-W 10.1016/S0021-9290(03)00259-8 10.1007/s00270-004-7148-6 10.1152/japplphysiol.00872.2004 10.1161/01.CIR.0000019071.72887.BD 10.1152/japplphysiol.01329.2003 10.1097/00019501-200409000-00003 10.1152/japplphysiol.00544.2002 10.1115/1.429629 10.1115/1.1374203 10.1161/01.ATV.5.3.293 10.1161/01.CIR.0000018168.15904.BB 10.1016/j.jbiomech.2004.09.011 10.1161/01.RES.84.4.378 10.1016/j.ejvs.2004.06.018 10.1115/1.1797904 10.1016/S1051-0443(96)72877-4 10.1186/1475-925X-4-59 10.1253/circj.66.489 10.1161/01.CIR.101.7.812 10.1109/10.915714 10.1016/S0021-9290(02)00447-5 10.1114/1.1349703 10.1615/CritRevBiomedEng.v29.i1.10 10.1161/01.ATV.17.11.3102 10.1114/1.113 10.1016/S0021-9290(96)80012-1 10.1161/01.CIR.0000080882.35274.AD 10.1152/ajpheart.01107.2004 10.1114/1.1588654 10.1016/S0002-9149(98)00189-1 10.1115/1.2796012 10.1016/j.jacc.2004.10.060 10.1146/annurev.fluid.29.1.399 |
| ContentType | Journal Article |
| Copyright | Copyright © 2006 LaDisa et al; licensee BioMed Central Ltd. 2006 LaDisa et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Copyright © 2006 LaDisa et al; licensee BioMed Central Ltd. 2006 LaDisa et al; licensee BioMed Central Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 5PM DOA |
| DOI | 10.1186/1475-925X-5-40 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1475-925X |
| EndPage | 40 |
| ExternalDocumentID | oai_doaj_org_article_a245d03fc7b54ad996ed17588af436ab PMC1550410 16780592 10_1186_1475_925X_5_40 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL054820 – fundername: NHLBI NIH HHS grantid: HL-063705 – fundername: NHLBI NIH HHS grantid: HL-054820 – fundername: NIGMS NIH HHS grantid: GM-008377 – fundername: NIGMS NIH HHS grantid: T32 GM008377 – fundername: NHLBI NIH HHS grantid: R01 HL063705 |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5GY 5VS 6J9 6PF AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BFQNJ BMC C1A C6C CITATION CS3 DIK E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FRP GROUPED_DOAJ GX1 H13 HYE I-F IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 M48 MK~ ML~ M~E O5R O5S OK1 OVT P2P PGMZT RBZ RIG RNS ROL RPM RSV SEG SOJ SV3 TR2 TUS W2D WOQ WOW XSB -A0 ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 5PM |
| ID | FETCH-LOGICAL-c551t-d594ec1a39f4e7fa36f936023ef6fae78d1450b5d5498149b1e182e3e57beade3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 101 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000242393000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1475-925X |
| IngestDate | Fri Oct 03 12:52:48 EDT 2025 Thu Aug 21 14:05:11 EDT 2025 Thu Oct 02 05:20:39 EDT 2025 Tue Oct 07 09:37:06 EDT 2025 Wed Feb 19 01:45:12 EST 2025 Tue Nov 18 22:19:04 EST 2025 Sat Nov 29 01:47:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c551t-d594ec1a39f4e7fa36f936023ef6fae78d1450b5d5498149b1e182e3e57beade3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/a245d03fc7b54ad996ed17588af436ab |
| PMID | 16780592 |
| PQID | 19494804 |
| PQPubID | 23462 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a245d03fc7b54ad996ed17588af436ab pubmedcentral_primary_oai_pubmedcentral_nih_gov_1550410 proquest_miscellaneous_68756081 proquest_miscellaneous_19494804 pubmed_primary_16780592 crossref_citationtrail_10_1186_1475_925X_5_40 crossref_primary_10_1186_1475_925X_5_40 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-06-16 |
| PublicationDateYYYYMMDD | 2006-06-16 |
| PublicationDate_xml | – month: 06 year: 2006 text: 2006-06-16 day: 16 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | Biomedical engineering online |
| PublicationTitleAlternate | Biomed Eng Online |
| PublicationYear | 2006 |
| Publisher | BioMed Central BMC |
| Publisher_xml | – name: BioMed Central – name: BMC |
| References | M Ojha (183_CR28) 1993; 26 SK Yazdani (183_CR39) 2004; 126 A Tortoriello (183_CR40) 2004; 37 A Santamarina (183_CR42) 1998; 26 ER Edelman (183_CR34) 1998; 81 JC Palmaz (183_CR47) 2004; Suppl 2 JFJ LaDisa (183_CR10) 2004; 97 DN Ku (183_CR1) 1985; 5 VS Newman (183_CR5) 1996; 7 R Virmani (183_CR48) 2004; 15 S Tada (183_CR23) 2002; 282 PH Rolland (183_CR38) 2004; 28 Y Qiu (183_CR19) 2000; 122 H Zhu (183_CR32) 2003; 36 M Lei (183_CR25) 1996; 18 M Lei (183_CR30) 1996; 29 PH Stone (183_CR44) 2003; 108 S Tada (183_CR20) 1996; 118 SM Kute (183_CR29) 2001; 123 RD Kamm (183_CR37) 2002; 34 JFJ LaDisa (183_CR7) 2005; 288 JJ Wentzel (183_CR11) 2000; 33 AM Malek (183_CR2) 1999; 282 R Virmani (183_CR49) 2003; 89 WW Nichols (183_CR18) 1998 C Kleinstreuer (183_CR21) 2001; 29 A Farb (183_CR15) 2002; 105 C Rogers (183_CR36) 1999; 84 RW Fox (183_CR16) 1992 JFJ LaDisa (183_CR8) 2005; 4 E Van Belle (183_CR13) 1997; 95 AV Finn (183_CR46) 2005; 45 EA Finol (183_CR27) 2001; 123 Z Ding (183_CR43) 2000; 122 JJ Wentzel (183_CR33) 2001; 103 JG Myers (183_CR31) 2001; 29 JFJ LaDisa (183_CR9) 2005; 98 Y Tardy (183_CR24) 1997; 17 JEJ Moore (183_CR3) 1994; 110 JFJ LaDisa (183_CR12) 2002; 93 HD Danenberg (183_CR14) 2002; 105 N DePaola (183_CR22) 1992; 12 F Nicoud (183_CR41) 2005; 38 JFJ LaDisa (183_CR17) 2003; 31 SQ Liu (183_CR35) 2001; 48 JM Garasic (183_CR4) 2000; 101 T Murata (183_CR6) 2002; 66 M Ohta (183_CR45) 2005; 28 DN Ku (183_CR26) 1997; 29 11282904 - Circulation. 2001 Apr 3;103(13):1740-5 10683357 - Circulation. 2000 Feb 22;101(7):812-8 10591386 - JAMA. 1999 Dec 1;282(21):2035-42 11601733 - J Biomech Eng. 2001 Oct;123(5):474-84 9008462 - Circulation. 1997 Jan 21;95(2):438-48 10066671 - Circ Res. 1999 Mar 5;84(4):378-83 15648808 - J Biomech Eng. 2004 Oct;126(5):559-66 8761820 - J Vasc Interv Radiol. 1996 May-Jun;7(3):387-93 16184328 - Cardiovasc Intervent Radiol. 2005 Nov-Dec;28(6):768-72 1420084 - Arterioscler Thromb. 1992 Nov;12(11):1254-7 11321642 - Crit Rev Biomed Eng. 2001;29(1):1-64 8945659 - J Biomech. 1996 Dec;29(12):1605-14 15350569 - Eur J Vasc Endovasc Surg. 2004 Oct;28(4):431-8 9409299 - Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):3102-6 12391052 - J Appl Physiol (1985). 2002 Dec;93(6):1939-46 11476372 - J Biomech Eng. 2001 Jun;123(3):277-83 14766776 - J Appl Physiol (1985). 2004 Jul;97(1):424-30; discussion 416 15653759 - Am J Physiol Heart Circ Physiol. 2005 May;288(5):H2465-75 12527658 - Heart. 2003 Feb;89(2):133-8 3994585 - Arteriosclerosis. 1985 May-Jun;5(3):293-302 12741392 - Annu Rev Fluid Mech. 2002;34:211-32 12081990 - Circulation. 2002 Jun 25;105(25):2974-80 11284665 - Ann Biomed Eng. 2001 Feb;29(2):109-20 15346088 - Coron Artery Dis. 2004 Sep;15(6):313-8 8872252 - J Biomech Eng. 1996 Aug;118(3):311-7 9551587 - Am J Cardiol. 1998 Apr 9;81(7A):4E-6E 15708689 - J Am Coll Cardiol. 2005 Feb 15;45(4):479-83 12070123 - Circulation. 2002 Jun 18;105(24):2917-22 8963477 - Med Eng Phys. 1996 Jun;18(4):326-32 9846933 - Ann Biomed Eng. 1998 Nov-Dec;26(6):944-54 16084202 - J Biomech. 2005 Oct;38(10):2019-27 11091949 - J Biomech Eng. 2000 Oct;122(5):488-92 15531564 - J Appl Physiol (1985). 2005 Mar;98(3):947-57 11322535 - IEEE Trans Biomed Eng. 2001 Apr;48(4):474-83 10790833 - J Biomech Eng. 2000 Feb;122(1):77-85 12860915 - Circulation. 2003 Jul 29;108(4):438-44 14672563 - J Biomech. 2004 Jan;37(1):1-11 8308043 - J Biomech. 1993 Dec;26(12):1377-88 15760261 - J Endovasc Ther. 2004 Dec;11 Suppl 2:II200-206 12694999 - J Biomech. 2003 May;36(5):689-97 16250918 - Biomed Eng Online. 2005;4:59 11788405 - Am J Physiol Heart Circ Physiol. 2002 Feb;282(2):H576-84 12918912 - Ann Biomed Eng. 2003 Sep;31(8):972-80 12030346 - Circ J. 2002 May;66(5):489-93 10899339 - J Biomech. 2000 Oct;33(10):1287-95 7848371 - Atherosclerosis. 1994 Oct;110(2):225-40 |
| References_xml | – volume: 282 start-page: 2035 year: 1999 ident: 183_CR2 publication-title: JAMA doi: 10.1001/jama.282.21.2035 – volume: 12 start-page: 1254 year: 1992 ident: 183_CR22 publication-title: Arterioscler Thromb doi: 10.1161/01.ATV.12.11.1254 – volume: 122 start-page: 488 year: 2000 ident: 183_CR43 publication-title: J Biomech Eng doi: 10.1115/1.1289989 – volume: 33 start-page: 1287 year: 2000 ident: 183_CR11 publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(00)00066-X – volume: 110 start-page: 225 year: 1994 ident: 183_CR3 publication-title: Atherosclerosis doi: 10.1016/0021-9150(94)90207-0 – volume: 89 start-page: 133 year: 2003 ident: 183_CR49 publication-title: Heart doi: 10.1136/heart.89.2.133 – volume: Suppl 2 start-page: II200 year: 2004 ident: 183_CR47 publication-title: J Endovasc Ther doi: 10.1177/15266028040110S621 – volume: 95 start-page: 438 year: 1997 ident: 183_CR13 publication-title: Circulation doi: 10.1161/01.CIR.95.2.438 – volume: 103 start-page: 1740 year: 2001 ident: 183_CR33 publication-title: Circulation doi: 10.1161/01.CIR.103.13.1740 – volume: 34 start-page: 211 year: 2002 ident: 183_CR37 publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev.fluid.34.082401.165302 – volume: 18 start-page: 326 year: 1996 ident: 183_CR25 publication-title: Med Eng Phys doi: 10.1016/1350-4533(95)00045-3 – volume: 123 start-page: 474 year: 2001 ident: 183_CR27 publication-title: J Biomech Eng doi: 10.1115/1.1395573 – volume: 26 start-page: 1377 year: 1993 ident: 183_CR28 publication-title: J Biomech doi: 10.1016/0021-9290(93)90089-W – volume: 37 start-page: 1 year: 2004 ident: 183_CR40 publication-title: J Biomech doi: 10.1016/S0021-9290(03)00259-8 – volume: 28 start-page: 768 year: 2005 ident: 183_CR45 publication-title: Cardiovasc Intervent Radiol doi: 10.1007/s00270-004-7148-6 – volume: 98 start-page: 947 year: 2005 ident: 183_CR9 publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.00872.2004 – volume-title: McDonald's Blood Flow in Arteries: Theoretical Experimental and Clincal Principles year: 1998 ident: 183_CR18 – volume: 105 start-page: 2974 year: 2002 ident: 183_CR15 publication-title: Circulation doi: 10.1161/01.CIR.0000019071.72887.BD – volume: 97 start-page: 424 year: 2004 ident: 183_CR10 publication-title: J Appl Physiol doi: 10.1152/japplphysiol.01329.2003 – volume: 15 start-page: 313 year: 2004 ident: 183_CR48 publication-title: Coronary Artery Disease doi: 10.1097/00019501-200409000-00003 – start-page: 322 volume-title: Introduction to Fluid Mechanics year: 1992 ident: 183_CR16 – volume: 93 start-page: 1939 year: 2002 ident: 183_CR12 publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00544.2002 – volume: 122 start-page: 77 year: 2000 ident: 183_CR19 publication-title: J Biomech Eng doi: 10.1115/1.429629 – volume: 123 start-page: 277 year: 2001 ident: 183_CR29 publication-title: J Biomech Eng doi: 10.1115/1.1374203 – volume: 5 start-page: 293 year: 1985 ident: 183_CR1 publication-title: Arteriosclerosis doi: 10.1161/01.ATV.5.3.293 – volume: 105 start-page: 2917 year: 2002 ident: 183_CR14 publication-title: Circulation doi: 10.1161/01.CIR.0000018168.15904.BB – volume: 38 start-page: 2019 year: 2005 ident: 183_CR41 publication-title: J Biomech doi: 10.1016/j.jbiomech.2004.09.011 – volume: 84 start-page: 378 year: 1999 ident: 183_CR36 publication-title: Circ Res doi: 10.1161/01.RES.84.4.378 – volume: 28 start-page: 431 year: 2004 ident: 183_CR38 publication-title: Eur J Vasc Endovasc Surg doi: 10.1016/j.ejvs.2004.06.018 – volume: 126 start-page: 559 year: 2004 ident: 183_CR39 publication-title: J Biomech Eng doi: 10.1115/1.1797904 – volume: 7 start-page: 387 year: 1996 ident: 183_CR5 publication-title: J Vasc Interv Radiol doi: 10.1016/S1051-0443(96)72877-4 – volume: 4 start-page: 59 year: 2005 ident: 183_CR8 publication-title: Biomed Eng Online doi: 10.1186/1475-925X-4-59 – volume: 282 start-page: H576 year: 2002 ident: 183_CR23 publication-title: American Journal of Physiology – volume: 66 start-page: 489 year: 2002 ident: 183_CR6 publication-title: Circ J doi: 10.1253/circj.66.489 – volume: 101 start-page: 812 year: 2000 ident: 183_CR4 publication-title: Circulation doi: 10.1161/01.CIR.101.7.812 – volume: 48 start-page: 474 year: 2001 ident: 183_CR35 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.915714 – volume: 36 start-page: 689 year: 2003 ident: 183_CR32 publication-title: J Biomech doi: 10.1016/S0021-9290(02)00447-5 – volume: 29 start-page: 109 year: 2001 ident: 183_CR31 publication-title: Annals of Biomedical Engineering doi: 10.1114/1.1349703 – volume: 29 start-page: 1 year: 2001 ident: 183_CR21 publication-title: Crit Rev Biomed Eng doi: 10.1615/CritRevBiomedEng.v29.i1.10 – volume: 17 start-page: 3102 year: 1997 ident: 183_CR24 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.17.11.3102 – volume: 26 start-page: 944 year: 1998 ident: 183_CR42 publication-title: Ann Biomed Eng doi: 10.1114/1.113 – volume: 29 start-page: 1605 year: 1996 ident: 183_CR30 publication-title: J Biomech doi: 10.1016/S0021-9290(96)80012-1 – volume: 108 start-page: 438 year: 2003 ident: 183_CR44 publication-title: Circulation doi: 10.1161/01.CIR.0000080882.35274.AD – volume: 288 start-page: H2465 year: 2005 ident: 183_CR7 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.01107.2004 – volume: 31 start-page: 972 year: 2003 ident: 183_CR17 publication-title: Ann Biomed Eng doi: 10.1114/1.1588654 – volume: 81 start-page: 4E year: 1998 ident: 183_CR34 publication-title: American Journal of Cardiology doi: 10.1016/S0002-9149(98)00189-1 – volume: 118 start-page: 311 year: 1996 ident: 183_CR20 publication-title: J Biomech Eng doi: 10.1115/1.2796012 – volume: 45 start-page: 479 year: 2005 ident: 183_CR46 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2004.10.060 – volume: 29 start-page: 399 year: 1997 ident: 183_CR26 publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fluid.29.1.399 – reference: 15350569 - Eur J Vasc Endovasc Surg. 2004 Oct;28(4):431-8 – reference: 11284665 - Ann Biomed Eng. 2001 Feb;29(2):109-20 – reference: 11282904 - Circulation. 2001 Apr 3;103(13):1740-5 – reference: 11321642 - Crit Rev Biomed Eng. 2001;29(1):1-64 – reference: 15648808 - J Biomech Eng. 2004 Oct;126(5):559-66 – reference: 12070123 - Circulation. 2002 Jun 18;105(24):2917-22 – reference: 11601733 - J Biomech Eng. 2001 Oct;123(5):474-84 – reference: 10066671 - Circ Res. 1999 Mar 5;84(4):378-83 – reference: 12527658 - Heart. 2003 Feb;89(2):133-8 – reference: 16184328 - Cardiovasc Intervent Radiol. 2005 Nov-Dec;28(6):768-72 – reference: 15346088 - Coron Artery Dis. 2004 Sep;15(6):313-8 – reference: 12741392 - Annu Rev Fluid Mech. 2002;34:211-32 – reference: 12918912 - Ann Biomed Eng. 2003 Sep;31(8):972-80 – reference: 8308043 - J Biomech. 1993 Dec;26(12):1377-88 – reference: 9846933 - Ann Biomed Eng. 1998 Nov-Dec;26(6):944-54 – reference: 12081990 - Circulation. 2002 Jun 25;105(25):2974-80 – reference: 7848371 - Atherosclerosis. 1994 Oct;110(2):225-40 – reference: 8945659 - J Biomech. 1996 Dec;29(12):1605-14 – reference: 16250918 - Biomed Eng Online. 2005;4:59 – reference: 14672563 - J Biomech. 2004 Jan;37(1):1-11 – reference: 14766776 - J Appl Physiol (1985). 2004 Jul;97(1):424-30; discussion 416 – reference: 12030346 - Circ J. 2002 May;66(5):489-93 – reference: 10899339 - J Biomech. 2000 Oct;33(10):1287-95 – reference: 12391052 - J Appl Physiol (1985). 2002 Dec;93(6):1939-46 – reference: 11091949 - J Biomech Eng. 2000 Oct;122(5):488-92 – reference: 1420084 - Arterioscler Thromb. 1992 Nov;12(11):1254-7 – reference: 11476372 - J Biomech Eng. 2001 Jun;123(3):277-83 – reference: 8963477 - Med Eng Phys. 1996 Jun;18(4):326-32 – reference: 11788405 - Am J Physiol Heart Circ Physiol. 2002 Feb;282(2):H576-84 – reference: 8872252 - J Biomech Eng. 1996 Aug;118(3):311-7 – reference: 10591386 - JAMA. 1999 Dec 1;282(21):2035-42 – reference: 12860915 - Circulation. 2003 Jul 29;108(4):438-44 – reference: 3994585 - Arteriosclerosis. 1985 May-Jun;5(3):293-302 – reference: 9409299 - Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):3102-6 – reference: 9551587 - Am J Cardiol. 1998 Apr 9;81(7A):4E-6E – reference: 16084202 - J Biomech. 2005 Oct;38(10):2019-27 – reference: 10683357 - Circulation. 2000 Feb 22;101(7):812-8 – reference: 15760261 - J Endovasc Ther. 2004 Dec;11 Suppl 2:II200-206 – reference: 15653759 - Am J Physiol Heart Circ Physiol. 2005 May;288(5):H2465-75 – reference: 9008462 - Circulation. 1997 Jan 21;95(2):438-48 – reference: 15708689 - J Am Coll Cardiol. 2005 Feb 15;45(4):479-83 – reference: 10790833 - J Biomech Eng. 2000 Feb;122(1):77-85 – reference: 8761820 - J Vasc Interv Radiol. 1996 May-Jun;7(3):387-93 – reference: 11322535 - IEEE Trans Biomed Eng. 2001 Apr;48(4):474-83 – reference: 15531564 - J Appl Physiol (1985). 2005 Mar;98(3):947-57 – reference: 12694999 - J Biomech. 2003 May;36(5):689-97 |
| SSID | ssj0020069 |
| Score | 2.123591 |
| Snippet | The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have... Background - The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent... Abstract Background The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 40 |
| SubjectTerms | Animals Blood Flow Velocity - physiology Blood Pressure - physiology Blood Vessel Prosthesis Computer Simulation Coronary Circulation - physiology Coronary Vessels - anatomy & histology Coronary Vessels - physiology Elasticity Equipment Failure Analysis - methods Finite Element Analysis Humans Imaging, Three-Dimensional - methods Microfluidics - methods Models, Cardiovascular Prosthesis Implantation - methods Shear Strength Stents Stress, Mechanical Surgery, Computer-Assisted - methods |
| Title | Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/16780592 https://www.proquest.com/docview/19494804 https://www.proquest.com/docview/68756081 https://pubmed.ncbi.nlm.nih.gov/PMC1550410 https://doaj.org/article/a245d03fc7b54ad996ed17588af436ab |
| Volume | 5 |
| WOSCitedRecordID | wos000242393000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: RBZ dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: DOA dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: M~E dateStart: 20020101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: RSV dateStart: 20021201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVghRAcECywlI9lDkicrE0a27G5LbArLrviAFJvkWM7S6Q2rfqxqBd-Jr-HGcctLWLFhUsPySR265f6jTN-j7E3odSkfdvwunaaCxskt7kJPDjjicKSYkw0mygvL_VoZD7vWH1RTVgvD9z_cCd2KKTPisaVtRTWIz0PHqc8rW0jCmVr-vfNSrNJplKqRQK8cV9RKbkZylGSa8y1Otke45LTksfOdBRV-_9GNf-smNyZgs4fsgeJO8Jp3-dH7FboDtn9HUXBQ3b3Ir0rf8x-no6jYjLhCtoOyIKBaDdsik_hKkwnYTlfwyzKvgYP9Rp2djYCIqBbQjuZjW2_Q6nDGyVTE_AkuZvcshYwbeC7HeMl5JAN_Q6Ud2CT5AmdtuBW82tsxJFogsVmYznpGqj0_gqKj-Ciw0RanQRsp_Xg152dtG4B0bIHA5-wr-dnXz584snFgTtkY0vupRHB5bYwjQhlYwvVmEIhVQiNaixixedCZrX0mKlqzNfqPGDOE4ogy5qquYun7KCbduEZA5trg5wmZM5gXqqVNnpYF4gvV6tmmIsB45vBrFySOCenjXEVUx2tKhr8iga_kpXIBuztNn7Wi3vcGPmesLGNIlHueAChWiWoVv-C6oC93iCrwoeY3szYLkxXiyo3pNKTiZsjFOaVCunbgB31SPzdYUW2FGY4YOUeRvf6un-ma79FIXFKT0WePf8fX-4Fu9evTimeq5fsYDlfhVfsjrtetov5MbtdjvRxfEbx8-LH2S_iAkfu |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alterations+in+regional+vascular+geometry+produced+by+theoretical+stent+implantation+influence+distributions+of+wall+shear+stress%3A+analysis+of+a+curved+coronary+artery+using+3D+computational+fluid+dynamics+modeling&rft.jtitle=Biomedical+engineering+online&rft.au=Warltier+David+C&rft.au=Douglas+Hettrick+A&rft.au=Olson+Lars+E&rft.au=LaDisa+John+F&rft.date=2006-06-16&rft.pub=BMC&rft.issn=1475-925X&rft.eissn=1475-925X&rft.volume=5&rft.issue=1&rft.spage=40&rft_id=info:doi/10.1186%2F1475-925X-5-40&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a245d03fc7b54ad996ed17588af436ab |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon |