Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling

The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distribu...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical engineering online Vol. 5; no. 1; p. 40
Main Authors: LaDisa, John F, Olson, Lars E, Douglas, Hettrick A, Warltier, David C, Kersten, Judy R, Pagel, Paul S
Format: Journal Article
Language:English
Published: England BioMed Central 16.06.2006
BMC
Subjects:
ISSN:1475-925X, 1475-925X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation. In the current investigation, we tested the hypothesis that acute changes in stent-induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques. Implantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm2 along the pericardial luminal surface and 4.26 to 4.88 dynes/cm2 along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm2 observed throughout the stented region of a straight vessel implanted with an equivalent stent. The current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis.
AbstractList Abstract Background The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation. Methods In the current investigation, we tested the hypothesis that acute changes in stent-induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques. Results Implantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm2 along the pericardial luminal surface and 4.26 to 4.88 dynes/cm2 along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm2 observed throughout the stented region of a straight vessel implanted with an equivalent stent. Conclusion The current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis.
The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation. In the current investigation, we tested the hypothesis that acute changes in stent-induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques. Implantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm2 along the pericardial luminal surface and 4.26 to 4.88 dynes/cm2 along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm2 observed throughout the stented region of a straight vessel implanted with an equivalent stent. The current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis.
The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation.BACKGROUNDThe success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation.In the current investigation, we tested the hypothesis that acute changes in stent-induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques.METHODSIn the current investigation, we tested the hypothesis that acute changes in stent-induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques.Implantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm2 along the pericardial luminal surface and 4.26 to 4.88 dynes/cm2 along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm2 observed throughout the stented region of a straight vessel implanted with an equivalent stent.RESULTSImplantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm2 along the pericardial luminal surface and 4.26 to 4.88 dynes/cm2 along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm2 observed throughout the stented region of a straight vessel implanted with an equivalent stent.The current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis.CONCLUSIONThe current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis.
Background - The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation. Methods In the current investigation, we tested the hypothesis that acute changes in stent- induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques. Results Implantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm super(2 )along the pericardial luminal surface and 4.26 to 4.88 dynes/cm super(2 )along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm super(2 )observed throughout the stented region of a straight vessel implanted with an equivalent stent. Conclusion The current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis.
ArticleNumber 40
Author Olson, Lars E
LaDisa, John F
Warltier, David C
Kersten, Judy R
Pagel, Paul S
Douglas, Hettrick A
AuthorAffiliation 5 Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, USA
4 Department of Pharmacology and Toxicology, the Medical College of Wisconsin and the Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
1 Department of Pediatrics (Division of Cardiology), Stanford University, Stanford, California, USA
2 Department of Anesthesiology, the Medical College of Wisconsin and the Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
3 Department of Medicine (Division of Cardiovascular Diseases), the Medical College of Wisconsin and the Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
AuthorAffiliation_xml – name: 2 Department of Anesthesiology, the Medical College of Wisconsin and the Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
– name: 5 Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, USA
– name: 1 Department of Pediatrics (Division of Cardiology), Stanford University, Stanford, California, USA
– name: 3 Department of Medicine (Division of Cardiovascular Diseases), the Medical College of Wisconsin and the Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
– name: 4 Department of Pharmacology and Toxicology, the Medical College of Wisconsin and the Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
Author_xml – sequence: 1
  givenname: John F
  surname: LaDisa
  fullname: LaDisa, John F
– sequence: 2
  givenname: Lars E
  surname: Olson
  fullname: Olson, Lars E
– sequence: 3
  givenname: Hettrick A
  surname: Douglas
  fullname: Douglas, Hettrick A
– sequence: 4
  givenname: David C
  surname: Warltier
  fullname: Warltier, David C
– sequence: 5
  givenname: Judy R
  surname: Kersten
  fullname: Kersten, Judy R
– sequence: 6
  givenname: Paul S
  surname: Pagel
  fullname: Pagel, Paul S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16780592$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURD_gyhH5xC3FTuwk5oBUla9KlbiAxM1y7MmuKydebGfR_lF-D7ObsmoREidbnnee95VnzouTKUxQFC8ZvWSsa94w3opSVuJ7KUpOnxRnx4eTB_fT4jylO0orShv5rDhlTdtRIauz4teVzxB1dmFKxE0kwgqv2pOtTmb2OpIVhBFy3JFNDHY2YEm_I3kNIUJ2BpUpw5SJGzdeT_lAQtDgZ5gMEOtSjq6fF4MwkJ_aY8sakIwVSOkt0ei3S-5Q1sTMcYsmJkTMgbY6YsAdmZObVqR-j4VxMy8-aI4-zhK7m_ToTCJjsOBR-Lx4Omif4MX9eVF8-_jh6_Xn8vbLp5vrq9vSCMFyaYXkYJiu5cChHXTdDLJuaFXD0Awa2s4yLmgvrOCyY1z2DFhXQQ2i7UFbqC-Km4Vrg75Tm-hGjKyCdurwEOJKYX5nPChdcWFpPZi2F1xbKRuwrBVdpwdeN7pH1ruFtZn7EazBX43aP4I-rkxurVZhq5gQlDOKgNf3gBh-zJCyGl0y4HEuEOakmq4VDe3Yf4VMcsk7ylH46mGkY5Y_-4MCvghMDClFGJRxy2wwofOKUbVfU7XfRLXfRCUU3ye9_KvtSP53w2_6QPHU
CitedBy_id crossref_primary_10_1177_1708538115598726
crossref_primary_10_1111_jcmm_13936
crossref_primary_10_3389_fphys_2018_01862
crossref_primary_10_2478_jtim_2019_0005
crossref_primary_10_1002_ccd_27520
crossref_primary_10_1016_j_jacasi_2025_05_012
crossref_primary_10_1109_RBME_2020_3011182
crossref_primary_10_1007_s10439_015_1414_4
crossref_primary_10_1016_j_medengphy_2023_103966
crossref_primary_10_1016_j_heliyon_2024_e39452
crossref_primary_10_1080_10255842_2017_1289374
crossref_primary_10_1016_j_jbiomech_2009_10_015
crossref_primary_10_1007_s10439_010_0238_5
crossref_primary_10_3390_fluids6020053
crossref_primary_10_1177_1538574412436699
crossref_primary_10_1016_j_jmst_2015_12_018
crossref_primary_10_1109_TBME_2014_2310954
crossref_primary_10_1016_j_medengphy_2014_05_011
crossref_primary_10_1016_j_jbiomech_2016_03_038
crossref_primary_10_1016_S1885_5857_09_72359_X
crossref_primary_10_1016_j_compbiomed_2010_02_005
crossref_primary_10_2217_fca_11_85
crossref_primary_10_1016_j_pharmthera_2011_12_006
crossref_primary_10_1111_j_1540_8183_2010_00572_x
crossref_primary_10_1016_j_jcin_2013_04_002
crossref_primary_10_1080_14779072_2021_1856657
crossref_primary_10_1016_j_biomaterials_2009_09_079
crossref_primary_10_3389_fcvm_2024_1392702
crossref_primary_10_3390_polym14091755
crossref_primary_10_1186_1475_925X_8_8
crossref_primary_10_1016_j_jbiomech_2013_10_048
crossref_primary_10_1016_j_ejvs_2013_09_029
crossref_primary_10_1155_2022_6951302
crossref_primary_10_1007_s10439_015_1476_3
crossref_primary_10_1016_j_atherosclerosis_2008_05_044
crossref_primary_10_1016_j_atherosclerosis_2010_09_007
crossref_primary_10_1007_s11517_016_1574_x
crossref_primary_10_1016_j_jacc_2008_04_030
crossref_primary_10_1016_j_jacc_2018_03_452
crossref_primary_10_1007_s10554_009_9529_z
crossref_primary_10_1016_j_euromechflu_2016_11_007
crossref_primary_10_1111_j_1540_8183_2010_00571_x
crossref_primary_10_3390_bioengineering10020146
crossref_primary_10_3233_CH_201025
crossref_primary_10_1007_s10439_010_9903_y
crossref_primary_10_1080_10255842_2017_1382483
crossref_primary_10_1007_s40430_024_05308_9
crossref_primary_10_1038_s41598_025_09613_8
crossref_primary_10_1016_j_carrev_2021_04_003
crossref_primary_10_1089_ten_tec_2020_0327
crossref_primary_10_1007_s10439_015_1483_4
crossref_primary_10_1080_10407782_2011_541147
crossref_primary_10_3390_app9071341
crossref_primary_10_1177_147323000803600507
crossref_primary_10_1371_journal_pone_0058147
crossref_primary_10_1161_SVIN_122_000792
crossref_primary_10_1038_nprot_2014_091
crossref_primary_10_1097_MD_0000000000010518
crossref_primary_10_1007_s13239_010_0028_0
crossref_primary_10_1016_j_ddmec_2007_10_007
crossref_primary_10_3390_bioengineering12040386
crossref_primary_10_1093_eurheartj_ehx810
crossref_primary_10_1007_s11042_023_17765_w
crossref_primary_10_1016_j_jocn_2013_03_042
crossref_primary_10_1161_CIRCINTERVENTIONS_115_002427
crossref_primary_10_1177_159101990701300303
crossref_primary_10_1016_j_medengphy_2019_07_017
crossref_primary_10_1007_s13239_012_0109_3
crossref_primary_10_1161_ATVBAHA_107_144220
crossref_primary_10_3390_fluids9070157
crossref_primary_10_1016_j_jbiomech_2017_09_016
crossref_primary_10_1002_adfm_202303717
crossref_primary_10_1088_1361_6579_ade652
crossref_primary_10_1016_j_jvssci_2023_100116
crossref_primary_10_1111_j_1540_8183_2009_00449_x
Cites_doi 10.1001/jama.282.21.2035
10.1161/01.ATV.12.11.1254
10.1115/1.1289989
10.1016/S0021-9290(00)00066-X
10.1016/0021-9150(94)90207-0
10.1136/heart.89.2.133
10.1177/15266028040110S621
10.1161/01.CIR.95.2.438
10.1161/01.CIR.103.13.1740
10.1146/annurev.fluid.34.082401.165302
10.1016/1350-4533(95)00045-3
10.1115/1.1395573
10.1016/0021-9290(93)90089-W
10.1016/S0021-9290(03)00259-8
10.1007/s00270-004-7148-6
10.1152/japplphysiol.00872.2004
10.1161/01.CIR.0000019071.72887.BD
10.1152/japplphysiol.01329.2003
10.1097/00019501-200409000-00003
10.1152/japplphysiol.00544.2002
10.1115/1.429629
10.1115/1.1374203
10.1161/01.ATV.5.3.293
10.1161/01.CIR.0000018168.15904.BB
10.1016/j.jbiomech.2004.09.011
10.1161/01.RES.84.4.378
10.1016/j.ejvs.2004.06.018
10.1115/1.1797904
10.1016/S1051-0443(96)72877-4
10.1186/1475-925X-4-59
10.1253/circj.66.489
10.1161/01.CIR.101.7.812
10.1109/10.915714
10.1016/S0021-9290(02)00447-5
10.1114/1.1349703
10.1615/CritRevBiomedEng.v29.i1.10
10.1161/01.ATV.17.11.3102
10.1114/1.113
10.1016/S0021-9290(96)80012-1
10.1161/01.CIR.0000080882.35274.AD
10.1152/ajpheart.01107.2004
10.1114/1.1588654
10.1016/S0002-9149(98)00189-1
10.1115/1.2796012
10.1016/j.jacc.2004.10.060
10.1146/annurev.fluid.29.1.399
ContentType Journal Article
Copyright Copyright © 2006 LaDisa et al; licensee BioMed Central Ltd. 2006 LaDisa et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright © 2006 LaDisa et al; licensee BioMed Central Ltd. 2006 LaDisa et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
DOA
DOI 10.1186/1475-925X-5-40
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Engineering Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1475-925X
EndPage 40
ExternalDocumentID oai_doaj_org_article_a245d03fc7b54ad996ed17588af436ab
PMC1550410
16780592
10_1186_1475_925X_5_40
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL054820
– fundername: NHLBI NIH HHS
  grantid: HL-063705
– fundername: NHLBI NIH HHS
  grantid: HL-054820
– fundername: NIGMS NIH HHS
  grantid: GM-008377
– fundername: NIGMS NIH HHS
  grantid: T32 GM008377
– fundername: NHLBI NIH HHS
  grantid: R01 HL063705
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5GY
5VS
6J9
6PF
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C1A
C6C
CITATION
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FRP
GROUPED_DOAJ
GX1
H13
HYE
I-F
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M48
MK~
ML~
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
RBZ
RIG
RNS
ROL
RPM
RSV
SEG
SOJ
SV3
TR2
TUS
W2D
WOQ
WOW
XSB
-A0
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c551t-d594ec1a39f4e7fa36f936023ef6fae78d1450b5d5498149b1e182e3e57beade3
IEDL.DBID DOA
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000242393000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1475-925X
IngestDate Fri Oct 03 12:52:48 EDT 2025
Thu Aug 21 14:05:11 EDT 2025
Thu Oct 02 05:20:39 EDT 2025
Tue Oct 07 09:37:06 EDT 2025
Wed Feb 19 01:45:12 EST 2025
Tue Nov 18 22:19:04 EST 2025
Sat Nov 29 01:47:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c551t-d594ec1a39f4e7fa36f936023ef6fae78d1450b5d5498149b1e182e3e57beade3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/a245d03fc7b54ad996ed17588af436ab
PMID 16780592
PQID 19494804
PQPubID 23462
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_a245d03fc7b54ad996ed17588af436ab
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1550410
proquest_miscellaneous_68756081
proquest_miscellaneous_19494804
pubmed_primary_16780592
crossref_citationtrail_10_1186_1475_925X_5_40
crossref_primary_10_1186_1475_925X_5_40
PublicationCentury 2000
PublicationDate 2006-06-16
PublicationDateYYYYMMDD 2006-06-16
PublicationDate_xml – month: 06
  year: 2006
  text: 2006-06-16
  day: 16
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Biomedical engineering online
PublicationTitleAlternate Biomed Eng Online
PublicationYear 2006
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References M Ojha (183_CR28) 1993; 26
SK Yazdani (183_CR39) 2004; 126
A Tortoriello (183_CR40) 2004; 37
A Santamarina (183_CR42) 1998; 26
ER Edelman (183_CR34) 1998; 81
JC Palmaz (183_CR47) 2004; Suppl 2
JFJ LaDisa (183_CR10) 2004; 97
DN Ku (183_CR1) 1985; 5
VS Newman (183_CR5) 1996; 7
R Virmani (183_CR48) 2004; 15
S Tada (183_CR23) 2002; 282
PH Rolland (183_CR38) 2004; 28
Y Qiu (183_CR19) 2000; 122
H Zhu (183_CR32) 2003; 36
M Lei (183_CR25) 1996; 18
M Lei (183_CR30) 1996; 29
PH Stone (183_CR44) 2003; 108
S Tada (183_CR20) 1996; 118
SM Kute (183_CR29) 2001; 123
RD Kamm (183_CR37) 2002; 34
JFJ LaDisa (183_CR7) 2005; 288
JJ Wentzel (183_CR11) 2000; 33
AM Malek (183_CR2) 1999; 282
R Virmani (183_CR49) 2003; 89
WW Nichols (183_CR18) 1998
C Kleinstreuer (183_CR21) 2001; 29
A Farb (183_CR15) 2002; 105
C Rogers (183_CR36) 1999; 84
RW Fox (183_CR16) 1992
JFJ LaDisa (183_CR8) 2005; 4
E Van Belle (183_CR13) 1997; 95
AV Finn (183_CR46) 2005; 45
EA Finol (183_CR27) 2001; 123
Z Ding (183_CR43) 2000; 122
JJ Wentzel (183_CR33) 2001; 103
JG Myers (183_CR31) 2001; 29
JFJ LaDisa (183_CR9) 2005; 98
Y Tardy (183_CR24) 1997; 17
JEJ Moore (183_CR3) 1994; 110
JFJ LaDisa (183_CR12) 2002; 93
HD Danenberg (183_CR14) 2002; 105
N DePaola (183_CR22) 1992; 12
F Nicoud (183_CR41) 2005; 38
JFJ LaDisa (183_CR17) 2003; 31
SQ Liu (183_CR35) 2001; 48
JM Garasic (183_CR4) 2000; 101
T Murata (183_CR6) 2002; 66
M Ohta (183_CR45) 2005; 28
DN Ku (183_CR26) 1997; 29
11282904 - Circulation. 2001 Apr 3;103(13):1740-5
10683357 - Circulation. 2000 Feb 22;101(7):812-8
10591386 - JAMA. 1999 Dec 1;282(21):2035-42
11601733 - J Biomech Eng. 2001 Oct;123(5):474-84
9008462 - Circulation. 1997 Jan 21;95(2):438-48
10066671 - Circ Res. 1999 Mar 5;84(4):378-83
15648808 - J Biomech Eng. 2004 Oct;126(5):559-66
8761820 - J Vasc Interv Radiol. 1996 May-Jun;7(3):387-93
16184328 - Cardiovasc Intervent Radiol. 2005 Nov-Dec;28(6):768-72
1420084 - Arterioscler Thromb. 1992 Nov;12(11):1254-7
11321642 - Crit Rev Biomed Eng. 2001;29(1):1-64
8945659 - J Biomech. 1996 Dec;29(12):1605-14
15350569 - Eur J Vasc Endovasc Surg. 2004 Oct;28(4):431-8
9409299 - Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):3102-6
12391052 - J Appl Physiol (1985). 2002 Dec;93(6):1939-46
11476372 - J Biomech Eng. 2001 Jun;123(3):277-83
14766776 - J Appl Physiol (1985). 2004 Jul;97(1):424-30; discussion 416
15653759 - Am J Physiol Heart Circ Physiol. 2005 May;288(5):H2465-75
12527658 - Heart. 2003 Feb;89(2):133-8
3994585 - Arteriosclerosis. 1985 May-Jun;5(3):293-302
12741392 - Annu Rev Fluid Mech. 2002;34:211-32
12081990 - Circulation. 2002 Jun 25;105(25):2974-80
11284665 - Ann Biomed Eng. 2001 Feb;29(2):109-20
15346088 - Coron Artery Dis. 2004 Sep;15(6):313-8
8872252 - J Biomech Eng. 1996 Aug;118(3):311-7
9551587 - Am J Cardiol. 1998 Apr 9;81(7A):4E-6E
15708689 - J Am Coll Cardiol. 2005 Feb 15;45(4):479-83
12070123 - Circulation. 2002 Jun 18;105(24):2917-22
8963477 - Med Eng Phys. 1996 Jun;18(4):326-32
9846933 - Ann Biomed Eng. 1998 Nov-Dec;26(6):944-54
16084202 - J Biomech. 2005 Oct;38(10):2019-27
11091949 - J Biomech Eng. 2000 Oct;122(5):488-92
15531564 - J Appl Physiol (1985). 2005 Mar;98(3):947-57
11322535 - IEEE Trans Biomed Eng. 2001 Apr;48(4):474-83
10790833 - J Biomech Eng. 2000 Feb;122(1):77-85
12860915 - Circulation. 2003 Jul 29;108(4):438-44
14672563 - J Biomech. 2004 Jan;37(1):1-11
8308043 - J Biomech. 1993 Dec;26(12):1377-88
15760261 - J Endovasc Ther. 2004 Dec;11 Suppl 2:II200-206
12694999 - J Biomech. 2003 May;36(5):689-97
16250918 - Biomed Eng Online. 2005;4:59
11788405 - Am J Physiol Heart Circ Physiol. 2002 Feb;282(2):H576-84
12918912 - Ann Biomed Eng. 2003 Sep;31(8):972-80
12030346 - Circ J. 2002 May;66(5):489-93
10899339 - J Biomech. 2000 Oct;33(10):1287-95
7848371 - Atherosclerosis. 1994 Oct;110(2):225-40
References_xml – volume: 282
  start-page: 2035
  year: 1999
  ident: 183_CR2
  publication-title: JAMA
  doi: 10.1001/jama.282.21.2035
– volume: 12
  start-page: 1254
  year: 1992
  ident: 183_CR22
  publication-title: Arterioscler Thromb
  doi: 10.1161/01.ATV.12.11.1254
– volume: 122
  start-page: 488
  year: 2000
  ident: 183_CR43
  publication-title: J Biomech Eng
  doi: 10.1115/1.1289989
– volume: 33
  start-page: 1287
  year: 2000
  ident: 183_CR11
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(00)00066-X
– volume: 110
  start-page: 225
  year: 1994
  ident: 183_CR3
  publication-title: Atherosclerosis
  doi: 10.1016/0021-9150(94)90207-0
– volume: 89
  start-page: 133
  year: 2003
  ident: 183_CR49
  publication-title: Heart
  doi: 10.1136/heart.89.2.133
– volume: Suppl 2
  start-page: II200
  year: 2004
  ident: 183_CR47
  publication-title: J Endovasc Ther
  doi: 10.1177/15266028040110S621
– volume: 95
  start-page: 438
  year: 1997
  ident: 183_CR13
  publication-title: Circulation
  doi: 10.1161/01.CIR.95.2.438
– volume: 103
  start-page: 1740
  year: 2001
  ident: 183_CR33
  publication-title: Circulation
  doi: 10.1161/01.CIR.103.13.1740
– volume: 34
  start-page: 211
  year: 2002
  ident: 183_CR37
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev.fluid.34.082401.165302
– volume: 18
  start-page: 326
  year: 1996
  ident: 183_CR25
  publication-title: Med Eng Phys
  doi: 10.1016/1350-4533(95)00045-3
– volume: 123
  start-page: 474
  year: 2001
  ident: 183_CR27
  publication-title: J Biomech Eng
  doi: 10.1115/1.1395573
– volume: 26
  start-page: 1377
  year: 1993
  ident: 183_CR28
  publication-title: J Biomech
  doi: 10.1016/0021-9290(93)90089-W
– volume: 37
  start-page: 1
  year: 2004
  ident: 183_CR40
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(03)00259-8
– volume: 28
  start-page: 768
  year: 2005
  ident: 183_CR45
  publication-title: Cardiovasc Intervent Radiol
  doi: 10.1007/s00270-004-7148-6
– volume: 98
  start-page: 947
  year: 2005
  ident: 183_CR9
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.00872.2004
– volume-title: McDonald's Blood Flow in Arteries: Theoretical Experimental and Clincal Principles
  year: 1998
  ident: 183_CR18
– volume: 105
  start-page: 2974
  year: 2002
  ident: 183_CR15
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000019071.72887.BD
– volume: 97
  start-page: 424
  year: 2004
  ident: 183_CR10
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.01329.2003
– volume: 15
  start-page: 313
  year: 2004
  ident: 183_CR48
  publication-title: Coronary Artery Disease
  doi: 10.1097/00019501-200409000-00003
– start-page: 322
  volume-title: Introduction to Fluid Mechanics
  year: 1992
  ident: 183_CR16
– volume: 93
  start-page: 1939
  year: 2002
  ident: 183_CR12
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00544.2002
– volume: 122
  start-page: 77
  year: 2000
  ident: 183_CR19
  publication-title: J Biomech Eng
  doi: 10.1115/1.429629
– volume: 123
  start-page: 277
  year: 2001
  ident: 183_CR29
  publication-title: J Biomech Eng
  doi: 10.1115/1.1374203
– volume: 5
  start-page: 293
  year: 1985
  ident: 183_CR1
  publication-title: Arteriosclerosis
  doi: 10.1161/01.ATV.5.3.293
– volume: 105
  start-page: 2917
  year: 2002
  ident: 183_CR14
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000018168.15904.BB
– volume: 38
  start-page: 2019
  year: 2005
  ident: 183_CR41
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2004.09.011
– volume: 84
  start-page: 378
  year: 1999
  ident: 183_CR36
  publication-title: Circ Res
  doi: 10.1161/01.RES.84.4.378
– volume: 28
  start-page: 431
  year: 2004
  ident: 183_CR38
  publication-title: Eur J Vasc Endovasc Surg
  doi: 10.1016/j.ejvs.2004.06.018
– volume: 126
  start-page: 559
  year: 2004
  ident: 183_CR39
  publication-title: J Biomech Eng
  doi: 10.1115/1.1797904
– volume: 7
  start-page: 387
  year: 1996
  ident: 183_CR5
  publication-title: J Vasc Interv Radiol
  doi: 10.1016/S1051-0443(96)72877-4
– volume: 4
  start-page: 59
  year: 2005
  ident: 183_CR8
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-4-59
– volume: 282
  start-page: H576
  year: 2002
  ident: 183_CR23
  publication-title: American Journal of Physiology
– volume: 66
  start-page: 489
  year: 2002
  ident: 183_CR6
  publication-title: Circ J
  doi: 10.1253/circj.66.489
– volume: 101
  start-page: 812
  year: 2000
  ident: 183_CR4
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.7.812
– volume: 48
  start-page: 474
  year: 2001
  ident: 183_CR35
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.915714
– volume: 36
  start-page: 689
  year: 2003
  ident: 183_CR32
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(02)00447-5
– volume: 29
  start-page: 109
  year: 2001
  ident: 183_CR31
  publication-title: Annals of Biomedical Engineering
  doi: 10.1114/1.1349703
– volume: 29
  start-page: 1
  year: 2001
  ident: 183_CR21
  publication-title: Crit Rev Biomed Eng
  doi: 10.1615/CritRevBiomedEng.v29.i1.10
– volume: 17
  start-page: 3102
  year: 1997
  ident: 183_CR24
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.17.11.3102
– volume: 26
  start-page: 944
  year: 1998
  ident: 183_CR42
  publication-title: Ann Biomed Eng
  doi: 10.1114/1.113
– volume: 29
  start-page: 1605
  year: 1996
  ident: 183_CR30
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(96)80012-1
– volume: 108
  start-page: 438
  year: 2003
  ident: 183_CR44
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000080882.35274.AD
– volume: 288
  start-page: H2465
  year: 2005
  ident: 183_CR7
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.01107.2004
– volume: 31
  start-page: 972
  year: 2003
  ident: 183_CR17
  publication-title: Ann Biomed Eng
  doi: 10.1114/1.1588654
– volume: 81
  start-page: 4E
  year: 1998
  ident: 183_CR34
  publication-title: American Journal of Cardiology
  doi: 10.1016/S0002-9149(98)00189-1
– volume: 118
  start-page: 311
  year: 1996
  ident: 183_CR20
  publication-title: J Biomech Eng
  doi: 10.1115/1.2796012
– volume: 45
  start-page: 479
  year: 2005
  ident: 183_CR46
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2004.10.060
– volume: 29
  start-page: 399
  year: 1997
  ident: 183_CR26
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.29.1.399
– reference: 15350569 - Eur J Vasc Endovasc Surg. 2004 Oct;28(4):431-8
– reference: 11284665 - Ann Biomed Eng. 2001 Feb;29(2):109-20
– reference: 11282904 - Circulation. 2001 Apr 3;103(13):1740-5
– reference: 11321642 - Crit Rev Biomed Eng. 2001;29(1):1-64
– reference: 15648808 - J Biomech Eng. 2004 Oct;126(5):559-66
– reference: 12070123 - Circulation. 2002 Jun 18;105(24):2917-22
– reference: 11601733 - J Biomech Eng. 2001 Oct;123(5):474-84
– reference: 10066671 - Circ Res. 1999 Mar 5;84(4):378-83
– reference: 12527658 - Heart. 2003 Feb;89(2):133-8
– reference: 16184328 - Cardiovasc Intervent Radiol. 2005 Nov-Dec;28(6):768-72
– reference: 15346088 - Coron Artery Dis. 2004 Sep;15(6):313-8
– reference: 12741392 - Annu Rev Fluid Mech. 2002;34:211-32
– reference: 12918912 - Ann Biomed Eng. 2003 Sep;31(8):972-80
– reference: 8308043 - J Biomech. 1993 Dec;26(12):1377-88
– reference: 9846933 - Ann Biomed Eng. 1998 Nov-Dec;26(6):944-54
– reference: 12081990 - Circulation. 2002 Jun 25;105(25):2974-80
– reference: 7848371 - Atherosclerosis. 1994 Oct;110(2):225-40
– reference: 8945659 - J Biomech. 1996 Dec;29(12):1605-14
– reference: 16250918 - Biomed Eng Online. 2005;4:59
– reference: 14672563 - J Biomech. 2004 Jan;37(1):1-11
– reference: 14766776 - J Appl Physiol (1985). 2004 Jul;97(1):424-30; discussion 416
– reference: 12030346 - Circ J. 2002 May;66(5):489-93
– reference: 10899339 - J Biomech. 2000 Oct;33(10):1287-95
– reference: 12391052 - J Appl Physiol (1985). 2002 Dec;93(6):1939-46
– reference: 11091949 - J Biomech Eng. 2000 Oct;122(5):488-92
– reference: 1420084 - Arterioscler Thromb. 1992 Nov;12(11):1254-7
– reference: 11476372 - J Biomech Eng. 2001 Jun;123(3):277-83
– reference: 8963477 - Med Eng Phys. 1996 Jun;18(4):326-32
– reference: 11788405 - Am J Physiol Heart Circ Physiol. 2002 Feb;282(2):H576-84
– reference: 8872252 - J Biomech Eng. 1996 Aug;118(3):311-7
– reference: 10591386 - JAMA. 1999 Dec 1;282(21):2035-42
– reference: 12860915 - Circulation. 2003 Jul 29;108(4):438-44
– reference: 3994585 - Arteriosclerosis. 1985 May-Jun;5(3):293-302
– reference: 9409299 - Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):3102-6
– reference: 9551587 - Am J Cardiol. 1998 Apr 9;81(7A):4E-6E
– reference: 16084202 - J Biomech. 2005 Oct;38(10):2019-27
– reference: 10683357 - Circulation. 2000 Feb 22;101(7):812-8
– reference: 15760261 - J Endovasc Ther. 2004 Dec;11 Suppl 2:II200-206
– reference: 15653759 - Am J Physiol Heart Circ Physiol. 2005 May;288(5):H2465-75
– reference: 9008462 - Circulation. 1997 Jan 21;95(2):438-48
– reference: 15708689 - J Am Coll Cardiol. 2005 Feb 15;45(4):479-83
– reference: 10790833 - J Biomech Eng. 2000 Feb;122(1):77-85
– reference: 8761820 - J Vasc Interv Radiol. 1996 May-Jun;7(3):387-93
– reference: 11322535 - IEEE Trans Biomed Eng. 2001 Apr;48(4):474-83
– reference: 15531564 - J Appl Physiol (1985). 2005 Mar;98(3):947-57
– reference: 12694999 - J Biomech. 2003 May;36(5):689-97
SSID ssj0020069
Score 2.123591
Snippet The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have...
Background - The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent...
Abstract Background The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 40
SubjectTerms Animals
Blood Flow Velocity - physiology
Blood Pressure - physiology
Blood Vessel Prosthesis
Computer Simulation
Coronary Circulation - physiology
Coronary Vessels - anatomy & histology
Coronary Vessels - physiology
Elasticity
Equipment Failure Analysis - methods
Finite Element Analysis
Humans
Imaging, Three-Dimensional - methods
Microfluidics - methods
Models, Cardiovascular
Prosthesis Implantation - methods
Shear Strength
Stents
Stress, Mechanical
Surgery, Computer-Assisted - methods
Title Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling
URI https://www.ncbi.nlm.nih.gov/pubmed/16780592
https://www.proquest.com/docview/19494804
https://www.proquest.com/docview/68756081
https://pubmed.ncbi.nlm.nih.gov/PMC1550410
https://doaj.org/article/a245d03fc7b54ad996ed17588af436ab
Volume 5
WOSCitedRecordID wos000242393000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RBZ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RSV
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVghRAcECywlI9lDkicrE0a27G5LbArLrviAFJvkWM7S6Q2rfqxqBd-Jr-HGcctLWLFhUsPySR265f6jTN-j7E3odSkfdvwunaaCxskt7kJPDjjicKSYkw0mygvL_VoZD7vWH1RTVgvD9z_cCd2KKTPisaVtRTWIz0PHqc8rW0jCmVr-vfNSrNJplKqRQK8cV9RKbkZylGSa8y1Otke45LTksfOdBRV-_9GNf-smNyZgs4fsgeJO8Jp3-dH7FboDtn9HUXBQ3b3Ir0rf8x-no6jYjLhCtoOyIKBaDdsik_hKkwnYTlfwyzKvgYP9Rp2djYCIqBbQjuZjW2_Q6nDGyVTE_AkuZvcshYwbeC7HeMl5JAN_Q6Ud2CT5AmdtuBW82tsxJFogsVmYznpGqj0_gqKj-Ciw0RanQRsp_Xg152dtG4B0bIHA5-wr-dnXz584snFgTtkY0vupRHB5bYwjQhlYwvVmEIhVQiNaixixedCZrX0mKlqzNfqPGDOE4ogy5qquYun7KCbduEZA5trg5wmZM5gXqqVNnpYF4gvV6tmmIsB45vBrFySOCenjXEVUx2tKhr8iga_kpXIBuztNn7Wi3vcGPmesLGNIlHueAChWiWoVv-C6oC93iCrwoeY3szYLkxXiyo3pNKTiZsjFOaVCunbgB31SPzdYUW2FGY4YOUeRvf6un-ma79FIXFKT0WePf8fX-4Fu9evTimeq5fsYDlfhVfsjrtetov5MbtdjvRxfEbx8-LH2S_iAkfu
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alterations+in+regional+vascular+geometry+produced+by+theoretical+stent+implantation+influence+distributions+of+wall+shear+stress%3A+analysis+of+a+curved+coronary+artery+using+3D+computational+fluid+dynamics+modeling&rft.jtitle=Biomedical+engineering+online&rft.au=Warltier+David+C&rft.au=Douglas+Hettrick+A&rft.au=Olson+Lars+E&rft.au=LaDisa+John+F&rft.date=2006-06-16&rft.pub=BMC&rft.issn=1475-925X&rft.eissn=1475-925X&rft.volume=5&rft.issue=1&rft.spage=40&rft_id=info:doi/10.1186%2F1475-925X-5-40&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a245d03fc7b54ad996ed17588af436ab
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon