A predictive algorithm using clinical and laboratory parameters may assist in ruling out and in diagnosing MDS
We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic risk, diagnosed by BM examination. A sample of 502 MDS patients from the European MDS (EUMDS) registry (n > 2600) was combined with 502 contr...
Uloženo v:
| Vydáno v: | Blood advances Ročník 5; číslo 16; s. 3066 - 3075 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington, DC
Elsevier Inc
24.08.2021
American Society of Hematology |
| Témata: | |
| ISSN: | 2473-9529, 2473-9537, 2473-9537 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic risk, diagnosed by BM examination. A sample of 502 MDS patients from the European MDS (EUMDS) registry (n > 2600) was combined with 502 controls (all BM proven). Gradient-boosted models (GBMs) were used to predict/exclude MDS using demographic, clinical, and laboratory variables. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the models, and performance was validated using 100 times fivefold cross-validation. Model stability was assessed by repeating its fit using different randomly chosen groups of 502 EUMDS cases. AUC was 0.96 (95% confidence interval, 0.95-0.97). MDS is predicted/excluded accurately in 86% of patients with unexplained anemia. A GBM score (range, 0-1) of less than 0.68 (GBM < 0.68) resulted in a negative predictive value of 0.94, that is, MDS was excluded. GBM ≥ 0.82 provided a positive predictive value of 0.88, that is, MDS. The diagnosis of the remaining patients (0.68 ≤ GBM < 0.82) is indeterminate. The discriminating variables: age, sex, hemoglobin, white blood cells, platelets, mean corpuscular volume, neutrophils, monocytes, glucose, and creatinine. A Web-based app was developed; physicians could use it to exclude or predict MDS noninvasively in most patients without a BM examination. Future work will add peripheral blood cytogenetics/genetics, EUMDS-based prospective validation, and prognostication.
•A BM examination is the gold standard for the diagnosis of MDS, but it is invasive and subjective.•A predictive algorithm/app using data of 10 readily available parameters from 1004 subjects was developed to help diagnose/rule out MDS.
[Display omitted] |
|---|---|
| AbstractList | We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic risk, diagnosed by BM examination. A sample of 502 MDS patients from the European MDS (EUMDS) registry (n > 2600) was combined with 502 controls (all BM proven). Gradient-boosted models (GBMs) were used to predict/exclude MDS using demographic, clinical, and laboratory variables. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the models, and performance was validated using 100 times fivefold cross-validation. Model stability was assessed by repeating its fit using different randomly chosen groups of 502 EUMDS cases. AUC was 0.96 (95% confidence interval, 0.95-0.97). MDS is predicted/excluded accurately in 86% of patients with unexplained anemia. A GBM score (range, 0-1) of less than 0.68 (GBM < 0.68) resulted in a negative predictive value of 0.94, that is, MDS was excluded. GBM ≥ 0.82 provided a positive predictive value of 0.88, that is, MDS. The diagnosis of the remaining patients (0.68 ≤ GBM < 0.82) is indeterminate. The discriminating variables: age, sex, hemoglobin, white blood cells, platelets, mean corpuscular volume, neutrophils, monocytes, glucose, and creatinine. A Web-based app was developed; physicians could use it to exclude or predict MDS noninvasively in most patients without a BM examination. Future work will add peripheral blood cytogenetics/genetics, EUMDS-based prospective validation, and prognostication.
•A BM examination is the gold standard for the diagnosis of MDS, but it is invasive and subjective.•A predictive algorithm/app using data of 10 readily available parameters from 1004 subjects was developed to help diagnose/rule out MDS.
[Display omitted] We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic risk, diagnosed by BM examination. A sample of 502 MDS patients from the European MDS (EUMDS) registry (n > 2600) was combined with 502 controls (all BM proven). Gradient-boosted models (GBMs) were used to predict/exclude MDS using demographic, clinical, and laboratory variables. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the models, and performance was validated using 100 times fivefold cross-validation. Model stability was assessed by repeating its fit using different randomly chosen groups of 502 EUMDS cases. AUC was 0.96 (95% confidence interval, 0.95-0.97). MDS is predicted/excluded accurately in 86% of patients with unexplained anemia. A GBM score (range, 0-1) of less than 0.68 (GBM < 0.68) resulted in a negative predictive value of 0.94, that is, MDS was excluded. GBM ≥ 0.82 provided a positive predictive value of 0.88, that is, MDS. The diagnosis of the remaining patients (0.68 ≤ GBM < 0.82) is indeterminate. The discriminating variables: age, sex, hemoglobin, white blood cells, platelets, mean corpuscular volume, neutrophils, monocytes, glucose, and creatinine. A Web-based app was developed; physicians could use it to exclude or predict MDS noninvasively in most patients without a BM examination. Future work will add peripheral blood cytogenetics/genetics, EUMDS-based prospective validation, and prognostication. A BM examination is the gold standard for the diagnosis of MDS, but it is invasive and subjective.A predictive algorithm/app using data of 10 readily available parameters from 1004 subjects was developed to help diagnose/rule out MDS. We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic risk, diagnosed by BM examination. A sample of 502 MDS patients from the European MDS (EUMDS) registry (n > 2600) was combined with 502 controls (all BM proven). Gradient-boosted models (GBMs) were used to predict/exclude MDS using demographic, clinical, and laboratory variables. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the models, and performance was validated using 100 times fivefold cross-validation. Model stability was assessed by repeating its fit using different randomly chosen groups of 502 EUMDS cases. AUC was 0.96 (95% confidence interval, 0.95-0.97). MDS is predicted/excluded accurately in 86% of patients with unexplained anemia. A GBM score (range, 0-1) of less than 0.68 (GBM < 0.68) resulted in a negative predictive value of 0.94, that is, MDS was excluded. GBM ≥ 0.82 provided a positive predictive value of 0.88, that is, MDS. The diagnosis of the remaining patients (0.68 ≤ GBM < 0.82) is indeterminate. The discriminating variables: age, sex, hemoglobin, white blood cells, platelets, mean corpuscular volume, neutrophils, monocytes, glucose, and creatinine. A Web-based app was developed; physicians could use it to exclude or predict MDS noninvasively in most patients without a BM examination. Future work will add peripheral blood cytogenetics/genetics, EUMDS-based prospective validation, and prognostication. We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic risk, diagnosed by BM examination. A sample of 502 MDS patients from the European MDS (EUMDS) registry (n > 2600) was combined with 502 controls (all BM proven). Gradient-boosted models (GBMs) were used to predict/exclude MDS using demographic, clinical, and laboratory variables. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the models, and performance was validated using 100 times fivefold cross-validation. Model stability was assessed by repeating its fit using different randomly chosen groups of 502 EUMDS cases. AUC was 0.96 (95% confidence interval, 0.95-0.97). MDS is predicted/excluded accurately in 86% of patients with unexplained anemia. A GBM score (range, 0-1) of less than 0.68 (GBM < 0.68) resulted in a negative predictive value of 0.94, that is, MDS was excluded. GBM ≥ 0.82 provided a positive predictive value of 0.88, that is, MDS. The diagnosis of the remaining patients (0.68 ≤ GBM < 0.82) is indeterminate. The discriminating variables: age, sex, hemoglobin, white blood cells, platelets, mean corpuscular volume, neutrophils, monocytes, glucose, and creatinine. A Web-based app was developed; physicians could use it to exclude or predict MDS noninvasively in most patients without a BM examination. Future work will add peripheral blood cytogenetics/genetics, EUMDS-based prospective validation, and prognostication.We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic risk, diagnosed by BM examination. A sample of 502 MDS patients from the European MDS (EUMDS) registry (n > 2600) was combined with 502 controls (all BM proven). Gradient-boosted models (GBMs) were used to predict/exclude MDS using demographic, clinical, and laboratory variables. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the models, and performance was validated using 100 times fivefold cross-validation. Model stability was assessed by repeating its fit using different randomly chosen groups of 502 EUMDS cases. AUC was 0.96 (95% confidence interval, 0.95-0.97). MDS is predicted/excluded accurately in 86% of patients with unexplained anemia. A GBM score (range, 0-1) of less than 0.68 (GBM < 0.68) resulted in a negative predictive value of 0.94, that is, MDS was excluded. GBM ≥ 0.82 provided a positive predictive value of 0.88, that is, MDS. The diagnosis of the remaining patients (0.68 ≤ GBM < 0.82) is indeterminate. The discriminating variables: age, sex, hemoglobin, white blood cells, platelets, mean corpuscular volume, neutrophils, monocytes, glucose, and creatinine. A Web-based app was developed; physicians could use it to exclude or predict MDS noninvasively in most patients without a BM examination. Future work will add peripheral blood cytogenetics/genetics, EUMDS-based prospective validation, and prognostication. |
| Author | Stauder, Reinhard Baruch, Shoham Guerci-Bresler, Agnes de Witte, Theo Hellström-Lindberg, Eva Crouch, Simon Yu, Ge Fenaux, Pierre Kolomansky, Albert Holm, Mette Skov Oster, Howard S. Malcovati, Luca Bowen, David Naor, Shachar Mills, Juliet Symeonidis, Argiris Sanz, Guillermo Mittelman, Moshe Ben-Ezra, Jonathan van Marrewijk, Corine Langemeijer, Saskia Culligan, Dominic Smith, Alexandra Sanhes, Laurence Cermak, Jaroslav Kotsianidis, Ioannis Madry, Krzysztof Abu Shrkihe, Bander Germing, Ulrich |
| AuthorAffiliation | 17 Service d’Hématologie, Centre Hospitalier Universitaire (CHU) Brabois Vandoeuvre, Nancy, France 5 Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel 2 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel 21 Department of Hematology, Democritus University of Thrace Medical School, University Hospital of Alexandroupolis, Alexandroupolis, Greece 20 Department of Haematology, Worcestershire Acute Hospitals National Health Service (NHS) Trust and University of Birmingham, Birmingham, United Kingdom 1 Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel 11 Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden 16 Department of Haematology, Oncology and Internal Medicine, Warsaw Medical University, Warsaw, Poland 23 Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands 7 Division Hematology, Department of Internal Medicine, University of Patras |
| AuthorAffiliation_xml | – name: 4 Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel – name: 3 Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom – name: 18 Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom – name: 10 Hematology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain – name: 17 Service d’Hématologie, Centre Hospitalier Universitaire (CHU) Brabois Vandoeuvre, Nancy, France – name: 9 Department of Clinical Hematology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic – name: 6 Service d’Hématologie Séniors, Hôpital Saint-Louis, Assistance Publique des Hôpitaux de Paris (AP-HP) and Université Paris 7, Paris, France – name: 20 Department of Haematology, Worcestershire Acute Hospitals National Health Service (NHS) Trust and University of Birmingham, Birmingham, United Kingdom – name: 2 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel – name: 21 Department of Hematology, Democritus University of Thrace Medical School, University Hospital of Alexandroupolis, Alexandroupolis, Greece – name: 1 Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel – name: 13 Department of Hematology, Radboudumc, Nijmegen, The Netherlands – name: 8 Department of Internal Medicine V (Hematology and Oncology), Innsbruck Medical University, Innsbruck, Austria – name: 16 Department of Haematology, Oncology and Internal Medicine, Warsaw Medical University, Warsaw, Poland – name: 7 Division Hematology, Department of Internal Medicine, University of Patras Medical School, Patras, Greece – name: 11 Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden – name: 14 Department of Hematology, Oncology and Clinical Immunology, Universitätsklinik Düsseldorf, Düsseldorf, Germany – name: 19 Service d’Hématologie, Centre Hospitalier de Perpignan, Perpignan, France – name: 22 St. James's Institute of Oncology, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; and – name: 15 Department of Hematology, Aarhus University Hospital, Aarhus, Denmark – name: 12 Department of Molecular Medicine and Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, University of Pavia, Pavia, Italy – name: 23 Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands – name: 5 Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel |
| Author_xml | – sequence: 1 givenname: Howard S. surname: Oster fullname: Oster, Howard S. email: howardo@tlvmc.gov.il organization: Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel – sequence: 2 givenname: Simon orcidid: 0000-0002-3026-2859 surname: Crouch fullname: Crouch, Simon organization: Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom – sequence: 3 givenname: Alexandra orcidid: 0000-0002-1111-966X surname: Smith fullname: Smith, Alexandra organization: Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom – sequence: 4 givenname: Ge orcidid: 0000-0002-0891-2501 surname: Yu fullname: Yu, Ge organization: Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom – sequence: 5 givenname: Bander surname: Abu Shrkihe fullname: Abu Shrkihe, Bander organization: Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel – sequence: 6 givenname: Shoham surname: Baruch fullname: Baruch, Shoham organization: Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel – sequence: 7 givenname: Albert surname: Kolomansky fullname: Kolomansky, Albert organization: Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel – sequence: 8 givenname: Jonathan surname: Ben-Ezra fullname: Ben-Ezra, Jonathan organization: Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel – sequence: 9 givenname: Shachar surname: Naor fullname: Naor, Shachar organization: Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel – sequence: 10 givenname: Pierre surname: Fenaux fullname: Fenaux, Pierre organization: Service d'Hématologie Séniors, Hôpital Saint-Louis, Assistance Publique des Hôpitaux de Paris (AP-HP) and Université Paris 7, Paris, France – sequence: 11 givenname: Argiris orcidid: 0000-0002-3685-3473 surname: Symeonidis fullname: Symeonidis, Argiris organization: Division Hematology, Department of Internal Medicine, University of Patras Medical School, Patras, Greece – sequence: 12 givenname: Reinhard orcidid: 0000-0002-8993-9561 surname: Stauder fullname: Stauder, Reinhard organization: Department of Internal Medicine V (Hematology and Oncology), Innsbruck Medical University, Innsbruck, Austria – sequence: 13 givenname: Jaroslav surname: Cermak fullname: Cermak, Jaroslav organization: Department of Clinical Hematology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic – sequence: 14 givenname: Guillermo orcidid: 0000-0002-2767-8191 surname: Sanz fullname: Sanz, Guillermo organization: Hematology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain – sequence: 15 givenname: Eva surname: Hellström-Lindberg fullname: Hellström-Lindberg, Eva organization: Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden – sequence: 16 givenname: Luca orcidid: 0000-0002-1460-1611 surname: Malcovati fullname: Malcovati, Luca organization: Department of Molecular Medicine and Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, University of Pavia, Pavia, Italy – sequence: 17 givenname: Saskia surname: Langemeijer fullname: Langemeijer, Saskia organization: Department of Hematology, Radboudumc, Nijmegen, The Netherlands – sequence: 18 givenname: Ulrich surname: Germing fullname: Germing, Ulrich organization: Department of Hematology, Oncology and Clinical Immunology, Universitätsklinik Düsseldorf, Düsseldorf, Germany – sequence: 19 givenname: Mette Skov surname: Holm fullname: Holm, Mette Skov organization: Department of Hematology, Aarhus University Hospital, Aarhus, Denmark – sequence: 20 givenname: Krzysztof surname: Madry fullname: Madry, Krzysztof organization: Department of Haematology, Oncology and Internal Medicine, Warsaw Medical University, Warsaw, Poland – sequence: 21 givenname: Agnes surname: Guerci-Bresler fullname: Guerci-Bresler, Agnes organization: Service d'Hématologie, Centre Hospitalier Universitaire (CHU) Brabois Vandoeuvre, Nancy, France – sequence: 22 givenname: Dominic surname: Culligan fullname: Culligan, Dominic organization: Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom – sequence: 23 givenname: Laurence surname: Sanhes fullname: Sanhes, Laurence organization: Service d'Hématologie, Centre Hospitalier de Perpignan, Perpignan, France – sequence: 24 givenname: Juliet surname: Mills fullname: Mills, Juliet organization: Department of Haematology, Worcestershire Acute Hospitals National Health Service (NHS) Trust and University of Birmingham, Birmingham, United Kingdom – sequence: 25 givenname: Ioannis surname: Kotsianidis fullname: Kotsianidis, Ioannis organization: Department of Hematology, Democritus University of Thrace Medical School, University Hospital of Alexandroupolis, Alexandroupolis, Greece – sequence: 26 givenname: Corine orcidid: 0000-0002-9547-908X surname: van Marrewijk fullname: van Marrewijk, Corine organization: Department of Hematology, Radboudumc, Nijmegen, The Netherlands – sequence: 27 givenname: David surname: Bowen fullname: Bowen, David organization: St. James's Institute of Oncology, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom – sequence: 28 givenname: Theo surname: de Witte fullname: de Witte, Theo organization: Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands – sequence: 29 givenname: Moshe surname: Mittelman fullname: Mittelman, Moshe email: moshemt@tlvmc.gov.il organization: Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel |
| BackLink | http://kipublications.ki.se/Default.aspx?queryparsed=id:147494585$$DView record from Swedish Publication Index (Karolinska Institutet) |
| BookMark | eNqNkk1v1DAQhiNUREvpf_CRy5Y4jhP7gijlUyriAJytiT3Zmjr2YjuL9t_j7W6Ltqc9eTTzvo89M35ZnfjgsaoIrS8pFc2bwYVgwKzBa0yXTd3Udd3WnD-rzpq2ZwvJWX_yGDfytLpI6XcR0b5jXDYvqlPWMtF3bX9W-SuyimisznaNBNwyRJtvJzIn65dEO-utBkfAG-JgCBFyiBuygggTZoyJTLAhkJJNmVhP4uy2vjDne0vJGAtLH-5p3z78eFU9H8ElvNif59WvTx9_Xn9Z3Hz__PX66mahOad5AVwLpCOIVkqOyHrdlXbMIHowsh9HqJnRQpd-YGCmkwKkkFSCBoGshOy8Wuy46S-u5kGtop0gblQAq_apuxKharkUrC76tzt9qUxoNPocwR3YDive3qplWCtRJk_lFvB6D4jhz4wpq8kmjc6BxzAn1fCOtpK2ZSmPd-kYUoo4Km0zZBu2ZOsUrdV2z-pgz-r_ngtAPAE8vPMI6_udFcvw1xajStpiURkbUWdlgj0G8u4J5OGf3OHmOMQ_HL3jpw |
| CitedBy_id | crossref_primary_10_1002_ajh_27046 crossref_primary_10_1093_oncolo_oyad114 crossref_primary_10_1038_s41375_024_02223_9 crossref_primary_10_1007_s00277_024_05925_3 crossref_primary_10_1111_bjh_18889 crossref_primary_10_1111_ijlh_14234 crossref_primary_10_1515_cclm_2023_0772 crossref_primary_10_1038_s41375_024_02397_2 crossref_primary_10_1136_bmjopen_2023_081200 crossref_primary_10_1182_blood_2024025771 crossref_primary_10_3389_fonc_2022_988998 crossref_primary_10_1002_pbc_31383 crossref_primary_10_1111_bjh_20136 crossref_primary_10_1111_ejh_14379 crossref_primary_10_1016_j_amjmed_2024_03_015 crossref_primary_10_1038_s41375_024_02203_z crossref_primary_10_3389_fonc_2024_1415101 crossref_primary_10_1038_s41375_024_02297_5 crossref_primary_10_1136_bmjopen_2024_095640 crossref_primary_10_1371_journal_pone_0276095 |
| Cites_doi | 10.1111/j.1365-2141.1990.tb02612.x 10.1111/ejh.13389 10.1214/aos/1013203451 10.1016/S2352-3026(18)30109-1 10.1097/HS9.0000000000000040 10.1007/s11136-019-02112-0 10.2174/1573399811666150526151241 10.1200/JCO.1989.7.7.959 10.1200/JCO.2015.63.0830 10.1056/NEJMp1707537 10.3389/fmed.2019.00185 10.1182/blood.2020005488 10.1016/j.joen.2014.01.034 10.1097/MOH.0b013e3283522471 10.1002/ajh.23598 10.1080/10428194.2017.1416363 10.1159/000345427 10.1111/j.1365-2141.1984.tb06079.x 10.1161/CIRCRESAHA.112.279315 10.1016/j.amjmed.2016.06.056 10.1038/s41375-018-0089-x 10.1016/j.dsx.2017.12.015 10.1111/ejh.13134 10.1002/ajh.25595 10.1182/blood.V126.23.907.907 10.1136/bmj.g7818 10.1182/blood.2018834044 10.1182/blood-2020-136557 10.1056/NEJMms1817674 10.1177/1178222619885147 10.1161/01.CIR.96.3.1012 10.1038/s41586-018-0317-6 10.1182/blood-2018-99-111838 10.1182/blood.V79.1.198.198 10.1016/j.leukres.2009.02.010 10.1016/j.leukres.2011.05.001 10.1136/bmj.j4413 10.1016/S0167-9473(01)00065-2 10.1200/JCO.2016.68.2518 10.1182/blood-2017-01-763425 10.1159/000206963 10.1161/01.CIR.97.15.1496 10.1056/NEJMoa1805971 10.1056/NEJMoa1409405 10.1111/j.1600-0609.1992.tb00039.x 10.1159/000490727 10.1182/blood-2004-05-1812 10.1016/j.amjmed.2016.07.029 10.1182/blood-2020-140317 10.1002/jmrs.369 10.1182/blood-2013-03-492884 10.1111/bjh.13450 10.1056/NEJMoa1408617 10.1002/ajh.24732 10.1002/rcs.1669 10.1007/s00259-019-04593-0 10.3324/haematol.2018.212217 10.1056/NEJMoa1901183 10.1007/s12194-019-00543-5 10.1182/blood-2013-08-518886 10.1182/blood-2020-139412 |
| ContentType | Journal Article |
| Copyright | 2021 American Society of Hematology 2021 by The American Society of Hematology. 2021 by The American Society of Hematology 2021 |
| Copyright_xml | – notice: 2021 American Society of Hematology – notice: 2021 by The American Society of Hematology. – notice: 2021 by The American Society of Hematology 2021 |
| DBID | AAYXX CITATION 7X8 5PM ADTPV AOWAS D8T ZZAVC |
| DOI | 10.1182/bloodadvances.2020004055 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2473-9537 |
| EndPage | 3075 |
| ExternalDocumentID | oai_swepub_ki_se_459830 PMC8405190 10_1182_bloodadvances_2020004055 S2473952921003955 |
| GroupedDBID | .1- .FO 0R~ 53G AALRI AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFPUW AFRHN AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ H13 HYE OK1 ROL RPM THE W2D Z5R AFCTW AAYXX CITATION 7X8 5PM ADTPV AOWAS D8T ZZAVC |
| ID | FETCH-LOGICAL-c551t-a5c8e1fa84995ee37c6247db87ad97ffa03dc8c763ab3d698a98919aca8e39893 |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000688536600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-9529 2473-9537 |
| IngestDate | Tue Nov 25 03:36:36 EST 2025 Tue Sep 30 15:40:32 EDT 2025 Fri Sep 05 06:01:11 EDT 2025 Sat Nov 29 03:31:35 EST 2025 Tue Nov 18 22:49:36 EST 2025 Fri Feb 23 02:43:18 EST 2024 Tue Aug 26 16:31:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c551t-a5c8e1fa84995ee37c6247db87ad97ffa03dc8c763ab3d698a98919aca8e39893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 For data sharing, please contact the corresponding authors, Moshe Mittelman at moshemt@tlvmc.gov.il or Howard S. Oster at howardo@tlvmc.gov.il. |
| ORCID | 0000-0002-8993-9561 0000-0002-0891-2501 0000-0002-1111-966X 0000-0002-3026-2859 0000-0002-9547-908X 0000-0002-2767-8191 0000-0002-1460-1611 0000-0002-3685-3473 |
| OpenAccessLink | http://dx.doi.org/10.1182/bloodadvances.2020004055 |
| PMID | 34387647 |
| PQID | 2561491447 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | swepub_primary_oai_swepub_ki_se_459830 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8405190 proquest_miscellaneous_2561491447 crossref_citationtrail_10_1182_bloodadvances_2020004055 crossref_primary_10_1182_bloodadvances_2020004055 elsevier_sciencedirect_doi_10_1182_bloodadvances_2020004055 elsevier_clinicalkey_doi_10_1182_bloodadvances_2020004055 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-24 |
| PublicationDateYYYYMMDD | 2021-08-24 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington, DC |
| PublicationPlace_xml | – name: Washington, DC |
| PublicationTitle | Blood advances |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc American Society of Hematology |
| Publisher_xml | – name: Elsevier Inc – name: American Society of Hematology |
| References | Ríos, Cañizo, Sanz (bib11) 1990; 75 Sakai, Onishi, Matsui (bib28) 2019; 13 Depaoli, Davini, Foggetti (bib60) 1992; 49 Malcovati, Hellström-Lindberg, Bowen, European Leukemia Net (bib8) 2013; 122 Rudy (bib33) 2013; 112 Stauder, Yu, Koinig (bib44) 2018; 32 Cintra, da Silva Facundo, Prieto (bib51) 2014; 40 Rauw, Wells, Chesney, Reis, Zhang, Buckstein (bib71) 2011; 35 de Swart, Crouch, Hoeks, EUMDS Registry Participants (bib5) 2020; 105 Papaemmanuil, Gerstung, Malcovati, Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium (bib57) 2013; 122 Rotenstein, Huckman, Wagle (bib3) 2017; 377 Oster, Taccardi, Lux, Ershler, Rudy (bib31) 1997; 96 Kuhn M, Wing J, Weston S, et al. Caret: Classification and Regression Training. R package version 60-81. Accessed 16 June 2021. (bib24) 2018 Greenbaum, Joffe, Filanovsky (bib53) 2018; 101 Kachekouche, Dali-Sahi, Benmansour, Dennouni-Medjati (bib49) 2018; 12 Davis (bib25) 1959 Goodnough, Schrier (bib69) 2014; 89 Mangi, Mufti (bib9) 1992; 79 Friedman (bib19) 2002; 38 Aktolun (bib29) 2019; 46 Bejar, Papaemmanuil, Haferlach (bib56) 2015; 126 Guralnik, Eisenstaedt, Ferrucci, Klein, Woodman (bib23) 2004; 104 Stauder, Lambert, Desruol-Allardin (bib43) 2020; 104 Girelli, Marchi, Camaschella (bib68) 2018; 2 Buckstein, Jang, Friedlich (bib22) 2009; 33 Abelson, Collord, Ng (bib72) 2018; 559 Milani, Lavie, Bober, Milani, Ventura (bib36) 2017; 130 Yee, Narain, Akmaev, Vemulapalli (bib35) 2019; 11 Hallek (bib54) 2019; 94 Duetz, Westers, van de Loosdrecht (bib58) 2019; 86 Malcovati, Gallì, Travaglino (bib67) 2017; 129 Oster, Taccardi, Lux, Ershler, Rudy (bib32) 1998; 97 Alpert (bib37) 2017; 130 Greenwell B, Boehmke B, Cunningham J, Developers G,. GBM: Generalized Boosted Regression Models. R package version 214. Accessed 16 June 2021. Oster, Crouch, Smith (bib17) 2018; 132 Radakovich, Meggendorfer, Malcovati (bib64) 2020; 136 Goll, Jensen, Lindsley (bib63) 2020; 136 Social Security Administration. Disability Evaluation Under Social Security. 7.10 Disorders Of Bone Marrow Failure. Accessed 29 August 2019. Donovan, Sanson-Fisher, Redman (bib39) 1989; 7 Lewis, Gandomkar, Brennan (bib27) 2019; 66 Saad, Vassallo, Arruda, Lorand-Metze (bib10) 1994; 86 Nelson, Eftimovska, Lind, Hager, Wasson, Lindblad (bib41) 2015; 350 Greene, Lea (bib4) 2019; 381 Jaiswal, Fontanillas, Flannick (bib66) 2014; 371 Israel National Insurance Agency. Disability Level Establishment: Hematologic Disorders [in Hebrew]. Accessed 29 August 2019. Basch, Deal, Kris (bib38) 2016; 34 Oster, Abu Shrkihe, Crouch (bib16) 2017; 130 Calvo, Arenillas, Luño (bib52) 2017; 92 Banerjee, Mathew, Rouane (bib26) 2017; 358 Serag, Ion-Margineanu, Qureshi (bib30) 2019; 6 Baer, Stengel, Kern, Haferlach, Haferlach (bib62) 2020; 136 Oster, Carmi, Kolomansky (bib15) 2018; 59 Agool, Schot, Jager, Vellenga (bib59) 2006; 47 Tricot, De Wolf-Peeters, Vlietinck, Verwilghen (bib12) 1984; 58 Smith, Smith, Fletcher, Henderson (bib2) 2016; 12 de Swart, Smith, Johnston (bib6) 2015; 170 DeAngelo, Stone (bib7) 2013 Cetto, Vettore, De Matteis, Piga, Perona (bib45) 1982; 68 Pang, Schrier (bib70) 2012; 19 Hamoudeh, Zeidan, Barbarotta, Rosano (bib48) 2016; 12 Genovese, Kähler, Handsaker (bib65) 2014; 371 Newby, Adamson, Berry, SCOT-HEART Investigators (bib1) 2018; 379 Bouronikou, Georgoulias, Giannakoulas (bib47) 2013; 130 Basiorka, McGraw, Abbas-Aghababazadeh (bib46) 2018; 5 Nagata, Zhao, Awada (bib61) 2020; 136 Wu, Chuang, Tai (bib50) 1989; 88 Spivak (bib55) 2019; 134 Schnipper, Davidson, Wollins (bib42) 2016; 34 Friedman (bib18) 2001; 29 Perez, Mahaffey, Hedlin, Apple Heart Study Investigators (bib34) 2019; 381 Hsiao, Dymek, Kim, Russell (bib40) 2019; 28 Oster (2021081315342155200_B15) 2018; 59 Goodnough (2021081315342155200_B69) 2014; 89 Hsiao (2021081315342155200_B40) 2019; 28 Sakai (2021081315342155200_B28) 2019; 13 Greene (2021081315342155200_B4) 2019; 381 DeAngelo (2021081315342155200_B7) 2013 Donovan (2021081315342155200_B39) 1989; 7 Duetz (2021081315342155200_B58) 2019; 86 Oster (2021081315342155200_B31) 1997; 96 Serag (2021081315342155200_B30) 2019; 6 Hallek (2021081315342155200_B54) 2019; 94 Genovese (2021081315342155200_B65) 2014; 371 Papaemmanuil (2021081315342155200_B57) 2013; 122 Ríos (2021081315342155200_B11) 1990; 75 Rauw (2021081315342155200_B71) 2011; 35 Spivak (2021081315342155200_B55) 2019; 134 Agool (2021081315342155200_B59) 2006; 47 Jaiswal (2021081315342155200_B66) 2014; 371 Basiorka (2021081315342155200_B46) 2018; 5 de Swart (2021081315342155200_B5) 2020; 105 Rotenstein (2021081315342155200_B3) 2017; 377 Stauder (2021081315342155200_B43) 2020; 104 Saad (2021081315342155200_B10) 1994; 86 Malcovati (2021081315342155200_B8) 2013; 122 Lewis (2021081315342155200_B27) 2019; 66 Perez (2021081315342155200_B34) 2019; 381 Aktolun (2021081315342155200_B29) 2019; 46 R: A Language and Environment for Statistical Computing (2021081315342155200_B24) 2018 Alpert (2021081315342155200_B37) 2017; 130 Abelson (2021081315342155200_B72) 2018; 559 Banerjee (2021081315342155200_B26) 2017; 358 Baer (2021081315342155200_B62) 2020; 136 Friedman (2021081315342155200_B18) 2001; 29 Newby (2021081315342155200_B1) 2018; 379 Mangi (2021081315342155200_B9) 1992; 79 Calvo (2021081315342155200_B52) 2017; 92 Malcovati (2021081315342155200_B67) 2017; 129 Greenbaum (2021081315342155200_B53) 2018; 101 Oster (2021081315342155200_B32) 1998; 97 Friedman (2021081315342155200_B19) 2002; 38 Oster (2021081315342155200_B16) 2017; 130 Yee (2021081315342155200_B35) 2019; 11 Greenwell (2021081315342155200_B20) Bouronikou (2021081315342155200_B47) 2013; 130 Kuhn (2021081315342155200_B21) Radakovich (2021081315342155200_B64) 2020; 136 Nelson (2021081315342155200_B41) 2015; 350 Israel National Insurance Agency (2021081315342155200_B14) Guralnik (2021081315342155200_B23) 2004; 104 Davis (2021081315342155200_B25) 1959 Basch (2021081315342155200_B38) 2016; 34 Hamoudeh (2021081315342155200_B48) 2016; 12 Social Security Administration (2021081315342155200_B13) Rudy (2021081315342155200_B33) 2013; 112 de Swart (2021081315342155200_B6) 2015; 170 Buckstein (2021081315342155200_B22) 2009; 33 Cetto (2021081315342155200_B45) 1982; 68 Wu (2021081315342155200_B50) 1989; 88 Pang (2021081315342155200_B70) 2012; 19 Cintra (2021081315342155200_B51) 2014; 40 Oster (2021081315342155200_B17) 2018; 132 Depaoli (2021081315342155200_B60) 1992; 49 Stauder (2021081315342155200_B44) 2018; 32 Tricot (2021081315342155200_B12) 1984; 58 Bejar (2021081315342155200_B56) 2015; 126 Nagata (2021081315342155200_B61) 2020; 136 Smith (2021081315342155200_B2) 2016; 12 Schnipper (2021081315342155200_B42) 2016; 34 Girelli (2021081315342155200_B68) 2018; 2 Kachekouche (2021081315342155200_B49) 2018; 12 Goll (2021081315342155200_B63) 2020; 136 Milani (2021081315342155200_B36) 2017; 130 |
| References_xml | – volume: 13 start-page: 27 year: 2019 end-page: 36 ident: bib28 article-title: A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features publication-title: Radiol Phys Technol – volume: 170 start-page: 372 year: 2015 end-page: 383 ident: bib6 article-title: Validation of the revised international prognostic scoring system (IPSS-R) in patients with lower-risk myelodysplastic syndromes: a report from the prospective European LeukaemiaNet MDS (EUMDS) registry publication-title: Br J Haematol – volume: 136 start-page: 30 year: 2020 end-page: 31 ident: bib62 article-title: The potential of molecular genetic analysis for diagnostic and prognostic decision making in clonal cytopenia of undetermined significance (CCUS) and MDS - a study on 576 patients [abstract] publication-title: Blood – volume: 104 start-page: 476 year: 2020 end-page: 487 ident: bib43 article-title: Patient-reported outcome measures in studies of myelodysplastic syndromes and acute myeloid leukemia: literature review and landscape analysis publication-title: Eur J Haematol – reference: Kuhn M, Wing J, Weston S, et al. Caret: Classification and Regression Training. R package version 60-81. Accessed 16 June 2021. – volume: 86 start-page: 47 year: 1994 end-page: 51 ident: bib10 article-title: The role of bone marrow study in diagnosis and prognosis of myelodysplastic syndrome publication-title: Pathologica – volume: 96 start-page: 1012 year: 1997 end-page: 1024 ident: bib31 article-title: Noninvasive electrocardiographic imaging: reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events publication-title: Circulation – start-page: 882 year: 2013 end-page: 903 ident: bib7 article-title: Myelodysplastic syndromes: biology and treatment publication-title: Hematology: Basic Principles and Practice – volume: 101 start-page: 502 year: 2018 end-page: 507 ident: bib53 article-title: Can bone marrow cellularity help in predicting prognosis in myelodysplastic syndromes? publication-title: Eur J Haematol – volume: 66 start-page: 292 year: 2019 end-page: 295 ident: bib27 article-title: Artificial intelligence in medical imaging practice: looking to the future publication-title: J Med Radiat Sci – volume: 130 start-page: 243 year: 2017 end-page: 244 ident: bib37 article-title: Digital medicine: “O Brave New World” publication-title: Am J Med – volume: 68 start-page: 124 year: 1982 end-page: 130 ident: bib45 article-title: Erythrocyte cation content, globin chain synthesis and glucose metabolism in dysmyelopoietic syndromes publication-title: Acta Haematol – volume: 12 start-page: 309 year: 2018 end-page: 312 ident: bib49 article-title: Hematological profile associated with type 2 diabetes mellitus publication-title: Diabetes Metab Syndr – volume: 89 start-page: 88 year: 2014 end-page: 96 ident: bib69 article-title: Evaluation and management of anemia in the elderly publication-title: Am J Hematol – volume: 75 start-page: 26 year: 1990 end-page: 33 ident: bib11 article-title: Bone marrow biopsy in myelodysplastic syndromes: morphological characteristics and contribution to the study of prognostic factors publication-title: Br J Haematol – volume: 86 start-page: 14 year: 2019 end-page: 23 ident: bib58 article-title: Clinical implication of multi-parameter flow cytometry in myelodysplastic syndromes publication-title: Pathobiology – volume: 38 start-page: 367 year: 2002 end-page: 378 ident: bib19 article-title: Stochastic gradient boosting publication-title: Comput Stat Data Anal – volume: 5 start-page: e393 year: 2018 end-page: e402 ident: bib46 article-title: Assessment of ASC specks as a putative biomarker of pyroptosis in myelodysplastic syndromes: an observational cohort study publication-title: Lancet Haematol – volume: 35 start-page: 1335 year: 2011 end-page: 1338 ident: bib71 article-title: Validation of a scoring system to establish the probability of myelodysplastic syndrome in patients with unexplained cytopenias or macrocytosis publication-title: Leuk Res – reference: Greenwell B, Boehmke B, Cunningham J, Developers G,. GBM: Generalized Boosted Regression Models. R package version 214. Accessed 16 June 2021. – volume: 130 start-page: 2975 year: 2017 ident: bib16 article-title: Can we diagnose MDS without bone marrow examination? a proposed EUMDS-based non-invasive diagnostic model [abstract] publication-title: Blood – volume: 7 start-page: 959 year: 1989 end-page: 968 ident: bib39 article-title: Measuring quality of life in cancer patients publication-title: J Clin Oncol – volume: 34 start-page: 2925 year: 2016 end-page: 2934 ident: bib42 article-title: Updating the American Society of Clinical Oncology value framework: revisions and reflections in response to comments received publication-title: J Clin Oncol – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: bib18 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat – volume: 130 start-page: 14 year: 2017 end-page: 20 ident: bib36 article-title: Improving hypertension control and patient engagement using digital tools publication-title: Am J Med – volume: 130 start-page: 27 year: 2013 end-page: 33 ident: bib47 article-title: Metabolism-related cytokine and hormone levels in the serum of patients with myelodysplastic syndromes publication-title: Acta Haematol – volume: 136 start-page: 33 year: 2020 end-page: 35 ident: bib64 article-title: A personalized clinical-decision tool to improve the diagnostic accuracy of myelodysplastic syndromes [abstract] publication-title: Blood – volume: 34 start-page: 557 year: 2016 end-page: 565 ident: bib38 article-title: Symptom monitoring with patient-reported outcomes during routine cancer treatment: a randomized controlled trial [published corrections appear in J Clin Oncol. 2016;34(18):2198 and J Clin Oncol. 2019;37(6):528] publication-title: J Clin Oncol – volume: 379 start-page: 924 year: 2018 end-page: 933 ident: bib1 article-title: Coronary CT angiography and 5-year risk of myocardial infarction publication-title: N Engl J Med – volume: 126 start-page: 907 year: 2015 ident: bib56 article-title: Somatic mutations in MDS patients are associated with clinical features and predict prognosis independent of the IPSS-R: analysis of combined datasets from the International Working Group for Prognosis in MDS-Molecular Committee [abstract] publication-title: Blood – volume: 92 start-page: 614 year: 2017 end-page: 621 ident: bib52 article-title: Enumerating bone marrow blasts from nonerythroid cellularity improves outcome prediction in myelodysplastic syndromes and permits a better definition of the intermediate risk category of the Revised International Prognostic Scoring System (IPSS-R) publication-title: Am J Hematol – volume: 40 start-page: 1139 year: 2014 end-page: 1144 ident: bib51 article-title: Blood profile and histology in oral infections associated with diabetes publication-title: J Endod – volume: 559 start-page: 400 year: 2018 end-page: 404 ident: bib72 article-title: Prediction of acute myeloid leukaemia risk in healthy individuals publication-title: Nature – volume: 377 start-page: 1309 year: 2017 end-page: 1312 ident: bib3 article-title: Making patients and doctors happier - the potential of patient-reported outcomes publication-title: N Engl J Med – start-page: 179 year: 1959 end-page: 185 ident: bib25 article-title: The application of computers to clinical medical data (including machine demonstration) publication-title: Proceedings of the 1st IBM Medical Symposium; 15-17 June 1959; Poughkeepsie, NY – volume: 371 start-page: 2477 year: 2014 end-page: 2487 ident: bib65 article-title: Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence publication-title: N Engl J Med – volume: 2 start-page: e40 year: 2018 ident: bib68 article-title: Anemia in the elderly publication-title: HemaSphere – volume: 12 start-page: 231 year: 2016 end-page: 239 ident: bib48 article-title: The interactions between diabetes mellitus and myelodysplastic syndromes: current state of evidence and future directions publication-title: Curr Diabetes Rev – volume: 49 start-page: 105 year: 1992 end-page: 107 ident: bib60 article-title: Evaluation of bone marrow cellularity by magnetic resonance imaging in patients with myelodysplastic syndrome publication-title: Eur J Haematol – volume: 358 start-page: j4413 year: 2017 ident: bib26 article-title: Using patient data for patients' benefit [editorial] publication-title: BMJ – volume: 136 start-page: 2249 year: 2020 end-page: 2262 ident: bib61 article-title: Machine learning demonstrates that somatic mutations imprint invariant morphologic features in myelodysplastic syndromes publication-title: Blood – volume: 94 start-page: 1266 year: 2019 end-page: 1287 ident: bib54 article-title: Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment publication-title: Am J Hematol – volume: 136 start-page: 32 year: 2020 end-page: 33 ident: bib63 article-title: Targeted sequencing of 7 genes can help reduce pathologic misclassification of MDS [abstract] publication-title: Blood – volume: 6 start-page: 185 year: 2019 ident: bib30 article-title: Translational AI and deep learning in diagnostic pathology publication-title: Front Med (Lausanne) – volume: 112 start-page: 863 year: 2013 end-page: 874 ident: bib33 article-title: Noninvasive electrocardiographic imaging of arrhythmogenic substrates in humans publication-title: Circ Res – volume: 28 start-page: 1575 year: 2019 end-page: 1583 ident: bib40 article-title: Advancing the use of patient-reported outcomes in practice: understanding challenges, opportunities, and the potential of health information technology publication-title: Qual Life Res – volume: 134 start-page: 341 year: 2019 end-page: 352 ident: bib55 article-title: How I treat polycythemia vera publication-title: Blood – volume: 381 start-page: 1909 year: 2019 end-page: 1917 ident: bib34 article-title: Large-scale assessment of a smartwatch to identify atrial fibrillation publication-title: N Engl J Med – volume: 350 start-page: g7818 year: 2015 ident: bib41 article-title: Patient reported outcome measures in practice publication-title: BMJ – volume: 11 year: 2019 ident: bib35 article-title: A data-driven approach to predicting septic shock in the intensive care unit publication-title: Biomed Inform Insights – volume: 33 start-page: 1313 year: 2009 end-page: 1318 ident: bib22 article-title: Estimating the prevalence of myelodysplastic syndromes in patients with unexplained cytopenias: a retrospective study of 322 bone marrows publication-title: Leuk Res – volume: 19 start-page: 133 year: 2012 end-page: 140 ident: bib70 article-title: Anemia in the elderly publication-title: Curr Opin Hematol – volume: 104 start-page: 2263 year: 2004 end-page: 2268 ident: bib23 article-title: Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia publication-title: Blood – volume: 129 start-page: 3371 year: 2017 end-page: 3378 ident: bib67 article-title: Clinical significance of somatic mutation in unexplained blood cytopenia publication-title: Blood – reference: Social Security Administration. Disability Evaluation Under Social Security. 7.10 Disorders Of Bone Marrow Failure. Accessed 29 August 2019. – volume: 88 start-page: 240 year: 1989 end-page: 243 ident: bib50 article-title: Erythrocyte deformability in diabetes mellitus publication-title: Taiwan Yi Xue Hui Za Zhi – volume: 371 start-page: 2488 year: 2014 end-page: 2498 ident: bib66 article-title: Age-related clonal hematopoiesis associated with adverse outcomes publication-title: N Engl J Med – volume: 59 start-page: 2227 year: 2018 end-page: 2232 ident: bib15 article-title: Is bone marrow examination always necessary to establish the diagnosis of myelodysplastic syndromes? A proposed non-invasive diagnostic model publication-title: Leuk Lymphoma – volume: 79 start-page: 198 year: 1992 end-page: 205 ident: bib9 article-title: Primary myelodysplastic syndromes: diagnostic and prognostic significance of immunohistochemical assessment of bone marrow biopsies publication-title: Blood – volume: 132 start-page: 4357 year: 2018 ident: bib17 article-title: MDS diagnosis: many patients may not require bone marrow examination [abstract] publication-title: Blood – volume: 381 start-page: 480 year: 2019 end-page: 485 ident: bib4 article-title: Digital futures past - the long arc of big data in medicine publication-title: N Engl J Med – volume: 46 start-page: 2731 year: 2019 end-page: 2736 ident: bib29 article-title: Artificial intelligence and radiomics in nuclear medicine: potentials and challenges publication-title: Eur J Nucl Med Mol Imaging – volume: 47 start-page: 1592 year: 2006 end-page: 1598 ident: bib59 article-title: 18F-FLT PET in hematologic disorders: a novel technique to analyze the bone marrow compartment publication-title: J Nucl Med – volume: 12 start-page: 179 year: 2016 end-page: 188 ident: bib2 article-title: A 3D machine vision method for non-invasive assessment of respiratory function publication-title: Int J Med Robot – volume: 58 start-page: 217 year: 1984 end-page: 225 ident: bib12 article-title: Bone marrow histology in myelodysplastic syndromes. II. Prognostic value of abnormal localization of immature precursors in MDS publication-title: Br J Haematol – volume: 105 start-page: 632 year: 2020 end-page: 639 ident: bib5 article-title: Impact of red blood cell transfusion dose density on progression-free survival in patients with lower-risk myelodysplastic syndromes publication-title: Haematologica – volume: 32 start-page: 1380 year: 2018 end-page: 1392 ident: bib44 article-title: Health-related quality of life in lower-risk MDS patients compared with age- and sex-matched reference populations: a European LeukemiaNet study publication-title: Leukemia – reference: Israel National Insurance Agency. Disability Level Establishment: Hematologic Disorders [in Hebrew]. Accessed 29 August 2019. – volume: 122 start-page: 3616 year: 2013 end-page: 3627 ident: bib57 article-title: Clinical and biological implications of driver mutations in myelodysplastic syndromes publication-title: Blood – volume: 97 start-page: 1496 year: 1998 end-page: 1507 ident: bib32 article-title: Electrocardiographic imaging: noninvasive characterization of intramural myocardial activation from inverse-reconstructed epicardial potentials and electrograms publication-title: Circulation – volume: 122 start-page: 2943 year: 2013 end-page: 2964 ident: bib8 article-title: Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet publication-title: Blood – year: 2018 ident: bib24 article-title: R: A Language and Environment for Statistical Computing – volume: 75 start-page: 26 issue: 1 year: 1990 ident: 2021081315342155200_B11 article-title: Bone marrow biopsy in myelodysplastic syndromes: morphological characteristics and contribution to the study of prognostic factors publication-title: Br J Haematol. doi: 10.1111/j.1365-2141.1990.tb02612.x – volume: 104 start-page: 476 issue: 5 year: 2020 ident: 2021081315342155200_B43 article-title: Patient-reported outcome measures in studies of myelodysplastic syndromes and acute myeloid leukemia: literature review and landscape analysis publication-title: Eur J Haematol. doi: 10.1111/ejh.13389 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 2021081315342155200_B18 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat. doi: 10.1214/aos/1013203451 – volume: 5 start-page: e393 issue: 9 year: 2018 ident: 2021081315342155200_B46 article-title: Assessment of ASC specks as a putative biomarker of pyroptosis in myelodysplastic syndromes: an observational cohort study publication-title: Lancet Haematol. doi: 10.1016/S2352-3026(18)30109-1 – volume: 2 start-page: e40 issue: 3 year: 2018 ident: 2021081315342155200_B68 article-title: Anemia in the elderly publication-title: HemaSphere. doi: 10.1097/HS9.0000000000000040 – volume: 28 start-page: 1575 issue: 6 year: 2019 ident: 2021081315342155200_B40 article-title: Advancing the use of patient-reported outcomes in practice: understanding challenges, opportunities, and the potential of health information technology publication-title: Qual Life Res. doi: 10.1007/s11136-019-02112-0 – volume: 12 start-page: 231 issue: 3 year: 2016 ident: 2021081315342155200_B48 article-title: The interactions between diabetes mellitus and myelodysplastic syndromes: current state of evidence and future directions publication-title: Curr Diabetes Rev. doi: 10.2174/1573399811666150526151241 – volume: 7 start-page: 959 issue: 7 year: 1989 ident: 2021081315342155200_B39 article-title: Measuring quality of life in cancer patients publication-title: J Clin Oncol. doi: 10.1200/JCO.1989.7.7.959 – volume: 34 start-page: 557 issue: 6 year: 2016 ident: 2021081315342155200_B38 article-title: Symptom monitoring with patient-reported outcomes during routine cancer treatment: a randomized controlled trial [published corrections appear in J Clin Oncol. 2016;34(18):2198 and J Clin Oncol. 2019;37(6):528] publication-title: J Clin Oncol. doi: 10.1200/JCO.2015.63.0830 – volume: 377 start-page: 1309 issue: 14 year: 2017 ident: 2021081315342155200_B3 article-title: Making patients and doctors happier - the potential of patient-reported outcomes publication-title: N Engl J Med. doi: 10.1056/NEJMp1707537 – volume: 6 start-page: 185 year: 2019 ident: 2021081315342155200_B30 article-title: Translational AI and deep learning in diagnostic pathology publication-title: Front Med (Lausanne). doi: 10.3389/fmed.2019.00185 – volume: 136 start-page: 2249 issue: 20 year: 2020 ident: 2021081315342155200_B61 article-title: Machine learning demonstrates that somatic mutations imprint invariant morphologic features in myelodysplastic syndromes publication-title: Blood. doi: 10.1182/blood.2020005488 – volume: 40 start-page: 1139 issue: 8 year: 2014 ident: 2021081315342155200_B51 article-title: Blood profile and histology in oral infections associated with diabetes publication-title: J Endod. doi: 10.1016/j.joen.2014.01.034 – volume: 130 start-page: 2975 year: 2017 ident: 2021081315342155200_B16 article-title: Can we diagnose MDS without bone marrow examination? a proposed EUMDS-based non-invasive diagnostic model [abstract] publication-title: Blood. – volume: 86 start-page: 47 issue: 1 year: 1994 ident: 2021081315342155200_B10 article-title: The role of bone marrow study in diagnosis and prognosis of myelodysplastic syndrome publication-title: Pathologica. – start-page: 882 volume-title: Hematology: Basic Principles and Practice. year: 2013 ident: 2021081315342155200_B7 – volume: 19 start-page: 133 issue: 3 year: 2012 ident: 2021081315342155200_B70 article-title: Anemia in the elderly publication-title: Curr Opin Hematol. doi: 10.1097/MOH.0b013e3283522471 – volume: 89 start-page: 88 issue: 1 year: 2014 ident: 2021081315342155200_B69 article-title: Evaluation and management of anemia in the elderly publication-title: Am J Hematol. doi: 10.1002/ajh.23598 – volume: 59 start-page: 2227 issue: 9 year: 2018 ident: 2021081315342155200_B15 article-title: Is bone marrow examination always necessary to establish the diagnosis of myelodysplastic syndromes? A proposed non-invasive diagnostic model publication-title: Leuk Lymphoma. doi: 10.1080/10428194.2017.1416363 – volume: 130 start-page: 27 issue: 1 year: 2013 ident: 2021081315342155200_B47 article-title: Metabolism-related cytokine and hormone levels in the serum of patients with myelodysplastic syndromes publication-title: Acta Haematol. doi: 10.1159/000345427 – volume: 58 start-page: 217 issue: 2 year: 1984 ident: 2021081315342155200_B12 article-title: Bone marrow histology in myelodysplastic syndromes. II. Prognostic value of abnormal localization of immature precursors in MDS publication-title: Br J Haematol. doi: 10.1111/j.1365-2141.1984.tb06079.x – volume: 112 start-page: 863 issue: 5 year: 2013 ident: 2021081315342155200_B33 article-title: Noninvasive electrocardiographic imaging of arrhythmogenic substrates in humans publication-title: Circ Res. doi: 10.1161/CIRCRESAHA.112.279315 – volume: 130 start-page: 243 issue: 3 year: 2017 ident: 2021081315342155200_B37 article-title: Digital medicine: “O Brave New World” publication-title: Am J Med. doi: 10.1016/j.amjmed.2016.06.056 – volume: 32 start-page: 1380 issue: 6 year: 2018 ident: 2021081315342155200_B44 article-title: Health-related quality of life in lower-risk MDS patients compared with age- and sex-matched reference populations: a European LeukemiaNet study publication-title: Leukemia. doi: 10.1038/s41375-018-0089-x – volume: 12 start-page: 309 issue: 3 year: 2018 ident: 2021081315342155200_B49 article-title: Hematological profile associated with type 2 diabetes mellitus publication-title: Diabetes Metab Syndr. doi: 10.1016/j.dsx.2017.12.015 – volume: 101 start-page: 502 issue: 4 year: 2018 ident: 2021081315342155200_B53 article-title: Can bone marrow cellularity help in predicting prognosis in myelodysplastic syndromes? publication-title: Eur J Haematol. doi: 10.1111/ejh.13134 – volume: 94 start-page: 1266 issue: 11 year: 2019 ident: 2021081315342155200_B54 article-title: Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment publication-title: Am J Hematol. doi: 10.1002/ajh.25595 – volume: 126 start-page: 907 issue: 23 year: 2015 ident: 2021081315342155200_B56 article-title: Somatic mutations in MDS patients are associated with clinical features and predict prognosis independent of the IPSS-R: analysis of combined datasets from the International Working Group for Prognosis in MDS-Molecular Committee publication-title: Blood. doi: 10.1182/blood.V126.23.907.907 – volume: 350 start-page: g7818 year: 2015 ident: 2021081315342155200_B41 article-title: Patient reported outcome measures in practice publication-title: BMJ. doi: 10.1136/bmj.g7818 – volume: 88 start-page: 240 issue: 3 year: 1989 ident: 2021081315342155200_B50 article-title: Erythrocyte deformability in diabetes mellitus publication-title: Taiwan Yi Xue Hui Za Zhi. – ident: 2021081315342155200_B21 – ident: 2021081315342155200_B13 – volume: 134 start-page: 341 issue: 4 year: 2019 ident: 2021081315342155200_B55 article-title: How I treat polycythemia vera publication-title: Blood. doi: 10.1182/blood.2018834044 – volume: 136 start-page: 30 year: 2020 ident: 2021081315342155200_B62 article-title: The potential of molecular genetic analysis for diagnostic and prognostic decision making in clonal cytopenia of undetermined significance (CCUS) and MDS - a study on 576 patients [abstract] publication-title: Blood. doi: 10.1182/blood-2020-136557 – volume: 381 start-page: 480 issue: 5 year: 2019 ident: 2021081315342155200_B4 article-title: Digital futures past - the long arc of big data in medicine publication-title: N Engl J Med. doi: 10.1056/NEJMms1817674 – volume: 11 start-page: 1178222619885147 year: 2019 ident: 2021081315342155200_B35 article-title: A data-driven approach to predicting septic shock in the intensive care unit publication-title: Biomed Inform Insights. doi: 10.1177/1178222619885147 – volume: 96 start-page: 1012 issue: 3 year: 1997 ident: 2021081315342155200_B31 article-title: Noninvasive electrocardiographic imaging: reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events publication-title: Circulation. doi: 10.1161/01.CIR.96.3.1012 – volume: 559 start-page: 400 issue: 7714 year: 2018 ident: 2021081315342155200_B72 article-title: Prediction of acute myeloid leukaemia risk in healthy individuals publication-title: Nature. doi: 10.1038/s41586-018-0317-6 – volume: 132 start-page: 4357 year: 2018 ident: 2021081315342155200_B17 article-title: MDS diagnosis: many patients may not require bone marrow examination [abstract] publication-title: Blood. doi: 10.1182/blood-2018-99-111838 – ident: 2021081315342155200_B20 – volume: 79 start-page: 198 issue: 1 year: 1992 ident: 2021081315342155200_B9 article-title: Primary myelodysplastic syndromes: diagnostic and prognostic significance of immunohistochemical assessment of bone marrow biopsies publication-title: Blood. doi: 10.1182/blood.V79.1.198.198 – volume: 33 start-page: 1313 issue: 10 year: 2009 ident: 2021081315342155200_B22 article-title: Estimating the prevalence of myelodysplastic syndromes in patients with unexplained cytopenias: a retrospective study of 322 bone marrows publication-title: Leuk Res. doi: 10.1016/j.leukres.2009.02.010 – volume: 35 start-page: 1335 issue: 10 year: 2011 ident: 2021081315342155200_B71 article-title: Validation of a scoring system to establish the probability of myelodysplastic syndrome in patients with unexplained cytopenias or macrocytosis publication-title: Leuk Res. doi: 10.1016/j.leukres.2011.05.001 – volume: 358 start-page: j4413 year: 2017 ident: 2021081315342155200_B26 article-title: Using patient data for patients’ benefit [editorial] publication-title: BMJ. doi: 10.1136/bmj.j4413 – volume: 38 start-page: 367 issue: 4 year: 2002 ident: 2021081315342155200_B19 article-title: Stochastic gradient boosting publication-title: Comput Stat Data Anal. doi: 10.1016/S0167-9473(01)00065-2 – volume: 34 start-page: 2925 issue: 24 year: 2016 ident: 2021081315342155200_B42 article-title: Updating the American Society of Clinical Oncology value framework: revisions and reflections in response to comments received publication-title: J Clin Oncol. doi: 10.1200/JCO.2016.68.2518 – volume: 129 start-page: 3371 issue: 25 year: 2017 ident: 2021081315342155200_B67 article-title: Clinical significance of somatic mutation in unexplained blood cytopenia publication-title: Blood. doi: 10.1182/blood-2017-01-763425 – ident: 2021081315342155200_B14 – volume: 68 start-page: 124 issue: 2 year: 1982 ident: 2021081315342155200_B45 article-title: Erythrocyte cation content, globin chain synthesis and glucose metabolism in dysmyelopoietic syndromes publication-title: Acta Haematol. doi: 10.1159/000206963 – volume: 97 start-page: 1496 issue: 15 year: 1998 ident: 2021081315342155200_B32 article-title: Electrocardiographic imaging: noninvasive characterization of intramural myocardial activation from inverse-reconstructed epicardial potentials and electrograms publication-title: Circulation. doi: 10.1161/01.CIR.97.15.1496 – volume: 379 start-page: 924 issue: 10 year: 2018 ident: 2021081315342155200_B1 article-title: Coronary CT angiography and 5-year risk of myocardial infarction publication-title: N Engl J Med. doi: 10.1056/NEJMoa1805971 – volume: 371 start-page: 2477 issue: 26 year: 2014 ident: 2021081315342155200_B65 article-title: Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence publication-title: N Engl J Med. doi: 10.1056/NEJMoa1409405 – volume: 49 start-page: 105 issue: 2 year: 1992 ident: 2021081315342155200_B60 article-title: Evaluation of bone marrow cellularity by magnetic resonance imaging in patients with myelodysplastic syndrome publication-title: Eur J Haematol. doi: 10.1111/j.1600-0609.1992.tb00039.x – volume: 86 start-page: 14 issue: 1 year: 2019 ident: 2021081315342155200_B58 article-title: Clinical implication of multi-parameter flow cytometry in myelodysplastic syndromes publication-title: Pathobiology. doi: 10.1159/000490727 – volume: 104 start-page: 2263 issue: 8 year: 2004 ident: 2021081315342155200_B23 article-title: Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia publication-title: Blood. doi: 10.1182/blood-2004-05-1812 – volume: 130 start-page: 14 issue: 1 year: 2017 ident: 2021081315342155200_B36 article-title: Improving hypertension control and patient engagement using digital tools publication-title: Am J Med. doi: 10.1016/j.amjmed.2016.07.029 – volume: 47 start-page: 1592 issue: 10 year: 2006 ident: 2021081315342155200_B59 article-title: 18F-FLT PET in hematologic disorders: a novel technique to analyze the bone marrow compartment publication-title: J Nucl Med. – volume: 136 start-page: 32 year: 2020 ident: 2021081315342155200_B63 article-title: Targeted sequencing of 7 genes can help reduce pathologic misclassification of MDS [abstract] publication-title: Blood. doi: 10.1182/blood-2020-140317 – volume: 66 start-page: 292 issue: 4 year: 2019 ident: 2021081315342155200_B27 article-title: Artificial intelligence in medical imaging practice: looking to the future publication-title: J Med Radiat Sci. doi: 10.1002/jmrs.369 – volume: 122 start-page: 2943 issue: 17 year: 2013 ident: 2021081315342155200_B8 article-title: Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet publication-title: Blood. doi: 10.1182/blood-2013-03-492884 – volume: 170 start-page: 372 issue: 3 year: 2015 ident: 2021081315342155200_B6 article-title: Validation of the revised international prognostic scoring system (IPSS-R) in patients with lower-risk myelodysplastic syndromes: a report from the prospective European LeukaemiaNet MDS (EUMDS) registry publication-title: Br J Haematol. doi: 10.1111/bjh.13450 – start-page: 179 year: 1959 ident: 2021081315342155200_B25 – year: 2018 ident: 2021081315342155200_B24 – volume: 371 start-page: 2488 issue: 26 year: 2014 ident: 2021081315342155200_B66 article-title: Age-related clonal hematopoiesis associated with adverse outcomes publication-title: N Engl J Med. doi: 10.1056/NEJMoa1408617 – volume: 92 start-page: 614 issue: 7 year: 2017 ident: 2021081315342155200_B52 article-title: Enumerating bone marrow blasts from nonerythroid cellularity improves outcome prediction in myelodysplastic syndromes and permits a better definition of the intermediate risk category of the Revised International Prognostic Scoring System (IPSS-R) publication-title: Am J Hematol. doi: 10.1002/ajh.24732 – volume: 12 start-page: 179 issue: 2 year: 2016 ident: 2021081315342155200_B2 article-title: A 3D machine vision method for non-invasive assessment of respiratory function publication-title: Int J Med Robot. doi: 10.1002/rcs.1669 – volume: 46 start-page: 2731 issue: 13 year: 2019 ident: 2021081315342155200_B29 article-title: Artificial intelligence and radiomics in nuclear medicine: potentials and challenges publication-title: Eur J Nucl Med Mol Imaging. doi: 10.1007/s00259-019-04593-0 – volume: 105 start-page: 632 issue: 3 year: 2020 ident: 2021081315342155200_B5 article-title: Impact of red blood cell transfusion dose density on progression-free survival in patients with lower-risk myelodysplastic syndromes publication-title: Haematologica. doi: 10.3324/haematol.2018.212217 – volume: 381 start-page: 1909 issue: 20 year: 2019 ident: 2021081315342155200_B34 article-title: Large-scale assessment of a smartwatch to identify atrial fibrillation publication-title: N Engl J Med. doi: 10.1056/NEJMoa1901183 – volume: 13 start-page: 27 issue: 1 year: 2019 ident: 2021081315342155200_B28 article-title: A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features publication-title: Radiol Phys Technol. doi: 10.1007/s12194-019-00543-5 – volume: 122 start-page: 3616 issue: 22 year: 2013 ident: 2021081315342155200_B57 article-title: Clinical and biological implications of driver mutations in myelodysplastic syndromes publication-title: Blood. doi: 10.1182/blood-2013-08-518886 – volume: 136 start-page: 33 year: 2020 ident: 2021081315342155200_B64 article-title: A personalized clinical-decision tool to improve the diagnostic accuracy of myelodysplastic syndromes [abstract] publication-title: Blood. doi: 10.1182/blood-2020-139412 |
| SSID | ssj0001763592 |
| Score | 2.2966952 |
| Snippet | We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic... A BM examination is the gold standard for the diagnosis of MDS, but it is invasive and subjective.A predictive algorithm/app using data of 10 readily available... |
| SourceID | swepub pubmedcentral proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3066 |
| SubjectTerms | Myeloid Neoplasia |
| Title | A predictive algorithm using clinical and laboratory parameters may assist in ruling out and in diagnosing MDS |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2473952921003955 https://dx.doi.org/10.1182/bloodadvances.2020004055 https://www.proquest.com/docview/2561491447 https://pubmed.ncbi.nlm.nih.gov/PMC8405190 http://kipublications.ki.se/Default.aspx?queryparsed=id:147494585 |
| Volume | 5 |
| WOSCitedRecordID | wos000688536600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ - The Directory of Open Access Journals customDbUrl: eissn: 2473-9537 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001763592 issn: 2473-9529 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6wQMvEwgQZTAZCfFSReTDiW3xVA3QXjaQGFJ5Cq7jsoo2nbpmGv89d3acj2mTwgMvkeXm2tT3y_nufB-EvNWwicwBJwFoq2Cg8EgFKlRhwJVMQTQUGSuYbTbBz87EbCa_jkY_fS7M9YqXpbi5kZf_ldUwB8zG1Nl_YHfzpTABY2A6XIHtcB3E-Cnm_RdLK8cmavVrA-b_xXpSufRanwiJ_vIaAHjKjhXA1xgZczVZqz8T0KiB_TbXpbL56hi97Oo0obcWg_Nw9vTjt96hMAbB-6iCRlf_4nt_nDR65_F2U7kWVG0TMO_haRD1o7I--65bIrZ-VpcN7aRXzHgSyLR2Z9SiNu0iqis3wXDJ7hboAgvE2iB-__hg1GN-EWiaabuJ9cplu5qv-W8YmZylUiThHnkQ81TKjtFtvXBYj892zm6e14d7ifj9fT97nw7TsVFuR9j26tBa3eX8MTmojQ46dWB5QkamfErKKW2BQhugUAsU6oFCgeu0BQptgUIBKNQBhS5L6oBCASiWBGZaoFAAyjPy_fOn8-OToO6-EWjQoneBSrUw0UIJsIlTYxKuM1ijYi64KiRfLFSYFFpoWEA1T4pMCiWFjKTSSpgEhslzsl9uSvOC0BiLNho2B9s1YzJhSoSGLcICtG-hlNZjwv165rouTY8dUla5NVFFnPc4kbecGJOoobx05VkG0EjPstwvJmyYOUBuAO2HhrZWUZ3qOZD6jUdIDlIcj-ZUaTYV3IMFeWXEGIe16EGn-VsI7P4n5fLC1oMXDO2wcEze1cDvktzxLrwceuMhedS-2q_I_m5bmdfkob7eLa-2R2SPz8SRfZ_-AvLz6tg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+predictive+algorithm+using+clinical+and+laboratory+parameters+may+assist+in+ruling+out+and+in+diagnosing+MDS&rft.jtitle=Blood+advances&rft.au=Oster%2C+HS&rft.au=Crouch%2C+S&rft.au=Smith%2C+A&rft.au=Yu%2C+G&rft.date=2021-08-24&rft.issn=2473-9529&rft.volume=5&rft.issue=16&rft.spage=3066&rft_id=info:doi/10.1182%2Fbloodadvances.2020004055&rft.externalDocID=oai_swepub_ki_se_459830 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-9529&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-9529&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-9529&client=summon |