A predictive algorithm using clinical and laboratory parameters may assist in ruling out and in diagnosing MDS

We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic risk, diagnosed by BM examination. A sample of 502 MDS patients from the European MDS (EUMDS) registry (n > 2600) was combined with 502 contr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Blood advances Ročník 5; číslo 16; s. 3066 - 3075
Hlavní autoři: Oster, Howard S., Crouch, Simon, Smith, Alexandra, Yu, Ge, Abu Shrkihe, Bander, Baruch, Shoham, Kolomansky, Albert, Ben-Ezra, Jonathan, Naor, Shachar, Fenaux, Pierre, Symeonidis, Argiris, Stauder, Reinhard, Cermak, Jaroslav, Sanz, Guillermo, Hellström-Lindberg, Eva, Malcovati, Luca, Langemeijer, Saskia, Germing, Ulrich, Holm, Mette Skov, Madry, Krzysztof, Guerci-Bresler, Agnes, Culligan, Dominic, Sanhes, Laurence, Mills, Juliet, Kotsianidis, Ioannis, van Marrewijk, Corine, Bowen, David, de Witte, Theo, Mittelman, Moshe
Médium: Journal Article
Jazyk:angličtina
Vydáno: Washington, DC Elsevier Inc 24.08.2021
American Society of Hematology
Témata:
ISSN:2473-9529, 2473-9537, 2473-9537
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic risk, diagnosed by BM examination. A sample of 502 MDS patients from the European MDS (EUMDS) registry (n > 2600) was combined with 502 controls (all BM proven). Gradient-boosted models (GBMs) were used to predict/exclude MDS using demographic, clinical, and laboratory variables. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the models, and performance was validated using 100 times fivefold cross-validation. Model stability was assessed by repeating its fit using different randomly chosen groups of 502 EUMDS cases. AUC was 0.96 (95% confidence interval, 0.95-0.97). MDS is predicted/excluded accurately in 86% of patients with unexplained anemia. A GBM score (range, 0-1) of less than 0.68 (GBM < 0.68) resulted in a negative predictive value of 0.94, that is, MDS was excluded. GBM ≥ 0.82 provided a positive predictive value of 0.88, that is, MDS. The diagnosis of the remaining patients (0.68 ≤ GBM < 0.82) is indeterminate. The discriminating variables: age, sex, hemoglobin, white blood cells, platelets, mean corpuscular volume, neutrophils, monocytes, glucose, and creatinine. A Web-based app was developed; physicians could use it to exclude or predict MDS noninvasively in most patients without a BM examination. Future work will add peripheral blood cytogenetics/genetics, EUMDS-based prospective validation, and prognostication. •A BM examination is the gold standard for the diagnosis of MDS, but it is invasive and subjective.•A predictive algorithm/app using data of 10 readily available parameters from 1004 subjects was developed to help diagnose/rule out MDS. [Display omitted]
AbstractList We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic risk, diagnosed by BM examination. A sample of 502 MDS patients from the European MDS (EUMDS) registry (n > 2600) was combined with 502 controls (all BM proven). Gradient-boosted models (GBMs) were used to predict/exclude MDS using demographic, clinical, and laboratory variables. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the models, and performance was validated using 100 times fivefold cross-validation. Model stability was assessed by repeating its fit using different randomly chosen groups of 502 EUMDS cases. AUC was 0.96 (95% confidence interval, 0.95-0.97). MDS is predicted/excluded accurately in 86% of patients with unexplained anemia. A GBM score (range, 0-1) of less than 0.68 (GBM < 0.68) resulted in a negative predictive value of 0.94, that is, MDS was excluded. GBM ≥ 0.82 provided a positive predictive value of 0.88, that is, MDS. The diagnosis of the remaining patients (0.68 ≤ GBM < 0.82) is indeterminate. The discriminating variables: age, sex, hemoglobin, white blood cells, platelets, mean corpuscular volume, neutrophils, monocytes, glucose, and creatinine. A Web-based app was developed; physicians could use it to exclude or predict MDS noninvasively in most patients without a BM examination. Future work will add peripheral blood cytogenetics/genetics, EUMDS-based prospective validation, and prognostication. •A BM examination is the gold standard for the diagnosis of MDS, but it is invasive and subjective.•A predictive algorithm/app using data of 10 readily available parameters from 1004 subjects was developed to help diagnose/rule out MDS. [Display omitted]
We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic risk, diagnosed by BM examination. A sample of 502 MDS patients from the European MDS (EUMDS) registry (n > 2600) was combined with 502 controls (all BM proven). Gradient-boosted models (GBMs) were used to predict/exclude MDS using demographic, clinical, and laboratory variables. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the models, and performance was validated using 100 times fivefold cross-validation. Model stability was assessed by repeating its fit using different randomly chosen groups of 502 EUMDS cases. AUC was 0.96 (95% confidence interval, 0.95-0.97). MDS is predicted/excluded accurately in 86% of patients with unexplained anemia. A GBM score (range, 0-1) of less than 0.68 (GBM < 0.68) resulted in a negative predictive value of 0.94, that is, MDS was excluded. GBM ≥ 0.82 provided a positive predictive value of 0.88, that is, MDS. The diagnosis of the remaining patients (0.68 ≤ GBM < 0.82) is indeterminate. The discriminating variables: age, sex, hemoglobin, white blood cells, platelets, mean corpuscular volume, neutrophils, monocytes, glucose, and creatinine. A Web-based app was developed; physicians could use it to exclude or predict MDS noninvasively in most patients without a BM examination. Future work will add peripheral blood cytogenetics/genetics, EUMDS-based prospective validation, and prognostication.
A BM examination is the gold standard for the diagnosis of MDS, but it is invasive and subjective.A predictive algorithm/app using data of 10 readily available parameters from 1004 subjects was developed to help diagnose/rule out MDS. We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic risk, diagnosed by BM examination. A sample of 502 MDS patients from the European MDS (EUMDS) registry (n > 2600) was combined with 502 controls (all BM proven). Gradient-boosted models (GBMs) were used to predict/exclude MDS using demographic, clinical, and laboratory variables. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the models, and performance was validated using 100 times fivefold cross-validation. Model stability was assessed by repeating its fit using different randomly chosen groups of 502 EUMDS cases. AUC was 0.96 (95% confidence interval, 0.95-0.97). MDS is predicted/excluded accurately in 86% of patients with unexplained anemia. A GBM score (range, 0-1) of less than 0.68 (GBM < 0.68) resulted in a negative predictive value of 0.94, that is, MDS was excluded. GBM ≥ 0.82 provided a positive predictive value of 0.88, that is, MDS. The diagnosis of the remaining patients (0.68 ≤ GBM < 0.82) is indeterminate. The discriminating variables: age, sex, hemoglobin, white blood cells, platelets, mean corpuscular volume, neutrophils, monocytes, glucose, and creatinine. A Web-based app was developed; physicians could use it to exclude or predict MDS noninvasively in most patients without a BM examination. Future work will add peripheral blood cytogenetics/genetics, EUMDS-based prospective validation, and prognostication.
We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic risk, diagnosed by BM examination. A sample of 502 MDS patients from the European MDS (EUMDS) registry (n > 2600) was combined with 502 controls (all BM proven). Gradient-boosted models (GBMs) were used to predict/exclude MDS using demographic, clinical, and laboratory variables. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the models, and performance was validated using 100 times fivefold cross-validation. Model stability was assessed by repeating its fit using different randomly chosen groups of 502 EUMDS cases. AUC was 0.96 (95% confidence interval, 0.95-0.97). MDS is predicted/excluded accurately in 86% of patients with unexplained anemia. A GBM score (range, 0-1) of less than 0.68 (GBM < 0.68) resulted in a negative predictive value of 0.94, that is, MDS was excluded. GBM ≥ 0.82 provided a positive predictive value of 0.88, that is, MDS. The diagnosis of the remaining patients (0.68 ≤ GBM < 0.82) is indeterminate. The discriminating variables: age, sex, hemoglobin, white blood cells, platelets, mean corpuscular volume, neutrophils, monocytes, glucose, and creatinine. A Web-based app was developed; physicians could use it to exclude or predict MDS noninvasively in most patients without a BM examination. Future work will add peripheral blood cytogenetics/genetics, EUMDS-based prospective validation, and prognostication.We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic risk, diagnosed by BM examination. A sample of 502 MDS patients from the European MDS (EUMDS) registry (n > 2600) was combined with 502 controls (all BM proven). Gradient-boosted models (GBMs) were used to predict/exclude MDS using demographic, clinical, and laboratory variables. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the models, and performance was validated using 100 times fivefold cross-validation. Model stability was assessed by repeating its fit using different randomly chosen groups of 502 EUMDS cases. AUC was 0.96 (95% confidence interval, 0.95-0.97). MDS is predicted/excluded accurately in 86% of patients with unexplained anemia. A GBM score (range, 0-1) of less than 0.68 (GBM < 0.68) resulted in a negative predictive value of 0.94, that is, MDS was excluded. GBM ≥ 0.82 provided a positive predictive value of 0.88, that is, MDS. The diagnosis of the remaining patients (0.68 ≤ GBM < 0.82) is indeterminate. The discriminating variables: age, sex, hemoglobin, white blood cells, platelets, mean corpuscular volume, neutrophils, monocytes, glucose, and creatinine. A Web-based app was developed; physicians could use it to exclude or predict MDS noninvasively in most patients without a BM examination. Future work will add peripheral blood cytogenetics/genetics, EUMDS-based prospective validation, and prognostication.
Author Stauder, Reinhard
Baruch, Shoham
Guerci-Bresler, Agnes
de Witte, Theo
Hellström-Lindberg, Eva
Crouch, Simon
Yu, Ge
Fenaux, Pierre
Kolomansky, Albert
Holm, Mette Skov
Oster, Howard S.
Malcovati, Luca
Bowen, David
Naor, Shachar
Mills, Juliet
Symeonidis, Argiris
Sanz, Guillermo
Mittelman, Moshe
Ben-Ezra, Jonathan
van Marrewijk, Corine
Langemeijer, Saskia
Culligan, Dominic
Smith, Alexandra
Sanhes, Laurence
Cermak, Jaroslav
Kotsianidis, Ioannis
Madry, Krzysztof
Abu Shrkihe, Bander
Germing, Ulrich
AuthorAffiliation 17 Service d’Hématologie, Centre Hospitalier Universitaire (CHU) Brabois Vandoeuvre, Nancy, France
5 Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
2 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
21 Department of Hematology, Democritus University of Thrace Medical School, University Hospital of Alexandroupolis, Alexandroupolis, Greece
20 Department of Haematology, Worcestershire Acute Hospitals National Health Service (NHS) Trust and University of Birmingham, Birmingham, United Kingdom
1 Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
11 Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
16 Department of Haematology, Oncology and Internal Medicine, Warsaw Medical University, Warsaw, Poland
23 Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
7 Division Hematology, Department of Internal Medicine, University of Patras
AuthorAffiliation_xml – name: 4 Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
– name: 3 Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
– name: 18 Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
– name: 10 Hematology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
– name: 17 Service d’Hématologie, Centre Hospitalier Universitaire (CHU) Brabois Vandoeuvre, Nancy, France
– name: 9 Department of Clinical Hematology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
– name: 6 Service d’Hématologie Séniors, Hôpital Saint-Louis, Assistance Publique des Hôpitaux de Paris (AP-HP) and Université Paris 7, Paris, France
– name: 20 Department of Haematology, Worcestershire Acute Hospitals National Health Service (NHS) Trust and University of Birmingham, Birmingham, United Kingdom
– name: 2 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
– name: 21 Department of Hematology, Democritus University of Thrace Medical School, University Hospital of Alexandroupolis, Alexandroupolis, Greece
– name: 1 Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
– name: 13 Department of Hematology, Radboudumc, Nijmegen, The Netherlands
– name: 8 Department of Internal Medicine V (Hematology and Oncology), Innsbruck Medical University, Innsbruck, Austria
– name: 16 Department of Haematology, Oncology and Internal Medicine, Warsaw Medical University, Warsaw, Poland
– name: 7 Division Hematology, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
– name: 11 Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
– name: 14 Department of Hematology, Oncology and Clinical Immunology, Universitätsklinik Düsseldorf, Düsseldorf, Germany
– name: 19 Service d’Hématologie, Centre Hospitalier de Perpignan, Perpignan, France
– name: 22 St. James's Institute of Oncology, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; and
– name: 15 Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
– name: 12 Department of Molecular Medicine and Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, University of Pavia, Pavia, Italy
– name: 23 Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
– name: 5 Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
Author_xml – sequence: 1
  givenname: Howard S.
  surname: Oster
  fullname: Oster, Howard S.
  email: howardo@tlvmc.gov.il
  organization: Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
– sequence: 2
  givenname: Simon
  orcidid: 0000-0002-3026-2859
  surname: Crouch
  fullname: Crouch, Simon
  organization: Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
– sequence: 3
  givenname: Alexandra
  orcidid: 0000-0002-1111-966X
  surname: Smith
  fullname: Smith, Alexandra
  organization: Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
– sequence: 4
  givenname: Ge
  orcidid: 0000-0002-0891-2501
  surname: Yu
  fullname: Yu, Ge
  organization: Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
– sequence: 5
  givenname: Bander
  surname: Abu Shrkihe
  fullname: Abu Shrkihe, Bander
  organization: Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
– sequence: 6
  givenname: Shoham
  surname: Baruch
  fullname: Baruch, Shoham
  organization: Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
– sequence: 7
  givenname: Albert
  surname: Kolomansky
  fullname: Kolomansky, Albert
  organization: Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
– sequence: 8
  givenname: Jonathan
  surname: Ben-Ezra
  fullname: Ben-Ezra, Jonathan
  organization: Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
– sequence: 9
  givenname: Shachar
  surname: Naor
  fullname: Naor, Shachar
  organization: Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
– sequence: 10
  givenname: Pierre
  surname: Fenaux
  fullname: Fenaux, Pierre
  organization: Service d'Hématologie Séniors, Hôpital Saint-Louis, Assistance Publique des Hôpitaux de Paris (AP-HP) and Université Paris 7, Paris, France
– sequence: 11
  givenname: Argiris
  orcidid: 0000-0002-3685-3473
  surname: Symeonidis
  fullname: Symeonidis, Argiris
  organization: Division Hematology, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
– sequence: 12
  givenname: Reinhard
  orcidid: 0000-0002-8993-9561
  surname: Stauder
  fullname: Stauder, Reinhard
  organization: Department of Internal Medicine V (Hematology and Oncology), Innsbruck Medical University, Innsbruck, Austria
– sequence: 13
  givenname: Jaroslav
  surname: Cermak
  fullname: Cermak, Jaroslav
  organization: Department of Clinical Hematology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
– sequence: 14
  givenname: Guillermo
  orcidid: 0000-0002-2767-8191
  surname: Sanz
  fullname: Sanz, Guillermo
  organization: Hematology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
– sequence: 15
  givenname: Eva
  surname: Hellström-Lindberg
  fullname: Hellström-Lindberg, Eva
  organization: Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
– sequence: 16
  givenname: Luca
  orcidid: 0000-0002-1460-1611
  surname: Malcovati
  fullname: Malcovati, Luca
  organization: Department of Molecular Medicine and Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, University of Pavia, Pavia, Italy
– sequence: 17
  givenname: Saskia
  surname: Langemeijer
  fullname: Langemeijer, Saskia
  organization: Department of Hematology, Radboudumc, Nijmegen, The Netherlands
– sequence: 18
  givenname: Ulrich
  surname: Germing
  fullname: Germing, Ulrich
  organization: Department of Hematology, Oncology and Clinical Immunology, Universitätsklinik Düsseldorf, Düsseldorf, Germany
– sequence: 19
  givenname: Mette Skov
  surname: Holm
  fullname: Holm, Mette Skov
  organization: Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
– sequence: 20
  givenname: Krzysztof
  surname: Madry
  fullname: Madry, Krzysztof
  organization: Department of Haematology, Oncology and Internal Medicine, Warsaw Medical University, Warsaw, Poland
– sequence: 21
  givenname: Agnes
  surname: Guerci-Bresler
  fullname: Guerci-Bresler, Agnes
  organization: Service d'Hématologie, Centre Hospitalier Universitaire (CHU) Brabois Vandoeuvre, Nancy, France
– sequence: 22
  givenname: Dominic
  surname: Culligan
  fullname: Culligan, Dominic
  organization: Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
– sequence: 23
  givenname: Laurence
  surname: Sanhes
  fullname: Sanhes, Laurence
  organization: Service d'Hématologie, Centre Hospitalier de Perpignan, Perpignan, France
– sequence: 24
  givenname: Juliet
  surname: Mills
  fullname: Mills, Juliet
  organization: Department of Haematology, Worcestershire Acute Hospitals National Health Service (NHS) Trust and University of Birmingham, Birmingham, United Kingdom
– sequence: 25
  givenname: Ioannis
  surname: Kotsianidis
  fullname: Kotsianidis, Ioannis
  organization: Department of Hematology, Democritus University of Thrace Medical School, University Hospital of Alexandroupolis, Alexandroupolis, Greece
– sequence: 26
  givenname: Corine
  orcidid: 0000-0002-9547-908X
  surname: van Marrewijk
  fullname: van Marrewijk, Corine
  organization: Department of Hematology, Radboudumc, Nijmegen, The Netherlands
– sequence: 27
  givenname: David
  surname: Bowen
  fullname: Bowen, David
  organization: St. James's Institute of Oncology, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
– sequence: 28
  givenname: Theo
  surname: de Witte
  fullname: de Witte, Theo
  organization: Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
– sequence: 29
  givenname: Moshe
  surname: Mittelman
  fullname: Mittelman, Moshe
  email: moshemt@tlvmc.gov.il
  organization: Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
BackLink http://kipublications.ki.se/Default.aspx?queryparsed=id:147494585$$DView record from Swedish Publication Index (Karolinska Institutet)
BookMark eNqNkk1v1DAQhiNUREvpf_CRy5Y4jhP7gijlUyriAJytiT3Zmjr2YjuL9t_j7W6Ltqc9eTTzvo89M35ZnfjgsaoIrS8pFc2bwYVgwKzBa0yXTd3Udd3WnD-rzpq2ZwvJWX_yGDfytLpI6XcR0b5jXDYvqlPWMtF3bX9W-SuyimisznaNBNwyRJtvJzIn65dEO-utBkfAG-JgCBFyiBuygggTZoyJTLAhkJJNmVhP4uy2vjDne0vJGAtLH-5p3z78eFU9H8ElvNif59WvTx9_Xn9Z3Hz__PX66mahOad5AVwLpCOIVkqOyHrdlXbMIHowsh9HqJnRQpd-YGCmkwKkkFSCBoGshOy8Wuy46S-u5kGtop0gblQAq_apuxKharkUrC76tzt9qUxoNPocwR3YDive3qplWCtRJk_lFvB6D4jhz4wpq8kmjc6BxzAn1fCOtpK2ZSmPd-kYUoo4Km0zZBu2ZOsUrdV2z-pgz-r_ngtAPAE8vPMI6_udFcvw1xajStpiURkbUWdlgj0G8u4J5OGf3OHmOMQ_HL3jpw
CitedBy_id crossref_primary_10_1002_ajh_27046
crossref_primary_10_1093_oncolo_oyad114
crossref_primary_10_1038_s41375_024_02223_9
crossref_primary_10_1007_s00277_024_05925_3
crossref_primary_10_1111_bjh_18889
crossref_primary_10_1111_ijlh_14234
crossref_primary_10_1515_cclm_2023_0772
crossref_primary_10_1038_s41375_024_02397_2
crossref_primary_10_1136_bmjopen_2023_081200
crossref_primary_10_1182_blood_2024025771
crossref_primary_10_3389_fonc_2022_988998
crossref_primary_10_1002_pbc_31383
crossref_primary_10_1111_bjh_20136
crossref_primary_10_1111_ejh_14379
crossref_primary_10_1016_j_amjmed_2024_03_015
crossref_primary_10_1038_s41375_024_02203_z
crossref_primary_10_3389_fonc_2024_1415101
crossref_primary_10_1038_s41375_024_02297_5
crossref_primary_10_1136_bmjopen_2024_095640
crossref_primary_10_1371_journal_pone_0276095
Cites_doi 10.1111/j.1365-2141.1990.tb02612.x
10.1111/ejh.13389
10.1214/aos/1013203451
10.1016/S2352-3026(18)30109-1
10.1097/HS9.0000000000000040
10.1007/s11136-019-02112-0
10.2174/1573399811666150526151241
10.1200/JCO.1989.7.7.959
10.1200/JCO.2015.63.0830
10.1056/NEJMp1707537
10.3389/fmed.2019.00185
10.1182/blood.2020005488
10.1016/j.joen.2014.01.034
10.1097/MOH.0b013e3283522471
10.1002/ajh.23598
10.1080/10428194.2017.1416363
10.1159/000345427
10.1111/j.1365-2141.1984.tb06079.x
10.1161/CIRCRESAHA.112.279315
10.1016/j.amjmed.2016.06.056
10.1038/s41375-018-0089-x
10.1016/j.dsx.2017.12.015
10.1111/ejh.13134
10.1002/ajh.25595
10.1182/blood.V126.23.907.907
10.1136/bmj.g7818
10.1182/blood.2018834044
10.1182/blood-2020-136557
10.1056/NEJMms1817674
10.1177/1178222619885147
10.1161/01.CIR.96.3.1012
10.1038/s41586-018-0317-6
10.1182/blood-2018-99-111838
10.1182/blood.V79.1.198.198
10.1016/j.leukres.2009.02.010
10.1016/j.leukres.2011.05.001
10.1136/bmj.j4413
10.1016/S0167-9473(01)00065-2
10.1200/JCO.2016.68.2518
10.1182/blood-2017-01-763425
10.1159/000206963
10.1161/01.CIR.97.15.1496
10.1056/NEJMoa1805971
10.1056/NEJMoa1409405
10.1111/j.1600-0609.1992.tb00039.x
10.1159/000490727
10.1182/blood-2004-05-1812
10.1016/j.amjmed.2016.07.029
10.1182/blood-2020-140317
10.1002/jmrs.369
10.1182/blood-2013-03-492884
10.1111/bjh.13450
10.1056/NEJMoa1408617
10.1002/ajh.24732
10.1002/rcs.1669
10.1007/s00259-019-04593-0
10.3324/haematol.2018.212217
10.1056/NEJMoa1901183
10.1007/s12194-019-00543-5
10.1182/blood-2013-08-518886
10.1182/blood-2020-139412
ContentType Journal Article
Copyright 2021 American Society of Hematology
2021 by The American Society of Hematology.
2021 by The American Society of Hematology 2021
Copyright_xml – notice: 2021 American Society of Hematology
– notice: 2021 by The American Society of Hematology.
– notice: 2021 by The American Society of Hematology 2021
DBID AAYXX
CITATION
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1182/bloodadvances.2020004055
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2473-9537
EndPage 3075
ExternalDocumentID oai_swepub_ki_se_459830
PMC8405190
10_1182_bloodadvances_2020004055
S2473952921003955
GroupedDBID .1-
.FO
0R~
53G
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
H13
HYE
OK1
ROL
RPM
THE
W2D
Z5R
AFCTW
AAYXX
CITATION
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c551t-a5c8e1fa84995ee37c6247db87ad97ffa03dc8c763ab3d698a98919aca8e39893
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000688536600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-9529
2473-9537
IngestDate Tue Nov 25 03:36:36 EST 2025
Tue Sep 30 15:40:32 EDT 2025
Fri Sep 05 06:01:11 EDT 2025
Sat Nov 29 03:31:35 EST 2025
Tue Nov 18 22:49:36 EST 2025
Fri Feb 23 02:43:18 EST 2024
Tue Aug 26 16:31:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c551t-a5c8e1fa84995ee37c6247db87ad97ffa03dc8c763ab3d698a98919aca8e39893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
For data sharing, please contact the corresponding authors, Moshe Mittelman at moshemt@tlvmc.gov.il or Howard S. Oster at howardo@tlvmc.gov.il.
ORCID 0000-0002-8993-9561
0000-0002-0891-2501
0000-0002-1111-966X
0000-0002-3026-2859
0000-0002-9547-908X
0000-0002-2767-8191
0000-0002-1460-1611
0000-0002-3685-3473
OpenAccessLink http://dx.doi.org/10.1182/bloodadvances.2020004055
PMID 34387647
PQID 2561491447
PQPubID 23479
PageCount 10
ParticipantIDs swepub_primary_oai_swepub_ki_se_459830
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8405190
proquest_miscellaneous_2561491447
crossref_citationtrail_10_1182_bloodadvances_2020004055
crossref_primary_10_1182_bloodadvances_2020004055
elsevier_sciencedirect_doi_10_1182_bloodadvances_2020004055
elsevier_clinicalkey_doi_10_1182_bloodadvances_2020004055
PublicationCentury 2000
PublicationDate 2021-08-24
PublicationDateYYYYMMDD 2021-08-24
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-24
  day: 24
PublicationDecade 2020
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Blood advances
PublicationYear 2021
Publisher Elsevier Inc
American Society of Hematology
Publisher_xml – name: Elsevier Inc
– name: American Society of Hematology
References Ríos, Cañizo, Sanz (bib11) 1990; 75
Sakai, Onishi, Matsui (bib28) 2019; 13
Depaoli, Davini, Foggetti (bib60) 1992; 49
Malcovati, Hellström-Lindberg, Bowen, European Leukemia Net (bib8) 2013; 122
Rudy (bib33) 2013; 112
Stauder, Yu, Koinig (bib44) 2018; 32
Cintra, da Silva Facundo, Prieto (bib51) 2014; 40
Rauw, Wells, Chesney, Reis, Zhang, Buckstein (bib71) 2011; 35
de Swart, Crouch, Hoeks, EUMDS Registry Participants (bib5) 2020; 105
Papaemmanuil, Gerstung, Malcovati, Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium (bib57) 2013; 122
Rotenstein, Huckman, Wagle (bib3) 2017; 377
Oster, Taccardi, Lux, Ershler, Rudy (bib31) 1997; 96
Kuhn M, Wing J, Weston S, et al. Caret: Classification and Regression Training. R package version 60-81. Accessed 16 June 2021.
(bib24) 2018
Greenbaum, Joffe, Filanovsky (bib53) 2018; 101
Kachekouche, Dali-Sahi, Benmansour, Dennouni-Medjati (bib49) 2018; 12
Davis (bib25) 1959
Goodnough, Schrier (bib69) 2014; 89
Mangi, Mufti (bib9) 1992; 79
Friedman (bib19) 2002; 38
Aktolun (bib29) 2019; 46
Bejar, Papaemmanuil, Haferlach (bib56) 2015; 126
Guralnik, Eisenstaedt, Ferrucci, Klein, Woodman (bib23) 2004; 104
Stauder, Lambert, Desruol-Allardin (bib43) 2020; 104
Girelli, Marchi, Camaschella (bib68) 2018; 2
Buckstein, Jang, Friedlich (bib22) 2009; 33
Abelson, Collord, Ng (bib72) 2018; 559
Milani, Lavie, Bober, Milani, Ventura (bib36) 2017; 130
Yee, Narain, Akmaev, Vemulapalli (bib35) 2019; 11
Hallek (bib54) 2019; 94
Duetz, Westers, van de Loosdrecht (bib58) 2019; 86
Malcovati, Gallì, Travaglino (bib67) 2017; 129
Oster, Taccardi, Lux, Ershler, Rudy (bib32) 1998; 97
Alpert (bib37) 2017; 130
Greenwell B, Boehmke B, Cunningham J, Developers G,. GBM: Generalized Boosted Regression Models. R package version 214. Accessed 16 June 2021.
Oster, Crouch, Smith (bib17) 2018; 132
Radakovich, Meggendorfer, Malcovati (bib64) 2020; 136
Goll, Jensen, Lindsley (bib63) 2020; 136
Social Security Administration. Disability Evaluation Under Social Security. 7.10 Disorders Of Bone Marrow Failure. Accessed 29 August 2019.
Donovan, Sanson-Fisher, Redman (bib39) 1989; 7
Lewis, Gandomkar, Brennan (bib27) 2019; 66
Saad, Vassallo, Arruda, Lorand-Metze (bib10) 1994; 86
Nelson, Eftimovska, Lind, Hager, Wasson, Lindblad (bib41) 2015; 350
Greene, Lea (bib4) 2019; 381
Jaiswal, Fontanillas, Flannick (bib66) 2014; 371
Israel National Insurance Agency. Disability Level Establishment: Hematologic Disorders [in Hebrew]. Accessed 29 August 2019.
Basch, Deal, Kris (bib38) 2016; 34
Oster, Abu Shrkihe, Crouch (bib16) 2017; 130
Calvo, Arenillas, Luño (bib52) 2017; 92
Banerjee, Mathew, Rouane (bib26) 2017; 358
Serag, Ion-Margineanu, Qureshi (bib30) 2019; 6
Baer, Stengel, Kern, Haferlach, Haferlach (bib62) 2020; 136
Oster, Carmi, Kolomansky (bib15) 2018; 59
Agool, Schot, Jager, Vellenga (bib59) 2006; 47
Tricot, De Wolf-Peeters, Vlietinck, Verwilghen (bib12) 1984; 58
Smith, Smith, Fletcher, Henderson (bib2) 2016; 12
de Swart, Smith, Johnston (bib6) 2015; 170
DeAngelo, Stone (bib7) 2013
Cetto, Vettore, De Matteis, Piga, Perona (bib45) 1982; 68
Pang, Schrier (bib70) 2012; 19
Hamoudeh, Zeidan, Barbarotta, Rosano (bib48) 2016; 12
Genovese, Kähler, Handsaker (bib65) 2014; 371
Newby, Adamson, Berry, SCOT-HEART Investigators (bib1) 2018; 379
Bouronikou, Georgoulias, Giannakoulas (bib47) 2013; 130
Basiorka, McGraw, Abbas-Aghababazadeh (bib46) 2018; 5
Nagata, Zhao, Awada (bib61) 2020; 136
Wu, Chuang, Tai (bib50) 1989; 88
Spivak (bib55) 2019; 134
Schnipper, Davidson, Wollins (bib42) 2016; 34
Friedman (bib18) 2001; 29
Perez, Mahaffey, Hedlin, Apple Heart Study Investigators (bib34) 2019; 381
Hsiao, Dymek, Kim, Russell (bib40) 2019; 28
Oster (2021081315342155200_B15) 2018; 59
Goodnough (2021081315342155200_B69) 2014; 89
Hsiao (2021081315342155200_B40) 2019; 28
Sakai (2021081315342155200_B28) 2019; 13
Greene (2021081315342155200_B4) 2019; 381
DeAngelo (2021081315342155200_B7) 2013
Donovan (2021081315342155200_B39) 1989; 7
Duetz (2021081315342155200_B58) 2019; 86
Oster (2021081315342155200_B31) 1997; 96
Serag (2021081315342155200_B30) 2019; 6
Hallek (2021081315342155200_B54) 2019; 94
Genovese (2021081315342155200_B65) 2014; 371
Papaemmanuil (2021081315342155200_B57) 2013; 122
Ríos (2021081315342155200_B11) 1990; 75
Rauw (2021081315342155200_B71) 2011; 35
Spivak (2021081315342155200_B55) 2019; 134
Agool (2021081315342155200_B59) 2006; 47
Jaiswal (2021081315342155200_B66) 2014; 371
Basiorka (2021081315342155200_B46) 2018; 5
de Swart (2021081315342155200_B5) 2020; 105
Rotenstein (2021081315342155200_B3) 2017; 377
Stauder (2021081315342155200_B43) 2020; 104
Saad (2021081315342155200_B10) 1994; 86
Malcovati (2021081315342155200_B8) 2013; 122
Lewis (2021081315342155200_B27) 2019; 66
Perez (2021081315342155200_B34) 2019; 381
Aktolun (2021081315342155200_B29) 2019; 46
R: A Language and Environment for Statistical Computing (2021081315342155200_B24) 2018
Alpert (2021081315342155200_B37) 2017; 130
Abelson (2021081315342155200_B72) 2018; 559
Banerjee (2021081315342155200_B26) 2017; 358
Baer (2021081315342155200_B62) 2020; 136
Friedman (2021081315342155200_B18) 2001; 29
Newby (2021081315342155200_B1) 2018; 379
Mangi (2021081315342155200_B9) 1992; 79
Calvo (2021081315342155200_B52) 2017; 92
Malcovati (2021081315342155200_B67) 2017; 129
Greenbaum (2021081315342155200_B53) 2018; 101
Oster (2021081315342155200_B32) 1998; 97
Friedman (2021081315342155200_B19) 2002; 38
Oster (2021081315342155200_B16) 2017; 130
Yee (2021081315342155200_B35) 2019; 11
Greenwell (2021081315342155200_B20)
Bouronikou (2021081315342155200_B47) 2013; 130
Kuhn (2021081315342155200_B21)
Radakovich (2021081315342155200_B64) 2020; 136
Nelson (2021081315342155200_B41) 2015; 350
Israel National Insurance Agency (2021081315342155200_B14)
Guralnik (2021081315342155200_B23) 2004; 104
Davis (2021081315342155200_B25) 1959
Basch (2021081315342155200_B38) 2016; 34
Hamoudeh (2021081315342155200_B48) 2016; 12
Social Security Administration (2021081315342155200_B13)
Rudy (2021081315342155200_B33) 2013; 112
de Swart (2021081315342155200_B6) 2015; 170
Buckstein (2021081315342155200_B22) 2009; 33
Cetto (2021081315342155200_B45) 1982; 68
Wu (2021081315342155200_B50) 1989; 88
Pang (2021081315342155200_B70) 2012; 19
Cintra (2021081315342155200_B51) 2014; 40
Oster (2021081315342155200_B17) 2018; 132
Depaoli (2021081315342155200_B60) 1992; 49
Stauder (2021081315342155200_B44) 2018; 32
Tricot (2021081315342155200_B12) 1984; 58
Bejar (2021081315342155200_B56) 2015; 126
Nagata (2021081315342155200_B61) 2020; 136
Smith (2021081315342155200_B2) 2016; 12
Schnipper (2021081315342155200_B42) 2016; 34
Girelli (2021081315342155200_B68) 2018; 2
Kachekouche (2021081315342155200_B49) 2018; 12
Goll (2021081315342155200_B63) 2020; 136
Milani (2021081315342155200_B36) 2017; 130
References_xml – volume: 13
  start-page: 27
  year: 2019
  end-page: 36
  ident: bib28
  article-title: A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features
  publication-title: Radiol Phys Technol
– volume: 170
  start-page: 372
  year: 2015
  end-page: 383
  ident: bib6
  article-title: Validation of the revised international prognostic scoring system (IPSS-R) in patients with lower-risk myelodysplastic syndromes: a report from the prospective European LeukaemiaNet MDS (EUMDS) registry
  publication-title: Br J Haematol
– volume: 136
  start-page: 30
  year: 2020
  end-page: 31
  ident: bib62
  article-title: The potential of molecular genetic analysis for diagnostic and prognostic decision making in clonal cytopenia of undetermined significance (CCUS) and MDS - a study on 576 patients [abstract]
  publication-title: Blood
– volume: 104
  start-page: 476
  year: 2020
  end-page: 487
  ident: bib43
  article-title: Patient-reported outcome measures in studies of myelodysplastic syndromes and acute myeloid leukemia: literature review and landscape analysis
  publication-title: Eur J Haematol
– reference: Kuhn M, Wing J, Weston S, et al. Caret: Classification and Regression Training. R package version 60-81. Accessed 16 June 2021.
– volume: 86
  start-page: 47
  year: 1994
  end-page: 51
  ident: bib10
  article-title: The role of bone marrow study in diagnosis and prognosis of myelodysplastic syndrome
  publication-title: Pathologica
– volume: 96
  start-page: 1012
  year: 1997
  end-page: 1024
  ident: bib31
  article-title: Noninvasive electrocardiographic imaging: reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events
  publication-title: Circulation
– start-page: 882
  year: 2013
  end-page: 903
  ident: bib7
  article-title: Myelodysplastic syndromes: biology and treatment
  publication-title: Hematology: Basic Principles and Practice
– volume: 101
  start-page: 502
  year: 2018
  end-page: 507
  ident: bib53
  article-title: Can bone marrow cellularity help in predicting prognosis in myelodysplastic syndromes?
  publication-title: Eur J Haematol
– volume: 66
  start-page: 292
  year: 2019
  end-page: 295
  ident: bib27
  article-title: Artificial intelligence in medical imaging practice: looking to the future
  publication-title: J Med Radiat Sci
– volume: 130
  start-page: 243
  year: 2017
  end-page: 244
  ident: bib37
  article-title: Digital medicine: “O Brave New World”
  publication-title: Am J Med
– volume: 68
  start-page: 124
  year: 1982
  end-page: 130
  ident: bib45
  article-title: Erythrocyte cation content, globin chain synthesis and glucose metabolism in dysmyelopoietic syndromes
  publication-title: Acta Haematol
– volume: 12
  start-page: 309
  year: 2018
  end-page: 312
  ident: bib49
  article-title: Hematological profile associated with type 2 diabetes mellitus
  publication-title: Diabetes Metab Syndr
– volume: 89
  start-page: 88
  year: 2014
  end-page: 96
  ident: bib69
  article-title: Evaluation and management of anemia in the elderly
  publication-title: Am J Hematol
– volume: 75
  start-page: 26
  year: 1990
  end-page: 33
  ident: bib11
  article-title: Bone marrow biopsy in myelodysplastic syndromes: morphological characteristics and contribution to the study of prognostic factors
  publication-title: Br J Haematol
– volume: 86
  start-page: 14
  year: 2019
  end-page: 23
  ident: bib58
  article-title: Clinical implication of multi-parameter flow cytometry in myelodysplastic syndromes
  publication-title: Pathobiology
– volume: 38
  start-page: 367
  year: 2002
  end-page: 378
  ident: bib19
  article-title: Stochastic gradient boosting
  publication-title: Comput Stat Data Anal
– volume: 5
  start-page: e393
  year: 2018
  end-page: e402
  ident: bib46
  article-title: Assessment of ASC specks as a putative biomarker of pyroptosis in myelodysplastic syndromes: an observational cohort study
  publication-title: Lancet Haematol
– volume: 35
  start-page: 1335
  year: 2011
  end-page: 1338
  ident: bib71
  article-title: Validation of a scoring system to establish the probability of myelodysplastic syndrome in patients with unexplained cytopenias or macrocytosis
  publication-title: Leuk Res
– reference: Greenwell B, Boehmke B, Cunningham J, Developers G,. GBM: Generalized Boosted Regression Models. R package version 214. Accessed 16 June 2021.
– volume: 130
  start-page: 2975
  year: 2017
  ident: bib16
  article-title: Can we diagnose MDS without bone marrow examination? a proposed EUMDS-based non-invasive diagnostic model [abstract]
  publication-title: Blood
– volume: 7
  start-page: 959
  year: 1989
  end-page: 968
  ident: bib39
  article-title: Measuring quality of life in cancer patients
  publication-title: J Clin Oncol
– volume: 34
  start-page: 2925
  year: 2016
  end-page: 2934
  ident: bib42
  article-title: Updating the American Society of Clinical Oncology value framework: revisions and reflections in response to comments received
  publication-title: J Clin Oncol
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: bib18
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
– volume: 130
  start-page: 14
  year: 2017
  end-page: 20
  ident: bib36
  article-title: Improving hypertension control and patient engagement using digital tools
  publication-title: Am J Med
– volume: 130
  start-page: 27
  year: 2013
  end-page: 33
  ident: bib47
  article-title: Metabolism-related cytokine and hormone levels in the serum of patients with myelodysplastic syndromes
  publication-title: Acta Haematol
– volume: 136
  start-page: 33
  year: 2020
  end-page: 35
  ident: bib64
  article-title: A personalized clinical-decision tool to improve the diagnostic accuracy of myelodysplastic syndromes [abstract]
  publication-title: Blood
– volume: 34
  start-page: 557
  year: 2016
  end-page: 565
  ident: bib38
  article-title: Symptom monitoring with patient-reported outcomes during routine cancer treatment: a randomized controlled trial [published corrections appear in J Clin Oncol. 2016;34(18):2198 and J Clin Oncol. 2019;37(6):528]
  publication-title: J Clin Oncol
– volume: 379
  start-page: 924
  year: 2018
  end-page: 933
  ident: bib1
  article-title: Coronary CT angiography and 5-year risk of myocardial infarction
  publication-title: N Engl J Med
– volume: 126
  start-page: 907
  year: 2015
  ident: bib56
  article-title: Somatic mutations in MDS patients are associated with clinical features and predict prognosis independent of the IPSS-R: analysis of combined datasets from the International Working Group for Prognosis in MDS-Molecular Committee [abstract]
  publication-title: Blood
– volume: 92
  start-page: 614
  year: 2017
  end-page: 621
  ident: bib52
  article-title: Enumerating bone marrow blasts from nonerythroid cellularity improves outcome prediction in myelodysplastic syndromes and permits a better definition of the intermediate risk category of the Revised International Prognostic Scoring System (IPSS-R)
  publication-title: Am J Hematol
– volume: 40
  start-page: 1139
  year: 2014
  end-page: 1144
  ident: bib51
  article-title: Blood profile and histology in oral infections associated with diabetes
  publication-title: J Endod
– volume: 559
  start-page: 400
  year: 2018
  end-page: 404
  ident: bib72
  article-title: Prediction of acute myeloid leukaemia risk in healthy individuals
  publication-title: Nature
– volume: 377
  start-page: 1309
  year: 2017
  end-page: 1312
  ident: bib3
  article-title: Making patients and doctors happier - the potential of patient-reported outcomes
  publication-title: N Engl J Med
– start-page: 179
  year: 1959
  end-page: 185
  ident: bib25
  article-title: The application of computers to clinical medical data (including machine demonstration)
  publication-title: Proceedings of the 1st IBM Medical Symposium; 15-17 June 1959; Poughkeepsie, NY
– volume: 371
  start-page: 2477
  year: 2014
  end-page: 2487
  ident: bib65
  article-title: Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
  publication-title: N Engl J Med
– volume: 2
  start-page: e40
  year: 2018
  ident: bib68
  article-title: Anemia in the elderly
  publication-title: HemaSphere
– volume: 12
  start-page: 231
  year: 2016
  end-page: 239
  ident: bib48
  article-title: The interactions between diabetes mellitus and myelodysplastic syndromes: current state of evidence and future directions
  publication-title: Curr Diabetes Rev
– volume: 49
  start-page: 105
  year: 1992
  end-page: 107
  ident: bib60
  article-title: Evaluation of bone marrow cellularity by magnetic resonance imaging in patients with myelodysplastic syndrome
  publication-title: Eur J Haematol
– volume: 358
  start-page: j4413
  year: 2017
  ident: bib26
  article-title: Using patient data for patients' benefit [editorial]
  publication-title: BMJ
– volume: 136
  start-page: 2249
  year: 2020
  end-page: 2262
  ident: bib61
  article-title: Machine learning demonstrates that somatic mutations imprint invariant morphologic features in myelodysplastic syndromes
  publication-title: Blood
– volume: 94
  start-page: 1266
  year: 2019
  end-page: 1287
  ident: bib54
  article-title: Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment
  publication-title: Am J Hematol
– volume: 136
  start-page: 32
  year: 2020
  end-page: 33
  ident: bib63
  article-title: Targeted sequencing of 7 genes can help reduce pathologic misclassification of MDS [abstract]
  publication-title: Blood
– volume: 6
  start-page: 185
  year: 2019
  ident: bib30
  article-title: Translational AI and deep learning in diagnostic pathology
  publication-title: Front Med (Lausanne)
– volume: 112
  start-page: 863
  year: 2013
  end-page: 874
  ident: bib33
  article-title: Noninvasive electrocardiographic imaging of arrhythmogenic substrates in humans
  publication-title: Circ Res
– volume: 28
  start-page: 1575
  year: 2019
  end-page: 1583
  ident: bib40
  article-title: Advancing the use of patient-reported outcomes in practice: understanding challenges, opportunities, and the potential of health information technology
  publication-title: Qual Life Res
– volume: 134
  start-page: 341
  year: 2019
  end-page: 352
  ident: bib55
  article-title: How I treat polycythemia vera
  publication-title: Blood
– volume: 381
  start-page: 1909
  year: 2019
  end-page: 1917
  ident: bib34
  article-title: Large-scale assessment of a smartwatch to identify atrial fibrillation
  publication-title: N Engl J Med
– volume: 350
  start-page: g7818
  year: 2015
  ident: bib41
  article-title: Patient reported outcome measures in practice
  publication-title: BMJ
– volume: 11
  year: 2019
  ident: bib35
  article-title: A data-driven approach to predicting septic shock in the intensive care unit
  publication-title: Biomed Inform Insights
– volume: 33
  start-page: 1313
  year: 2009
  end-page: 1318
  ident: bib22
  article-title: Estimating the prevalence of myelodysplastic syndromes in patients with unexplained cytopenias: a retrospective study of 322 bone marrows
  publication-title: Leuk Res
– volume: 19
  start-page: 133
  year: 2012
  end-page: 140
  ident: bib70
  article-title: Anemia in the elderly
  publication-title: Curr Opin Hematol
– volume: 104
  start-page: 2263
  year: 2004
  end-page: 2268
  ident: bib23
  article-title: Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia
  publication-title: Blood
– volume: 129
  start-page: 3371
  year: 2017
  end-page: 3378
  ident: bib67
  article-title: Clinical significance of somatic mutation in unexplained blood cytopenia
  publication-title: Blood
– reference: Social Security Administration. Disability Evaluation Under Social Security. 7.10 Disorders Of Bone Marrow Failure. Accessed 29 August 2019.
– volume: 88
  start-page: 240
  year: 1989
  end-page: 243
  ident: bib50
  article-title: Erythrocyte deformability in diabetes mellitus
  publication-title: Taiwan Yi Xue Hui Za Zhi
– volume: 371
  start-page: 2488
  year: 2014
  end-page: 2498
  ident: bib66
  article-title: Age-related clonal hematopoiesis associated with adverse outcomes
  publication-title: N Engl J Med
– volume: 59
  start-page: 2227
  year: 2018
  end-page: 2232
  ident: bib15
  article-title: Is bone marrow examination always necessary to establish the diagnosis of myelodysplastic syndromes? A proposed non-invasive diagnostic model
  publication-title: Leuk Lymphoma
– volume: 79
  start-page: 198
  year: 1992
  end-page: 205
  ident: bib9
  article-title: Primary myelodysplastic syndromes: diagnostic and prognostic significance of immunohistochemical assessment of bone marrow biopsies
  publication-title: Blood
– volume: 132
  start-page: 4357
  year: 2018
  ident: bib17
  article-title: MDS diagnosis: many patients may not require bone marrow examination [abstract]
  publication-title: Blood
– volume: 381
  start-page: 480
  year: 2019
  end-page: 485
  ident: bib4
  article-title: Digital futures past - the long arc of big data in medicine
  publication-title: N Engl J Med
– volume: 46
  start-page: 2731
  year: 2019
  end-page: 2736
  ident: bib29
  article-title: Artificial intelligence and radiomics in nuclear medicine: potentials and challenges
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 47
  start-page: 1592
  year: 2006
  end-page: 1598
  ident: bib59
  article-title: 18F-FLT PET in hematologic disorders: a novel technique to analyze the bone marrow compartment
  publication-title: J Nucl Med
– volume: 12
  start-page: 179
  year: 2016
  end-page: 188
  ident: bib2
  article-title: A 3D machine vision method for non-invasive assessment of respiratory function
  publication-title: Int J Med Robot
– volume: 58
  start-page: 217
  year: 1984
  end-page: 225
  ident: bib12
  article-title: Bone marrow histology in myelodysplastic syndromes. II. Prognostic value of abnormal localization of immature precursors in MDS
  publication-title: Br J Haematol
– volume: 105
  start-page: 632
  year: 2020
  end-page: 639
  ident: bib5
  article-title: Impact of red blood cell transfusion dose density on progression-free survival in patients with lower-risk myelodysplastic syndromes
  publication-title: Haematologica
– volume: 32
  start-page: 1380
  year: 2018
  end-page: 1392
  ident: bib44
  article-title: Health-related quality of life in lower-risk MDS patients compared with age- and sex-matched reference populations: a European LeukemiaNet study
  publication-title: Leukemia
– reference: Israel National Insurance Agency. Disability Level Establishment: Hematologic Disorders [in Hebrew]. Accessed 29 August 2019.
– volume: 122
  start-page: 3616
  year: 2013
  end-page: 3627
  ident: bib57
  article-title: Clinical and biological implications of driver mutations in myelodysplastic syndromes
  publication-title: Blood
– volume: 97
  start-page: 1496
  year: 1998
  end-page: 1507
  ident: bib32
  article-title: Electrocardiographic imaging: noninvasive characterization of intramural myocardial activation from inverse-reconstructed epicardial potentials and electrograms
  publication-title: Circulation
– volume: 122
  start-page: 2943
  year: 2013
  end-page: 2964
  ident: bib8
  article-title: Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet
  publication-title: Blood
– year: 2018
  ident: bib24
  article-title: R: A Language and Environment for Statistical Computing
– volume: 75
  start-page: 26
  issue: 1
  year: 1990
  ident: 2021081315342155200_B11
  article-title: Bone marrow biopsy in myelodysplastic syndromes: morphological characteristics and contribution to the study of prognostic factors
  publication-title: Br J Haematol.
  doi: 10.1111/j.1365-2141.1990.tb02612.x
– volume: 104
  start-page: 476
  issue: 5
  year: 2020
  ident: 2021081315342155200_B43
  article-title: Patient-reported outcome measures in studies of myelodysplastic syndromes and acute myeloid leukemia: literature review and landscape analysis
  publication-title: Eur J Haematol.
  doi: 10.1111/ejh.13389
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 2021081315342155200_B18
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat.
  doi: 10.1214/aos/1013203451
– volume: 5
  start-page: e393
  issue: 9
  year: 2018
  ident: 2021081315342155200_B46
  article-title: Assessment of ASC specks as a putative biomarker of pyroptosis in myelodysplastic syndromes: an observational cohort study
  publication-title: Lancet Haematol.
  doi: 10.1016/S2352-3026(18)30109-1
– volume: 2
  start-page: e40
  issue: 3
  year: 2018
  ident: 2021081315342155200_B68
  article-title: Anemia in the elderly
  publication-title: HemaSphere.
  doi: 10.1097/HS9.0000000000000040
– volume: 28
  start-page: 1575
  issue: 6
  year: 2019
  ident: 2021081315342155200_B40
  article-title: Advancing the use of patient-reported outcomes in practice: understanding challenges, opportunities, and the potential of health information technology
  publication-title: Qual Life Res.
  doi: 10.1007/s11136-019-02112-0
– volume: 12
  start-page: 231
  issue: 3
  year: 2016
  ident: 2021081315342155200_B48
  article-title: The interactions between diabetes mellitus and myelodysplastic syndromes: current state of evidence and future directions
  publication-title: Curr Diabetes Rev.
  doi: 10.2174/1573399811666150526151241
– volume: 7
  start-page: 959
  issue: 7
  year: 1989
  ident: 2021081315342155200_B39
  article-title: Measuring quality of life in cancer patients
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.1989.7.7.959
– volume: 34
  start-page: 557
  issue: 6
  year: 2016
  ident: 2021081315342155200_B38
  article-title: Symptom monitoring with patient-reported outcomes during routine cancer treatment: a randomized controlled trial [published corrections appear in J Clin Oncol. 2016;34(18):2198 and J Clin Oncol. 2019;37(6):528]
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.2015.63.0830
– volume: 377
  start-page: 1309
  issue: 14
  year: 2017
  ident: 2021081315342155200_B3
  article-title: Making patients and doctors happier - the potential of patient-reported outcomes
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMp1707537
– volume: 6
  start-page: 185
  year: 2019
  ident: 2021081315342155200_B30
  article-title: Translational AI and deep learning in diagnostic pathology
  publication-title: Front Med (Lausanne).
  doi: 10.3389/fmed.2019.00185
– volume: 136
  start-page: 2249
  issue: 20
  year: 2020
  ident: 2021081315342155200_B61
  article-title: Machine learning demonstrates that somatic mutations imprint invariant morphologic features in myelodysplastic syndromes
  publication-title: Blood.
  doi: 10.1182/blood.2020005488
– volume: 40
  start-page: 1139
  issue: 8
  year: 2014
  ident: 2021081315342155200_B51
  article-title: Blood profile and histology in oral infections associated with diabetes
  publication-title: J Endod.
  doi: 10.1016/j.joen.2014.01.034
– volume: 130
  start-page: 2975
  year: 2017
  ident: 2021081315342155200_B16
  article-title: Can we diagnose MDS without bone marrow examination? a proposed EUMDS-based non-invasive diagnostic model [abstract]
  publication-title: Blood.
– volume: 86
  start-page: 47
  issue: 1
  year: 1994
  ident: 2021081315342155200_B10
  article-title: The role of bone marrow study in diagnosis and prognosis of myelodysplastic syndrome
  publication-title: Pathologica.
– start-page: 882
  volume-title: Hematology: Basic Principles and Practice.
  year: 2013
  ident: 2021081315342155200_B7
– volume: 19
  start-page: 133
  issue: 3
  year: 2012
  ident: 2021081315342155200_B70
  article-title: Anemia in the elderly
  publication-title: Curr Opin Hematol.
  doi: 10.1097/MOH.0b013e3283522471
– volume: 89
  start-page: 88
  issue: 1
  year: 2014
  ident: 2021081315342155200_B69
  article-title: Evaluation and management of anemia in the elderly
  publication-title: Am J Hematol.
  doi: 10.1002/ajh.23598
– volume: 59
  start-page: 2227
  issue: 9
  year: 2018
  ident: 2021081315342155200_B15
  article-title: Is bone marrow examination always necessary to establish the diagnosis of myelodysplastic syndromes? A proposed non-invasive diagnostic model
  publication-title: Leuk Lymphoma.
  doi: 10.1080/10428194.2017.1416363
– volume: 130
  start-page: 27
  issue: 1
  year: 2013
  ident: 2021081315342155200_B47
  article-title: Metabolism-related cytokine and hormone levels in the serum of patients with myelodysplastic syndromes
  publication-title: Acta Haematol.
  doi: 10.1159/000345427
– volume: 58
  start-page: 217
  issue: 2
  year: 1984
  ident: 2021081315342155200_B12
  article-title: Bone marrow histology in myelodysplastic syndromes. II. Prognostic value of abnormal localization of immature precursors in MDS
  publication-title: Br J Haematol.
  doi: 10.1111/j.1365-2141.1984.tb06079.x
– volume: 112
  start-page: 863
  issue: 5
  year: 2013
  ident: 2021081315342155200_B33
  article-title: Noninvasive electrocardiographic imaging of arrhythmogenic substrates in humans
  publication-title: Circ Res.
  doi: 10.1161/CIRCRESAHA.112.279315
– volume: 130
  start-page: 243
  issue: 3
  year: 2017
  ident: 2021081315342155200_B37
  article-title: Digital medicine: “O Brave New World”
  publication-title: Am J Med.
  doi: 10.1016/j.amjmed.2016.06.056
– volume: 32
  start-page: 1380
  issue: 6
  year: 2018
  ident: 2021081315342155200_B44
  article-title: Health-related quality of life in lower-risk MDS patients compared with age- and sex-matched reference populations: a European LeukemiaNet study
  publication-title: Leukemia.
  doi: 10.1038/s41375-018-0089-x
– volume: 12
  start-page: 309
  issue: 3
  year: 2018
  ident: 2021081315342155200_B49
  article-title: Hematological profile associated with type 2 diabetes mellitus
  publication-title: Diabetes Metab Syndr.
  doi: 10.1016/j.dsx.2017.12.015
– volume: 101
  start-page: 502
  issue: 4
  year: 2018
  ident: 2021081315342155200_B53
  article-title: Can bone marrow cellularity help in predicting prognosis in myelodysplastic syndromes?
  publication-title: Eur J Haematol.
  doi: 10.1111/ejh.13134
– volume: 94
  start-page: 1266
  issue: 11
  year: 2019
  ident: 2021081315342155200_B54
  article-title: Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment
  publication-title: Am J Hematol.
  doi: 10.1002/ajh.25595
– volume: 126
  start-page: 907
  issue: 23
  year: 2015
  ident: 2021081315342155200_B56
  article-title: Somatic mutations in MDS patients are associated with clinical features and predict prognosis independent of the IPSS-R: analysis of combined datasets from the International Working Group for Prognosis in MDS-Molecular Committee
  publication-title: Blood.
  doi: 10.1182/blood.V126.23.907.907
– volume: 350
  start-page: g7818
  year: 2015
  ident: 2021081315342155200_B41
  article-title: Patient reported outcome measures in practice
  publication-title: BMJ.
  doi: 10.1136/bmj.g7818
– volume: 88
  start-page: 240
  issue: 3
  year: 1989
  ident: 2021081315342155200_B50
  article-title: Erythrocyte deformability in diabetes mellitus
  publication-title: Taiwan Yi Xue Hui Za Zhi.
– ident: 2021081315342155200_B21
– ident: 2021081315342155200_B13
– volume: 134
  start-page: 341
  issue: 4
  year: 2019
  ident: 2021081315342155200_B55
  article-title: How I treat polycythemia vera
  publication-title: Blood.
  doi: 10.1182/blood.2018834044
– volume: 136
  start-page: 30
  year: 2020
  ident: 2021081315342155200_B62
  article-title: The potential of molecular genetic analysis for diagnostic and prognostic decision making in clonal cytopenia of undetermined significance (CCUS) and MDS - a study on 576 patients [abstract]
  publication-title: Blood.
  doi: 10.1182/blood-2020-136557
– volume: 381
  start-page: 480
  issue: 5
  year: 2019
  ident: 2021081315342155200_B4
  article-title: Digital futures past - the long arc of big data in medicine
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMms1817674
– volume: 11
  start-page: 1178222619885147
  year: 2019
  ident: 2021081315342155200_B35
  article-title: A data-driven approach to predicting septic shock in the intensive care unit
  publication-title: Biomed Inform Insights.
  doi: 10.1177/1178222619885147
– volume: 96
  start-page: 1012
  issue: 3
  year: 1997
  ident: 2021081315342155200_B31
  article-title: Noninvasive electrocardiographic imaging: reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events
  publication-title: Circulation.
  doi: 10.1161/01.CIR.96.3.1012
– volume: 559
  start-page: 400
  issue: 7714
  year: 2018
  ident: 2021081315342155200_B72
  article-title: Prediction of acute myeloid leukaemia risk in healthy individuals
  publication-title: Nature.
  doi: 10.1038/s41586-018-0317-6
– volume: 132
  start-page: 4357
  year: 2018
  ident: 2021081315342155200_B17
  article-title: MDS diagnosis: many patients may not require bone marrow examination [abstract]
  publication-title: Blood.
  doi: 10.1182/blood-2018-99-111838
– ident: 2021081315342155200_B20
– volume: 79
  start-page: 198
  issue: 1
  year: 1992
  ident: 2021081315342155200_B9
  article-title: Primary myelodysplastic syndromes: diagnostic and prognostic significance of immunohistochemical assessment of bone marrow biopsies
  publication-title: Blood.
  doi: 10.1182/blood.V79.1.198.198
– volume: 33
  start-page: 1313
  issue: 10
  year: 2009
  ident: 2021081315342155200_B22
  article-title: Estimating the prevalence of myelodysplastic syndromes in patients with unexplained cytopenias: a retrospective study of 322 bone marrows
  publication-title: Leuk Res.
  doi: 10.1016/j.leukres.2009.02.010
– volume: 35
  start-page: 1335
  issue: 10
  year: 2011
  ident: 2021081315342155200_B71
  article-title: Validation of a scoring system to establish the probability of myelodysplastic syndrome in patients with unexplained cytopenias or macrocytosis
  publication-title: Leuk Res.
  doi: 10.1016/j.leukres.2011.05.001
– volume: 358
  start-page: j4413
  year: 2017
  ident: 2021081315342155200_B26
  article-title: Using patient data for patients’ benefit [editorial]
  publication-title: BMJ.
  doi: 10.1136/bmj.j4413
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  ident: 2021081315342155200_B19
  article-title: Stochastic gradient boosting
  publication-title: Comput Stat Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 34
  start-page: 2925
  issue: 24
  year: 2016
  ident: 2021081315342155200_B42
  article-title: Updating the American Society of Clinical Oncology value framework: revisions and reflections in response to comments received
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.2016.68.2518
– volume: 129
  start-page: 3371
  issue: 25
  year: 2017
  ident: 2021081315342155200_B67
  article-title: Clinical significance of somatic mutation in unexplained blood cytopenia
  publication-title: Blood.
  doi: 10.1182/blood-2017-01-763425
– ident: 2021081315342155200_B14
– volume: 68
  start-page: 124
  issue: 2
  year: 1982
  ident: 2021081315342155200_B45
  article-title: Erythrocyte cation content, globin chain synthesis and glucose metabolism in dysmyelopoietic syndromes
  publication-title: Acta Haematol.
  doi: 10.1159/000206963
– volume: 97
  start-page: 1496
  issue: 15
  year: 1998
  ident: 2021081315342155200_B32
  article-title: Electrocardiographic imaging: noninvasive characterization of intramural myocardial activation from inverse-reconstructed epicardial potentials and electrograms
  publication-title: Circulation.
  doi: 10.1161/01.CIR.97.15.1496
– volume: 379
  start-page: 924
  issue: 10
  year: 2018
  ident: 2021081315342155200_B1
  article-title: Coronary CT angiography and 5-year risk of myocardial infarction
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1805971
– volume: 371
  start-page: 2477
  issue: 26
  year: 2014
  ident: 2021081315342155200_B65
  article-title: Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1409405
– volume: 49
  start-page: 105
  issue: 2
  year: 1992
  ident: 2021081315342155200_B60
  article-title: Evaluation of bone marrow cellularity by magnetic resonance imaging in patients with myelodysplastic syndrome
  publication-title: Eur J Haematol.
  doi: 10.1111/j.1600-0609.1992.tb00039.x
– volume: 86
  start-page: 14
  issue: 1
  year: 2019
  ident: 2021081315342155200_B58
  article-title: Clinical implication of multi-parameter flow cytometry in myelodysplastic syndromes
  publication-title: Pathobiology.
  doi: 10.1159/000490727
– volume: 104
  start-page: 2263
  issue: 8
  year: 2004
  ident: 2021081315342155200_B23
  article-title: Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia
  publication-title: Blood.
  doi: 10.1182/blood-2004-05-1812
– volume: 130
  start-page: 14
  issue: 1
  year: 2017
  ident: 2021081315342155200_B36
  article-title: Improving hypertension control and patient engagement using digital tools
  publication-title: Am J Med.
  doi: 10.1016/j.amjmed.2016.07.029
– volume: 47
  start-page: 1592
  issue: 10
  year: 2006
  ident: 2021081315342155200_B59
  article-title: 18F-FLT PET in hematologic disorders: a novel technique to analyze the bone marrow compartment
  publication-title: J Nucl Med.
– volume: 136
  start-page: 32
  year: 2020
  ident: 2021081315342155200_B63
  article-title: Targeted sequencing of 7 genes can help reduce pathologic misclassification of MDS [abstract]
  publication-title: Blood.
  doi: 10.1182/blood-2020-140317
– volume: 66
  start-page: 292
  issue: 4
  year: 2019
  ident: 2021081315342155200_B27
  article-title: Artificial intelligence in medical imaging practice: looking to the future
  publication-title: J Med Radiat Sci.
  doi: 10.1002/jmrs.369
– volume: 122
  start-page: 2943
  issue: 17
  year: 2013
  ident: 2021081315342155200_B8
  article-title: Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet
  publication-title: Blood.
  doi: 10.1182/blood-2013-03-492884
– volume: 170
  start-page: 372
  issue: 3
  year: 2015
  ident: 2021081315342155200_B6
  article-title: Validation of the revised international prognostic scoring system (IPSS-R) in patients with lower-risk myelodysplastic syndromes: a report from the prospective European LeukaemiaNet MDS (EUMDS) registry
  publication-title: Br J Haematol.
  doi: 10.1111/bjh.13450
– start-page: 179
  year: 1959
  ident: 2021081315342155200_B25
– year: 2018
  ident: 2021081315342155200_B24
– volume: 371
  start-page: 2488
  issue: 26
  year: 2014
  ident: 2021081315342155200_B66
  article-title: Age-related clonal hematopoiesis associated with adverse outcomes
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1408617
– volume: 92
  start-page: 614
  issue: 7
  year: 2017
  ident: 2021081315342155200_B52
  article-title: Enumerating bone marrow blasts from nonerythroid cellularity improves outcome prediction in myelodysplastic syndromes and permits a better definition of the intermediate risk category of the Revised International Prognostic Scoring System (IPSS-R)
  publication-title: Am J Hematol.
  doi: 10.1002/ajh.24732
– volume: 12
  start-page: 179
  issue: 2
  year: 2016
  ident: 2021081315342155200_B2
  article-title: A 3D machine vision method for non-invasive assessment of respiratory function
  publication-title: Int J Med Robot.
  doi: 10.1002/rcs.1669
– volume: 46
  start-page: 2731
  issue: 13
  year: 2019
  ident: 2021081315342155200_B29
  article-title: Artificial intelligence and radiomics in nuclear medicine: potentials and challenges
  publication-title: Eur J Nucl Med Mol Imaging.
  doi: 10.1007/s00259-019-04593-0
– volume: 105
  start-page: 632
  issue: 3
  year: 2020
  ident: 2021081315342155200_B5
  article-title: Impact of red blood cell transfusion dose density on progression-free survival in patients with lower-risk myelodysplastic syndromes
  publication-title: Haematologica.
  doi: 10.3324/haematol.2018.212217
– volume: 381
  start-page: 1909
  issue: 20
  year: 2019
  ident: 2021081315342155200_B34
  article-title: Large-scale assessment of a smartwatch to identify atrial fibrillation
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1901183
– volume: 13
  start-page: 27
  issue: 1
  year: 2019
  ident: 2021081315342155200_B28
  article-title: A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features
  publication-title: Radiol Phys Technol.
  doi: 10.1007/s12194-019-00543-5
– volume: 122
  start-page: 3616
  issue: 22
  year: 2013
  ident: 2021081315342155200_B57
  article-title: Clinical and biological implications of driver mutations in myelodysplastic syndromes
  publication-title: Blood.
  doi: 10.1182/blood-2013-08-518886
– volume: 136
  start-page: 33
  year: 2020
  ident: 2021081315342155200_B64
  article-title: A personalized clinical-decision tool to improve the diagnostic accuracy of myelodysplastic syndromes [abstract]
  publication-title: Blood.
  doi: 10.1182/blood-2020-139412
SSID ssj0001763592
Score 2.2966952
Snippet We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic...
A BM examination is the gold standard for the diagnosis of MDS, but it is invasive and subjective.A predictive algorithm/app using data of 10 readily available...
SourceID swepub
pubmedcentral
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3066
SubjectTerms Myeloid Neoplasia
Title A predictive algorithm using clinical and laboratory parameters may assist in ruling out and in diagnosing MDS
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2473952921003955
https://dx.doi.org/10.1182/bloodadvances.2020004055
https://www.proquest.com/docview/2561491447
https://pubmed.ncbi.nlm.nih.gov/PMC8405190
http://kipublications.ki.se/Default.aspx?queryparsed=id:147494585
Volume 5
WOSCitedRecordID wos000688536600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ - The Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-9537
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001763592
  issn: 2473-9529
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6wQMvEwgQZTAZCfFSReTDiW3xVA3QXjaQGFJ5Cq7jsoo2nbpmGv89d3acj2mTwgMvkeXm2tT3y_nufB-EvNWwicwBJwFoq2Cg8EgFKlRhwJVMQTQUGSuYbTbBz87EbCa_jkY_fS7M9YqXpbi5kZf_ldUwB8zG1Nl_YHfzpTABY2A6XIHtcB3E-Cnm_RdLK8cmavVrA-b_xXpSufRanwiJ_vIaAHjKjhXA1xgZczVZqz8T0KiB_TbXpbL56hi97Oo0obcWg_Nw9vTjt96hMAbB-6iCRlf_4nt_nDR65_F2U7kWVG0TMO_haRD1o7I--65bIrZ-VpcN7aRXzHgSyLR2Z9SiNu0iqis3wXDJ7hboAgvE2iB-__hg1GN-EWiaabuJ9cplu5qv-W8YmZylUiThHnkQ81TKjtFtvXBYj892zm6e14d7ifj9fT97nw7TsVFuR9j26tBa3eX8MTmojQ46dWB5QkamfErKKW2BQhugUAsU6oFCgeu0BQptgUIBKNQBhS5L6oBCASiWBGZaoFAAyjPy_fOn8-OToO6-EWjQoneBSrUw0UIJsIlTYxKuM1ijYi64KiRfLFSYFFpoWEA1T4pMCiWFjKTSSpgEhslzsl9uSvOC0BiLNho2B9s1YzJhSoSGLcICtG-hlNZjwv165rouTY8dUla5NVFFnPc4kbecGJOoobx05VkG0EjPstwvJmyYOUBuAO2HhrZWUZ3qOZD6jUdIDlIcj-ZUaTYV3IMFeWXEGIe16EGn-VsI7P4n5fLC1oMXDO2wcEze1cDvktzxLrwceuMhedS-2q_I_m5bmdfkob7eLa-2R2SPz8SRfZ_-AvLz6tg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+predictive+algorithm+using+clinical+and+laboratory+parameters+may+assist+in+ruling+out+and+in+diagnosing+MDS&rft.jtitle=Blood+advances&rft.au=Oster%2C+HS&rft.au=Crouch%2C+S&rft.au=Smith%2C+A&rft.au=Yu%2C+G&rft.date=2021-08-24&rft.issn=2473-9529&rft.volume=5&rft.issue=16&rft.spage=3066&rft_id=info:doi/10.1182%2Fbloodadvances.2020004055&rft.externalDocID=oai_swepub_ki_se_459830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-9529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-9529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-9529&client=summon