An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis

Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Science of the total environment Ročník 437; s. 145 - 152
Hlavní autori: Ullah, Saleem, Skidmore, Andrew K., Naeem, Mohammad, Schlerf, Martin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier B.V 15.10.2012
Elsevier
Predmet:
ISSN:0048-9697, 1879-1026, 1879-1026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5–14.0μm) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R2=0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R2=0.88, RMSE=8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation. ► The mid and thermal infrared spectra are sensitive to variation in leaf water content. ► Continuous wavelet analysis detected the variation caused by leaf water content. ► The selected wavelet features are highly correlated with leaf water content. ► Mid wave and thermal infrared spectra have the potential to estimate leaf water content.
AbstractList Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0 mu m) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R2=0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R2=0.88, RMSE=8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation.
Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0 μm) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R(2)=0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R(2)=0.88, RMSE=8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation.Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0 μm) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R(2)=0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R(2)=0.88, RMSE=8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation.
Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0 μm) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R(2)=0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R(2)=0.88, RMSE=8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation.
Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5–14.0μm) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R²=0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R²=0.88, RMSE=8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation.
Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5–14.0μm) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R2=0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R2=0.88, RMSE=8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation. ► The mid and thermal infrared spectra are sensitive to variation in leaf water content. ► Continuous wavelet analysis detected the variation caused by leaf water content. ► The selected wavelet features are highly correlated with leaf water content. ► Mid wave and thermal infrared spectra have the potential to estimate leaf water content.
Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0µm) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R 2=0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R 2=0.88, RMSE=8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation.
Author Schlerf, Martin
Ullah, Saleem
Skidmore, Andrew K.
Naeem, Mohammad
Author_xml – sequence: 1
  givenname: Saleem
  surname: Ullah
  fullname: Ullah, Saleem
  email: ullah19488@itc.nl
  organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
– sequence: 2
  givenname: Andrew K.
  surname: Skidmore
  fullname: Skidmore, Andrew K.
  organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
– sequence: 3
  givenname: Mohammad
  surname: Naeem
  fullname: Naeem, Mohammad
  organization: Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM), KPK, Pakistan
– sequence: 4
  givenname: Martin
  surname: Schlerf
  fullname: Schlerf, Martin
  organization: Centre de Recherche Public-Gabriel Lippmann (CRPGL), L-4422 Belvaux, Luxembourg
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26544135$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22940042$$D View this record in MEDLINE/PubMed
BookMark eNqNks1uEzEUhUeoiKaFVwBvkNgk-H88SCyiihakSmxgbXk8d4qjGTvYnkR9-3qakAWb1Jsr2d85vtc-V9WFDx6q6gPBK4KJ_LxZJetyyOB3K4oJXWG1wlS8qhZE1c2SYCovqgXGXC0b2dSX1VVKG1xWrcib6pLShpdDuqji2iNj7RRNBhQhRwc7M6DQowFMj_ZlOyIbfLkpoz6GEY2uQzmg_AfiWEjn-2gidChtweZo0JScf3iWOD-FKRWPHQyQkfFmeEwuva1e92ZI8O5Yr6vft99-3Xxf3v-8-3Gzvl9aIUheUstpx6ntG2hbY6VhXFKsWE-Ekm1LBVXMdLLH0koJzFrLmo6CxNxALZhi19WXg-_ePIAvTYHX3kTrkg7G6cG1pfFHvZ-i9sNctlObNGeUcl7Enw7ibQx_J0hZjy5ZGAbjoQyliayJEEqI-jzKpMC8JkqcR0kZi8kCvwAllLFGPbu-P6JTO0Knt9GN82T_frkAH4-ASdYM5cP8_AonTgrOCZuN6gNnY0gpQn9CCNZz7vRGn3Kn59xprHTJXVF-_U9ZMJNdSUE0bniBfn3QQwnEzkGcOfAWOhdLrHQX3FmPJ23b-38
CODEN STENDL
CitedBy_id crossref_primary_10_1016_j_agrformet_2017_08_020
crossref_primary_10_1016_j_rse_2018_06_041
crossref_primary_10_1080_01431161_2018_1454620
crossref_primary_10_1016_j_agwat_2020_106306
crossref_primary_10_1016_j_isprsjprs_2014_04_005
crossref_primary_10_1016_j_jag_2013_05_016
crossref_primary_10_1093_treephys_tpz062
crossref_primary_10_3390_su13137218
crossref_primary_10_1016_j_saa_2017_10_076
crossref_primary_10_1590_1983_21252024v3711701rc
crossref_primary_10_1016_j_agrformet_2016_08_016
crossref_primary_10_3389_fpls_2024_1478162
crossref_primary_10_1111_oik_01370
crossref_primary_10_3390_rs17010106
crossref_primary_10_1016_j_resconrec_2022_106485
crossref_primary_10_1016_j_rse_2021_112406
crossref_primary_10_1016_j_rse_2019_05_015
crossref_primary_10_1016_j_infrared_2022_104329
crossref_primary_10_3390_f15081463
crossref_primary_10_1016_j_jag_2017_11_014
crossref_primary_10_1002_ldr_5583
crossref_primary_10_1016_j_agwat_2020_106330
crossref_primary_10_1109_TGRS_2016_2626460
crossref_primary_10_1016_j_isprsjprs_2017_04_024
crossref_primary_10_1016_j_rse_2019_02_009
crossref_primary_10_1016_j_isprsjprs_2017_01_014
crossref_primary_10_1016_j_rse_2017_12_013
crossref_primary_10_1080_03736245_2016_1231627
crossref_primary_10_1016_j_jag_2019_101984
crossref_primary_10_1093_treephys_tpy112
crossref_primary_10_1016_j_ecolind_2020_106467
crossref_primary_10_1016_j_biosystemseng_2022_04_023
crossref_primary_10_1016_j_isprsjprs_2015_10_001
crossref_primary_10_1016_j_rse_2013_11_018
crossref_primary_10_1016_j_rse_2018_10_014
crossref_primary_10_1016_j_jag_2016_09_008
crossref_primary_10_3390_agriculture14030484
crossref_primary_10_1016_j_still_2021_105284
crossref_primary_10_1016_j_isprsjprs_2013_10_009
crossref_primary_10_3390_su11113197
crossref_primary_10_1111_pce_14149
crossref_primary_10_1016_j_isprsjprs_2015_11_003
crossref_primary_10_3390_s17122830
crossref_primary_10_1016_j_rse_2023_113631
crossref_primary_10_3390_rs14194809
crossref_primary_10_1016_j_rse_2018_02_027
crossref_primary_10_3390_w13141971
crossref_primary_10_1016_j_marpolbul_2014_06_046
crossref_primary_10_1016_j_isprsjprs_2016_09_015
crossref_primary_10_3390_rs14030584
Cites_doi 10.1109/18.86995
10.1016/j.patrec.2011.06.028
10.1016/j.agrformet.2006.01.008
10.1109/TGRS.2009.2029852
10.1071/BT98042
10.3390/s120708755
10.1016/j.rse.2011.11.008
10.1007/s10980-004-3159-6
10.1016/S0034-4257(01)00323-6
10.1016/0141-5425(92)90063-Q
10.1016/j.rse.2007.08.005
10.1080/01431161.2010.531777
10.1080/01431160500396683
10.1109/36.957284
10.1080/01431160600928625
10.1016/j.rse.2008.01.016
10.1039/b400410h
10.1109/TGRS.2010.2075937
10.1016/j.rse.2010.09.011
10.1080/01431160110069818
10.1016/0034-4257(93)90088-F
10.1016/j.isprsjprs.2007.05.009
10.1111/0031-868X.00162
10.1016/S0034-4257(01)00191-2
10.1111/j.1469-8137.2006.01823.x
10.1080/014311698214262
10.1080/01431160512331326738
10.1016/S0378-4371(02)01379-1
10.1109/LGRS.2010.2053518
10.1016/j.rse.2009.09.019
10.1016/S1360-1385(98)01213-8
10.1080/014311697217396
10.1109/TGRS.2003.810712
10.1016/j.geoderma.2005.08.002
10.1109/TGRS.2003.822750
10.1016/0034-4257(87)90094-0
10.1890/1051-0761(1997)007[1039:MPCSMU]2.0.CO;2
10.1016/j.rse.2007.01.008
10.1109/TGRS.1986.289589
10.1080/01431160310001654356
10.1016/j.rse.2004.03.006
10.1016/j.rse.2007.01.012
10.1021/ci034211+
10.1016/j.actaastro.2009.01.020
10.1080/10106040903505996
10.1016/S0034-4257(03)00071-3
10.1080/014311697216883
10.1142/S0219691308002203
10.1117/1.3480577
10.1016/j.jag.2012.05.008
10.1111/j.1469-8137.1994.tb04036.x
10.1016/j.rse.2010.11.001
10.1080/01431160903418241
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.1029/2009GL038906
10.1016/j.patcog.2004.03.010
10.1016/j.rse.2007.12.003
10.1080/01431169008955128
10.1080/01431161003698302
10.1016/j.jag.2007.02.001
10.1016/j.rse.2009.12.005
10.1093/bioinformatics/btl355
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright © 2012 Elsevier B.V. All rights reserved.
Wageningen University & Research
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
– notice: Copyright © 2012 Elsevier B.V. All rights reserved.
– notice: Wageningen University & Research
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QH
7ST
7TV
7UA
C1K
SOI
7S9
L.6
7SU
8FD
FR3
KR7
QVL
DOI 10.1016/j.scitotenv.2012.08.025
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Aqualine
Environment Abstracts
Pollution Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Pollution Abstracts
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environmental Engineering Abstracts
DatabaseTitleList Pollution Abstracts
MEDLINE - Academic
Civil Engineering Abstracts
MEDLINE
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
Chemistry
EISSN 1879-1026
EndPage 152
ExternalDocumentID oai_library_wur_nl_wurpubs_432244
22940042
26544135
10_1016_j_scitotenv_2012_08_025
S0048969712010960
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
HZ~
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QH
7ST
7TV
7UA
C1K
SOI
7S9
L.6
7SU
8FD
FR3
KR7
-
02
0R
1
8P
AAPBV
ABFLS
ABPTK
ADALY
ADKFC
AFRUD
G-
HZ
K
KM
M
QVL
STF
UNR
ID FETCH-LOGICAL-c551t-2c42d42cf9ebbac6a3462083f1586bb25283ad6f06c66e3ccc39d2e604ae75383
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000310941000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0048-9697
1879-1026
IngestDate Tue Jan 05 18:06:04 EST 2021
Tue Oct 07 09:56:06 EDT 2025
Mon Sep 29 04:36:25 EDT 2025
Tue Oct 07 09:42:56 EDT 2025
Sun Nov 09 10:25:01 EST 2025
Thu Apr 03 07:07:24 EDT 2025
Mon Jul 21 09:16:51 EDT 2025
Sat Nov 29 06:06:14 EST 2025
Tue Nov 18 21:44:55 EST 2025
Fri Feb 23 02:14:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Leaf water content
Wavelet analysis
Thermal infrared
Mid infrared
Remote sensing
Water content
Plant leaf
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2012 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c551t-2c42d42cf9ebbac6a3462083f1586bb25283ad6f06c66e3ccc39d2e604ae75383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22940042
PQID 1112339885
PQPubID 23479
PageCount 8
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_432244
proquest_miscellaneous_1671558557
proquest_miscellaneous_1365047185
proquest_miscellaneous_1125236471
proquest_miscellaneous_1112339885
pubmed_primary_22940042
pascalfrancis_primary_26544135
crossref_primary_10_1016_j_scitotenv_2012_08_025
crossref_citationtrail_10_1016_j_scitotenv_2012_08_025
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2012_08_025
ProviderPackageCode QVL
PublicationCentury 2000
PublicationDate 2012-10-15
PublicationDateYYYYMMDD 2012-10-15
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Peñuelas, Pinol, Ogaya, Filella (bb0245) 1997; 18
Chen, Hu, Shao, Su (bb0050) 2004; 129
Pu, Gong (bb0250) 2004; 91
Darvishzadeh, Skidmore, Schlerf, Atzberger (bb0105) 2008; 112
Ferwerda, Jones (bb0125) 2006
Zhu, Yang (bb0325) 1998; 19
Fabre, Lesaignoux, Olioso, Briottet (bb0120) 2011; 8
Li (bb0185) 2008; 6
Du, Kibbe, Lin (bb0115) 2006; 22
Miller, Hare, Wu (bb0200) 1990; 11
Sepulcre-Cantó, Zarco-Tejada, Jiménez-Muñoz, Sobrino, Ed, Villalobos (bb0280) 2006; 136
Mutanga, Skidmore, Kumar, Ferwerda (bb0220) 2005; 26
Aldakheel, Danson (bb0005) 1997; 18
Cho, Skidmore, Corsi, van Wieren, Sobhan (bb0085) 2007; 9
Chmelka, Kozumplik (bb0080) 2005; 32
Chuvieco, Riano, Aguado, Cocero (bb0090) 2002; 23
Salisbury, Milton (bb0275) 1988; 54
Ullah, Groen, Schlerf, Skidmore, Nieuwenhuis, Vaiphasa (bb0295) 2012; 12
Ceccato, Flasse, Tarantola, Jacquemoud, Grégoire (bb0045) 2001; 77
Chen, Qian (bb0055) 2011; 49
Soulard, Carré (bb0285) 2011; 32
Ullah, Schlerf, Skidmore, Hecker (bb0300) 2012; 118
Kalacska, Bohman, Sánchez-Azofeifa, Castro-Esau, Caelli (bb0155) 2007; 109
Kirkland, Herr, Keim, Adams, Salisbury, Hackwell (bb0165) 2002; 80
Ma, Shao (bb0190) 2004; 44
Harry (bb0140) 2006; 133
Ribeiro da Luz, Crowley (bb0265) 2010; 114
Bruce, Morgan, Larsen (bb0040) 2001; 39
Li (bb0180) 2004; 42
Zarrouk, Bennaceur (bb0315) 2009; 65
Hunt, Rock, Nobel (bb0145) 1987; 22
Myint, Mesev (bb0225) 2012; 3
Boyd, Petitcolin (bb0035) 2004; 25
Torrence, Compo (bb0290) 1998; 79
Chen, Itoh, Hashimoto (bb0060) 1993; E76D
Ribeiro da Luz, Crowley (bb0260) 2007; 109
Zygielbaum, Gitelson, Arkebauer, Rundquist (bb0330) 2009; 36
Murwira, Skidmore (bb0205) 2005; 20
Blackburn (bb0025) 2007; 28
Bauer, Daughtry, Biehl, Kanemasu, Hall (bb0020) 1986; 24
Kiema (bb0160) 2000; 16
Koger, Bruce, Shaw, Reddy (bb0170) 2003; 86
Cheng, Rivard, Sánchez-Azofeifa (bb0070) 2011; 115
Crowe, Gibson, Woolfson, Somekh (bb0100) 1992; 14
Kumar, Skidmore, Mutanga (bb0175) 2010; 25
Peñuelas, Gamon, Griffin, Field (bb0240) 1993; 46
Murwira, Skidmore (bb0215) 2010; 31
Cheng, Rivard, Sánchez-Azofeifa, Feng, Calvo-Polanco (bb0075) 2010; 114
Banskota, Wynne, Kayastha (bb0015) 2011; 32
Gerber, Marion, Olioso, Jacquemoud, da Luz, Fabre (bb0135) 2011; 115
Garnier, Laurent (bb0130) 1994; 128
Mallat (bb0195) 1991; 37
Ribeiro da Luz (bb0255) 2006; 172
Blackburn, Ferwerda (bb0030) 2008; 112
Kaewpijit, Le moigne, El-Ghazawi (bb0150) 2003; 41
Rivard, Feng, Gallie, Sánchez-Azofeifa (bb0270) 2008; 112
Murwira, Skidmore (bb0210) 2006; 27
Peñuelas, Filella (bb0235) 1998; 3
Amolins, Zhang, Dare (bb0010) 2007; 62
Corso, Kuhn, Lucena, Thome (bb0095) 2003; 318
Datt (bb0110) 1999; 47
Wan, Hsu, Ma (bb0310) 2010; 4
Zhang, Ustin, Rejmankova, Sanderson (bb0320) 1997; 7
Ullah, Si, Schlerf, Skidmore, Shafique, Iqbal (bb0305) 2012; 19
Cheng, Liang, Wang, Li (bb0065) 2010; 48
Pajares, de la Cruz (bb0230) 2004; 37
Pu (10.1016/j.scitotenv.2012.08.025_bb0250) 2004; 91
Banskota (10.1016/j.scitotenv.2012.08.025_bb0015) 2011; 32
Cho (10.1016/j.scitotenv.2012.08.025_bb0085) 2007; 9
Peñuelas (10.1016/j.scitotenv.2012.08.025_bb0245) 1997; 18
Amolins (10.1016/j.scitotenv.2012.08.025_bb0010) 2007; 62
Blackburn (10.1016/j.scitotenv.2012.08.025_bb0030) 2008; 112
Darvishzadeh (10.1016/j.scitotenv.2012.08.025_bb0105) 2008; 112
Garnier (10.1016/j.scitotenv.2012.08.025_bb0130) 1994; 128
Kiema (10.1016/j.scitotenv.2012.08.025_bb0160) 2000; 16
Ullah (10.1016/j.scitotenv.2012.08.025_bb0295) 2012; 12
Kalacska (10.1016/j.scitotenv.2012.08.025_bb0155) 2007; 109
Cheng (10.1016/j.scitotenv.2012.08.025_bb0065) 2010; 48
Boyd (10.1016/j.scitotenv.2012.08.025_bb0035) 2004; 25
Torrence (10.1016/j.scitotenv.2012.08.025_bb0290) 1998; 79
Ferwerda (10.1016/j.scitotenv.2012.08.025_bb0125) 2006
Kaewpijit (10.1016/j.scitotenv.2012.08.025_bb0150) 2003; 41
Kumar (10.1016/j.scitotenv.2012.08.025_bb0175) 2010; 25
Ribeiro da Luz (10.1016/j.scitotenv.2012.08.025_bb0255) 2006; 172
Miller (10.1016/j.scitotenv.2012.08.025_bb0200) 1990; 11
Murwira (10.1016/j.scitotenv.2012.08.025_bb0205) 2005; 20
Bruce (10.1016/j.scitotenv.2012.08.025_bb0040) 2001; 39
Du (10.1016/j.scitotenv.2012.08.025_bb0115) 2006; 22
Koger (10.1016/j.scitotenv.2012.08.025_bb0170) 2003; 86
Zhu (10.1016/j.scitotenv.2012.08.025_bb0325) 1998; 19
Mutanga (10.1016/j.scitotenv.2012.08.025_bb0220) 2005; 26
Blackburn (10.1016/j.scitotenv.2012.08.025_bb0025) 2007; 28
Ceccato (10.1016/j.scitotenv.2012.08.025_bb0045) 2001; 77
Murwira (10.1016/j.scitotenv.2012.08.025_bb0210) 2006; 27
Myint (10.1016/j.scitotenv.2012.08.025_bb0225) 2012; 3
Datt (10.1016/j.scitotenv.2012.08.025_bb0110) 1999; 47
Hunt (10.1016/j.scitotenv.2012.08.025_bb0145) 1987; 22
Chen (10.1016/j.scitotenv.2012.08.025_bb0060) 1993; E76D
Rivard (10.1016/j.scitotenv.2012.08.025_bb0270) 2008; 112
Sepulcre-Cantó (10.1016/j.scitotenv.2012.08.025_bb0280) 2006; 136
Ribeiro da Luz (10.1016/j.scitotenv.2012.08.025_bb0265) 2010; 114
Peñuelas (10.1016/j.scitotenv.2012.08.025_bb0240) 1993; 46
Ribeiro da Luz (10.1016/j.scitotenv.2012.08.025_bb0260) 2007; 109
Ullah (10.1016/j.scitotenv.2012.08.025_bb0300) 2012; 118
Crowe (10.1016/j.scitotenv.2012.08.025_bb0100) 1992; 14
Li (10.1016/j.scitotenv.2012.08.025_bb0180) 2004; 42
Soulard (10.1016/j.scitotenv.2012.08.025_bb0285) 2011; 32
Ma (10.1016/j.scitotenv.2012.08.025_bb0190) 2004; 44
Wan (10.1016/j.scitotenv.2012.08.025_bb0310) 2010; 4
Chen (10.1016/j.scitotenv.2012.08.025_bb0055) 2011; 49
Cheng (10.1016/j.scitotenv.2012.08.025_bb0075) 2010; 114
Cheng (10.1016/j.scitotenv.2012.08.025_bb0070) 2011; 115
Chuvieco (10.1016/j.scitotenv.2012.08.025_bb0090) 2002; 23
Pajares (10.1016/j.scitotenv.2012.08.025_bb0230) 2004; 37
Ullah (10.1016/j.scitotenv.2012.08.025_bb0305) 2012; 19
Peñuelas (10.1016/j.scitotenv.2012.08.025_bb0235) 1998; 3
Aldakheel (10.1016/j.scitotenv.2012.08.025_bb0005) 1997; 18
Kirkland (10.1016/j.scitotenv.2012.08.025_bb0165) 2002; 80
Murwira (10.1016/j.scitotenv.2012.08.025_bb0215) 2010; 31
Harry (10.1016/j.scitotenv.2012.08.025_bb0140) 2006; 133
Li (10.1016/j.scitotenv.2012.08.025_bb0185) 2008; 6
Corso (10.1016/j.scitotenv.2012.08.025_bb0095) 2003; 318
Zarrouk (10.1016/j.scitotenv.2012.08.025_bb0315) 2009; 65
Chmelka (10.1016/j.scitotenv.2012.08.025_bb0080) 2005; 32
Fabre (10.1016/j.scitotenv.2012.08.025_bb0120) 2011; 8
Bauer (10.1016/j.scitotenv.2012.08.025_bb0020) 1986; 24
Zygielbaum (10.1016/j.scitotenv.2012.08.025_bb0330) 2009; 36
Gerber (10.1016/j.scitotenv.2012.08.025_bb0135) 2011; 115
Mallat (10.1016/j.scitotenv.2012.08.025_bb0195) 1991; 37
Salisbury (10.1016/j.scitotenv.2012.08.025_bb0275) 1988; 54
Zhang (10.1016/j.scitotenv.2012.08.025_bb0320) 1997; 7
Chen (10.1016/j.scitotenv.2012.08.025_bb0050) 2004; 129
References_xml – volume: 114
  start-page: 404
  year: 2010
  end-page: 413
  ident: bb0265
  article-title: Identification of plant species by using high spatial and spectral resolution thermal infrared (8.0–13.5
  publication-title: Remote Sens Environ
– volume: 37
  start-page: 1855
  year: 2004
  end-page: 1872
  ident: bb0230
  article-title: A wavelet-based image fusion tutorial
  publication-title: Pattern Recognit
– volume: 44
  start-page: 907
  year: 2004
  end-page: 911
  ident: bb0190
  article-title: Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra
  publication-title: J Chem Inf Comput Sci
– volume: 12
  start-page: 8755
  year: 2012
  end-page: 8769
  ident: bb0295
  article-title: Using a genetic algorithm as an optimal band selector in the mid and thermal infrared (2.5–14
  publication-title: Sensors
– volume: 91
  start-page: 212
  year: 2004
  end-page: 224
  ident: bb0250
  article-title: Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping
  publication-title: Remote Sens Environ
– volume: 8
  start-page: 143
  year: 2011
  end-page: 147
  ident: bb0120
  article-title: Influence of water content on spectral reflectance of leaves in the 3–15
  publication-title: IEEE Geosci Remote Sens Lett
– volume: 28
  start-page: 2831
  year: 2007
  end-page: 2855
  ident: bb0025
  article-title: Wavelet decomposition of hyperspectral data: a novel approach to quantifying pigment concentrations in vegetation
  publication-title: Int J Remote Sens
– volume: 172
  start-page: 305
  year: 2006
  end-page: 318
  ident: bb0255
  article-title: Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies
  publication-title: New Phytol
– volume: 65
  start-page: 262
  year: 2009
  end-page: 272
  ident: bb0315
  article-title: A wavelet based analysis of cosmic rays modulation
  publication-title: Acta Astronaut
– volume: 112
  start-page: 1614
  year: 2008
  end-page: 1632
  ident: bb0030
  article-title: Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis
  publication-title: Remote Sens Environ
– volume: 24
  start-page: 65
  year: 1986
  end-page: 75
  ident: bb0020
  article-title: Field spectroscopy of agricultural crops
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 14
  start-page: 268
  year: 1992
  end-page: 272
  ident: bb0100
  article-title: Wavelet transform as a potential tool for ECG analysis and compression
  publication-title: J Biomed Eng
– volume: 3
  start-page: 151
  year: 1998
  end-page: 156
  ident: bb0235
  article-title: Visible and near-infrared reflectance techniques for diagnosing plant physiological status
  publication-title: Trends Plant Sci
– volume: 47
  start-page: 909
  year: 1999
  end-page: 923
  ident: bb0110
  article-title: Remote sensing of water content in Eucalyptus leaves
  publication-title: Aust J Bot
– volume: 22
  start-page: 2059
  year: 2006
  end-page: 2065
  ident: bb0115
  article-title: Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching
  publication-title: Bioinformatics
– volume: 7
  start-page: 1039
  year: 1997
  end-page: 1053
  ident: bb0320
  article-title: Monitoring pacific coast salt marshes using remote sensing
  publication-title: Ecol Appl
– volume: 129
  start-page: 664
  year: 2004
  end-page: 669
  ident: bb0050
  article-title: Variable selection by modified IPW (iterative predictor weighting)-PLS (partial least squares) in continuous wavelet regression models
  publication-title: Analyst
– volume: 133
  start-page: 478
  year: 2006
  ident: bb0140
  article-title: Principles of soil and plant water relations
  publication-title: Geoderma
– volume: 37
  start-page: 1019
  year: 1991
  end-page: 1033
  ident: bb0195
  article-title: Zero-crossings of a wavelet transform
  publication-title: IEEE Trans Inf Theory
– volume: 18
  start-page: 2869
  year: 1997
  end-page: 2875
  ident: bb0245
  article-title: Estimation of plant water concentration by the reflectance water index WI (R900/R970)
  publication-title: Int J Remote Sens
– volume: 20
  start-page: 217
  year: 2005
  end-page: 234
  ident: bb0205
  article-title: The response of elephants to the spatial heterogeneity of vegetation in a Southern African agricultural landscape
  publication-title: Landsc Ecol
– volume: 118
  start-page: 95
  year: 2012
  end-page: 102
  ident: bb0300
  article-title: Identifying plant species using mid-wave infrared (2.5–6
  publication-title: Remote Sens Environ
– volume: 4
  year: 2010
  ident: bb0310
  article-title: New approach for dynamic range compression of remote sensing image using wavelet fusion
  publication-title: J Appl Remote Sens
– volume: 112
  start-page: 2850
  year: 2008
  end-page: 2862
  ident: bb0270
  article-title: Continuous wavelets for the improved use of spectral libraries and hyperspectral data
  publication-title: Remote Sens Environ
– volume: 19
  start-page: 196
  year: 2012
  end-page: 204
  ident: bb0305
  article-title: Estimation of grassland biomass and nitrogen using MERIS data
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 25
  start-page: 327
  year: 2010
  end-page: 344
  ident: bb0175
  article-title: Leaf level experiments to discriminate between eucalyptus species using high spectral resolution reflectance data: use of derivatives, ratios and vegetation indices
  publication-title: Geocarto Int
– volume: 19
  start-page: 3197
  year: 1998
  end-page: 3203
  ident: bb0325
  article-title: Study of remote sensing image texture analysis and classification using wavelet
  publication-title: Int J Remote Sens
– volume: E76D
  start-page: 1454
  year: 1993
  end-page: 1461
  ident: bb0060
  article-title: ECG data-compression by using wavelet transform
  publication-title: IEICE Trans Inf Syst
– volume: 128
  start-page: 725
  year: 1994
  end-page: 736
  ident: bb0130
  article-title: Leaf anatomy, specific mass and water-content in congeneric annual and perennial grass species
  publication-title: New Phytol
– volume: 115
  start-page: 404
  year: 2011
  end-page: 414
  ident: bb0135
  article-title: Modeling directional–hemispherical reflectance and transmittance of fresh and dry leaves from 0.4
  publication-title: Remote Sens Environ
– volume: 11
  start-page: 1755
  year: 1990
  end-page: 1773
  ident: bb0200
  article-title: Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model
  publication-title: Int J Remote Sens
– volume: 109
  start-page: 393
  year: 2007
  end-page: 405
  ident: bb0260
  article-title: Spectral reflectance and emissivity features of broad leaf plants: prospects for remote sensing in the thermal infrared (8.0–14.0
  publication-title: Remote Sens Environ
– volume: 32
  start-page: 1669
  year: 2011
  end-page: 1678
  ident: bb0285
  article-title: Quaternionic wavelets for texture classification
  publication-title: Pattern Recognit Lett
– volume: 77
  start-page: 22
  year: 2001
  end-page: 33
  ident: bb0045
  article-title: Detecting vegetation leaf water content using reflectance in the optical domain
  publication-title: Remote Sens Environ
– volume: 27
  start-page: 2255
  year: 2006
  end-page: 2269
  ident: bb0210
  article-title: Monitoring change in the spatial heterogeneity of vegetation cover in an African savanna
  publication-title: Int J Remote Sens
– volume: 318
  start-page: 551
  year: 2003
  end-page: 561
  ident: bb0095
  article-title: Seismic ground roll time-frequency filtering using the Gaussian wavelet transform
  publication-title: Phys A Stat Mech Appl
– volume: 41
  start-page: 863
  year: 2003
  end-page: 871
  ident: bb0150
  article-title: Automatic reduction of hyperspectral imagery using wavelet spectral analysis
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 62
  start-page: 249
  year: 2007
  end-page: 263
  ident: bb0010
  article-title: Wavelet based image fusion techniques—an introduction, review and comparison
  publication-title: ISPRS J Photogramm Remote Sens
– volume: 39
  start-page: 2217
  year: 2001
  end-page: 2226
  ident: bb0040
  article-title: Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 23
  start-page: 2145
  year: 2002
  end-page: 2162
  ident: bb0090
  article-title: Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: applications in fire danger assessment
  publication-title: Int J Remote Sens
– start-page: 167
  year: 2006
  end-page: 178
  ident: bb0125
  article-title: Continuous wavelet transformations for hyperspectral feature detection
  publication-title: Progress in spatial data handling
– volume: 109
  start-page: 406
  year: 2007
  end-page: 415
  ident: bb0155
  article-title: Hyperspectral discrimination of tropical dry forest lianas and trees: comparative data reduction approaches at the leaf and canopy levels
  publication-title: Remote Sens Environ
– volume: 9
  start-page: 414
  year: 2007
  end-page: 424
  ident: bb0085
  article-title: Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 42
  start-page: 644
  year: 2004
  end-page: 649
  ident: bb0180
  article-title: Wavelet-based feature extraction for improved endmember abundance estimation in linear unmixing of hyperspectral signals
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 18
  start-page: 3683
  year: 1997
  end-page: 3690
  ident: bb0005
  article-title: Spectral reflectance of dehydrating leaves: measurements and modelling
  publication-title: Int J Remote Sens
– volume: 32
  start-page: 771
  year: 2005
  end-page: 774
  ident: bb0080
  article-title: Wavelet-based Wiener filter for electrocardiogram signal denoising
  publication-title: Computers in Cardiology
– volume: 6
  start-page: 37
  year: 2008
  end-page: 50
  ident: bb0185
  article-title: Multisensor remote sensing image fusion using stationary wavelet transform: effects of basis and decomposition level
  publication-title: Int J Wavelets Multiresolution Inf Process
– volume: 48
  start-page: 1588
  year: 2010
  end-page: 1597
  ident: bb0065
  article-title: A stepwise refining algorithm of temperature and emissivity separation for hyperspectral thermal infrared data
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 86
  start-page: 108
  year: 2003
  end-page: 119
  ident: bb0170
  article-title: Wavelet analysis of hyperspectral reflectance data for detecting pitted morning glory (
  publication-title: Remote Sens Environ
– volume: 79
  start-page: 61
  year: 1998
  end-page: 78
  ident: bb0290
  article-title: A practical guide to wavelet analysis
  publication-title: Bull Am Meteorol Soc
– volume: 36
  year: 2009
  ident: bb0330
  article-title: Non-destructive detection of water stress and estimation of relative water content in maize
  publication-title: Geophys Res Lett
– volume: 112
  start-page: 2592
  year: 2008
  end-page: 2604
  ident: bb0105
  article-title: Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland
  publication-title: Remote Sens Environ
– volume: 115
  start-page: 659
  year: 2011
  end-page: 670
  ident: bb0070
  article-title: Spectroscopic determination of leaf water content using continuous wavelet analysis
  publication-title: Remote Sens Environ
– volume: 80
  start-page: 447
  year: 2002
  end-page: 459
  ident: bb0165
  article-title: First use of an airborne thermal infrared hyperspectral scanner for compositional mapping
  publication-title: Remote Sens Environ
– volume: 136
  start-page: 31
  year: 2006
  end-page: 44
  ident: bb0280
  article-title: Detection of water stress in an olive orchard with thermal remote sensing imagery
  publication-title: Agr Forest Meteorol
– volume: 54
  start-page: 1301
  year: 1988
  end-page: 1304
  ident: bb0275
  article-title: Thermal infrared (2.5–13.5
  publication-title: Photogramm Eng Remote Sens
– volume: 16
  start-page: 997
  year: 2000
  end-page: 1006
  ident: bb0160
  article-title: Wavelet compression and the automatic classification of Landsat imagery
  publication-title: Photogramm Rec
– volume: 32
  start-page: 3551
  year: 2011
  end-page: 3563
  ident: bb0015
  article-title: Improving within-genus tree species discrimination using the discrete wavelet transform applied to airborne hyperspectral data
  publication-title: Int J Remote Sens
– volume: 114
  start-page: 899
  year: 2010
  end-page: 910
  ident: bb0075
  article-title: Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation
  publication-title: Remote Sens Environ
– volume: 3
  start-page: 141
  year: 2012
  end-page: 150
  ident: bb0225
  article-title: A comparative analysis of spatial indices and wavelet-based classification
  publication-title: Remote Sens Lett
– volume: 25
  start-page: 3343
  year: 2004
  end-page: 3368
  ident: bb0035
  article-title: Remote sensing of the terrestrial environment using middle infrared radiation (3.0–5.0
  publication-title: Int J Remote Sens
– volume: 26
  start-page: 1093
  year: 2005
  end-page: 1108
  ident: bb0220
  article-title: Estimating tropical pasture quality at canopy level using band depth analysis with continuum removal in the visible domain
  publication-title: Int J Remote Sens
– volume: 46
  start-page: 110
  year: 1993
  end-page: 118
  ident: bb0240
  article-title: Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance
  publication-title: Remote Sens Environ
– volume: 22
  start-page: 429
  year: 1987
  end-page: 435
  ident: bb0145
  article-title: Measurement of leaf relative water-content by infrared reflectance
  publication-title: Remote Sens Environ
– volume: 49
  start-page: 973
  year: 2011
  end-page: 980
  ident: bb0055
  article-title: Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 31
  start-page: 6425
  year: 2010
  end-page: 6440
  ident: bb0215
  article-title: Comparing direct image and wavelet transform-based approaches to analysing remote sensing imagery for predicting wildlife distribution
  publication-title: Int J Remote Sens
– volume: 32
  start-page: 771
  year: 2005
  ident: 10.1016/j.scitotenv.2012.08.025_bb0080
  article-title: Wavelet-based Wiener filter for electrocardiogram signal denoising
– volume: 37
  start-page: 1019
  year: 1991
  ident: 10.1016/j.scitotenv.2012.08.025_bb0195
  article-title: Zero-crossings of a wavelet transform
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.86995
– volume: 32
  start-page: 1669
  year: 2011
  ident: 10.1016/j.scitotenv.2012.08.025_bb0285
  article-title: Quaternionic wavelets for texture classification
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2011.06.028
– volume: 136
  start-page: 31
  year: 2006
  ident: 10.1016/j.scitotenv.2012.08.025_bb0280
  article-title: Detection of water stress in an olive orchard with thermal remote sensing imagery
  publication-title: Agr Forest Meteorol
  doi: 10.1016/j.agrformet.2006.01.008
– volume: 48
  start-page: 1588
  year: 2010
  ident: 10.1016/j.scitotenv.2012.08.025_bb0065
  article-title: A stepwise refining algorithm of temperature and emissivity separation for hyperspectral thermal infrared data
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2009.2029852
– volume: 47
  start-page: 909
  year: 1999
  ident: 10.1016/j.scitotenv.2012.08.025_bb0110
  article-title: Remote sensing of water content in Eucalyptus leaves
  publication-title: Aust J Bot
  doi: 10.1071/BT98042
– volume: 12
  start-page: 8755
  year: 2012
  ident: 10.1016/j.scitotenv.2012.08.025_bb0295
  article-title: Using a genetic algorithm as an optimal band selector in the mid and thermal infrared (2.5–14μm) to discriminate vegetation species
  publication-title: Sensors
  doi: 10.3390/s120708755
– volume: 118
  start-page: 95
  year: 2012
  ident: 10.1016/j.scitotenv.2012.08.025_bb0300
  article-title: Identifying plant species using mid-wave infrared (2.5–6μm) and thermal infrared (8–14μm) emissivity spectra
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2011.11.008
– volume: 20
  start-page: 217
  year: 2005
  ident: 10.1016/j.scitotenv.2012.08.025_bb0205
  article-title: The response of elephants to the spatial heterogeneity of vegetation in a Southern African agricultural landscape
  publication-title: Landsc Ecol
  doi: 10.1007/s10980-004-3159-6
– volume: 80
  start-page: 447
  year: 2002
  ident: 10.1016/j.scitotenv.2012.08.025_bb0165
  article-title: First use of an airborne thermal infrared hyperspectral scanner for compositional mapping
  publication-title: Remote Sens Environ
  doi: 10.1016/S0034-4257(01)00323-6
– volume: 14
  start-page: 268
  year: 1992
  ident: 10.1016/j.scitotenv.2012.08.025_bb0100
  article-title: Wavelet transform as a potential tool for ECG analysis and compression
  publication-title: J Biomed Eng
  doi: 10.1016/0141-5425(92)90063-Q
– volume: 112
  start-page: 1614
  year: 2008
  ident: 10.1016/j.scitotenv.2012.08.025_bb0030
  article-title: Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2007.08.005
– volume: 3
  start-page: 141
  year: 2012
  ident: 10.1016/j.scitotenv.2012.08.025_bb0225
  article-title: A comparative analysis of spatial indices and wavelet-based classification
  publication-title: Remote Sens Lett
  doi: 10.1080/01431161.2010.531777
– volume: 27
  start-page: 2255
  year: 2006
  ident: 10.1016/j.scitotenv.2012.08.025_bb0210
  article-title: Monitoring change in the spatial heterogeneity of vegetation cover in an African savanna
  publication-title: Int J Remote Sens
  doi: 10.1080/01431160500396683
– volume: 39
  start-page: 2217
  year: 2001
  ident: 10.1016/j.scitotenv.2012.08.025_bb0040
  article-title: Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/36.957284
– volume: 28
  start-page: 2831
  year: 2007
  ident: 10.1016/j.scitotenv.2012.08.025_bb0025
  article-title: Wavelet decomposition of hyperspectral data: a novel approach to quantifying pigment concentrations in vegetation
  publication-title: Int J Remote Sens
  doi: 10.1080/01431160600928625
– volume: 112
  start-page: 2850
  year: 2008
  ident: 10.1016/j.scitotenv.2012.08.025_bb0270
  article-title: Continuous wavelets for the improved use of spectral libraries and hyperspectral data
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2008.01.016
– volume: 129
  start-page: 664
  year: 2004
  ident: 10.1016/j.scitotenv.2012.08.025_bb0050
  article-title: Variable selection by modified IPW (iterative predictor weighting)-PLS (partial least squares) in continuous wavelet regression models
  publication-title: Analyst
  doi: 10.1039/b400410h
– volume: 49
  start-page: 973
  year: 2011
  ident: 10.1016/j.scitotenv.2012.08.025_bb0055
  article-title: Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2010.2075937
– volume: 115
  start-page: 404
  year: 2011
  ident: 10.1016/j.scitotenv.2012.08.025_bb0135
  article-title: Modeling directional–hemispherical reflectance and transmittance of fresh and dry leaves from 0.4μm to 5.7μm with the PROSPECT-VISIR model
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2010.09.011
– volume: 23
  start-page: 2145
  year: 2002
  ident: 10.1016/j.scitotenv.2012.08.025_bb0090
  article-title: Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: applications in fire danger assessment
  publication-title: Int J Remote Sens
  doi: 10.1080/01431160110069818
– volume: 46
  start-page: 110
  year: 1993
  ident: 10.1016/j.scitotenv.2012.08.025_bb0240
  article-title: Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance
  publication-title: Remote Sens Environ
  doi: 10.1016/0034-4257(93)90088-F
– volume: 62
  start-page: 249
  year: 2007
  ident: 10.1016/j.scitotenv.2012.08.025_bb0010
  article-title: Wavelet based image fusion techniques—an introduction, review and comparison
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2007.05.009
– volume: 16
  start-page: 997
  year: 2000
  ident: 10.1016/j.scitotenv.2012.08.025_bb0160
  article-title: Wavelet compression and the automatic classification of Landsat imagery
  publication-title: Photogramm Rec
  doi: 10.1111/0031-868X.00162
– volume: 77
  start-page: 22
  year: 2001
  ident: 10.1016/j.scitotenv.2012.08.025_bb0045
  article-title: Detecting vegetation leaf water content using reflectance in the optical domain
  publication-title: Remote Sens Environ
  doi: 10.1016/S0034-4257(01)00191-2
– volume: 172
  start-page: 305
  year: 2006
  ident: 10.1016/j.scitotenv.2012.08.025_bb0255
  article-title: Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2006.01823.x
– volume: E76D
  start-page: 1454
  year: 1993
  ident: 10.1016/j.scitotenv.2012.08.025_bb0060
  article-title: ECG data-compression by using wavelet transform
  publication-title: IEICE Trans Inf Syst
– volume: 19
  start-page: 3197
  year: 1998
  ident: 10.1016/j.scitotenv.2012.08.025_bb0325
  article-title: Study of remote sensing image texture analysis and classification using wavelet
  publication-title: Int J Remote Sens
  doi: 10.1080/014311698214262
– volume: 26
  start-page: 1093
  year: 2005
  ident: 10.1016/j.scitotenv.2012.08.025_bb0220
  article-title: Estimating tropical pasture quality at canopy level using band depth analysis with continuum removal in the visible domain
  publication-title: Int J Remote Sens
  doi: 10.1080/01431160512331326738
– volume: 54
  start-page: 1301
  year: 1988
  ident: 10.1016/j.scitotenv.2012.08.025_bb0275
  article-title: Thermal infrared (2.5–13.5μm) directional hemispherical reflectance of leaves
  publication-title: Photogramm Eng Remote Sens
– volume: 318
  start-page: 551
  year: 2003
  ident: 10.1016/j.scitotenv.2012.08.025_bb0095
  article-title: Seismic ground roll time-frequency filtering using the Gaussian wavelet transform
  publication-title: Phys A Stat Mech Appl
  doi: 10.1016/S0378-4371(02)01379-1
– volume: 8
  start-page: 143
  year: 2011
  ident: 10.1016/j.scitotenv.2012.08.025_bb0120
  article-title: Influence of water content on spectral reflectance of leaves in the 3–15μm domain
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2010.2053518
– volume: 114
  start-page: 404
  year: 2010
  ident: 10.1016/j.scitotenv.2012.08.025_bb0265
  article-title: Identification of plant species by using high spatial and spectral resolution thermal infrared (8.0–13.5μm) imagery
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2009.09.019
– volume: 3
  start-page: 151
  year: 1998
  ident: 10.1016/j.scitotenv.2012.08.025_bb0235
  article-title: Visible and near-infrared reflectance techniques for diagnosing plant physiological status
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(98)01213-8
– volume: 18
  start-page: 2869
  year: 1997
  ident: 10.1016/j.scitotenv.2012.08.025_bb0245
  article-title: Estimation of plant water concentration by the reflectance water index WI (R900/R970)
  publication-title: Int J Remote Sens
  doi: 10.1080/014311697217396
– volume: 41
  start-page: 863
  year: 2003
  ident: 10.1016/j.scitotenv.2012.08.025_bb0150
  article-title: Automatic reduction of hyperspectral imagery using wavelet spectral analysis
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2003.810712
– volume: 133
  start-page: 478
  year: 2006
  ident: 10.1016/j.scitotenv.2012.08.025_bb0140
  article-title: Principles of soil and plant water relations
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.08.002
– volume: 42
  start-page: 644
  year: 2004
  ident: 10.1016/j.scitotenv.2012.08.025_bb0180
  article-title: Wavelet-based feature extraction for improved endmember abundance estimation in linear unmixing of hyperspectral signals
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2003.822750
– volume: 22
  start-page: 429
  year: 1987
  ident: 10.1016/j.scitotenv.2012.08.025_bb0145
  article-title: Measurement of leaf relative water-content by infrared reflectance
  publication-title: Remote Sens Environ
  doi: 10.1016/0034-4257(87)90094-0
– volume: 7
  start-page: 1039
  year: 1997
  ident: 10.1016/j.scitotenv.2012.08.025_bb0320
  article-title: Monitoring pacific coast salt marshes using remote sensing
  publication-title: Ecol Appl
  doi: 10.1890/1051-0761(1997)007[1039:MPCSMU]2.0.CO;2
– volume: 109
  start-page: 393
  year: 2007
  ident: 10.1016/j.scitotenv.2012.08.025_bb0260
  article-title: Spectral reflectance and emissivity features of broad leaf plants: prospects for remote sensing in the thermal infrared (8.0–14.0μm)
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2007.01.008
– volume: 24
  start-page: 65
  year: 1986
  ident: 10.1016/j.scitotenv.2012.08.025_bb0020
  article-title: Field spectroscopy of agricultural crops
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.1986.289589
– volume: 25
  start-page: 3343
  year: 2004
  ident: 10.1016/j.scitotenv.2012.08.025_bb0035
  article-title: Remote sensing of the terrestrial environment using middle infrared radiation (3.0–5.0μm)
  publication-title: Int J Remote Sens
  doi: 10.1080/01431160310001654356
– volume: 91
  start-page: 212
  year: 2004
  ident: 10.1016/j.scitotenv.2012.08.025_bb0250
  article-title: Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2004.03.006
– volume: 109
  start-page: 406
  year: 2007
  ident: 10.1016/j.scitotenv.2012.08.025_bb0155
  article-title: Hyperspectral discrimination of tropical dry forest lianas and trees: comparative data reduction approaches at the leaf and canopy levels
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2007.01.012
– volume: 44
  start-page: 907
  year: 2004
  ident: 10.1016/j.scitotenv.2012.08.025_bb0190
  article-title: Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci034211+
– volume: 65
  start-page: 262
  year: 2009
  ident: 10.1016/j.scitotenv.2012.08.025_bb0315
  article-title: A wavelet based analysis of cosmic rays modulation
  publication-title: Acta Astronaut
  doi: 10.1016/j.actaastro.2009.01.020
– volume: 25
  start-page: 327
  year: 2010
  ident: 10.1016/j.scitotenv.2012.08.025_bb0175
  article-title: Leaf level experiments to discriminate between eucalyptus species using high spectral resolution reflectance data: use of derivatives, ratios and vegetation indices
  publication-title: Geocarto Int
  doi: 10.1080/10106040903505996
– start-page: 167
  year: 2006
  ident: 10.1016/j.scitotenv.2012.08.025_bb0125
  article-title: Continuous wavelet transformations for hyperspectral feature detection
– volume: 86
  start-page: 108
  year: 2003
  ident: 10.1016/j.scitotenv.2012.08.025_bb0170
  article-title: Wavelet analysis of hyperspectral reflectance data for detecting pitted morning glory (Ipomoea lacunosa) in soybean (Glycine max)
  publication-title: Remote Sens Environ
  doi: 10.1016/S0034-4257(03)00071-3
– volume: 18
  start-page: 3683
  year: 1997
  ident: 10.1016/j.scitotenv.2012.08.025_bb0005
  article-title: Spectral reflectance of dehydrating leaves: measurements and modelling
  publication-title: Int J Remote Sens
  doi: 10.1080/014311697216883
– volume: 6
  start-page: 37
  year: 2008
  ident: 10.1016/j.scitotenv.2012.08.025_bb0185
  article-title: Multisensor remote sensing image fusion using stationary wavelet transform: effects of basis and decomposition level
  publication-title: Int J Wavelets Multiresolution Inf Process
  doi: 10.1142/S0219691308002203
– volume: 4
  year: 2010
  ident: 10.1016/j.scitotenv.2012.08.025_bb0310
  article-title: New approach for dynamic range compression of remote sensing image using wavelet fusion
  publication-title: J Appl Remote Sens
  doi: 10.1117/1.3480577
– volume: 19
  start-page: 196
  year: 2012
  ident: 10.1016/j.scitotenv.2012.08.025_bb0305
  article-title: Estimation of grassland biomass and nitrogen using MERIS data
  publication-title: Int J Appl Earth Obs Geoinf
  doi: 10.1016/j.jag.2012.05.008
– volume: 128
  start-page: 725
  year: 1994
  ident: 10.1016/j.scitotenv.2012.08.025_bb0130
  article-title: Leaf anatomy, specific mass and water-content in congeneric annual and perennial grass species
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1994.tb04036.x
– volume: 115
  start-page: 659
  year: 2011
  ident: 10.1016/j.scitotenv.2012.08.025_bb0070
  article-title: Spectroscopic determination of leaf water content using continuous wavelet analysis
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2010.11.001
– volume: 31
  start-page: 6425
  year: 2010
  ident: 10.1016/j.scitotenv.2012.08.025_bb0215
  article-title: Comparing direct image and wavelet transform-based approaches to analysing remote sensing imagery for predicting wildlife distribution
  publication-title: Int J Remote Sens
  doi: 10.1080/01431160903418241
– volume: 79
  start-page: 61
  year: 1998
  ident: 10.1016/j.scitotenv.2012.08.025_bb0290
  article-title: A practical guide to wavelet analysis
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– volume: 36
  year: 2009
  ident: 10.1016/j.scitotenv.2012.08.025_bb0330
  article-title: Non-destructive detection of water stress and estimation of relative water content in maize
  publication-title: Geophys Res Lett
  doi: 10.1029/2009GL038906
– volume: 37
  start-page: 1855
  year: 2004
  ident: 10.1016/j.scitotenv.2012.08.025_bb0230
  article-title: A wavelet-based image fusion tutorial
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2004.03.010
– volume: 112
  start-page: 2592
  year: 2008
  ident: 10.1016/j.scitotenv.2012.08.025_bb0105
  article-title: Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2007.12.003
– volume: 11
  start-page: 1755
  year: 1990
  ident: 10.1016/j.scitotenv.2012.08.025_bb0200
  article-title: Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model
  publication-title: Int J Remote Sens
  doi: 10.1080/01431169008955128
– volume: 32
  start-page: 3551
  year: 2011
  ident: 10.1016/j.scitotenv.2012.08.025_bb0015
  article-title: Improving within-genus tree species discrimination using the discrete wavelet transform applied to airborne hyperspectral data
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161003698302
– volume: 9
  start-page: 414
  year: 2007
  ident: 10.1016/j.scitotenv.2012.08.025_bb0085
  article-title: Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression
  publication-title: Int J Appl Earth Obs Geoinf
  doi: 10.1016/j.jag.2007.02.001
– volume: 114
  start-page: 899
  year: 2010
  ident: 10.1016/j.scitotenv.2012.08.025_bb0075
  article-title: Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2009.12.005
– volume: 22
  start-page: 2059
  year: 2006
  ident: 10.1016/j.scitotenv.2012.08.025_bb0115
  article-title: Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl355
SSID ssj0000781
Score 2.3072214
Snippet Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf...
SourceID wageningen
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 145
SubjectTerms analysis
Animal, plant and microbial ecology
Applied ecology
Biological and medical sciences
chemistry
classification
compression
drought
drying
Ecotoxicology, biological effects of pollution
electromagnetic radiation
Fundamental and applied biological sciences. Psychology
General aspects
General aspects. Techniques
hyperspectral data
Infrared
Infrared spectra
Leaf water content
leaves
Magnoliopsida
Magnoliopsida - chemistry
methods
Mid infrared
Moisture content
mu-m
photosynthesis
plant health
Plant Leaves
Plant Leaves - chemistry
Power plants
reflectance
reflectance data
Remote sensing
remote-sensing imagery
Retrieval
spatial heterogeneity
Spectra
Spectrophotometry, Infrared
Spectrophotometry, Infrared - methods
Teledetection and vegetation maps
Thermal infrared
transform
vegetation
Water
Water - analysis
water content
Wavelet
Wavelet Analysis
Title An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis
URI https://dx.doi.org/10.1016/j.scitotenv.2012.08.025
https://www.ncbi.nlm.nih.gov/pubmed/22940042
https://www.proquest.com/docview/1112339885
https://www.proquest.com/docview/1125236471
https://www.proquest.com/docview/1365047185
https://www.proquest.com/docview/1671558557
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F432244
Volume 437
WOSCitedRecordID wos000310941000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBa9bNBRxpa1W3YpGuwtuNiyLdl7CyNjN8pg7cibkG2ZtiROcG7dj9t_2zmWbKe0SzfGXpxgJFvW-XxuPhdC3vhcJyAYhaMZz52Au4mjBOeOyoSvXO0zVeXCfP8iTk6i4TD-urX1s86FWY5EUURXV_H0v5IazgGxMXX2L8jdXBROwH8gOhyB7HD8I8L3i55K0wWWgOiVVb-spVE4R1rlvZXCqogYoF5VZcLkkvFFZjVQYNJYgiMvq6j0KgmzVL2FTczFnhILjJhdKexWgaHppqDJuoKLsKv5hQ0_mE8w4XIto64m8hlA8Ny4pUfaupBNP7CsCf-t4i17n48bp7WCkZUXd3KuxmOVtV-SsI9zbvOP6oLi1p_hMRQEJqPTONluJNoYxh0AX-YmlPdYG14diRgmm4T7mpkHpoSMZceeKVVpJbtnauXeEBrGf3F5DDoH7AhsB0b8saqyKwtbOdlEL37D1eBiPAwlABNwm-wyEcYgF3b7HwfDT60qICLTstGu_lqA4a23-516tD9VM3hpc9Nt5TZz6AHZW8FTFlVO3pqOdPqIPLTGDe0bUD4mW7rokPum3emPDjkctBiAYRYmsw7ZN85janLinpCyX9Aaw7TBMJ3kFDFMKwxTi2GKGKaAYTqfUIthWmOYWgzTCsO0xTC1GKY1hg_I2fvB6bsPjm0O4qSg5M8dlgYsC1iaxzpJVMqVH3AG9kTuhRFPEoZFi1TGc5ennGs_TVM_zpjmbqA0mOiRf0h2ikmhnxEqwgQYlQiSWKgg1m6SeCDaYA4or66bxV3Ca5rI1FbOxwYuI1mHSF7KhpgSiSmxtSsLu8RtJk5N8Zi7p7ytiS6tDmx0WwlovXvy0TWYNDdlHFsN-jDgdY0bCWIEvw2qQsOuoyOA-X4cRRvHwK5ivwlvwxgfTD5UeDddhwuwYqIwFF3y1IC3XSmLUatgXeK3aJYF9lWbSSyFb53bcrUoZTHCH7jCTAagmATB83_ZvRdkr-VHL8nOvFzoV-ReupxfzMojsi2G0ZF9wX8Bpvc4tg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accurate+retrieval+of+leaf+water+content+from+mid+to+thermal+infrared+spectra+using+continuous+wavelet+analysis&rft.jtitle=The+Science+of+the+total+environment&rft.au=Ullah%2C+Saleem&rft.au=Skidmore%2C+Andrew+K.&rft.au=Naeem%2C+Mohammad&rft.au=Schlerf%2C+Martin&rft.date=2012-10-15&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=437&rft.spage=145&rft.epage=152&rft_id=info:doi/10.1016%2Fj.scitotenv.2012.08.025&rft.externalDocID=S0048969712010960
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon