Guide to Metabolomics Analysis: A Bioinformatics Workflow
Metabolomics is an emerging field that quantifies numerous metabolites systematically. The key purpose of metabolomics is to identify the metabolites corresponding to each biological phenotype, and then provide an analysis of the mechanisms involved. Although metabolomics is important to understand...
Gespeichert in:
| Veröffentlicht in: | Metabolites Jg. 12; H. 4; S. 357 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
15.04.2022
MDPI |
| Schlagworte: | |
| ISSN: | 2218-1989, 2218-1989 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Metabolomics is an emerging field that quantifies numerous metabolites systematically. The key purpose of metabolomics is to identify the metabolites corresponding to each biological phenotype, and then provide an analysis of the mechanisms involved. Although metabolomics is important to understand the involved biological phenomena, the approach’s ability to obtain an exhaustive description of the processes is limited. Thus, an analysis-integrated metabolomics, transcriptomics, proteomics, and other omics approach is recommended. Such integration of different omics data requires specialized statistical and bioinformatics software. This review focuses on the steps involved in metabolomics research and summarizes several main tools for metabolomics analyses. We also outline the most abnormal metabolic pathways in several cancers and diseases, and discuss the importance of multi-omics integration algorithms. Overall, our goal is to summarize the current metabolomics analysis workflow and its main analysis software to provide useful insights for researchers to establish a preferable pipeline of metabolomics or multi-omics analysis. |
|---|---|
| AbstractList | Metabolomics is an emerging field that quantifies numerous metabolites systematically. The key purpose of metabolomics is to identify the metabolites corresponding to each biological phenotype, and then provide an analysis of the mechanisms involved. Although metabolomics is important to understand the involved biological phenomena, the approach’s ability to obtain an exhaustive description of the processes is limited. Thus, an analysis-integrated metabolomics, transcriptomics, proteomics, and other omics approach is recommended. Such integration of different omics data requires specialized statistical and bioinformatics software. This review focuses on the steps involved in metabolomics research and summarizes several main tools for metabolomics analyses. We also outline the most abnormal metabolic pathways in several cancers and diseases, and discuss the importance of multi-omics integration algorithms. Overall, our goal is to summarize the current metabolomics analysis workflow and its main analysis software to provide useful insights for researchers to establish a preferable pipeline of metabolomics or multi-omics analysis. Metabolomics is an emerging field that quantifies numerous metabolites systematically. The key purpose of metabolomics is to identify the metabolites corresponding to each biological phenotype, and then provide an analysis of the mechanisms involved. Although metabolomics is important to understand the involved biological phenomena, the approach's ability to obtain an exhaustive description of the processes is limited. Thus, an analysis-integrated metabolomics, transcriptomics, proteomics, and other omics approach is recommended. Such integration of different omics data requires specialized statistical and bioinformatics software. This review focuses on the steps involved in metabolomics research and summarizes several main tools for metabolomics analyses. We also outline the most abnormal metabolic pathways in several cancers and diseases, and discuss the importance of multi-omics integration algorithms. Overall, our goal is to summarize the current metabolomics analysis workflow and its main analysis software to provide useful insights for researchers to establish a preferable pipeline of metabolomics or multi-omics analysis.Metabolomics is an emerging field that quantifies numerous metabolites systematically. The key purpose of metabolomics is to identify the metabolites corresponding to each biological phenotype, and then provide an analysis of the mechanisms involved. Although metabolomics is important to understand the involved biological phenomena, the approach's ability to obtain an exhaustive description of the processes is limited. Thus, an analysis-integrated metabolomics, transcriptomics, proteomics, and other omics approach is recommended. Such integration of different omics data requires specialized statistical and bioinformatics software. This review focuses on the steps involved in metabolomics research and summarizes several main tools for metabolomics analyses. We also outline the most abnormal metabolic pathways in several cancers and diseases, and discuss the importance of multi-omics integration algorithms. Overall, our goal is to summarize the current metabolomics analysis workflow and its main analysis software to provide useful insights for researchers to establish a preferable pipeline of metabolomics or multi-omics analysis. |
| Author | Chen, Yang Xu, Li-Yan Li, En-Min |
| AuthorAffiliation | 1 The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; cy_koasde@163.com 3 Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China 2 Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China |
| AuthorAffiliation_xml | – name: 1 The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; cy_koasde@163.com – name: 3 Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China – name: 2 Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China |
| Author_xml | – sequence: 1 givenname: Yang surname: Chen fullname: Chen, Yang – sequence: 2 givenname: En-Min orcidid: 0000-0001-6375-3614 surname: Li fullname: Li, En-Min – sequence: 3 givenname: Li-Yan orcidid: 0000-0002-1618-4292 surname: Xu fullname: Xu, Li-Yan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35448542$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks1PFTEUxRsDEUS2Ls0kbtw87OdM68LkQRRJIGw0Lpt-3ME-O1NsZzT89_a9B4ZHQjdtes_55fTevkJ7YxoBoTcEnzCm8IcBJmMToZhjJroX6JBSIhdESbX36HyAjktZ4bpaLDpMXqIDJjiXgtNDpM7n4KGZUnO1gcU0BFea5WjiXQnlY7NsTkMKY5_yYKZ16UfKv_qY_r5G-72JBY7v9yP0_cvnb2dfF5fX5xdny8uFEwJPC-sAOJOOWmMU96S1BgSR1IEALzqCwfheGkMVZcwR1XrZc9VR3llrJCh2hC62XJ_MSt_mMJh8p5MJenOR8o02uSaLoHkvCDXVDZjwlirVectAes-pt9L1lfVpy7qd7QDewThlE3egu5Ux_NQ36Y9WmFFKeQW8vwfk9HuGMukhFAcxmhHSXDRta1dlW_NX6bsn0lWac-3rRlXDCSbWr3v7ONH_KA8TqgK-FbicSsnQaxemOom0DhiiJliv_4Le_QvVdvLE9kB-xvAPksu2lA |
| CitedBy_id | crossref_primary_10_3390_molecules28227616 crossref_primary_10_3389_fvets_2024_1393276 crossref_primary_10_3390_ijms252212371 crossref_primary_10_1002_bmc_6089 crossref_primary_10_1055_s_0044_1779025 crossref_primary_10_3389_fcimb_2023_1179967 crossref_primary_10_3390_separations12020041 crossref_primary_10_1016_j_ecoenv_2023_114979 crossref_primary_10_1016_j_marenvres_2025_107410 crossref_primary_10_1093_chemse_bjaf019 crossref_primary_10_1080_00218839_2025_2455852 crossref_primary_10_1016_j_fsi_2024_109900 crossref_primary_10_1016_j_cca_2024_120038 crossref_primary_10_3389_fendo_2022_993253 crossref_primary_10_3390_cancers16010185 crossref_primary_10_1016_j_cca_2024_119842 crossref_primary_10_3390_metabo15020140 crossref_primary_10_3389_fmedt_2024_1434799 crossref_primary_10_1080_14789450_2025_2463324 crossref_primary_10_1016_j_trac_2023_117374 crossref_primary_10_3390_ijms26020474 crossref_primary_10_3390_ijms26178466 crossref_primary_10_1021_acs_chemrestox_5c00203 crossref_primary_10_1016_j_eplepsyres_2025_107656 crossref_primary_10_2903_sp_efsa_2024_EN_8602 crossref_primary_10_1002_mas_21899 crossref_primary_10_1007_s11274_023_03841_8 crossref_primary_10_1016_j_exer_2025_110507 crossref_primary_10_1186_s12859_024_05719_4 crossref_primary_10_1080_14789450_2024_2315193 crossref_primary_10_1136_bmjnph_2024_000883 crossref_primary_10_1016_j_sampre_2025_100186 crossref_primary_10_3390_ijms242417543 crossref_primary_10_1038_s41405_024_00199_3 crossref_primary_10_1002_wics_70045 crossref_primary_10_1186_s12884_023_06102_6 crossref_primary_10_1016_j_heares_2022_108645 crossref_primary_10_1016_j_pnmrs_2025_101564 crossref_primary_10_1002_mas_21896 crossref_primary_10_3389_fimmu_2023_1228795 crossref_primary_10_1038_s41564_025_02083_8 crossref_primary_10_1016_j_freeradbiomed_2025_01_049 crossref_primary_10_1007_s11912_024_01508_7 crossref_primary_10_1007_s10142_024_01486_w crossref_primary_10_1002_aps3_70001 crossref_primary_10_1002_fsn3_70489 crossref_primary_10_1093_bioinformatics_btae459 crossref_primary_10_1007_s11306_025_02272_w crossref_primary_10_1016_j_indic_2025_100821 crossref_primary_10_1159_000538051 crossref_primary_10_1016_j_advnut_2024_100186 crossref_primary_10_3390_app142210755 crossref_primary_10_3390_md20120769 crossref_primary_10_3389_fnagi_2025_1591796 crossref_primary_10_1007_s12024_024_00843_2 crossref_primary_10_1111_pce_15187 crossref_primary_10_1186_s13046_024_03141_5 crossref_primary_10_1016_j_psj_2024_104391 crossref_primary_10_1038_s41598_025_92631_3 crossref_primary_10_1093_nar_gkaf363 crossref_primary_10_1038_s41392_023_01380_0 crossref_primary_10_1186_s40246_023_00465_9 crossref_primary_10_1002_bit_28450 crossref_primary_10_1007_s10811_024_03259_1 crossref_primary_10_1016_j_microb_2023_100006 crossref_primary_10_1080_10495398_2024_2388704 crossref_primary_10_3390_plants13141935 crossref_primary_10_3389_fvets_2025_1594749 crossref_primary_10_3390_metabo15050306 crossref_primary_10_1007_s12672_025_03310_8 crossref_primary_10_3389_fendo_2025_1539797 crossref_primary_10_1016_j_envres_2025_122649 crossref_primary_10_1016_j_microc_2024_111779 crossref_primary_10_1097_CCO_0000000000001137 crossref_primary_10_1080_10408347_2025_2468926 crossref_primary_10_1093_nar_gkad1041 crossref_primary_10_3390_ijms25105071 crossref_primary_10_1016_j_cca_2024_117895 crossref_primary_10_1016_j_jchromb_2023_123976 crossref_primary_10_1186_s12302_023_00779_4 crossref_primary_10_1016_j_microc_2025_114795 crossref_primary_10_1016_j_tifs_2024_104481 crossref_primary_10_33549_physiolres_935443 crossref_primary_10_1016_j_trac_2023_117103 crossref_primary_10_1016_j_heliyon_2023_e16686 crossref_primary_10_1038_s41598_024_77352_3 crossref_primary_10_1016_j_scitotenv_2024_175628 crossref_primary_10_1016_j_watres_2025_124392 crossref_primary_10_3390_foods14060919 crossref_primary_10_3390_biomedicines12122750 crossref_primary_10_3390_metabo14090483 crossref_primary_10_1016_j_copbio_2023_102918 crossref_primary_10_3389_fgene_2025_1655325 crossref_primary_10_1080_19490976_2025_2531201 crossref_primary_10_1007_s00726_025_03476_z crossref_primary_10_3390_metabo14100538 crossref_primary_10_1007_s12033_024_01133_6 crossref_primary_10_1038_s41598_023_36177_2 crossref_primary_10_1002_nbm_70121 crossref_primary_10_3390_microorganisms13071633 crossref_primary_10_3389_fmolb_2022_982561 crossref_primary_10_1016_j_jocs_2025_102629 crossref_primary_10_1186_s13045_024_01596_9 crossref_primary_10_3390_metabo14120708 crossref_primary_10_3389_froh_2025_1568393 crossref_primary_10_1111_jpi_70068 crossref_primary_10_1016_j_trac_2024_117852 crossref_primary_10_1111_ppl_14203 crossref_primary_10_1038_s41598_025_00373_z crossref_primary_10_3390_metabo15090620 crossref_primary_10_1186_s13213_025_01793_y crossref_primary_10_1007_s11306_024_02169_0 crossref_primary_10_3390_molecules29051059 crossref_primary_10_3390_ijms26125551 crossref_primary_10_3390_jpm14121121 crossref_primary_10_1016_j_mocell_2025_100200 crossref_primary_10_3390_cells11172719 crossref_primary_10_3390_plants14152345 crossref_primary_10_1186_s40364_023_00555_9 crossref_primary_10_1186_s12859_023_05383_0 crossref_primary_10_1007_s00723_025_01767_y crossref_primary_10_1007_s11306_024_02208_w crossref_primary_10_3390_toxics13080653 crossref_primary_10_1038_s41598_025_02361_9 crossref_primary_10_3390_nu17050885 crossref_primary_10_1002_mnfr_202400500 crossref_primary_10_3390_metabo14080438 crossref_primary_10_1016_S1875_5364_25_60822_3 crossref_primary_10_1007_s11306_024_02197_w crossref_primary_10_3168_jds_2025_26332 crossref_primary_10_1038_s41598_023_38243_1 crossref_primary_10_1002_glia_24665 crossref_primary_10_1007_s10311_024_01816_1 crossref_primary_10_1016_j_addicn_2023_100098 crossref_primary_10_3390_metabo15030173 crossref_primary_10_1016_j_bbadis_2024_167637 crossref_primary_10_1016_j_psj_2025_105575 crossref_primary_10_3390_fermentation9030300 crossref_primary_10_1007_s12035_024_04538_1 crossref_primary_10_1016_j_aca_2024_343491 crossref_primary_10_1007_s11101_025_10153_2 crossref_primary_10_1038_s41598_023_48269_0 crossref_primary_10_1016_j_arr_2023_101987 crossref_primary_10_1186_s13023_023_02885_1 crossref_primary_10_1113_EP092768 crossref_primary_10_1590_s2175_97902023e23146 crossref_primary_10_3390_antibiotics12091373 crossref_primary_10_1007_s11883_025_01304_z crossref_primary_10_1007_s12161_025_02841_8 crossref_primary_10_1002_prca_202400048 crossref_primary_10_1007_s00217_025_04832_9 crossref_primary_10_3390_toxics11100833 crossref_primary_10_1016_j_trac_2023_117155 crossref_primary_10_1016_j_envint_2024_108620 crossref_primary_10_1016_j_apsoil_2024_105671 crossref_primary_10_3390_molecules28114467 crossref_primary_10_1016_j_foodchem_2024_140836 crossref_primary_10_1016_j_jfca_2025_108227 crossref_primary_10_1016_j_anireprosci_2024_107539 crossref_primary_10_3390_diagnostics15080990 crossref_primary_10_1016_j_cofs_2024_101201 crossref_primary_10_1371_journal_pone_0307157 crossref_primary_10_1016_j_crfs_2024_100959 crossref_primary_10_3389_fmed_2025_1661063 crossref_primary_10_3390_cancers15010140 crossref_primary_10_3389_fmicb_2024_1389268 crossref_primary_10_1101_gad_351428_123 crossref_primary_10_1016_j_chroma_2024_465588 |
| Cites_doi | 10.1093/nar/gkq329 10.1016/j.copbio.2018.07.010 10.1093/nar/27.1.29 10.1097/01.ftd.0000179845.53213.39 10.1016/j.cmet.2007.10.005 10.1016/j.celrep.2019.10.035 10.1021/pr4000448 10.1093/nar/gky310 10.1016/j.cell.2019.02.015 10.1038/nrurol.2011.53 10.1002/mas.21627 10.3945/jn.108.103754 10.1016/j.cmet.2009.02.002 10.1038/oby.2009.510 10.1371/journal.pone.0013953 10.3390/metabo9070143 10.1038/nrm2330 10.1093/nar/gkp356 10.3945/ajcn.110.003970 10.1016/j.aca.2009.06.033 10.1039/C1AN15605E 10.1038/srep19763 10.1074/mcp.M111.007922 10.1021/ac051437y 10.1007/978-1-4939-9236-2_19 10.1038/oncsis.2015.49 10.1002/mas.21640 10.2174/157489312799304431 10.1038/nrd1776 10.1007/s00216-016-0003-1 10.2337/db12-0707 10.1007/s00216-006-0687-8 10.1002/mas.21773 10.1093/bib/bbl008 10.1002/0471250953.bi1411s37 10.1093/bioinformatics/btq418 10.1093/nar/gkv380 10.1007/978-1-61737-985-7_21 10.3389/fonc.2018.00494 10.1146/annurev-pharmtox-010611-134748 10.1146/annurev-biochem-061009-102430 10.1111/j.1365-2265.2011.04244.x 10.1371/journal.pone.0115870 10.1152/physiolgenomics.00194.2006 10.1186/2047-217X-2-13 10.1016/j.aca.2008.11.058 10.1093/nar/gkm298 10.1161/CIRCRESAHA.115.306398 10.1007/s00424-011-0985-7 10.3233/JAD-160645 10.1186/1471-2105-10-1 10.1093/bioinformatics/btr499 10.1016/j.neuron.2019.12.015 10.1038/tp.2014.127 10.1002/anie.201804736 10.1586/14737159.8.5.617 10.1186/gm339 10.1021/pr901173v 10.1371/journal.pone.0148361 10.1038/s41587-020-0531-2 10.1186/1471-2105-11-395 10.1158/1078-0432.CCR-12-2917 10.1074/mcp.M110.004945 10.1093/ajcn/86.1.189 10.1007/s11882-014-0445-5 10.1371/journal.pone.0119452 10.1016/j.jaci.2017.04.021 10.1002/bmc.3893 10.1038/nbt1209-1135 10.1002/mas.21518 10.1038/nmeth.3393 10.1111/ijpo.12114 10.1007/s11306-020-01657-3 10.1021/pr901058t 10.1186/s12859-017-1744-3 10.1038/nbt.2348 10.1194/jlr.R300004-JLR200 10.1002/mas.20306 10.1021/acs.jproteome.5b01020 10.1194/jlr.E400004-JLR200 10.1021/pr101096f 10.1016/j.metabol.2012.06.004 10.1016/j.aca.2009.03.039 10.1016/j.cels.2018.03.011 10.1093/nar/gkx1089 10.1186/1752-0509-8-S2-S2 10.1186/1752-0509-7-64 10.1007/s00204-010-0609-6 10.1093/nar/gky510 10.3390/metabo4020433 10.1093/bioinformatics/bty1066 10.1016/j.jalz.2016.08.003 10.1002/hep.27264 10.1021/acs.analchem.7b04424 10.3233/JAD-142319 10.1093/nar/gkab419 10.1371/journal.pone.0093148 10.1093/nar/gks374 10.1021/pr201001a 10.1371/journal.pmed.1002266 10.1093/nar/gkab382 10.1093/clinchem/44.7.1529 10.3389/fbioe.2015.00001 10.1371/journal.pone.0015234 10.1038/s41596-018-0064-z 10.1016/j.jchromb.2010.08.035 10.1093/nar/gkn194 10.3748/wjg.v22.i16.4191 10.1093/nar/gky466 10.1093/gigascience/giz061 10.4155/bio.12.61 10.1007/s00216-012-6117-1 10.2337/db12-0495 10.1093/humupd/dmt048 10.1021/pr500039t 10.3945/jn.116.238931 10.1021/pr300523x 10.1586/14737159.2015.974562 10.1038/nrm3314 10.1016/j.jalz.2017.01.020 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 7QR 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/metabo12040357 |
| DatabaseName | CrossRef PubMed Chemoreception Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Collection (ProQuest) ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2218-1989 |
| ExternalDocumentID | oai_doaj_org_article_4f512a497e01462997db3e8dd42db8cf PMC9032224 35448542 10_3390_metabo12040357 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: National Science Foundation of China grantid: No.81872372 – fundername: National Science Foundation of China grantid: No.81772532 |
| GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU CITATION DIK GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM 7QR 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c550t-bcee438c2baa94d16bae5182ce5ed5710eadf8aa29233c196d8f497247bba8e93 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 194 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000786820600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2218-1989 |
| IngestDate | Fri Oct 03 12:35:29 EDT 2025 Tue Nov 04 01:51:12 EST 2025 Fri Sep 05 13:57:27 EDT 2025 Fri Jul 25 12:00:12 EDT 2025 Thu Jan 02 22:55:23 EST 2025 Sat Nov 29 07:10:52 EST 2025 Tue Nov 18 21:45:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | metabolic pathways summary multi-omics integration algorithms metabolomics analysis tools metabolomics |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c550t-bcee438c2baa94d16bae5182ce5ed5710eadf8aa29233c196d8f497247bba8e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-6375-3614 0000-0002-1618-4292 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2652995359?pq-origsite=%requestingapplication% |
| PMID | 35448542 |
| PQID | 2652995359 |
| PQPubID | 2032362 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4f512a497e01462997db3e8dd42db8cf pubmedcentral_primary_oai_pubmedcentral_nih_gov_9032224 proquest_miscellaneous_2654286972 proquest_journals_2652995359 pubmed_primary_35448542 crossref_citationtrail_10_3390_metabo12040357 crossref_primary_10_3390_metabo12040357 |
| PublicationCentury | 2000 |
| PublicationDate | 20220415 |
| PublicationDateYYYYMMDD | 2022-04-15 |
| PublicationDate_xml | – month: 4 year: 2022 text: 20220415 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Metabolites |
| PublicationTitleAlternate | Metabolites |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_92 Floegel (ref_46) 2013; 62 Pacchiarotta (ref_6) 2012; 4 Pasikanti (ref_19) 2010; 9 ref_97 Paglia (ref_64) 2016; 15 Wishart (ref_89) 2018; 46 Smith (ref_112) 2005; 27 Castle (ref_83) 2006; 7 Nakashima (ref_50) 1969; 32 Pasikanti (ref_18) 2013; 12 Lu (ref_44) 2012; 11 Cox (ref_28) 2016; 22 Salek (ref_34) 2007; 29 Ha (ref_37) 2012; 76 Mamas (ref_66) 2011; 85 Musunuru (ref_13) 2019; 177 Wei (ref_82) 2021; 40 Sugimoto (ref_91) 2012; 7 Tsugawa (ref_100) 2015; 12 Guijas (ref_90) 2018; 90 ref_21 Mihalik (ref_36) 2010; 18 Clasquin (ref_86) 2012; 37 Gromski (ref_99) 2014; 4 Zullig (ref_17) 2021; 40 Chen (ref_29) 2009; 650 Tarazona (ref_114) 2018; 46 Agrawal (ref_102) 2019; 1978 Han (ref_14) 2003; 44 ref_72 Ho (ref_74) 2003; 24 Musunuru (ref_12) 2016; 118 Proitsi (ref_59) 2015; 5 Voelker (ref_16) 2008; 9 Mozaffarian (ref_40) 2010; 92 Koal (ref_65) 2015; 44 Xia (ref_107) 2012; 40 Xia (ref_118) 2010; 26 Veenstra (ref_76) 2012; 4 Shariff (ref_26) 2011; 10 Zhang (ref_2) 2012; 404 Theodoridis (ref_73) 2011; 30 Hertel (ref_124) 2019; 29 Turi (ref_4) 2018; 141 Chen (ref_25) 2011; 10 Proitsi (ref_61) 2017; 13 Ogata (ref_95) 1999; 27 Tsugawa (ref_101) 2020; 38 Scrivo (ref_7) 2014; 14 Liang (ref_31) 2016; 6 Newgard (ref_56) 2009; 9 Johnson (ref_8) 2012; 52 Lillefosse (ref_53) 2014; 13 ref_87 Toledo (ref_58) 2017; 13 Zhou (ref_120) 2018; 46 Srivastava (ref_22) 2010; 6 Beisken (ref_70) 2015; 15 Kim (ref_60) 2017; 60 Gowda (ref_3) 2008; 8 Fahy (ref_9) 2005; 46 Ferrannini (ref_45) 2013; 62 Huang (ref_20) 2011; 10 Shariff (ref_30) 2010; 9 Lai (ref_81) 2018; 37 ref_57 ref_54 ref_52 Patti (ref_1) 2012; 13 Xia (ref_106) 2009; 37 Fernandez (ref_116) 2007; 35 Adams (ref_35) 2009; 139 Smith (ref_85) 2006; 78 Idle (ref_5) 2007; 6 Salek (ref_88) 2013; 2 Lecumberri (ref_67) 2013; 19 Xia (ref_108) 2015; 43 Wood (ref_51) 2011; 462 ref_69 Vasseur (ref_11) 2016; 5 Walther (ref_10) 2012; 81 Cheng (ref_24) 2012; 11 ref_62 Zhang (ref_84) 2012; 137 Pan (ref_75) 2007; 387 Chen (ref_98) 2013; 2013 Kamburov (ref_117) 2011; 27 Pedersen (ref_122) 2018; 13 Cho (ref_55) 2017; 12 Misra (ref_68) 2020; 16 Lee (ref_41) 2018; 41 Bai (ref_125) 2020; 105 ref_115 Ebbels (ref_77) 2011; 708 Kieffer (ref_123) 2016; 146 Wenk (ref_15) 2005; 4 Noble (ref_96) 2009; 27 ref_32 Hutchins (ref_104) 2018; 6 Burnap (ref_71) 2015; 3 Altmae (ref_121) 2014; 20 Liu (ref_39) 2010; 878 Chow (ref_49) 2013; 62 DeFeo (ref_78) 2011; 8 Shen (ref_105) 2019; 35 Molenaar (ref_111) 2019; 8 Vignoli (ref_79) 2019; 58 Xia (ref_93) 2010; 38 Chong (ref_94) 2018; 46 ref_103 Tautenhahn (ref_113) 2012; 30 Lin (ref_110) 2021; 49 Chaleckis (ref_80) 2019; 55 ref_47 Messana (ref_42) 1998; 44 ref_43 Pang (ref_109) 2021; 49 Wu (ref_33) 2009; 648 Li (ref_38) 2009; 633 Guiraud (ref_63) 2017; 409 Suhre (ref_119) 2008; 36 Cheng (ref_23) 2018; 8 Ladep (ref_27) 2014; 60 Hodge (ref_48) 2007; 86 |
| References_xml | – volume: 38 start-page: W71 year: 2010 ident: ref_93 article-title: MSEA: A web-based tool to identify biologically meaningful patterns in quantitative metabolomic data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq329 – volume: 55 start-page: 44 year: 2019 ident: ref_80 article-title: Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2018.07.010 – volume: 27 start-page: 29 year: 1999 ident: ref_95 article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.1.29 – volume: 27 start-page: 747 year: 2005 ident: ref_112 article-title: METLIN: A metabolite mass spectral database publication-title: Ther. Drug Monit. doi: 10.1097/01.ftd.0000179845.53213.39 – volume: 6 start-page: 348 year: 2007 ident: ref_5 article-title: Metabolomics publication-title: Cell Metab. doi: 10.1016/j.cmet.2007.10.005 – volume: 29 start-page: 1767 year: 2019 ident: ref_124 article-title: Integrated Analyses of Microbiome and Longitudinal Metabolome Data Reveal Microbial-Host Interactions on Sulfur Metabolism in Parkinson’s Disease publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.10.035 – volume: 12 start-page: 3865 year: 2013 ident: ref_18 article-title: Urinary metabotyping of bladder cancer using two-dimensional gas chromatography time-of-flight mass spectrometry publication-title: J. Proteome Res. doi: 10.1021/pr4000448 – volume: 46 start-page: W486 year: 2018 ident: ref_94 article-title: MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky310 – volume: 41 start-page: 1069 year: 2018 ident: ref_41 article-title: High-resolution metabolomics determines the mode of onset of type 2 diabetes in a 3-year prospective cohort study publication-title: Int. J. Mol. Med. – volume: 177 start-page: 132 year: 2019 ident: ref_13 article-title: Genetics of Common, Complex Coronary Artery Disease publication-title: Cell doi: 10.1016/j.cell.2019.02.015 – volume: 8 start-page: 301 year: 2011 ident: ref_78 article-title: A decade in prostate cancer: From NMR to metabolomics publication-title: Nat. Rev. Urol. doi: 10.1038/nrurol.2011.53 – volume: 40 start-page: 162 year: 2021 ident: ref_17 article-title: High Resolution Mass Spectrometry in Lipidomics publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.21627 – volume: 139 start-page: 1073 year: 2009 ident: ref_35 article-title: Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women publication-title: J. Nutr. doi: 10.3945/jn.108.103754 – volume: 9 start-page: 311 year: 2009 ident: ref_56 article-title: A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance publication-title: Cell Metab. doi: 10.1016/j.cmet.2009.02.002 – volume: 18 start-page: 1695 year: 2010 ident: ref_36 article-title: Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity publication-title: Obesity doi: 10.1038/oby.2009.510 – ident: ref_43 doi: 10.1371/journal.pone.0013953 – ident: ref_97 doi: 10.3390/metabo9070143 – volume: 9 start-page: 112 year: 2008 ident: ref_16 article-title: Membrane lipids: Where they are and how they behave publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2330 – volume: 37 start-page: W652 year: 2009 ident: ref_106 article-title: MetaboAnalyst: A web server for metabolomic data analysis and interpretation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp356 – volume: 92 start-page: 1350 year: 2010 ident: ref_40 article-title: Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.110.003970 – volume: 648 start-page: 98 year: 2009 ident: ref_33 article-title: Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2009.06.033 – volume: 137 start-page: 293 year: 2012 ident: ref_84 article-title: Modern analytical techniques in metabolomics analysis publication-title: Analyst doi: 10.1039/C1AN15605E – volume: 6 start-page: 11 year: 2010 ident: ref_22 article-title: Taurine—A possible fingerprint biomarker in non-muscle invasive bladder cancer: A pilot study by 1H NMR spectroscopy publication-title: Cancer Biomark. Sect. A Dis. Markers – volume: 6 start-page: 19763 year: 2016 ident: ref_31 article-title: Phenotypic Characterization Analysis of Human Hepatocarcinoma by Urine Metabolomics Approach publication-title: Sci. Rep. doi: 10.1038/srep19763 – volume: 24 start-page: 3 year: 2003 ident: ref_74 article-title: Electrospray ionisation mass spectrometry: Principles and clinical applications publication-title: Clin. Biochem. Rev. – volume: 10 start-page: M111.007922 year: 2011 ident: ref_20 article-title: Bladder cancer determination via two urinary metabolites: A biomarker pattern approach publication-title: Mol. Cell. Proteom. MCP doi: 10.1074/mcp.M111.007922 – volume: 78 start-page: 779 year: 2006 ident: ref_85 article-title: XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification publication-title: Anal. Chem. doi: 10.1021/ac051437y – volume: 1978 start-page: 301 year: 2019 ident: ref_102 article-title: El-MAVEN: A Fast, Robust, and User-Friendly Mass Spectrometry Data Processing Engine for Metabolomics publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-9236-2_19 – volume: 5 start-page: e189 year: 2016 ident: ref_11 article-title: Lipid metabolic reprogramming in cancer cells publication-title: Oncogenesis doi: 10.1038/oncsis.2015.49 – volume: 40 start-page: 255 year: 2021 ident: ref_82 article-title: Emerging environmental pollutants hydroxylated polybrominated diphenyl ethers: From analytical methods to toxicology research publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.21640 – volume: 7 start-page: 96 year: 2012 ident: ref_91 article-title: Bioinformatics Tools for Mass Spectroscopy-Based Metabolomic Data Processing and Analysis publication-title: Curr. Bioinform. doi: 10.2174/157489312799304431 – volume: 4 start-page: 594 year: 2005 ident: ref_15 article-title: The emerging field of lipidomics publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1776 – volume: 409 start-page: 295 year: 2017 ident: ref_63 article-title: High-throughput and simultaneous quantitative analysis of homocysteine-methionine cycle metabolites and co-factors in blood plasma and cerebrospinal fluid by isotope dilution LC-MS/MS publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-016-0003-1 – volume: 62 start-page: 1730 year: 2013 ident: ref_45 article-title: Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance publication-title: Diabetes doi: 10.2337/db12-0707 – volume: 387 start-page: 525 year: 2007 ident: ref_75 article-title: Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-006-0687-8 – ident: ref_69 doi: 10.1002/mas.21773 – volume: 7 start-page: 159 year: 2006 ident: ref_83 article-title: Metabolomics Standards Workshop and the development of international standards for reporting metabolomics experimental results publication-title: Brief. Bioinform. doi: 10.1093/bib/bbl008 – volume: 37 start-page: 14.11.1 year: 2012 ident: ref_86 article-title: LC-MS data processing with MAVEN: A metabolomic analysis and visualization engine publication-title: Curr. Protoc. Bioinform. doi: 10.1002/0471250953.bi1411s37 – volume: 26 start-page: 2342 year: 2010 ident: ref_118 article-title: MetPA: A web-based metabolomics tool for pathway analysis and visualization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq418 – volume: 43 start-page: W251 year: 2015 ident: ref_108 article-title: MetaboAnalyst 3.0—Making metabolomics more meaningful publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv380 – volume: 708 start-page: 365 year: 2011 ident: ref_77 article-title: Processing and modeling of nuclear magnetic resonance (NMR) metabolic profiles publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61737-985-7_21 – volume: 8 start-page: 494 year: 2018 ident: ref_23 article-title: Metabolomics of Non-muscle Invasive Bladder Cancer: Biomarkers for Early Detection of Bladder Cancer publication-title: Front. Oncol. doi: 10.3389/fonc.2018.00494 – volume: 52 start-page: 37 year: 2012 ident: ref_8 article-title: Xenobiotic metabolomics: Major impact on the metabolome publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-010611-134748 – volume: 81 start-page: 687 year: 2012 ident: ref_10 article-title: Lipid droplets and cellular lipid metabolism publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-061009-102430 – volume: 76 start-page: 674 year: 2012 ident: ref_37 article-title: The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes publication-title: Clin. Endocrinol. doi: 10.1111/j.1365-2265.2011.04244.x – ident: ref_21 doi: 10.1371/journal.pone.0115870 – volume: 29 start-page: 99 year: 2007 ident: ref_34 article-title: A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human publication-title: Physiol. Genom. doi: 10.1152/physiolgenomics.00194.2006 – volume: 2 start-page: 13 year: 2013 ident: ref_88 article-title: The role of reporting standards for metabolite annotation and identification in metabolomic studies publication-title: Gigascience doi: 10.1186/2047-217X-2-13 – volume: 633 start-page: 257 year: 2009 ident: ref_38 article-title: Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2008.11.058 – volume: 35 start-page: W21 year: 2007 ident: ref_116 article-title: iHOP web services publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm298 – volume: 118 start-page: 579 year: 2016 ident: ref_12 article-title: Surprises From Genetic Analyses of Lipid Risk Factors for Atherosclerosis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.115.306398 – volume: 462 start-page: 469 year: 2011 ident: ref_51 article-title: Modulation of adipokine production, glucose uptake and lactate release in human adipocytes by small changes in oxygen tension publication-title: Pflug. Arch. Eur. J. Physiol. doi: 10.1007/s00424-011-0985-7 – volume: 60 start-page: 809 year: 2017 ident: ref_60 article-title: Association between Plasma Ceramides and Phosphatidylcholines and Hippocampal Brain Volume in Late Onset Alzheimer’s Disease publication-title: J. Alzheimer’s Dis. JAD doi: 10.3233/JAD-160645 – ident: ref_72 doi: 10.1186/1471-2105-10-1 – volume: 27 start-page: 2917 year: 2011 ident: ref_117 article-title: Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr499 – volume: 105 start-page: 975 year: 2020 ident: ref_125 article-title: Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer’s Disease Progression publication-title: Neuron doi: 10.1016/j.neuron.2019.12.015 – volume: 5 start-page: e494 year: 2015 ident: ref_59 article-title: Plasma lipidomics analysis finds long chain cholesteryl esters to be associated with Alzheimer’s disease publication-title: Transl. Psychiatry doi: 10.1038/tp.2014.127 – volume: 58 start-page: 968 year: 2019 ident: ref_79 article-title: High-Throughput Metabolomics by 1D NMR publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201804736 – volume: 8 start-page: 617 year: 2008 ident: ref_3 article-title: Metabolomics-based methods for early disease diagnostics publication-title: Expert Rev. Mol. Diagn. doi: 10.1586/14737159.8.5.617 – volume: 4 start-page: 40 year: 2012 ident: ref_76 article-title: Metabolomics: The final frontier? publication-title: Genome Med. doi: 10.1186/gm339 – volume: 9 start-page: 2988 year: 2010 ident: ref_19 article-title: Noninvasive urinary metabonomic diagnosis of human bladder cancer publication-title: J. Proteome Res. doi: 10.1021/pr901173v – ident: ref_54 doi: 10.1371/journal.pone.0148361 – volume: 38 start-page: 1159 year: 2020 ident: ref_101 article-title: A lipidome atlas in MS-DIAL 4 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0531-2 – ident: ref_87 doi: 10.1186/1471-2105-11-395 – volume: 32 start-page: 143 year: 1969 ident: ref_50 article-title: Glycolytic and gluconeogenic metabolites and enzymes in the liver of obese-hyperglycemic mice (KK) and alloxan diabetic mice publication-title: Nagoya J. Med. Sci. – volume: 19 start-page: 4770 year: 2013 ident: ref_67 article-title: Multiple myeloma patients have a specific serum metabolomic profile that changes after achieving complete remission publication-title: Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. doi: 10.1158/1078-0432.CCR-12-2917 – volume: 10 start-page: M110.004945 year: 2011 ident: ref_25 article-title: Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma publication-title: Mol. Cell. Proteom. MCP doi: 10.1074/mcp.M110.004945 – volume: 86 start-page: 189 year: 2007 ident: ref_48 article-title: Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: Interpreting the role of linoleic acid publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/86.1.189 – volume: 14 start-page: 445 year: 2014 ident: ref_7 article-title: Metabolomics approach in allergic and rheumatic diseases publication-title: Curr. Allergy Asthma Rep. doi: 10.1007/s11882-014-0445-5 – ident: ref_57 doi: 10.1371/journal.pone.0119452 – volume: 141 start-page: 1191 year: 2018 ident: ref_4 article-title: A review of metabolomics approaches and their application in identifying causal pathways of childhood asthma publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2017.04.021 – ident: ref_32 doi: 10.1002/bmc.3893 – volume: 27 start-page: 1135 year: 2009 ident: ref_96 article-title: How does multiple testing correction work? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1209-1135 – volume: 37 start-page: 245 year: 2018 ident: ref_81 article-title: Mass spectral fragmentation of trimethylsilylated small molecules publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.21518 – volume: 12 start-page: 523 year: 2015 ident: ref_100 article-title: MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis publication-title: Nat. Methods doi: 10.1038/nmeth.3393 – volume: 12 start-page: 93 year: 2017 ident: ref_55 article-title: Combined untargeted and targeted metabolomic profiling reveals urinary biomarkers for discriminating obese from normal-weight adolescents publication-title: Pediatric Obes. doi: 10.1111/ijpo.12114 – volume: 16 start-page: 36 year: 2020 ident: ref_68 article-title: Software tools, databases and resources in metabolomics: Updates from 2018 to 2019 publication-title: Metabolomics doi: 10.1007/s11306-020-01657-3 – volume: 9 start-page: 1096 year: 2010 ident: ref_30 article-title: Characterization of urinary biomarkers of hepatocellular carcinoma using magnetic resonance spectroscopy in a Nigerian population publication-title: J. Proteome Res. doi: 10.1021/pr901058t – ident: ref_103 doi: 10.1186/s12859-017-1744-3 – volume: 30 start-page: 826 year: 2012 ident: ref_113 article-title: An accelerated workflow for untargeted metabolomics using the METLIN database publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2348 – volume: 44 start-page: 1071 year: 2003 ident: ref_14 article-title: Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: A bridge to lipidomics publication-title: J. Lipid. Res. doi: 10.1194/jlr.R300004-JLR200 – volume: 30 start-page: 884 year: 2011 ident: ref_73 article-title: Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.20306 – volume: 15 start-page: 608 year: 2016 ident: ref_64 article-title: Unbiased Metabolomic Investigation of Alzheimer’s Disease Brain Points to Dysregulation of Mitochondrial Aspartate Metabolism publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.5b01020 – volume: 46 start-page: 839 year: 2005 ident: ref_9 article-title: A comprehensive classification system for lipids publication-title: J. Lipid. Res. doi: 10.1194/jlr.E400004-JLR200 – volume: 10 start-page: 1828 year: 2011 ident: ref_26 article-title: Urinary metabolic biomarkers of hepatocellular carcinoma in an Egyptian population: A validation study publication-title: J. Proteome Res. doi: 10.1021/pr101096f – volume: 62 start-page: 100 year: 2013 ident: ref_49 article-title: Estimated plasma stearoyl co-A desaturase-1 activity and risk of incident diabetes: The Atherosclerosis Risk in Communities (ARIC) study publication-title: Metab. Clin. Exp. doi: 10.1016/j.metabol.2012.06.004 – volume: 650 start-page: 3 year: 2009 ident: ref_29 article-title: Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2009.03.039 – volume: 6 start-page: 621 year: 2018 ident: ref_104 article-title: LipiDex: An Integrated Software Package for High-Confidence Lipid Identification publication-title: Cell Syst. doi: 10.1016/j.cels.2018.03.011 – volume: 46 start-page: D608 year: 2018 ident: ref_89 article-title: HMDB 4.0: The human metabolome database for 2018 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1089 – ident: ref_92 doi: 10.1186/1752-0509-8-S2-S2 – ident: ref_115 doi: 10.1186/1752-0509-7-64 – volume: 85 start-page: 5 year: 2011 ident: ref_66 article-title: The role of metabolites and metabolomics in clinically applicable biomarkers of disease publication-title: Arch. Toxicol. doi: 10.1007/s00204-010-0609-6 – volume: 46 start-page: W514 year: 2018 ident: ref_120 article-title: OmicsNet: A web-based tool for creation and visual analysis of biological networks in 3D space publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky510 – volume: 2013 start-page: 298183 year: 2013 ident: ref_98 article-title: Random forest in clinical metabolomics for phenotypic discrimination and biomarker selection publication-title: Evid.-Based Complementary Altern. Med. – volume: 4 start-page: 433 year: 2014 ident: ref_99 article-title: Influence of missing values substitutes on multivariate analysis of metabolomics data publication-title: Metabolites doi: 10.3390/metabo4020433 – volume: 35 start-page: 2870 year: 2019 ident: ref_105 article-title: MetFlow: An interactive and integrated workflow for metabolomics data cleaning and differential metabolite discovery publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty1066 – volume: 13 start-page: 140 year: 2017 ident: ref_61 article-title: Association of blood lipids with Alzheimer’s disease: A comprehensive lipidomics analysis publication-title: Alzheimer’s Dement. J. Alzheimer’s Assoc. doi: 10.1016/j.jalz.2016.08.003 – volume: 60 start-page: 1291 year: 2014 ident: ref_27 article-title: Discovery and validation of urinary metabotypes for the diagnosis of hepatocellular carcinoma in West Africans publication-title: Hepatology doi: 10.1002/hep.27264 – volume: 90 start-page: 3156 year: 2018 ident: ref_90 article-title: METLIN: A Technology Platform for Identifying Knowns and Unknowns publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b04424 – volume: 44 start-page: 1193 year: 2015 ident: ref_65 article-title: Sphingomyelin SM(d18:1/18:0) is significantly enhanced in cerebrospinal fluid samples dichotomized by pathological amyloid-beta42, tau, and phospho-tau-181 levels publication-title: J. Alzheimer’s Dis. JAD doi: 10.3233/JAD-142319 – volume: 49 start-page: W336 year: 2021 ident: ref_110 article-title: LipidSig: A web-based tool for lipidomic data analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab419 – ident: ref_52 doi: 10.1371/journal.pone.0093148 – volume: 40 start-page: W127 year: 2012 ident: ref_107 article-title: MetaboAnalyst 2.0—A comprehensive server for metabolomic data analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks374 – volume: 11 start-page: 1354 year: 2012 ident: ref_24 article-title: Distinct urinary metabolic profile of human colorectal cancer publication-title: J. Proteome Res. doi: 10.1021/pr201001a – ident: ref_62 doi: 10.1371/journal.pmed.1002266 – volume: 49 start-page: W388 year: 2021 ident: ref_109 article-title: MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab382 – volume: 44 start-page: 1529 year: 1998 ident: ref_42 article-title: Proton nuclear magnetic resonance spectral profiles of urine in type II diabetic patients publication-title: Clin. Chem. doi: 10.1093/clinchem/44.7.1529 – volume: 3 start-page: 1 year: 2015 ident: ref_71 article-title: Systems and photosystems: Cellular limits of autotrophic productivity in cyanobacteria publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2015.00001 – ident: ref_47 doi: 10.1371/journal.pone.0015234 – volume: 13 start-page: 2781 year: 2018 ident: ref_122 article-title: A computational framework to integrate high-throughput ‘-omics’ datasets for the identification of potential mechanistic links publication-title: Nat. Protoc. doi: 10.1038/s41596-018-0064-z – volume: 878 start-page: 2817 year: 2010 ident: ref_39 article-title: Free fatty acid metabolic profile and biomarkers of isolated post-challenge diabetes and type 2 diabetes mellitus based on GC-MS and multivariate statistical analysis publication-title: J. Chromatogr. B Anal. Technol. Biomed. Life Sci. doi: 10.1016/j.jchromb.2010.08.035 – volume: 36 start-page: W481 year: 2008 ident: ref_119 article-title: MassTRIX: Mass translator into pathways publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn194 – volume: 22 start-page: 4191 year: 2016 ident: ref_28 article-title: Urinary nuclear magnetic resonance spectroscopy of a Bangladeshi cohort with hepatitis-B hepatocellular carcinoma: A biomarker corroboration study publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v22.i16.4191 – volume: 46 start-page: W503 year: 2018 ident: ref_114 article-title: PaintOmics 3: A web resource for the pathway analysis and visualization of multi-omics data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky466 – volume: 8 start-page: giz061 year: 2019 ident: ref_111 article-title: LION/web: A web-based ontology enrichment tool for lipidomic data analysis publication-title: Gigascience doi: 10.1093/gigascience/giz061 – volume: 4 start-page: 919 year: 2012 ident: ref_6 article-title: Metabolomic investigations of human infections publication-title: Bioanalysis doi: 10.4155/bio.12.61 – volume: 404 start-page: 1239 year: 2012 ident: ref_2 article-title: Serum metabolomics as a novel diagnostic approach for disease: A systematic review publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-012-6117-1 – volume: 62 start-page: 639 year: 2013 ident: ref_46 article-title: Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach publication-title: Diabetes doi: 10.2337/db12-0495 – volume: 20 start-page: 12 year: 2014 ident: ref_121 article-title: Guidelines for the design, analysis and interpretation of ‘omics’ data: Focus on human endometrium publication-title: Hum. Reprod. Update doi: 10.1093/humupd/dmt048 – volume: 13 start-page: 2560 year: 2014 ident: ref_53 article-title: Urinary loss of tricarboxylic acid cycle intermediates as revealed by metabolomics studies: An underlying mechanism to reduce lipid accretion by whey protein ingestion? publication-title: J. Proteome Res. doi: 10.1021/pr500039t – volume: 146 start-page: 2476 year: 2016 ident: ref_123 article-title: Mice Fed a High-Fat Diet Supplemented with Resistant Starch Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria publication-title: J. Nutr. doi: 10.3945/jn.116.238931 – volume: 11 start-page: 4705 year: 2012 ident: ref_44 article-title: Serum metabolic signatures of fulminant type 1 diabetes publication-title: J. Proteome Res. doi: 10.1021/pr300523x – volume: 15 start-page: 97 year: 2015 ident: ref_70 article-title: Getting the right answers: Understanding metabolomics challenges publication-title: Expert Rev. Mol. Diagn. doi: 10.1586/14737159.2015.974562 – volume: 13 start-page: 263 year: 2012 ident: ref_1 article-title: Innovation: Metabolomics: The apogee of the omics trilogy publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3314 – volume: 13 start-page: 965 year: 2017 ident: ref_58 article-title: Metabolic network failures in Alzheimer’s disease: A biochemical road map publication-title: Alzheimer’s Dement. J. Alzheimer’s Assoc. doi: 10.1016/j.jalz.2017.01.020 |
| SSID | ssj0000605701 |
| Score | 2.6089208 |
| SecondaryResourceType | review_article |
| Snippet | Metabolomics is an emerging field that quantifies numerous metabolites systematically. The key purpose of metabolomics is to identify the metabolites... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 357 |
| SubjectTerms | Alzheimer's disease Amino acids Bioinformatics Biomarkers Cancer Chromatography Data processing Diabetes Fatty acids Identification Integration Lipids Mass spectrometry Metabolic pathways metabolic pathways summary Metabolism Metabolites Metabolomics metabolomics analysis tools multi-omics integration algorithms NMR Nuclear magnetic resonance Phenotypes Polyamines Proteomics Researchers Review Scientific imaging Software Transcriptomics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higOXqg-g6UtGQnCKmviR2Ny2qI8LFQeQeovs2FFX2iZVN9uq_54ZJ7vaRSAuXOM5TD6PPfP58RngIydNqFqH1PjMpxILhNRxpdPMY3nsTKallfGxifLmRt_emu9rT33RmbBBHngA7kw2mJKsNGUgmROcPEvvRNDeS-6drhuafbPSrJGpYQ7GOiTLB5VGgbz-7D70iGrOMWgF5aK1LBTF-v9UYf5-UHIt81zuwPZYMrLJ4OouvArtHuxPWqTL9y_sE4uHOOPq-D6Yq8XUB9Z37Fv0ZEaXjudsKT3yhU3Y-bQb1VJJoZnRankz657fws_Lix9fr9PxdYS0RlbRpw7TmxS65s5aI31eOBsUsoU6qOAVFg4YI422lmMJJ2ocaF43CCOXpXNWByPewVbbteEAmNaksuZKGwzyLZe5vMg8LzBt6bzhwiSQLtGq6lE6nF6wmFVIIQjdahPdBD6v7B8G0Yy_Wp4T-CsrEruOHzAEqjEEqn-FQALHy66rxhE4r3ih0FIJhd5_WDXj2KENEduGbhFtkH0VCEoC74eeXnkiFBJXbE6g3IiBDVc3W9rpXdTnNhltX8nD__FvR_CG04ULUpdUx7DVPy7CCbyun_rp_PE0Bv0vDk8HJw priority: 102 providerName: Directory of Open Access Journals |
| Title | Guide to Metabolomics Analysis: A Bioinformatics Workflow |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35448542 https://www.proquest.com/docview/2652995359 https://www.proquest.com/docview/2654286972 https://pubmed.ncbi.nlm.nih.gov/PMC9032224 https://doaj.org/article/4f512a497e01462997db3e8dd42db8cf |
| Volume | 12 |
| WOSCitedRecordID | wos000786820600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journal (DOAJ) customDbUrl: eissn: 2218-1989 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605701 issn: 2218-1989 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2218-1989 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605701 issn: 2218-1989 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2218-1989 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605701 issn: 2218-1989 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 2218-1989 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605701 issn: 2218-1989 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2218-1989 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605701 issn: 2218-1989 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQcuvJZHYImMhOAUNXFeNhfUol3gsFWEQCqnKI4dqNRNljYF8e-ZcdyyRcCJa-zDxPMej78BeMYJE6oWJpA61EGCAUKgeCqCUGN4rGQokiqxwyby-VwsFrJwz6M3rq1yZxOtoR7QnqlvG43wRHc1VcwnPEvRjqZxKl9dfg1ohhTdtbqBGkcwJuCtcATj4t158Wlfcwkxds_DaMBujDHbn1yYHs864ijKMXmoK77JQvj_Ke78vX3yij86u_V__-Q23HRxKZsOgnQHrpn2LhxPW8zJL36w58x2itoS_DHIN9ulNqzv2Ln9sRW9bN6wHb7JSzZls2XnIFkJBppRSb5Zdd_vwcez0w-v3wZuBENQY-rSBwp9aBKLmquqkomOMlWZFFOS2qRGpxidoCA2oqo4xolxjdqsRZPInCe5UpUwMr4Po7ZrzUNgQhCUm8orIzGpU6GKslDzDH2jiBoeSw-C3eGXtcMnpzEZqxLzFGJWecgsD17s918OyBx_3TkjXu53EaK2_dCtP5dOQcukwdCnQtoNwekgS3KtYiO0TrhWom48ONlxs3Rqvil_Mc-Dp_tlVFC6dala023tHkzxMjwUDx4MgrOnJEYxFbjsQX4gUgekHq60yy8WBFyGdEeWPPo3WY_hBqf3GgROmZ7AqF9vzRO4Xn_rl5u1D0f5Qvgwnp3Oi_e-LUf41Pxa-E5zfgJT0SaI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyS48CqPQAEj8ThFdRwnsZEQ2gKlq3ZXeyhSOQU7dmClbVJ2s1T9U_xGxnnRRcCtB66xD5Px53l47G8AnjHHCZUJ60tDjc8xQPA1i4RPDYbHWlLBFa-bTSSTiTg-ltMN-NG9hXHXKjubWBtqU2bujHyHxRFaziiM5JvTb77rGuWqq10LjQYWB_b8DFO25evRO1zf54ztvT96u--3XQX8DKPxytfoFngoMqaVktwEsVY2wig7s5E1ETpc1G0ulGIY-oQZAtSInMuE8URrJawjX0KTv8kR7HQAm9PRePqpP9WhmB0kNGjYIcNQ0p0TW-FqBgw3S-h84AXvVzcJ-FNk-_sFzQseb-_G_6arm3C9ja3JsNkMt2DDFrdha1ioqjw5Jy9Ifdu1LiNsgfywmhlLqpKMa9XN3evsJek4Wl6RIdmdlS2trKOyJq6skM_Lszvw8VJ-4i4MirKw94EI4ejodKKsxMRUUx3E1LAY_bsIchZKD_xuedOs5Vh3rT7mKeZaDg7pOhw8eNnPP23YRf46c9ehpZ_lWMHrD-XiS9oamZTnGL4plN06SiCEQGJ0aIUxnBktstyD7Q4vaWuqlukvsHjwtB9GI-MqR6qw5aqeg2lqjErx4F4DzV6SMMIMH4c9SNZAuybq-kgx-1oTmUvq6nz8wb_FegJX94_Gh-nhaHLwEK4x9_7EkW1G2zCoFiv7CK5k36vZcvG43Y0EPl82qH8C3B12Gg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4S48CqPQAEj8ThFm9hOYiMhtEu7UBVWKwRSb8GOHVhpm5TdLFX_Gr-OcV50EXDrgWs8B2f8eR4e-xuAJ9RxQmXC-tIExucYIPiaRsIPDIbHWgaCK143m0imU3F0JGdb8KN7C-OuVXY2sTbUpszcGfmQxhFazohFcpi31yJme5NXJ99810HKVVq7dhoNRA7t2Smmb6uXB3u41k8pnex_fP3WbzsM-BlG5pWv0UVwJjKqlZLchLFWNsKIO7ORNRE6X9RzLpSiGAaxDMFqRM5lQnmitRLWETGh-d9OGCY9A9ge709nH_oTngAzhSQIG6ZIxmQwPLYVrmxIceMw5w_PecK6YcCfotzfL2ue836Ta_-z3q7D1TbmJqNmk9yALVvchJ1Roary-Iw8I_Ut2Lq8sAPyzXpuLKlK8r5W48K92l6RjrvlBRmR8bxs6WYdxTVx5YZ8UZ7egk8X8hO3YVCUhb0LRAhHU6cTZSUmrDrQYRwYGqPfF2FOmfTA75Y6zVruddcCZJFiDuagkW5Cw4PnvfxJwzryV8mxQ04v5djC6w_l8kvaGp-U5xjWKZy7dVRBCIfEaGaFMZwaLbLcg90OO2lrwlbpL-B48LgfRuPjKkqqsOW6lsH0NUaleHCngWk_ExZh5o_DHiQbAN6Y6uZIMf9aE5zLwNX_-L1_T-sRXEYkp-8Opof34Qp1z1IcB2e0C4NqubYP4FL2vZqvlg_bjUng80Vj-ifZM360 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guide+to+Metabolomics+Analysis%3A+A+Bioinformatics+Workflow&rft.jtitle=Metabolites&rft.au=Chen%2C+Yang&rft.au=Li%2C+En-Min&rft.au=Xu%2C+Li-Yan&rft.date=2022-04-15&rft.pub=MDPI&rft.eissn=2218-1989&rft.volume=12&rft.issue=4&rft_id=info:doi/10.3390%2Fmetabo12040357&rft_id=info%3Apmid%2F35448542&rft.externalDocID=PMC9032224 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1989&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1989&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1989&client=summon |