Guide to Metabolomics Analysis: A Bioinformatics Workflow

Metabolomics is an emerging field that quantifies numerous metabolites systematically. The key purpose of metabolomics is to identify the metabolites corresponding to each biological phenotype, and then provide an analysis of the mechanisms involved. Although metabolomics is important to understand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolites Jg. 12; H. 4; S. 357
Hauptverfasser: Chen, Yang, Li, En-Min, Xu, Li-Yan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 15.04.2022
MDPI
Schlagworte:
ISSN:2218-1989, 2218-1989
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Metabolomics is an emerging field that quantifies numerous metabolites systematically. The key purpose of metabolomics is to identify the metabolites corresponding to each biological phenotype, and then provide an analysis of the mechanisms involved. Although metabolomics is important to understand the involved biological phenomena, the approach’s ability to obtain an exhaustive description of the processes is limited. Thus, an analysis-integrated metabolomics, transcriptomics, proteomics, and other omics approach is recommended. Such integration of different omics data requires specialized statistical and bioinformatics software. This review focuses on the steps involved in metabolomics research and summarizes several main tools for metabolomics analyses. We also outline the most abnormal metabolic pathways in several cancers and diseases, and discuss the importance of multi-omics integration algorithms. Overall, our goal is to summarize the current metabolomics analysis workflow and its main analysis software to provide useful insights for researchers to establish a preferable pipeline of metabolomics or multi-omics analysis.
AbstractList Metabolomics is an emerging field that quantifies numerous metabolites systematically. The key purpose of metabolomics is to identify the metabolites corresponding to each biological phenotype, and then provide an analysis of the mechanisms involved. Although metabolomics is important to understand the involved biological phenomena, the approach’s ability to obtain an exhaustive description of the processes is limited. Thus, an analysis-integrated metabolomics, transcriptomics, proteomics, and other omics approach is recommended. Such integration of different omics data requires specialized statistical and bioinformatics software. This review focuses on the steps involved in metabolomics research and summarizes several main tools for metabolomics analyses. We also outline the most abnormal metabolic pathways in several cancers and diseases, and discuss the importance of multi-omics integration algorithms. Overall, our goal is to summarize the current metabolomics analysis workflow and its main analysis software to provide useful insights for researchers to establish a preferable pipeline of metabolomics or multi-omics analysis.
Metabolomics is an emerging field that quantifies numerous metabolites systematically. The key purpose of metabolomics is to identify the metabolites corresponding to each biological phenotype, and then provide an analysis of the mechanisms involved. Although metabolomics is important to understand the involved biological phenomena, the approach's ability to obtain an exhaustive description of the processes is limited. Thus, an analysis-integrated metabolomics, transcriptomics, proteomics, and other omics approach is recommended. Such integration of different omics data requires specialized statistical and bioinformatics software. This review focuses on the steps involved in metabolomics research and summarizes several main tools for metabolomics analyses. We also outline the most abnormal metabolic pathways in several cancers and diseases, and discuss the importance of multi-omics integration algorithms. Overall, our goal is to summarize the current metabolomics analysis workflow and its main analysis software to provide useful insights for researchers to establish a preferable pipeline of metabolomics or multi-omics analysis.Metabolomics is an emerging field that quantifies numerous metabolites systematically. The key purpose of metabolomics is to identify the metabolites corresponding to each biological phenotype, and then provide an analysis of the mechanisms involved. Although metabolomics is important to understand the involved biological phenomena, the approach's ability to obtain an exhaustive description of the processes is limited. Thus, an analysis-integrated metabolomics, transcriptomics, proteomics, and other omics approach is recommended. Such integration of different omics data requires specialized statistical and bioinformatics software. This review focuses on the steps involved in metabolomics research and summarizes several main tools for metabolomics analyses. We also outline the most abnormal metabolic pathways in several cancers and diseases, and discuss the importance of multi-omics integration algorithms. Overall, our goal is to summarize the current metabolomics analysis workflow and its main analysis software to provide useful insights for researchers to establish a preferable pipeline of metabolomics or multi-omics analysis.
Author Chen, Yang
Xu, Li-Yan
Li, En-Min
AuthorAffiliation 1 The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; cy_koasde@163.com
3 Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
2 Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
AuthorAffiliation_xml – name: 1 The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; cy_koasde@163.com
– name: 3 Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
– name: 2 Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
Author_xml – sequence: 1
  givenname: Yang
  surname: Chen
  fullname: Chen, Yang
– sequence: 2
  givenname: En-Min
  orcidid: 0000-0001-6375-3614
  surname: Li
  fullname: Li, En-Min
– sequence: 3
  givenname: Li-Yan
  orcidid: 0000-0002-1618-4292
  surname: Xu
  fullname: Xu, Li-Yan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35448542$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1PFTEUxRsDEUS2Ls0kbtw87OdM68LkQRRJIGw0Lpt-3ME-O1NsZzT89_a9B4ZHQjdtes_55fTevkJ7YxoBoTcEnzCm8IcBJmMToZhjJroX6JBSIhdESbX36HyAjktZ4bpaLDpMXqIDJjiXgtNDpM7n4KGZUnO1gcU0BFea5WjiXQnlY7NsTkMKY5_yYKZ16UfKv_qY_r5G-72JBY7v9yP0_cvnb2dfF5fX5xdny8uFEwJPC-sAOJOOWmMU96S1BgSR1IEALzqCwfheGkMVZcwR1XrZc9VR3llrJCh2hC62XJ_MSt_mMJh8p5MJenOR8o02uSaLoHkvCDXVDZjwlirVectAes-pt9L1lfVpy7qd7QDewThlE3egu5Ux_NQ36Y9WmFFKeQW8vwfk9HuGMukhFAcxmhHSXDRta1dlW_NX6bsn0lWac-3rRlXDCSbWr3v7ONH_KA8TqgK-FbicSsnQaxemOom0DhiiJliv_4Le_QvVdvLE9kB-xvAPksu2lA
CitedBy_id crossref_primary_10_3390_molecules28227616
crossref_primary_10_3389_fvets_2024_1393276
crossref_primary_10_3390_ijms252212371
crossref_primary_10_1002_bmc_6089
crossref_primary_10_1055_s_0044_1779025
crossref_primary_10_3389_fcimb_2023_1179967
crossref_primary_10_3390_separations12020041
crossref_primary_10_1016_j_ecoenv_2023_114979
crossref_primary_10_1016_j_marenvres_2025_107410
crossref_primary_10_1093_chemse_bjaf019
crossref_primary_10_1080_00218839_2025_2455852
crossref_primary_10_1016_j_fsi_2024_109900
crossref_primary_10_1016_j_cca_2024_120038
crossref_primary_10_3389_fendo_2022_993253
crossref_primary_10_3390_cancers16010185
crossref_primary_10_1016_j_cca_2024_119842
crossref_primary_10_3390_metabo15020140
crossref_primary_10_3389_fmedt_2024_1434799
crossref_primary_10_1080_14789450_2025_2463324
crossref_primary_10_1016_j_trac_2023_117374
crossref_primary_10_3390_ijms26020474
crossref_primary_10_3390_ijms26178466
crossref_primary_10_1021_acs_chemrestox_5c00203
crossref_primary_10_1016_j_eplepsyres_2025_107656
crossref_primary_10_2903_sp_efsa_2024_EN_8602
crossref_primary_10_1002_mas_21899
crossref_primary_10_1007_s11274_023_03841_8
crossref_primary_10_1016_j_exer_2025_110507
crossref_primary_10_1186_s12859_024_05719_4
crossref_primary_10_1080_14789450_2024_2315193
crossref_primary_10_1136_bmjnph_2024_000883
crossref_primary_10_1016_j_sampre_2025_100186
crossref_primary_10_3390_ijms242417543
crossref_primary_10_1038_s41405_024_00199_3
crossref_primary_10_1002_wics_70045
crossref_primary_10_1186_s12884_023_06102_6
crossref_primary_10_1016_j_heares_2022_108645
crossref_primary_10_1016_j_pnmrs_2025_101564
crossref_primary_10_1002_mas_21896
crossref_primary_10_3389_fimmu_2023_1228795
crossref_primary_10_1038_s41564_025_02083_8
crossref_primary_10_1016_j_freeradbiomed_2025_01_049
crossref_primary_10_1007_s11912_024_01508_7
crossref_primary_10_1007_s10142_024_01486_w
crossref_primary_10_1002_aps3_70001
crossref_primary_10_1002_fsn3_70489
crossref_primary_10_1093_bioinformatics_btae459
crossref_primary_10_1007_s11306_025_02272_w
crossref_primary_10_1016_j_indic_2025_100821
crossref_primary_10_1159_000538051
crossref_primary_10_1016_j_advnut_2024_100186
crossref_primary_10_3390_app142210755
crossref_primary_10_3390_md20120769
crossref_primary_10_3389_fnagi_2025_1591796
crossref_primary_10_1007_s12024_024_00843_2
crossref_primary_10_1111_pce_15187
crossref_primary_10_1186_s13046_024_03141_5
crossref_primary_10_1016_j_psj_2024_104391
crossref_primary_10_1038_s41598_025_92631_3
crossref_primary_10_1093_nar_gkaf363
crossref_primary_10_1038_s41392_023_01380_0
crossref_primary_10_1186_s40246_023_00465_9
crossref_primary_10_1002_bit_28450
crossref_primary_10_1007_s10811_024_03259_1
crossref_primary_10_1016_j_microb_2023_100006
crossref_primary_10_1080_10495398_2024_2388704
crossref_primary_10_3390_plants13141935
crossref_primary_10_3389_fvets_2025_1594749
crossref_primary_10_3390_metabo15050306
crossref_primary_10_1007_s12672_025_03310_8
crossref_primary_10_3389_fendo_2025_1539797
crossref_primary_10_1016_j_envres_2025_122649
crossref_primary_10_1016_j_microc_2024_111779
crossref_primary_10_1097_CCO_0000000000001137
crossref_primary_10_1080_10408347_2025_2468926
crossref_primary_10_1093_nar_gkad1041
crossref_primary_10_3390_ijms25105071
crossref_primary_10_1016_j_cca_2024_117895
crossref_primary_10_1016_j_jchromb_2023_123976
crossref_primary_10_1186_s12302_023_00779_4
crossref_primary_10_1016_j_microc_2025_114795
crossref_primary_10_1016_j_tifs_2024_104481
crossref_primary_10_33549_physiolres_935443
crossref_primary_10_1016_j_trac_2023_117103
crossref_primary_10_1016_j_heliyon_2023_e16686
crossref_primary_10_1038_s41598_024_77352_3
crossref_primary_10_1016_j_scitotenv_2024_175628
crossref_primary_10_1016_j_watres_2025_124392
crossref_primary_10_3390_foods14060919
crossref_primary_10_3390_biomedicines12122750
crossref_primary_10_3390_metabo14090483
crossref_primary_10_1016_j_copbio_2023_102918
crossref_primary_10_3389_fgene_2025_1655325
crossref_primary_10_1080_19490976_2025_2531201
crossref_primary_10_1007_s00726_025_03476_z
crossref_primary_10_3390_metabo14100538
crossref_primary_10_1007_s12033_024_01133_6
crossref_primary_10_1038_s41598_023_36177_2
crossref_primary_10_1002_nbm_70121
crossref_primary_10_3390_microorganisms13071633
crossref_primary_10_3389_fmolb_2022_982561
crossref_primary_10_1016_j_jocs_2025_102629
crossref_primary_10_1186_s13045_024_01596_9
crossref_primary_10_3390_metabo14120708
crossref_primary_10_3389_froh_2025_1568393
crossref_primary_10_1111_jpi_70068
crossref_primary_10_1016_j_trac_2024_117852
crossref_primary_10_1111_ppl_14203
crossref_primary_10_1038_s41598_025_00373_z
crossref_primary_10_3390_metabo15090620
crossref_primary_10_1186_s13213_025_01793_y
crossref_primary_10_1007_s11306_024_02169_0
crossref_primary_10_3390_molecules29051059
crossref_primary_10_3390_ijms26125551
crossref_primary_10_3390_jpm14121121
crossref_primary_10_1016_j_mocell_2025_100200
crossref_primary_10_3390_cells11172719
crossref_primary_10_3390_plants14152345
crossref_primary_10_1186_s40364_023_00555_9
crossref_primary_10_1186_s12859_023_05383_0
crossref_primary_10_1007_s00723_025_01767_y
crossref_primary_10_1007_s11306_024_02208_w
crossref_primary_10_3390_toxics13080653
crossref_primary_10_1038_s41598_025_02361_9
crossref_primary_10_3390_nu17050885
crossref_primary_10_1002_mnfr_202400500
crossref_primary_10_3390_metabo14080438
crossref_primary_10_1016_S1875_5364_25_60822_3
crossref_primary_10_1007_s11306_024_02197_w
crossref_primary_10_3168_jds_2025_26332
crossref_primary_10_1038_s41598_023_38243_1
crossref_primary_10_1002_glia_24665
crossref_primary_10_1007_s10311_024_01816_1
crossref_primary_10_1016_j_addicn_2023_100098
crossref_primary_10_3390_metabo15030173
crossref_primary_10_1016_j_bbadis_2024_167637
crossref_primary_10_1016_j_psj_2025_105575
crossref_primary_10_3390_fermentation9030300
crossref_primary_10_1007_s12035_024_04538_1
crossref_primary_10_1016_j_aca_2024_343491
crossref_primary_10_1007_s11101_025_10153_2
crossref_primary_10_1038_s41598_023_48269_0
crossref_primary_10_1016_j_arr_2023_101987
crossref_primary_10_1186_s13023_023_02885_1
crossref_primary_10_1113_EP092768
crossref_primary_10_1590_s2175_97902023e23146
crossref_primary_10_3390_antibiotics12091373
crossref_primary_10_1007_s11883_025_01304_z
crossref_primary_10_1007_s12161_025_02841_8
crossref_primary_10_1002_prca_202400048
crossref_primary_10_1007_s00217_025_04832_9
crossref_primary_10_3390_toxics11100833
crossref_primary_10_1016_j_trac_2023_117155
crossref_primary_10_1016_j_envint_2024_108620
crossref_primary_10_1016_j_apsoil_2024_105671
crossref_primary_10_3390_molecules28114467
crossref_primary_10_1016_j_foodchem_2024_140836
crossref_primary_10_1016_j_jfca_2025_108227
crossref_primary_10_1016_j_anireprosci_2024_107539
crossref_primary_10_3390_diagnostics15080990
crossref_primary_10_1016_j_cofs_2024_101201
crossref_primary_10_1371_journal_pone_0307157
crossref_primary_10_1016_j_crfs_2024_100959
crossref_primary_10_3389_fmed_2025_1661063
crossref_primary_10_3390_cancers15010140
crossref_primary_10_3389_fmicb_2024_1389268
crossref_primary_10_1101_gad_351428_123
crossref_primary_10_1016_j_chroma_2024_465588
Cites_doi 10.1093/nar/gkq329
10.1016/j.copbio.2018.07.010
10.1093/nar/27.1.29
10.1097/01.ftd.0000179845.53213.39
10.1016/j.cmet.2007.10.005
10.1016/j.celrep.2019.10.035
10.1021/pr4000448
10.1093/nar/gky310
10.1016/j.cell.2019.02.015
10.1038/nrurol.2011.53
10.1002/mas.21627
10.3945/jn.108.103754
10.1016/j.cmet.2009.02.002
10.1038/oby.2009.510
10.1371/journal.pone.0013953
10.3390/metabo9070143
10.1038/nrm2330
10.1093/nar/gkp356
10.3945/ajcn.110.003970
10.1016/j.aca.2009.06.033
10.1039/C1AN15605E
10.1038/srep19763
10.1074/mcp.M111.007922
10.1021/ac051437y
10.1007/978-1-4939-9236-2_19
10.1038/oncsis.2015.49
10.1002/mas.21640
10.2174/157489312799304431
10.1038/nrd1776
10.1007/s00216-016-0003-1
10.2337/db12-0707
10.1007/s00216-006-0687-8
10.1002/mas.21773
10.1093/bib/bbl008
10.1002/0471250953.bi1411s37
10.1093/bioinformatics/btq418
10.1093/nar/gkv380
10.1007/978-1-61737-985-7_21
10.3389/fonc.2018.00494
10.1146/annurev-pharmtox-010611-134748
10.1146/annurev-biochem-061009-102430
10.1111/j.1365-2265.2011.04244.x
10.1371/journal.pone.0115870
10.1152/physiolgenomics.00194.2006
10.1186/2047-217X-2-13
10.1016/j.aca.2008.11.058
10.1093/nar/gkm298
10.1161/CIRCRESAHA.115.306398
10.1007/s00424-011-0985-7
10.3233/JAD-160645
10.1186/1471-2105-10-1
10.1093/bioinformatics/btr499
10.1016/j.neuron.2019.12.015
10.1038/tp.2014.127
10.1002/anie.201804736
10.1586/14737159.8.5.617
10.1186/gm339
10.1021/pr901173v
10.1371/journal.pone.0148361
10.1038/s41587-020-0531-2
10.1186/1471-2105-11-395
10.1158/1078-0432.CCR-12-2917
10.1074/mcp.M110.004945
10.1093/ajcn/86.1.189
10.1007/s11882-014-0445-5
10.1371/journal.pone.0119452
10.1016/j.jaci.2017.04.021
10.1002/bmc.3893
10.1038/nbt1209-1135
10.1002/mas.21518
10.1038/nmeth.3393
10.1111/ijpo.12114
10.1007/s11306-020-01657-3
10.1021/pr901058t
10.1186/s12859-017-1744-3
10.1038/nbt.2348
10.1194/jlr.R300004-JLR200
10.1002/mas.20306
10.1021/acs.jproteome.5b01020
10.1194/jlr.E400004-JLR200
10.1021/pr101096f
10.1016/j.metabol.2012.06.004
10.1016/j.aca.2009.03.039
10.1016/j.cels.2018.03.011
10.1093/nar/gkx1089
10.1186/1752-0509-8-S2-S2
10.1186/1752-0509-7-64
10.1007/s00204-010-0609-6
10.1093/nar/gky510
10.3390/metabo4020433
10.1093/bioinformatics/bty1066
10.1016/j.jalz.2016.08.003
10.1002/hep.27264
10.1021/acs.analchem.7b04424
10.3233/JAD-142319
10.1093/nar/gkab419
10.1371/journal.pone.0093148
10.1093/nar/gks374
10.1021/pr201001a
10.1371/journal.pmed.1002266
10.1093/nar/gkab382
10.1093/clinchem/44.7.1529
10.3389/fbioe.2015.00001
10.1371/journal.pone.0015234
10.1038/s41596-018-0064-z
10.1016/j.jchromb.2010.08.035
10.1093/nar/gkn194
10.3748/wjg.v22.i16.4191
10.1093/nar/gky466
10.1093/gigascience/giz061
10.4155/bio.12.61
10.1007/s00216-012-6117-1
10.2337/db12-0495
10.1093/humupd/dmt048
10.1021/pr500039t
10.3945/jn.116.238931
10.1021/pr300523x
10.1586/14737159.2015.974562
10.1038/nrm3314
10.1016/j.jalz.2017.01.020
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7QR
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/metabo12040357
DatabaseName CrossRef
PubMed
Chemoreception Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Biological Science Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2218-1989
ExternalDocumentID oai_doaj_org_article_4f512a497e01462997db3e8dd42db8cf
PMC9032224
35448542
10_3390_metabo12040357
Genre Journal Article
Review
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: No.81872372
– fundername: National Science Foundation of China
  grantid: No.81772532
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
DIK
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
7QR
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c550t-bcee438c2baa94d16bae5182ce5ed5710eadf8aa29233c196d8f497247bba8e93
IEDL.DBID PIMPY
ISICitedReferencesCount 194
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000786820600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2218-1989
IngestDate Fri Oct 03 12:35:29 EDT 2025
Tue Nov 04 01:51:12 EST 2025
Fri Sep 05 13:57:27 EDT 2025
Fri Jul 25 12:00:12 EDT 2025
Thu Jan 02 22:55:23 EST 2025
Sat Nov 29 07:10:52 EST 2025
Tue Nov 18 21:45:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords metabolic pathways summary
multi-omics integration algorithms
metabolomics analysis tools
metabolomics
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-bcee438c2baa94d16bae5182ce5ed5710eadf8aa29233c196d8f497247bba8e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6375-3614
0000-0002-1618-4292
OpenAccessLink https://www.proquest.com/publiccontent/docview/2652995359?pq-origsite=%requestingapplication%
PMID 35448542
PQID 2652995359
PQPubID 2032362
ParticipantIDs doaj_primary_oai_doaj_org_article_4f512a497e01462997db3e8dd42db8cf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9032224
proquest_miscellaneous_2654286972
proquest_journals_2652995359
pubmed_primary_35448542
crossref_citationtrail_10_3390_metabo12040357
crossref_primary_10_3390_metabo12040357
PublicationCentury 2000
PublicationDate 20220415
PublicationDateYYYYMMDD 2022-04-15
PublicationDate_xml – month: 4
  year: 2022
  text: 20220415
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Metabolites
PublicationTitleAlternate Metabolites
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_92
Floegel (ref_46) 2013; 62
Pacchiarotta (ref_6) 2012; 4
Pasikanti (ref_19) 2010; 9
ref_97
Paglia (ref_64) 2016; 15
Wishart (ref_89) 2018; 46
Smith (ref_112) 2005; 27
Castle (ref_83) 2006; 7
Nakashima (ref_50) 1969; 32
Pasikanti (ref_18) 2013; 12
Lu (ref_44) 2012; 11
Cox (ref_28) 2016; 22
Salek (ref_34) 2007; 29
Ha (ref_37) 2012; 76
Mamas (ref_66) 2011; 85
Musunuru (ref_13) 2019; 177
Wei (ref_82) 2021; 40
Sugimoto (ref_91) 2012; 7
Tsugawa (ref_100) 2015; 12
Guijas (ref_90) 2018; 90
ref_21
Mihalik (ref_36) 2010; 18
Clasquin (ref_86) 2012; 37
Gromski (ref_99) 2014; 4
Zullig (ref_17) 2021; 40
Chen (ref_29) 2009; 650
Tarazona (ref_114) 2018; 46
Agrawal (ref_102) 2019; 1978
Han (ref_14) 2003; 44
ref_72
Ho (ref_74) 2003; 24
Musunuru (ref_12) 2016; 118
Proitsi (ref_59) 2015; 5
Voelker (ref_16) 2008; 9
Mozaffarian (ref_40) 2010; 92
Koal (ref_65) 2015; 44
Xia (ref_107) 2012; 40
Xia (ref_118) 2010; 26
Veenstra (ref_76) 2012; 4
Shariff (ref_26) 2011; 10
Zhang (ref_2) 2012; 404
Theodoridis (ref_73) 2011; 30
Hertel (ref_124) 2019; 29
Turi (ref_4) 2018; 141
Chen (ref_25) 2011; 10
Proitsi (ref_61) 2017; 13
Ogata (ref_95) 1999; 27
Tsugawa (ref_101) 2020; 38
Scrivo (ref_7) 2014; 14
Liang (ref_31) 2016; 6
Newgard (ref_56) 2009; 9
Johnson (ref_8) 2012; 52
Lillefosse (ref_53) 2014; 13
ref_87
Toledo (ref_58) 2017; 13
Zhou (ref_120) 2018; 46
Srivastava (ref_22) 2010; 6
Beisken (ref_70) 2015; 15
Kim (ref_60) 2017; 60
Gowda (ref_3) 2008; 8
Fahy (ref_9) 2005; 46
Ferrannini (ref_45) 2013; 62
Huang (ref_20) 2011; 10
Shariff (ref_30) 2010; 9
Lai (ref_81) 2018; 37
ref_57
ref_54
ref_52
Patti (ref_1) 2012; 13
Xia (ref_106) 2009; 37
Fernandez (ref_116) 2007; 35
Adams (ref_35) 2009; 139
Smith (ref_85) 2006; 78
Idle (ref_5) 2007; 6
Salek (ref_88) 2013; 2
Lecumberri (ref_67) 2013; 19
Xia (ref_108) 2015; 43
Wood (ref_51) 2011; 462
ref_69
Vasseur (ref_11) 2016; 5
Walther (ref_10) 2012; 81
Cheng (ref_24) 2012; 11
ref_62
Zhang (ref_84) 2012; 137
Pan (ref_75) 2007; 387
Chen (ref_98) 2013; 2013
Kamburov (ref_117) 2011; 27
Pedersen (ref_122) 2018; 13
Cho (ref_55) 2017; 12
Misra (ref_68) 2020; 16
Lee (ref_41) 2018; 41
Bai (ref_125) 2020; 105
ref_115
Ebbels (ref_77) 2011; 708
Kieffer (ref_123) 2016; 146
Wenk (ref_15) 2005; 4
Noble (ref_96) 2009; 27
ref_32
Hutchins (ref_104) 2018; 6
Burnap (ref_71) 2015; 3
Altmae (ref_121) 2014; 20
Liu (ref_39) 2010; 878
Chow (ref_49) 2013; 62
DeFeo (ref_78) 2011; 8
Shen (ref_105) 2019; 35
Molenaar (ref_111) 2019; 8
Vignoli (ref_79) 2019; 58
Xia (ref_93) 2010; 38
Chong (ref_94) 2018; 46
ref_103
Tautenhahn (ref_113) 2012; 30
Lin (ref_110) 2021; 49
Chaleckis (ref_80) 2019; 55
ref_47
Messana (ref_42) 1998; 44
ref_43
Pang (ref_109) 2021; 49
Wu (ref_33) 2009; 648
Li (ref_38) 2009; 633
Guiraud (ref_63) 2017; 409
Suhre (ref_119) 2008; 36
Cheng (ref_23) 2018; 8
Ladep (ref_27) 2014; 60
Hodge (ref_48) 2007; 86
References_xml – volume: 38
  start-page: W71
  year: 2010
  ident: ref_93
  article-title: MSEA: A web-based tool to identify biologically meaningful patterns in quantitative metabolomic data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq329
– volume: 55
  start-page: 44
  year: 2019
  ident: ref_80
  article-title: Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2018.07.010
– volume: 27
  start-page: 29
  year: 1999
  ident: ref_95
  article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.1.29
– volume: 27
  start-page: 747
  year: 2005
  ident: ref_112
  article-title: METLIN: A metabolite mass spectral database
  publication-title: Ther. Drug Monit.
  doi: 10.1097/01.ftd.0000179845.53213.39
– volume: 6
  start-page: 348
  year: 2007
  ident: ref_5
  article-title: Metabolomics
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.10.005
– volume: 29
  start-page: 1767
  year: 2019
  ident: ref_124
  article-title: Integrated Analyses of Microbiome and Longitudinal Metabolome Data Reveal Microbial-Host Interactions on Sulfur Metabolism in Parkinson’s Disease
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.10.035
– volume: 12
  start-page: 3865
  year: 2013
  ident: ref_18
  article-title: Urinary metabotyping of bladder cancer using two-dimensional gas chromatography time-of-flight mass spectrometry
  publication-title: J. Proteome Res.
  doi: 10.1021/pr4000448
– volume: 46
  start-page: W486
  year: 2018
  ident: ref_94
  article-title: MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky310
– volume: 41
  start-page: 1069
  year: 2018
  ident: ref_41
  article-title: High-resolution metabolomics determines the mode of onset of type 2 diabetes in a 3-year prospective cohort study
  publication-title: Int. J. Mol. Med.
– volume: 177
  start-page: 132
  year: 2019
  ident: ref_13
  article-title: Genetics of Common, Complex Coronary Artery Disease
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.015
– volume: 8
  start-page: 301
  year: 2011
  ident: ref_78
  article-title: A decade in prostate cancer: From NMR to metabolomics
  publication-title: Nat. Rev. Urol.
  doi: 10.1038/nrurol.2011.53
– volume: 40
  start-page: 162
  year: 2021
  ident: ref_17
  article-title: High Resolution Mass Spectrometry in Lipidomics
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.21627
– volume: 139
  start-page: 1073
  year: 2009
  ident: ref_35
  article-title: Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women
  publication-title: J. Nutr.
  doi: 10.3945/jn.108.103754
– volume: 9
  start-page: 311
  year: 2009
  ident: ref_56
  article-title: A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2009.02.002
– volume: 18
  start-page: 1695
  year: 2010
  ident: ref_36
  article-title: Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity
  publication-title: Obesity
  doi: 10.1038/oby.2009.510
– ident: ref_43
  doi: 10.1371/journal.pone.0013953
– ident: ref_97
  doi: 10.3390/metabo9070143
– volume: 9
  start-page: 112
  year: 2008
  ident: ref_16
  article-title: Membrane lipids: Where they are and how they behave
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2330
– volume: 37
  start-page: W652
  year: 2009
  ident: ref_106
  article-title: MetaboAnalyst: A web server for metabolomic data analysis and interpretation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp356
– volume: 92
  start-page: 1350
  year: 2010
  ident: ref_40
  article-title: Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.110.003970
– volume: 648
  start-page: 98
  year: 2009
  ident: ref_33
  article-title: Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2009.06.033
– volume: 137
  start-page: 293
  year: 2012
  ident: ref_84
  article-title: Modern analytical techniques in metabolomics analysis
  publication-title: Analyst
  doi: 10.1039/C1AN15605E
– volume: 6
  start-page: 11
  year: 2010
  ident: ref_22
  article-title: Taurine—A possible fingerprint biomarker in non-muscle invasive bladder cancer: A pilot study by 1H NMR spectroscopy
  publication-title: Cancer Biomark. Sect. A Dis. Markers
– volume: 6
  start-page: 19763
  year: 2016
  ident: ref_31
  article-title: Phenotypic Characterization Analysis of Human Hepatocarcinoma by Urine Metabolomics Approach
  publication-title: Sci. Rep.
  doi: 10.1038/srep19763
– volume: 24
  start-page: 3
  year: 2003
  ident: ref_74
  article-title: Electrospray ionisation mass spectrometry: Principles and clinical applications
  publication-title: Clin. Biochem. Rev.
– volume: 10
  start-page: M111.007922
  year: 2011
  ident: ref_20
  article-title: Bladder cancer determination via two urinary metabolites: A biomarker pattern approach
  publication-title: Mol. Cell. Proteom. MCP
  doi: 10.1074/mcp.M111.007922
– volume: 78
  start-page: 779
  year: 2006
  ident: ref_85
  article-title: XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification
  publication-title: Anal. Chem.
  doi: 10.1021/ac051437y
– volume: 1978
  start-page: 301
  year: 2019
  ident: ref_102
  article-title: El-MAVEN: A Fast, Robust, and User-Friendly Mass Spectrometry Data Processing Engine for Metabolomics
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-9236-2_19
– volume: 5
  start-page: e189
  year: 2016
  ident: ref_11
  article-title: Lipid metabolic reprogramming in cancer cells
  publication-title: Oncogenesis
  doi: 10.1038/oncsis.2015.49
– volume: 40
  start-page: 255
  year: 2021
  ident: ref_82
  article-title: Emerging environmental pollutants hydroxylated polybrominated diphenyl ethers: From analytical methods to toxicology research
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.21640
– volume: 7
  start-page: 96
  year: 2012
  ident: ref_91
  article-title: Bioinformatics Tools for Mass Spectroscopy-Based Metabolomic Data Processing and Analysis
  publication-title: Curr. Bioinform.
  doi: 10.2174/157489312799304431
– volume: 4
  start-page: 594
  year: 2005
  ident: ref_15
  article-title: The emerging field of lipidomics
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1776
– volume: 409
  start-page: 295
  year: 2017
  ident: ref_63
  article-title: High-throughput and simultaneous quantitative analysis of homocysteine-methionine cycle metabolites and co-factors in blood plasma and cerebrospinal fluid by isotope dilution LC-MS/MS
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-016-0003-1
– volume: 62
  start-page: 1730
  year: 2013
  ident: ref_45
  article-title: Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance
  publication-title: Diabetes
  doi: 10.2337/db12-0707
– volume: 387
  start-page: 525
  year: 2007
  ident: ref_75
  article-title: Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-006-0687-8
– ident: ref_69
  doi: 10.1002/mas.21773
– volume: 7
  start-page: 159
  year: 2006
  ident: ref_83
  article-title: Metabolomics Standards Workshop and the development of international standards for reporting metabolomics experimental results
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbl008
– volume: 37
  start-page: 14.11.1
  year: 2012
  ident: ref_86
  article-title: LC-MS data processing with MAVEN: A metabolomic analysis and visualization engine
  publication-title: Curr. Protoc. Bioinform.
  doi: 10.1002/0471250953.bi1411s37
– volume: 26
  start-page: 2342
  year: 2010
  ident: ref_118
  article-title: MetPA: A web-based metabolomics tool for pathway analysis and visualization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq418
– volume: 43
  start-page: W251
  year: 2015
  ident: ref_108
  article-title: MetaboAnalyst 3.0—Making metabolomics more meaningful
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv380
– volume: 708
  start-page: 365
  year: 2011
  ident: ref_77
  article-title: Processing and modeling of nuclear magnetic resonance (NMR) metabolic profiles
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61737-985-7_21
– volume: 8
  start-page: 494
  year: 2018
  ident: ref_23
  article-title: Metabolomics of Non-muscle Invasive Bladder Cancer: Biomarkers for Early Detection of Bladder Cancer
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2018.00494
– volume: 52
  start-page: 37
  year: 2012
  ident: ref_8
  article-title: Xenobiotic metabolomics: Major impact on the metabolome
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-010611-134748
– volume: 81
  start-page: 687
  year: 2012
  ident: ref_10
  article-title: Lipid droplets and cellular lipid metabolism
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-061009-102430
– volume: 76
  start-page: 674
  year: 2012
  ident: ref_37
  article-title: The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes
  publication-title: Clin. Endocrinol.
  doi: 10.1111/j.1365-2265.2011.04244.x
– ident: ref_21
  doi: 10.1371/journal.pone.0115870
– volume: 29
  start-page: 99
  year: 2007
  ident: ref_34
  article-title: A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human
  publication-title: Physiol. Genom.
  doi: 10.1152/physiolgenomics.00194.2006
– volume: 2
  start-page: 13
  year: 2013
  ident: ref_88
  article-title: The role of reporting standards for metabolite annotation and identification in metabolomic studies
  publication-title: Gigascience
  doi: 10.1186/2047-217X-2-13
– volume: 633
  start-page: 257
  year: 2009
  ident: ref_38
  article-title: Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2008.11.058
– volume: 35
  start-page: W21
  year: 2007
  ident: ref_116
  article-title: iHOP web services
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm298
– volume: 118
  start-page: 579
  year: 2016
  ident: ref_12
  article-title: Surprises From Genetic Analyses of Lipid Risk Factors for Atherosclerosis
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.115.306398
– volume: 462
  start-page: 469
  year: 2011
  ident: ref_51
  article-title: Modulation of adipokine production, glucose uptake and lactate release in human adipocytes by small changes in oxygen tension
  publication-title: Pflug. Arch. Eur. J. Physiol.
  doi: 10.1007/s00424-011-0985-7
– volume: 60
  start-page: 809
  year: 2017
  ident: ref_60
  article-title: Association between Plasma Ceramides and Phosphatidylcholines and Hippocampal Brain Volume in Late Onset Alzheimer’s Disease
  publication-title: J. Alzheimer’s Dis. JAD
  doi: 10.3233/JAD-160645
– ident: ref_72
  doi: 10.1186/1471-2105-10-1
– volume: 27
  start-page: 2917
  year: 2011
  ident: ref_117
  article-title: Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr499
– volume: 105
  start-page: 975
  year: 2020
  ident: ref_125
  article-title: Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer’s Disease Progression
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.12.015
– volume: 5
  start-page: e494
  year: 2015
  ident: ref_59
  article-title: Plasma lipidomics analysis finds long chain cholesteryl esters to be associated with Alzheimer’s disease
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2014.127
– volume: 58
  start-page: 968
  year: 2019
  ident: ref_79
  article-title: High-Throughput Metabolomics by 1D NMR
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201804736
– volume: 8
  start-page: 617
  year: 2008
  ident: ref_3
  article-title: Metabolomics-based methods for early disease diagnostics
  publication-title: Expert Rev. Mol. Diagn.
  doi: 10.1586/14737159.8.5.617
– volume: 4
  start-page: 40
  year: 2012
  ident: ref_76
  article-title: Metabolomics: The final frontier?
  publication-title: Genome Med.
  doi: 10.1186/gm339
– volume: 9
  start-page: 2988
  year: 2010
  ident: ref_19
  article-title: Noninvasive urinary metabonomic diagnosis of human bladder cancer
  publication-title: J. Proteome Res.
  doi: 10.1021/pr901173v
– ident: ref_54
  doi: 10.1371/journal.pone.0148361
– volume: 38
  start-page: 1159
  year: 2020
  ident: ref_101
  article-title: A lipidome atlas in MS-DIAL 4
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0531-2
– ident: ref_87
  doi: 10.1186/1471-2105-11-395
– volume: 32
  start-page: 143
  year: 1969
  ident: ref_50
  article-title: Glycolytic and gluconeogenic metabolites and enzymes in the liver of obese-hyperglycemic mice (KK) and alloxan diabetic mice
  publication-title: Nagoya J. Med. Sci.
– volume: 19
  start-page: 4770
  year: 2013
  ident: ref_67
  article-title: Multiple myeloma patients have a specific serum metabolomic profile that changes after achieving complete remission
  publication-title: Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.
  doi: 10.1158/1078-0432.CCR-12-2917
– volume: 10
  start-page: M110.004945
  year: 2011
  ident: ref_25
  article-title: Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma
  publication-title: Mol. Cell. Proteom. MCP
  doi: 10.1074/mcp.M110.004945
– volume: 86
  start-page: 189
  year: 2007
  ident: ref_48
  article-title: Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: Interpreting the role of linoleic acid
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/86.1.189
– volume: 14
  start-page: 445
  year: 2014
  ident: ref_7
  article-title: Metabolomics approach in allergic and rheumatic diseases
  publication-title: Curr. Allergy Asthma Rep.
  doi: 10.1007/s11882-014-0445-5
– ident: ref_57
  doi: 10.1371/journal.pone.0119452
– volume: 141
  start-page: 1191
  year: 2018
  ident: ref_4
  article-title: A review of metabolomics approaches and their application in identifying causal pathways of childhood asthma
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2017.04.021
– ident: ref_32
  doi: 10.1002/bmc.3893
– volume: 27
  start-page: 1135
  year: 2009
  ident: ref_96
  article-title: How does multiple testing correction work?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1209-1135
– volume: 37
  start-page: 245
  year: 2018
  ident: ref_81
  article-title: Mass spectral fragmentation of trimethylsilylated small molecules
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.21518
– volume: 12
  start-page: 523
  year: 2015
  ident: ref_100
  article-title: MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3393
– volume: 12
  start-page: 93
  year: 2017
  ident: ref_55
  article-title: Combined untargeted and targeted metabolomic profiling reveals urinary biomarkers for discriminating obese from normal-weight adolescents
  publication-title: Pediatric Obes.
  doi: 10.1111/ijpo.12114
– volume: 16
  start-page: 36
  year: 2020
  ident: ref_68
  article-title: Software tools, databases and resources in metabolomics: Updates from 2018 to 2019
  publication-title: Metabolomics
  doi: 10.1007/s11306-020-01657-3
– volume: 9
  start-page: 1096
  year: 2010
  ident: ref_30
  article-title: Characterization of urinary biomarkers of hepatocellular carcinoma using magnetic resonance spectroscopy in a Nigerian population
  publication-title: J. Proteome Res.
  doi: 10.1021/pr901058t
– ident: ref_103
  doi: 10.1186/s12859-017-1744-3
– volume: 30
  start-page: 826
  year: 2012
  ident: ref_113
  article-title: An accelerated workflow for untargeted metabolomics using the METLIN database
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2348
– volume: 44
  start-page: 1071
  year: 2003
  ident: ref_14
  article-title: Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: A bridge to lipidomics
  publication-title: J. Lipid. Res.
  doi: 10.1194/jlr.R300004-JLR200
– volume: 30
  start-page: 884
  year: 2011
  ident: ref_73
  article-title: Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.20306
– volume: 15
  start-page: 608
  year: 2016
  ident: ref_64
  article-title: Unbiased Metabolomic Investigation of Alzheimer’s Disease Brain Points to Dysregulation of Mitochondrial Aspartate Metabolism
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.5b01020
– volume: 46
  start-page: 839
  year: 2005
  ident: ref_9
  article-title: A comprehensive classification system for lipids
  publication-title: J. Lipid. Res.
  doi: 10.1194/jlr.E400004-JLR200
– volume: 10
  start-page: 1828
  year: 2011
  ident: ref_26
  article-title: Urinary metabolic biomarkers of hepatocellular carcinoma in an Egyptian population: A validation study
  publication-title: J. Proteome Res.
  doi: 10.1021/pr101096f
– volume: 62
  start-page: 100
  year: 2013
  ident: ref_49
  article-title: Estimated plasma stearoyl co-A desaturase-1 activity and risk of incident diabetes: The Atherosclerosis Risk in Communities (ARIC) study
  publication-title: Metab. Clin. Exp.
  doi: 10.1016/j.metabol.2012.06.004
– volume: 650
  start-page: 3
  year: 2009
  ident: ref_29
  article-title: Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2009.03.039
– volume: 6
  start-page: 621
  year: 2018
  ident: ref_104
  article-title: LipiDex: An Integrated Software Package for High-Confidence Lipid Identification
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2018.03.011
– volume: 46
  start-page: D608
  year: 2018
  ident: ref_89
  article-title: HMDB 4.0: The human metabolome database for 2018
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1089
– ident: ref_92
  doi: 10.1186/1752-0509-8-S2-S2
– ident: ref_115
  doi: 10.1186/1752-0509-7-64
– volume: 85
  start-page: 5
  year: 2011
  ident: ref_66
  article-title: The role of metabolites and metabolomics in clinically applicable biomarkers of disease
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-010-0609-6
– volume: 46
  start-page: W514
  year: 2018
  ident: ref_120
  article-title: OmicsNet: A web-based tool for creation and visual analysis of biological networks in 3D space
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky510
– volume: 2013
  start-page: 298183
  year: 2013
  ident: ref_98
  article-title: Random forest in clinical metabolomics for phenotypic discrimination and biomarker selection
  publication-title: Evid.-Based Complementary Altern. Med.
– volume: 4
  start-page: 433
  year: 2014
  ident: ref_99
  article-title: Influence of missing values substitutes on multivariate analysis of metabolomics data
  publication-title: Metabolites
  doi: 10.3390/metabo4020433
– volume: 35
  start-page: 2870
  year: 2019
  ident: ref_105
  article-title: MetFlow: An interactive and integrated workflow for metabolomics data cleaning and differential metabolite discovery
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1066
– volume: 13
  start-page: 140
  year: 2017
  ident: ref_61
  article-title: Association of blood lipids with Alzheimer’s disease: A comprehensive lipidomics analysis
  publication-title: Alzheimer’s Dement. J. Alzheimer’s Assoc.
  doi: 10.1016/j.jalz.2016.08.003
– volume: 60
  start-page: 1291
  year: 2014
  ident: ref_27
  article-title: Discovery and validation of urinary metabotypes for the diagnosis of hepatocellular carcinoma in West Africans
  publication-title: Hepatology
  doi: 10.1002/hep.27264
– volume: 90
  start-page: 3156
  year: 2018
  ident: ref_90
  article-title: METLIN: A Technology Platform for Identifying Knowns and Unknowns
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b04424
– volume: 44
  start-page: 1193
  year: 2015
  ident: ref_65
  article-title: Sphingomyelin SM(d18:1/18:0) is significantly enhanced in cerebrospinal fluid samples dichotomized by pathological amyloid-beta42, tau, and phospho-tau-181 levels
  publication-title: J. Alzheimer’s Dis. JAD
  doi: 10.3233/JAD-142319
– volume: 49
  start-page: W336
  year: 2021
  ident: ref_110
  article-title: LipidSig: A web-based tool for lipidomic data analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab419
– ident: ref_52
  doi: 10.1371/journal.pone.0093148
– volume: 40
  start-page: W127
  year: 2012
  ident: ref_107
  article-title: MetaboAnalyst 2.0—A comprehensive server for metabolomic data analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks374
– volume: 11
  start-page: 1354
  year: 2012
  ident: ref_24
  article-title: Distinct urinary metabolic profile of human colorectal cancer
  publication-title: J. Proteome Res.
  doi: 10.1021/pr201001a
– ident: ref_62
  doi: 10.1371/journal.pmed.1002266
– volume: 49
  start-page: W388
  year: 2021
  ident: ref_109
  article-title: MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab382
– volume: 44
  start-page: 1529
  year: 1998
  ident: ref_42
  article-title: Proton nuclear magnetic resonance spectral profiles of urine in type II diabetic patients
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/44.7.1529
– volume: 3
  start-page: 1
  year: 2015
  ident: ref_71
  article-title: Systems and photosystems: Cellular limits of autotrophic productivity in cyanobacteria
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2015.00001
– ident: ref_47
  doi: 10.1371/journal.pone.0015234
– volume: 13
  start-page: 2781
  year: 2018
  ident: ref_122
  article-title: A computational framework to integrate high-throughput ‘-omics’ datasets for the identification of potential mechanistic links
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0064-z
– volume: 878
  start-page: 2817
  year: 2010
  ident: ref_39
  article-title: Free fatty acid metabolic profile and biomarkers of isolated post-challenge diabetes and type 2 diabetes mellitus based on GC-MS and multivariate statistical analysis
  publication-title: J. Chromatogr. B Anal. Technol. Biomed. Life Sci.
  doi: 10.1016/j.jchromb.2010.08.035
– volume: 36
  start-page: W481
  year: 2008
  ident: ref_119
  article-title: MassTRIX: Mass translator into pathways
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn194
– volume: 22
  start-page: 4191
  year: 2016
  ident: ref_28
  article-title: Urinary nuclear magnetic resonance spectroscopy of a Bangladeshi cohort with hepatitis-B hepatocellular carcinoma: A biomarker corroboration study
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v22.i16.4191
– volume: 46
  start-page: W503
  year: 2018
  ident: ref_114
  article-title: PaintOmics 3: A web resource for the pathway analysis and visualization of multi-omics data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky466
– volume: 8
  start-page: giz061
  year: 2019
  ident: ref_111
  article-title: LION/web: A web-based ontology enrichment tool for lipidomic data analysis
  publication-title: Gigascience
  doi: 10.1093/gigascience/giz061
– volume: 4
  start-page: 919
  year: 2012
  ident: ref_6
  article-title: Metabolomic investigations of human infections
  publication-title: Bioanalysis
  doi: 10.4155/bio.12.61
– volume: 404
  start-page: 1239
  year: 2012
  ident: ref_2
  article-title: Serum metabolomics as a novel diagnostic approach for disease: A systematic review
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-012-6117-1
– volume: 62
  start-page: 639
  year: 2013
  ident: ref_46
  article-title: Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach
  publication-title: Diabetes
  doi: 10.2337/db12-0495
– volume: 20
  start-page: 12
  year: 2014
  ident: ref_121
  article-title: Guidelines for the design, analysis and interpretation of ‘omics’ data: Focus on human endometrium
  publication-title: Hum. Reprod. Update
  doi: 10.1093/humupd/dmt048
– volume: 13
  start-page: 2560
  year: 2014
  ident: ref_53
  article-title: Urinary loss of tricarboxylic acid cycle intermediates as revealed by metabolomics studies: An underlying mechanism to reduce lipid accretion by whey protein ingestion?
  publication-title: J. Proteome Res.
  doi: 10.1021/pr500039t
– volume: 146
  start-page: 2476
  year: 2016
  ident: ref_123
  article-title: Mice Fed a High-Fat Diet Supplemented with Resistant Starch Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria
  publication-title: J. Nutr.
  doi: 10.3945/jn.116.238931
– volume: 11
  start-page: 4705
  year: 2012
  ident: ref_44
  article-title: Serum metabolic signatures of fulminant type 1 diabetes
  publication-title: J. Proteome Res.
  doi: 10.1021/pr300523x
– volume: 15
  start-page: 97
  year: 2015
  ident: ref_70
  article-title: Getting the right answers: Understanding metabolomics challenges
  publication-title: Expert Rev. Mol. Diagn.
  doi: 10.1586/14737159.2015.974562
– volume: 13
  start-page: 263
  year: 2012
  ident: ref_1
  article-title: Innovation: Metabolomics: The apogee of the omics trilogy
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3314
– volume: 13
  start-page: 965
  year: 2017
  ident: ref_58
  article-title: Metabolic network failures in Alzheimer’s disease: A biochemical road map
  publication-title: Alzheimer’s Dement. J. Alzheimer’s Assoc.
  doi: 10.1016/j.jalz.2017.01.020
SSID ssj0000605701
Score 2.6089208
SecondaryResourceType review_article
Snippet Metabolomics is an emerging field that quantifies numerous metabolites systematically. The key purpose of metabolomics is to identify the metabolites...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 357
SubjectTerms Alzheimer's disease
Amino acids
Bioinformatics
Biomarkers
Cancer
Chromatography
Data processing
Diabetes
Fatty acids
Identification
Integration
Lipids
Mass spectrometry
Metabolic pathways
metabolic pathways summary
Metabolism
Metabolites
Metabolomics
metabolomics analysis tools
multi-omics integration algorithms
NMR
Nuclear magnetic resonance
Phenotypes
Polyamines
Proteomics
Researchers
Review
Scientific imaging
Software
Transcriptomics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higOXqg-g6UtGQnCKmviR2Ny2qI8LFQeQeovs2FFX2iZVN9uq_54ZJ7vaRSAuXOM5TD6PPfP58RngIydNqFqH1PjMpxILhNRxpdPMY3nsTKallfGxifLmRt_emu9rT33RmbBBHngA7kw2mJKsNGUgmROcPEvvRNDeS-6drhuafbPSrJGpYQ7GOiTLB5VGgbz-7D70iGrOMWgF5aK1LBTF-v9UYf5-UHIt81zuwPZYMrLJ4OouvArtHuxPWqTL9y_sE4uHOOPq-D6Yq8XUB9Z37Fv0ZEaXjudsKT3yhU3Y-bQb1VJJoZnRankz657fws_Lix9fr9PxdYS0RlbRpw7TmxS65s5aI31eOBsUsoU6qOAVFg4YI422lmMJJ2ocaF43CCOXpXNWByPewVbbteEAmNaksuZKGwzyLZe5vMg8LzBt6bzhwiSQLtGq6lE6nF6wmFVIIQjdahPdBD6v7B8G0Yy_Wp4T-CsrEruOHzAEqjEEqn-FQALHy66rxhE4r3ih0FIJhd5_WDXj2KENEduGbhFtkH0VCEoC74eeXnkiFBJXbE6g3IiBDVc3W9rpXdTnNhltX8nD__FvR_CG04ULUpdUx7DVPy7CCbyun_rp_PE0Bv0vDk8HJw
  priority: 102
  providerName: Directory of Open Access Journals
Title Guide to Metabolomics Analysis: A Bioinformatics Workflow
URI https://www.ncbi.nlm.nih.gov/pubmed/35448542
https://www.proquest.com/docview/2652995359
https://www.proquest.com/docview/2654286972
https://pubmed.ncbi.nlm.nih.gov/PMC9032224
https://doaj.org/article/4f512a497e01462997db3e8dd42db8cf
Volume 12
WOSCitedRecordID wos000786820600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  customDbUrl:
  eissn: 2218-1989
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605701
  issn: 2218-1989
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2218-1989
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605701
  issn: 2218-1989
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2218-1989
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605701
  issn: 2218-1989
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2218-1989
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605701
  issn: 2218-1989
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2218-1989
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605701
  issn: 2218-1989
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQcuvJZHYImMhOAUNXFeNhfUol3gsFWEQCqnKI4dqNRNljYF8e-ZcdyyRcCJa-zDxPMej78BeMYJE6oWJpA61EGCAUKgeCqCUGN4rGQokiqxwyby-VwsFrJwz6M3rq1yZxOtoR7QnqlvG43wRHc1VcwnPEvRjqZxKl9dfg1ohhTdtbqBGkcwJuCtcATj4t158Wlfcwkxds_DaMBujDHbn1yYHs864ijKMXmoK77JQvj_Ke78vX3yij86u_V__-Q23HRxKZsOgnQHrpn2LhxPW8zJL36w58x2itoS_DHIN9ulNqzv2Ln9sRW9bN6wHb7JSzZls2XnIFkJBppRSb5Zdd_vwcez0w-v3wZuBENQY-rSBwp9aBKLmquqkomOMlWZFFOS2qRGpxidoCA2oqo4xolxjdqsRZPInCe5UpUwMr4Po7ZrzUNgQhCUm8orIzGpU6GKslDzDH2jiBoeSw-C3eGXtcMnpzEZqxLzFGJWecgsD17s918OyBx_3TkjXu53EaK2_dCtP5dOQcukwdCnQtoNwekgS3KtYiO0TrhWom48ONlxs3Rqvil_Mc-Dp_tlVFC6dala023tHkzxMjwUDx4MgrOnJEYxFbjsQX4gUgekHq60yy8WBFyGdEeWPPo3WY_hBqf3GgROmZ7AqF9vzRO4Xn_rl5u1D0f5Qvgwnp3Oi_e-LUf41Pxa-E5zfgJT0SaI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyS48CqPQAEj8ThFdRwnsZEQ2gKlq3ZXeyhSOQU7dmClbVJ2s1T9U_xGxnnRRcCtB66xD5Px53l47G8AnjHHCZUJ60tDjc8xQPA1i4RPDYbHWlLBFa-bTSSTiTg-ltMN-NG9hXHXKjubWBtqU2bujHyHxRFaziiM5JvTb77rGuWqq10LjQYWB_b8DFO25evRO1zf54ztvT96u--3XQX8DKPxytfoFngoMqaVktwEsVY2wig7s5E1ETpc1G0ulGIY-oQZAtSInMuE8URrJawjX0KTv8kR7HQAm9PRePqpP9WhmB0kNGjYIcNQ0p0TW-FqBgw3S-h84AXvVzcJ-FNk-_sFzQseb-_G_6arm3C9ja3JsNkMt2DDFrdha1ioqjw5Jy9Ifdu1LiNsgfywmhlLqpKMa9XN3evsJek4Wl6RIdmdlS2trKOyJq6skM_Lszvw8VJ-4i4MirKw94EI4ejodKKsxMRUUx3E1LAY_bsIchZKD_xuedOs5Vh3rT7mKeZaDg7pOhw8eNnPP23YRf46c9ehpZ_lWMHrD-XiS9oamZTnGL4plN06SiCEQGJ0aIUxnBktstyD7Q4vaWuqlukvsHjwtB9GI-MqR6qw5aqeg2lqjErx4F4DzV6SMMIMH4c9SNZAuybq-kgx-1oTmUvq6nz8wb_FegJX94_Gh-nhaHLwEK4x9_7EkW1G2zCoFiv7CK5k36vZcvG43Y0EPl82qH8C3B12Gg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4S48CqPQAEj8ThFm9hOYiMhtEu7UBVWKwRSb8GOHVhpm5TdLFX_Gr-OcV50EXDrgWs8B2f8eR4e-xuAJ9RxQmXC-tIExucYIPiaRsIPDIbHWgaCK143m0imU3F0JGdb8KN7C-OuVXY2sTbUpszcGfmQxhFazohFcpi31yJme5NXJ99810HKVVq7dhoNRA7t2Smmb6uXB3u41k8pnex_fP3WbzsM-BlG5pWv0UVwJjKqlZLchLFWNsKIO7ORNRE6X9RzLpSiGAaxDMFqRM5lQnmitRLWETGh-d9OGCY9A9ge709nH_oTngAzhSQIG6ZIxmQwPLYVrmxIceMw5w_PecK6YcCfotzfL2ue836Ta_-z3q7D1TbmJqNmk9yALVvchJ1Roary-Iw8I_Ut2Lq8sAPyzXpuLKlK8r5W48K92l6RjrvlBRmR8bxs6WYdxTVx5YZ8UZ7egk8X8hO3YVCUhb0LRAhHU6cTZSUmrDrQYRwYGqPfF2FOmfTA75Y6zVruddcCZJFiDuagkW5Cw4PnvfxJwzryV8mxQ04v5djC6w_l8kvaGp-U5xjWKZy7dVRBCIfEaGaFMZwaLbLcg90OO2lrwlbpL-B48LgfRuPjKkqqsOW6lsH0NUaleHCngWk_ExZh5o_DHiQbAN6Y6uZIMf9aE5zLwNX_-L1_T-sRXEYkp-8Opof34Qp1z1IcB2e0C4NqubYP4FL2vZqvlg_bjUng80Vj-ifZM360
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guide+to+Metabolomics+Analysis%3A+A+Bioinformatics+Workflow&rft.jtitle=Metabolites&rft.au=Chen%2C+Yang&rft.au=Li%2C+En-Min&rft.au=Xu%2C+Li-Yan&rft.date=2022-04-15&rft.pub=MDPI&rft.eissn=2218-1989&rft.volume=12&rft.issue=4&rft_id=info:doi/10.3390%2Fmetabo12040357&rft_id=info%3Apmid%2F35448542&rft.externalDocID=PMC9032224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1989&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1989&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1989&client=summon