The Independent Gradient Model: A New Approach for Probing Strong and Weak Interactions in Molecules from Wave Function Calculations

Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg , was defined. It represents the difference bet...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemphyschem Ročník 19; číslo 6; s. 724 - 735
Hlavní autoři: Lefebvre, Corentin, Khartabil, Hassan, Boisson, Jean‐Charles, Contreras‐García, Julia, Piquemal, Jean‐Philip, Hénon, Eric
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 19.03.2018
Wiley-VCH Verlag
Témata:
ISSN:1439-4235, 1439-7641, 1439-7641
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg , was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM , IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGM is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient‐based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa‐coordinated carbon atom, and β‐thioaminoacrolein. It will be shown how a bond‐by‐bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths. Take a fresh look: The new δg ‐IGM (IGM=independent gradient model) approach, hereby extended to electron density obtained from quantum mechanics, is able to provide chemists with a visual understanding of interactions by specifically probing a given atom pair in a molecule. It paves the way for targeted mechanistic exploration of reactions.
AbstractList Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg , was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM , IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGM is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient-based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa-coordinated carbon atom, and β-thioaminoacrolein. It will be shown how a bond-by-bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths.
Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg , was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM , IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGM is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient-based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa-coordinated carbon atom, and β-thioaminoacrolein. It will be shown how a bond-by-bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths.Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg , was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM , IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGM is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient-based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa-coordinated carbon atom, and β-thioaminoacrolein. It will be shown how a bond-by-bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths.
Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, , was defined. It represents the difference between a virtual upper limit of the ED gradient ( , IGM=independent gradient model) that represents a noninteracting system and the true ED gradient ( ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient‐based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa‐coordinated carbon atom, and β‐thioaminoacrolein. It will be shown how a bond‐by‐bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths.
Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg , was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM , IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGM is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient‐based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa‐coordinated carbon atom, and β‐thioaminoacrolein. It will be shown how a bond‐by‐bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths. Take a fresh look: The new δg ‐IGM (IGM=independent gradient model) approach, hereby extended to electron density obtained from quantum mechanics, is able to provide chemists with a visual understanding of interactions by specifically probing a given atom pair in a molecule. It paves the way for targeted mechanistic exploration of reactions.
Extracting the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work using promolecular ED (frozen ED), the new descriptor was defined. It represents the difference between a virtual upper limit of the ED gradient (| ρ !"# |) representing a non-interacting system and the true ED gradient | |. It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the NCI (Non Covalent Interaction) approach, it provides chemists with a visual understanding of interactions present in chemical systems. | ρ !"# | is achieved simply by using absolute values upon summing the individual gradient contributions making up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulate the Gradient-Based Partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication involving a hexa-coordinated carbon atom and the b-thioaminoacrolein. It will be shown how a bond-bybond picture can be obtained from a wave function opening the way to monitor specific interactions along reaction paths.
Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg, was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM, IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGMis achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient‐based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa‐coordinated carbon atom, and β‐thioaminoacrolein. It will be shown how a bond‐by‐bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths.
Author Piquemal, Jean‐Philip
Contreras‐García, Julia
Boisson, Jean‐Charles
Hénon, Eric
Lefebvre, Corentin
Khartabil, Hassan
Author_xml – sequence: 1
  givenname: Corentin
  orcidid: 0000-0001-5358-102X
  surname: Lefebvre
  fullname: Lefebvre, Corentin
  organization: University of Reims Champagne-Ardenne
– sequence: 2
  givenname: Hassan
  orcidid: 0000-0002-8511-0895
  surname: Khartabil
  fullname: Khartabil, Hassan
  organization: University of Reims Champagne-Ardenne
– sequence: 3
  givenname: Jean‐Charles
  orcidid: 0000-0003-0970-3901
  surname: Boisson
  fullname: Boisson, Jean‐Charles
  organization: University of Reims Champagne-Ardenne
– sequence: 4
  givenname: Julia
  orcidid: 0000-0002-8947-9526
  surname: Contreras‐García
  fullname: Contreras‐García, Julia
  organization: Sorbonne Universités, UPMC
– sequence: 5
  givenname: Jean‐Philip
  orcidid: 0000-0001-6615-9426
  surname: Piquemal
  fullname: Piquemal, Jean‐Philip
  organization: Sorbonne Universités, UPMC
– sequence: 6
  givenname: Eric
  orcidid: 0000-0001-9308-6947
  surname: Hénon
  fullname: Hénon, Eric
  email: eric.henon@univ-reims.fr
  organization: University of Reims Champagne-Ardenne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29250908$$D View this record in MEDLINE/PubMed
https://hal.univ-reims.fr/hal-03377532$$DView record in HAL
BookMark eNqFkU1vEzEQhi1URD_gyhFZ4gKHBH-s17vcohVtKgWoRFGPluOdJS6Ondq7rXrnh-NNQpAqIS6e0fh5ZzTznqIjHzwg9JqSKSWEfTCblZkyQiWhnIln6IQWvJ7IsqBH-7xgXByj05RuCSEVkfQFOmY1E6Qm1Qn6db0CfOlb2EB-fI8vom7tmHwOLbiPeIa_wAOebTYxaLPCXYj4Koal9T_wtz6GHLRv8Q3on7lND1Gb3gafsPW5gwMzOEi4i2GNb_Q94PPBbwHcaJf_9BZ-iZ532iV4tY9n6Pv5p-tmPll8vbhsZouJEYKISVvIrpaad2VR0YJCIQjTHLipBciSAaGiZJKTlrKyM3VZGUFN1bGlrEvWGcPP0Ptd35V2ahPtWsdHFbRV89lCjTXCuZSCs3ua2Xc7Ni9-N0Dq1domA85pD2FIitay4rQq6Ii-fYLehiH6vIkanZEkX7vM1Js9NSzX0B7m__EiA9MdYGJIKUJ3QChRo9lqNFsdzM6C4onA2H570T5q6_4tq3eyB-vg8T9DVHM1b_5qfwOnL7wg
CitedBy_id crossref_primary_10_1016_j_cej_2025_165553
crossref_primary_10_1016_j_jcis_2022_01_149
crossref_primary_10_1134_S0036023623600338
crossref_primary_10_3390_molecules26185708
crossref_primary_10_1002_adfm_202423566
crossref_primary_10_1016_j_apsusc_2021_151780
crossref_primary_10_1016_j_jmgm_2020_107763
crossref_primary_10_1016_j_molliq_2022_121054
crossref_primary_10_1007_s11224_024_02300_w
crossref_primary_10_3390_solids5030023
crossref_primary_10_1016_j_comptc_2021_113297
crossref_primary_10_1002_chem_202200200
crossref_primary_10_1016_j_surfin_2025_107682
crossref_primary_10_1016_j_watres_2025_123394
crossref_primary_10_1002_jcc_26812
crossref_primary_10_1016_j_comptc_2024_114665
crossref_primary_10_3390_ijms241310554
crossref_primary_10_1002_anie_202506810
crossref_primary_10_1016_j_eehl_2023_09_002
crossref_primary_10_1016_j_molliq_2022_120534
crossref_primary_10_1002_slct_202100978
crossref_primary_10_2298_JSC211014106A
crossref_primary_10_1016_j_jorganchem_2021_121765
crossref_primary_10_1016_j_comptc_2023_114394
crossref_primary_10_1016_j_poly_2021_115131
crossref_primary_10_3390_org1010002
crossref_primary_10_1016_j_envpol_2020_115798
crossref_primary_10_1002_jcc_25836
crossref_primary_10_1016_j_molstruc_2024_138400
crossref_primary_10_1007_s00214_023_03013_9
crossref_primary_10_1016_S1003_6326_24_66474_5
crossref_primary_10_1016_j_diamond_2019_107575
crossref_primary_10_1007_s00894_020_04547_6
crossref_primary_10_1016_j_foodchem_2023_135539
crossref_primary_10_1002_qua_27338
crossref_primary_10_1007_s00706_025_03334_4
crossref_primary_10_3390_ph16040479
crossref_primary_10_1007_s12039_024_02314_1
crossref_primary_10_3390_inorganics10100149
crossref_primary_10_1016_j_seppur_2025_133443
crossref_primary_10_1002_poc_4357
crossref_primary_10_1002_chem_202302933
crossref_primary_10_1016_j_surfin_2024_104911
crossref_primary_10_1002_jcc_26390
crossref_primary_10_1016_j_jics_2021_100208
crossref_primary_10_1038_s44160_024_00704_4
crossref_primary_10_1016_j_mssp_2023_108099
crossref_primary_10_1016_j_inoche_2020_108043
crossref_primary_10_1016_j_molliq_2024_124350
crossref_primary_10_1016_j_seppur_2024_130683
crossref_primary_10_1016_j_surfin_2021_101446
crossref_primary_10_1002_jcc_27123
crossref_primary_10_1002_crat_201800244
crossref_primary_10_1016_j_jece_2025_119146
crossref_primary_10_3390_org2010001
crossref_primary_10_1002_ejic_202200581
crossref_primary_10_1155_2024_9307714
crossref_primary_10_1021_acs_cgd_5c00061
crossref_primary_10_1016_j_gee_2020_10_022
crossref_primary_10_3390_cryst11020207
crossref_primary_10_3390_ijms20061410
crossref_primary_10_1016_j_seppur_2025_132342
crossref_primary_10_1016_j_rechem_2025_102621
crossref_primary_10_3390_molecules27238449
crossref_primary_10_1016_j_ces_2024_119810
crossref_primary_10_1016_j_poly_2023_116448
crossref_primary_10_1002_jcc_27235
crossref_primary_10_1039_D0QM00942C
crossref_primary_10_1039_D2NJ02671F
crossref_primary_10_1016_j_seppur_2024_127146
crossref_primary_10_1016_j_molstruc_2024_139756
crossref_primary_10_3390_ijms23031263
crossref_primary_10_1016_j_seppur_2022_122856
crossref_primary_10_3390_ijms25074052
crossref_primary_10_1002_cphc_202400755
crossref_primary_10_1016_j_fluid_2022_113710
crossref_primary_10_1016_j_chemosphere_2023_138172
crossref_primary_10_3389_fchem_2021_668400
crossref_primary_10_3390_molecules29163833
crossref_primary_10_1016_j_molstruc_2023_135967
crossref_primary_10_1039_D1SE02069B
crossref_primary_10_1016_j_molstruc_2022_132974
crossref_primary_10_1002_ange_202506810
crossref_primary_10_1016_j_compbiolchem_2020_107311
crossref_primary_10_1016_j_foostr_2022_100267
crossref_primary_10_1016_j_inoche_2025_114278
crossref_primary_10_1016_j_jclepro_2025_145930
crossref_primary_10_1016_j_seppur_2025_132331
crossref_primary_10_1002_poc_4213
crossref_primary_10_1016_j_fuel_2020_120102
crossref_primary_10_1016_j_foodchem_2023_137731
crossref_primary_10_1016_j_molstruc_2025_141610
crossref_primary_10_1016_j_mtbio_2025_101793
crossref_primary_10_1080_00268976_2022_2040629
crossref_primary_10_1016_j_chemphys_2021_111376
crossref_primary_10_1016_j_apsusc_2024_161273
crossref_primary_10_3390_molecules26247479
crossref_primary_10_1016_j_dyepig_2020_108323
crossref_primary_10_1002_aic_17662
crossref_primary_10_1016_j_ces_2023_118817
crossref_primary_10_3390_inorganics10010011
crossref_primary_10_1039_D4CP04748F
crossref_primary_10_1007_s11696_024_03485_4
crossref_primary_10_1016_j_molliq_2024_126157
crossref_primary_10_1002_ange_202315345
crossref_primary_10_1021_acs_jpcb_5c04023
crossref_primary_10_1039_D2NJ02468C
crossref_primary_10_1016_j_compbiolchem_2024_108029
crossref_primary_10_1080_07391102_2020_1737574
crossref_primary_10_3390_ijms25094587
crossref_primary_10_3390_molecules27228078
crossref_primary_10_1080_03067319_2022_2071612
crossref_primary_10_1021_acs_joc_5c01048
crossref_primary_10_1002_ange_202504895
crossref_primary_10_1002_slct_202102942
crossref_primary_10_1038_s41545_024_00328_3
crossref_primary_10_1002_slct_202404703
crossref_primary_10_1002_ejoc_202101298
crossref_primary_10_1002_anie_202315345
crossref_primary_10_1016_j_jmgm_2019_107458
crossref_primary_10_1016_j_molstruc_2024_141110
crossref_primary_10_1016_j_poly_2022_116119
crossref_primary_10_1007_s00214_023_02972_3
crossref_primary_10_1016_j_vacuum_2019_06_021
crossref_primary_10_1016_j_cej_2024_158804
crossref_primary_10_1016_j_inoche_2023_110531
crossref_primary_10_1016_j_molliq_2021_117806
crossref_primary_10_1002_cplu_202400393
crossref_primary_10_1016_j_jorganchem_2025_123514
crossref_primary_10_1016_j_tet_2022_133165
crossref_primary_10_3390_chemistry5030133
crossref_primary_10_1002_qua_26859
crossref_primary_10_1016_j_seppur_2021_120056
crossref_primary_10_1111_ppl_70011
crossref_primary_10_1016_j_colsurfa_2022_129944
crossref_primary_10_1002_adsu_202300054
crossref_primary_10_1002_anie_202504895
crossref_primary_10_1016_j_chemphys_2025_112876
crossref_primary_10_1039_D2QO00423B
crossref_primary_10_1016_j_seppur_2021_119622
crossref_primary_10_1002_cphc_202300854
crossref_primary_10_1002_ejic_202400721
crossref_primary_10_1038_s41598_025_91459_1
crossref_primary_10_1039_D3QI00087G
crossref_primary_10_1002_ejoc_202300954
crossref_primary_10_1002_slct_201902100
crossref_primary_10_1016_j_cej_2021_129168
crossref_primary_10_1002_adom_202402875
crossref_primary_10_3390_mi14122161
crossref_primary_10_1080_00268976_2024_2331622
crossref_primary_10_3390_ijms241713324
crossref_primary_10_1021_jacs_2c06298
crossref_primary_10_1016_j_ces_2018_12_046
crossref_primary_10_3390_inorganics7030040
crossref_primary_10_1002_cplu_202100518
crossref_primary_10_1039_C9QM00744J
crossref_primary_10_1007_s11224_020_01639_0
crossref_primary_10_1021_acscatal_5c02848
crossref_primary_10_3390_molecules27196532
crossref_primary_10_1016_j_ces_2024_120895
crossref_primary_10_1016_j_diamond_2020_107968
crossref_primary_10_1002_chem_202304138
crossref_primary_10_1039_D2DT02307E
crossref_primary_10_1016_j_physe_2022_115632
crossref_primary_10_1016_j_cej_2024_154546
crossref_primary_10_3390_polym12051054
crossref_primary_10_1016_j_molliq_2021_117345
crossref_primary_10_1002_cbic_202000380
crossref_primary_10_1016_j_flatc_2025_100899
crossref_primary_10_1038_s41598_023_29336_y
crossref_primary_10_1007_s00214_023_02978_x
crossref_primary_10_1016_j_molliq_2023_122016
crossref_primary_10_1016_j_envpol_2024_125197
crossref_primary_10_1002_aic_18394
crossref_primary_10_1002_ejic_202400420
crossref_primary_10_1016_j_physe_2021_114949
crossref_primary_10_1002_ajoc_202500088
crossref_primary_10_1063_5_0280981
crossref_primary_10_1002_chem_202202594
crossref_primary_10_2147_DDDT_S536132
crossref_primary_10_1016_j_molliq_2024_124062
crossref_primary_10_1080_00268976_2021_2007307
crossref_primary_10_1007_s11051_025_06318_x
crossref_primary_10_1002_wcms_1497
crossref_primary_10_1002_poc_4517
crossref_primary_10_1002_ejoc_202101417
crossref_primary_10_1007_s10593_025_03384_w
crossref_primary_10_1016_j_foodres_2025_116481
crossref_primary_10_1080_10406638_2022_2150658
crossref_primary_10_1016_j_seppur_2023_124809
crossref_primary_10_1002_lpor_202401508
crossref_primary_10_1016_j_physe_2023_115811
crossref_primary_10_1016_j_seppur_2024_129731
crossref_primary_10_1016_j_comptc_2024_115019
crossref_primary_10_1021_acs_jpca_4c08102
crossref_primary_10_3390_molecules26113119
crossref_primary_10_1016_j_watres_2020_115797
crossref_primary_10_1016_j_comptc_2024_114603
crossref_primary_10_1109_TTHZ_2020_3039462
crossref_primary_10_1039_D3RA02130K
crossref_primary_10_1016_j_scitotenv_2023_167392
crossref_primary_10_1016_j_comptc_2022_113817
crossref_primary_10_1016_j_cej_2023_144545
crossref_primary_10_1016_j_jphotochem_2023_114648
crossref_primary_10_3390_molecules29092064
crossref_primary_10_1002_smll_202309360
crossref_primary_10_1016_j_molliq_2022_120357
crossref_primary_10_1016_j_seppur_2024_129843
crossref_primary_10_3390_ijms23158816
crossref_primary_10_3390_molecules26247688
crossref_primary_10_1002_anie_202425569
crossref_primary_10_1007_s12598_022_02201_z
crossref_primary_10_3390_molecules26092705
crossref_primary_10_1021_acsorginorgau_5c00004
crossref_primary_10_1016_j_molstruc_2019_06_036
crossref_primary_10_1002_ange_202425569
crossref_primary_10_1016_j_seppur_2022_122002
crossref_primary_10_1016_j_jmgm_2022_108263
crossref_primary_10_1055_a_1937_9296
crossref_primary_10_1002_chem_202300811
crossref_primary_10_1038_s41467_024_49803_y
crossref_primary_10_1039_D2RA00797E
crossref_primary_10_1016_j_heliyon_2022_e11408
crossref_primary_10_1016_j_cej_2021_129773
crossref_primary_10_1016_j_chemosphere_2022_134490
crossref_primary_10_3390_molecules27113421
crossref_primary_10_1016_j_seppur_2021_120108
crossref_primary_10_1016_j_colsurfa_2022_130627
crossref_primary_10_1016_j_comptc_2024_114984
crossref_primary_10_1111_cbdd_14299
crossref_primary_10_1016_j_enmf_2024_11_005
crossref_primary_10_1016_j_dyepig_2019_108093
crossref_primary_10_1016_j_jorganchem_2024_123048
crossref_primary_10_1021_acs_jpclett_5c01207
crossref_primary_10_1016_j_nantod_2024_102456
crossref_primary_10_1002_poc_4189
crossref_primary_10_1016_j_physe_2024_116115
crossref_primary_10_1016_j_polymer_2021_124032
crossref_primary_10_1016_j_jece_2022_108789
crossref_primary_10_3390_molecules27051487
crossref_primary_10_1016_j_seppur_2024_131222
crossref_primary_10_1002_aic_18907
crossref_primary_10_1016_j_ijhydene_2023_01_112
crossref_primary_10_1016_j_seppur_2022_121610
crossref_primary_10_1021_jacs_5c01738
crossref_primary_10_1016_j_diamond_2023_110162
crossref_primary_10_1016_j_physe_2021_114719
crossref_primary_10_1002_chem_202301360
crossref_primary_10_1007_s10593_023_03174_2
crossref_primary_10_1016_j_molstruc_2022_133404
crossref_primary_10_1007_s11696_023_03018_5
crossref_primary_10_1007_s11696_025_03958_0
crossref_primary_10_1007_s00214_023_03030_8
crossref_primary_10_1021_acssuschemeng_4c10268
crossref_primary_10_1016_j_diamond_2020_107905
crossref_primary_10_1021_acs_jpca_5c01596
crossref_primary_10_1016_j_jhazmat_2020_123507
crossref_primary_10_1021_acs_jpcb_5c04452
crossref_primary_10_1002_open_202100108
crossref_primary_10_1007_s11224_021_01835_6
crossref_primary_10_3390_ijms23094674
crossref_primary_10_1016_j_rechem_2025_102706
crossref_primary_10_1016_j_comptc_2019_112640
crossref_primary_10_1016_j_seppur_2022_121618
crossref_primary_10_1007_s40843_022_2278_5
crossref_primary_10_1002_chem_202400156
crossref_primary_10_1016_j_jcis_2024_11_179
crossref_primary_10_1039_D3RA01782F
crossref_primary_10_1016_j_ijbiomac_2025_146040
crossref_primary_10_1016_j_porgcoat_2022_107311
crossref_primary_10_1016_j_fuel_2018_12_010
crossref_primary_10_1016_j_molliq_2025_126994
crossref_primary_10_1002_cbdv_202400844
crossref_primary_10_1038_s41598_019_46725_4
crossref_primary_10_1002_jcc_70146
crossref_primary_10_1073_pnas_2213480120
crossref_primary_10_1039_C9QM00312F
crossref_primary_10_1016_j_comptc_2025_115468
crossref_primary_10_1016_j_comptc_2024_114511
crossref_primary_10_1039_D1RA08258B
Cites_doi 10.1007/s00894-014-2401-7
10.1016/j.comptc.2014.10.011
10.1021/ct100641a
10.1016/0009-2614(70)80126-9
10.1002/qua.24241
10.1002/qua.22662
10.1103/PhysRevB.93.054102
10.1007/s00214-010-0745-3
10.1063/1.1740588
10.1021/jp204278k
10.1002/ange.201405240
10.1002/chem.201201290
10.1002/(SICI)1097-461X(1997)61:5<835::AID-QUA9>3.0.CO;2-X
10.1039/C3SC53416B
10.1002/anie.201608795
10.1002/qua.21901
10.1021/acs.jctc.5b00330
10.1126/science.aah5975
10.1371/journal.pcbi.1003902
10.1002/9783527610709.ch1
10.1039/c2cp41395g
10.1007/s00214-010-0727-5
10.1038/371683a0
10.1021/ct300234g
10.1039/C7CP02110K
10.1002/anie.201405240
10.1021/ja100936w
10.1002/ange.201608795
10.1021/j100401a010
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
K9.
7X8
1XC
VOOES
DOI 10.1002/cphc.201701325
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef


ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1439-7641
EndPage 735
ExternalDocumentID oai:HAL:hal-03377532v1
29250908
10_1002_cphc_201701325
CPHC201701325
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
77Q
8-0
8-1
8UM
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
PQQKQ
QRW
R.K
RNS
ROL
RX1
SUPJJ
SV3
UPT
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
XPP
XV2
Y6R
YZZ
ZZTAW
~S-
AAYXX
CITATION
A00
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AIWBW
AJBDE
NPM
P4E
RWI
WYJ
K9.
7X8
.GJ
1XC
31~
53G
AANHP
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
FEDTE
GODZA
HF~
HVGLF
VH1
VOOES
XSW
ZGI
ID FETCH-LOGICAL-c5505-d47f97a3f648141e4502a3e3c95e762e01562730d126fc968c51c8f2b7962fcc3
IEDL.DBID DRFUL
ISICitedReferencesCount 384
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428380500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1439-4235
1439-7641
IngestDate Tue Oct 14 20:20:15 EDT 2025
Sun Nov 09 14:43:47 EST 2025
Sat Nov 29 14:38:21 EST 2025
Wed Feb 19 02:43:06 EST 2025
Sat Nov 29 07:15:43 EST 2025
Tue Nov 18 21:37:22 EST 2025
Tue Sep 09 05:06:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords quantum chemistry
electron density
noncovalent interactions
independent gradient model
interactions
Quantum Chemistry
Topological analysis
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5505-d47f97a3f648141e4502a3e3c95e762e01562730d126fc968c51c8f2b7962fcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8947-9526
0000-0001-9308-6947
0000-0001-5358-102X
0000-0002-8511-0895
0000-0003-0970-3901
0000-0001-6615-9426
OpenAccessLink https://hal.univ-reims.fr/hal-03377532
PMID 29250908
PQID 2017709256
PQPubID 986334
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_03377532v1
proquest_miscellaneous_1978318411
proquest_journals_2017709256
pubmed_primary_29250908
crossref_primary_10_1002_cphc_201701325
crossref_citationtrail_10_1002_cphc_201701325
wiley_primary_10_1002_cphc_201701325_CPHC201701325
PublicationCentury 2000
PublicationDate March 19, 2018
PublicationDateYYYYMMDD 2018-03-19
PublicationDate_xml – month: 03
  year: 2018
  text: March 19, 2018
  day: 19
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemphyschem
PublicationTitleAlternate Chemphyschem
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References 2014 2014; 53 126
2011; 115
1986; 90
1997; 61
2010; 127
1994; 371
2007
1994
2012; 18
2016; 93
2017 2017; 56 129
2012; 14
2017; 355
2015; 1053
1970; 5
1955; 23
2011; 7
2014; 20
2014; 5
2012; 112
2011; 128
2010; 110
2010; 132
2016
2017; 19
2009; 109
2014; 10
2012; 8
e_1_2_8_28_1
e_1_2_8_29_1
Bader R. F. W. (e_1_2_8_2_2) 1994
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_1
e_1_2_8_11_3
e_1_2_8_13_2
e_1_2_8_35_1
e_1_2_8_14_2
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_30_2
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_12_1
e_1_2_8_33_1
Narth C. (e_1_2_8_7_1) 2016
e_1_2_8_30_1
References_xml – volume: 18
  start-page: 15523
  year: 2012
  end-page: 15536
  publication-title: Chem. Eur. J.
– volume: 132
  start-page: 6498
  year: 2010
  end-page: 6506
  publication-title: J. Am. Chem. Soc.
– start-page: 1
  year: 2007
  end-page: 34
– volume: 128
  start-page: 39
  year: 2011
  end-page: 46
  publication-title: Theor. Chem. Acc.
– volume: 10
  start-page: 1003902
  year: 2014
  publication-title: PLOS Comput. Biol.
– volume: 61
  start-page: 835
  year: 1997
  end-page: 845
  publication-title: Int. J. Quantum Chem.
– volume: 1053
  start-page: 53
  year: 2015
  end-page: 59
  publication-title: Comput. Theor. Chem.
– volume: 7
  start-page: 625
  year: 2011
  end-page: 632
  publication-title: J. Chem. Theory Comput.
– volume: 23
  start-page: 1833
  year: 1955
  end-page: 1840
  publication-title: J. Chem. Phys.
– volume: 19
  start-page: 17928
  year: 2017
  end-page: 17936
  publication-title: Phys. Chem. Chem. Phys.
– volume: 93
  start-page: 054102
  year: 2016
  publication-title: Phys. Rev. B
– volume: 90
  start-page: 2020
  year: 1986
  end-page: 2027
  publication-title: J. Phys. Chem.
– volume: 56 129
  start-page: 368 374
  year: 2017 2017
  end-page: 370 376
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 355
  start-page: 49
  year: 2017
  publication-title: Science
– volume: 5
  start-page: 45
  year: 1970
  end-page: 49
  publication-title: Chem. Phys. Lett.
– volume: 109
  start-page: 1790
  year: 2009
  end-page: 1806
  publication-title: Int. J. Quantum Chem.
– volume: 20
  start-page: 2401
  year: 2014
  publication-title: J. Mol. Model.
– start-page: 458
  year: 1994
– volume: 110
  start-page: 2418
  year: 2010
  end-page: 2425
  publication-title: Int. J. Quantum Chem.
– volume: 371
  start-page: 683
  year: 1994
  end-page: 686
  publication-title: Nature
– volume: 127
  start-page: 393
  year: 2010
  end-page: 400
  publication-title: Theor. Chem. Acc.
– volume: 115
  start-page: 12983
  year: 2011
  end-page: 12990
  publication-title: J. Phys. Chem. A
– volume: 53 126
  start-page: 9827 9985
  year: 2014 2014
  end-page: 9831 9989
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 12165
  year: 2012
  end-page: 12172
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 3993
  year: 2012
  end-page: 3997
  publication-title: J. Chem. Theory Comput.
– start-page: 491
  year: 2016
  end-page: 527
– volume: 112
  start-page: 3594
  year: 2012
  end-page: 3598
  publication-title: Int. J. Quantum Chem.
– volume: 5
  start-page: 2057
  year: 2014
  end-page: 2071
  publication-title: Chem. Sci.
– ident: e_1_2_8_10_2
  doi: 10.1007/s00894-014-2401-7
– ident: e_1_2_8_20_1
  doi: 10.1016/j.comptc.2014.10.011
– ident: e_1_2_8_34_1
  doi: 10.1021/ct100641a
– ident: e_1_2_8_25_1
  doi: 10.1016/0009-2614(70)80126-9
– ident: e_1_2_8_22_1
  doi: 10.1002/qua.24241
– ident: e_1_2_8_5_1
  doi: 10.1002/qua.22662
– ident: e_1_2_8_15_1
  doi: 10.1103/PhysRevB.93.054102
– ident: e_1_2_8_32_1
  doi: 10.1007/s00214-010-0745-3
– ident: e_1_2_8_27_1
  doi: 10.1063/1.1740588
– ident: e_1_2_8_33_1
– start-page: 491
  volume-title: A Complete NCI perspective: From New Bonds to Reactivity
  year: 2016
  ident: e_1_2_8_7_1
– ident: e_1_2_8_19_1
  doi: 10.1021/jp204278k
– ident: e_1_2_8_11_3
  doi: 10.1002/ange.201405240
– ident: e_1_2_8_17_2
  doi: 10.1002/chem.201201290
– ident: e_1_2_8_23_1
  doi: 10.1002/(SICI)1097-461X(1997)61:5<835::AID-QUA9>3.0.CO;2-X
– ident: e_1_2_8_1_1
– ident: e_1_2_8_8_1
  doi: 10.1039/C3SC53416B
– ident: e_1_2_8_30_1
  doi: 10.1002/anie.201608795
– ident: e_1_2_8_26_1
  doi: 10.1002/qua.21901
– ident: e_1_2_8_16_1
– ident: e_1_2_8_14_2
  doi: 10.1021/acs.jctc.5b00330
– ident: e_1_2_8_28_1
  doi: 10.1126/science.aah5975
– ident: e_1_2_8_13_2
  doi: 10.1371/journal.pcbi.1003902
– ident: e_1_2_8_3_2
  doi: 10.1002/9783527610709.ch1
– ident: e_1_2_8_35_1
– ident: e_1_2_8_18_2
  doi: 10.1039/c2cp41395g
– ident: e_1_2_8_29_1
  doi: 10.1007/s00214-010-0727-5
– ident: e_1_2_8_4_1
  doi: 10.1038/371683a0
– ident: e_1_2_8_31_1
  doi: 10.1021/ct300234g
– ident: e_1_2_8_21_1
  doi: 10.1039/C7CP02110K
– ident: e_1_2_8_11_2
  doi: 10.1002/anie.201405240
– ident: e_1_2_8_12_1
– ident: e_1_2_8_9_1
– start-page: 458
  volume-title: Atoms in Molecules: a Quantum Theory
  year: 1994
  ident: e_1_2_8_2_2
– ident: e_1_2_8_6_1
  doi: 10.1021/ja100936w
– ident: e_1_2_8_30_2
  doi: 10.1002/ange.201608795
– ident: e_1_2_8_24_1
  doi: 10.1021/j100401a010
SSID ssj0008071
Score 2.6580894
Snippet Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical...
Extracting the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 724
SubjectTerms Chemical Sciences
Chemists
Electron density
Feature extraction
independent gradient model
interactions
Mathematical models
noncovalent interactions
or physical chemistry
Organic chemistry
quantum chemistry
Theoretical and
Workflow
Title The Independent Gradient Model: A New Approach for Probing Strong and Weak Interactions in Molecules from Wave Function Calculations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.201701325
https://www.ncbi.nlm.nih.gov/pubmed/29250908
https://www.proquest.com/docview/2017709256
https://www.proquest.com/docview/1978318411
https://hal.univ-reims.fr/hal-03377532
Volume 19
WOSCitedRecordID wos000428380500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1439-7641
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008071
  issn: 1439-4235
  databaseCode: DRFUL
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_RDgleGF-DwJgOhMRTtNhO6oS3KqMUaZoqYFrfIsdxtokqm5qufwF_OHdJmq1CCAne8uFcLN-d7872_Q7gvbJlbmQsfIpQjM_nCH22cr7TphTWhVFpwqbYhD45iefzZHYni7_Fh-gX3FgzmvmaFdzk9eEtaKi9vmAIQsYTVzIawI4k4Y2GsHP0dXJ63M_GcdAGXSHveEoVbYAbA3m4TWHLMA0u-Fjk7z7ntgvb2KDJ7v_3_jE86vxPHLcC8wTuueopPEg3Zd-ewU8SHPzSF8dd4edlcypshVw2bfERx0gTI447LHIkpxdnDOZUneM3Xlc_R1MVeObMD2yWG9vMiRovK6LQ1OJ1NXJWC56ZtcMJGVZugKlZ2K6WWP0cTiefvqdTvyvV4FsOcfwi1GWijSpHYSxCQTwOpFFO2SRyNN06TtgmRykohByVNhnFNhI2LmWuk5EsrVV7MKyuKvcS0CmdK-m01kUS5jKKC-fI0DqiYEJy1jzwN3zKbIdjzuU0FlmLwCwzHtusH1sPPvTtr1sEjz-2fEds7xsx8PZ0fJzxs0ApTYGdXAsP9jdSkXXqXjckdJCQ--jB2_41MY53X0zlrm7qTPAiG8XTgki8aKWp_5WkT4MkiD2QjdD8paNZOpum_d2rf_noNTyk6ya7UiT7MFwtb9wbuG_Xq8t6eQADPY8POlX6BZohGn4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xDWm8bHwNwgYcCImnaLGd1MneqozSiVJVsGl7i1zH2SaqbGq6_gX7w7lL0qAKISTEY5LzxbLPvg_7fgfwQdliamQsfPJQjM_3CH3Wcr7TphDWhVFhwrrYhB6P44uLZNLeJuRcmAYfogu48cqo92te4ByQPvyFGmpvrxiDkAHFlYw2YCskWSIh3zr-NjgbddtxHDReV8hHnlJFK-TGQB6uc1jTTBtXfC_yd6Nz3YatldBg9z90_zHstBYo9huReQIPXPkUttNV4bdncE-igyddedwFfp7X98IWyIXTZkfYR9oasd-ikSOZvThhOKfyEr9zZP0STZnjuTM_sA44NrkTFV6XxKGuxusq5LwWPDdLhwNSrUyAqZnZtppY9RzOBp9O06HfFmvwLTs5fh7qItFGFb0wFqGgWQ6kUU7ZJHK04TpO2SZTKciF7BU26cU2EjYu5FQnPVlYq_Zgs7wp3UtAp_RUSae1zpNwKqM4d45UrSMOJiRzzQN_NVGZbZHMuaDGLGswmGXGY5t1Y-vBx47-tsHw-CPle5r3joiht4f9UcbvAqU0uXZyKTw4WIlF1i74qmahg4QMSA_edZ9p4vj8xZTu5q7KBIfZyKMWxOJFI07dryQ1DZIg9kDWUvOXjmbpZJh2T6_-pdFb2B6efh1lo5Pxl314RO_rXEuRHMDmYn7nXsNDu1xcV_M37Yr6CeRgHYY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xDgEvfH8EBhwIiadosZ3UCW9VRuhEVVXAtL1FruNsE1VWNV3_Av5w7pI0qEIICfGYxL5EvrPvzvH9fgDvlC3nRsbCpwzF-HyO0Gcv5zttSmFdGJUmbMgm9HQan50ls-40IdfCtPgQ_YYbz4xmveYJ7pZFefgLNdQuLxiDkAHFlYz2YD9kJpkB7B99yU4m_XIcB23WFfIvT6miLXJjIA93Jex4pr0LPhf5e9C5G8M2Tii79x8-_z7c7SJQHLUm8wBuuOoh3E63xG-P4AeZDh739Lhr_LRqzoWtkYnTFh9whLQ04qhDI0cKe3HGcE7VOX7lnfVzNFWBp858x2bDsa2dqPGyIgkNG6-rketa8NRsHGbkWrkBpmZhOzax-jGcZB-_pWO_I2vwLSc5fhHqMtFGlcMwFqEgLQfSKKdsEjlacB2XbFOoFBRCDkubDGMbCRuXcq5JaaW16gkMqqvKPQN0Ss-VdFrrIgnnMooL58jVOpJgQgrXPPC3ispth2TOhBqLvMVgljmPbd6PrQfv-_bLFsPjjy3fkt77Rgy9PR5Ncr4XKKUptZMb4cHB1izybsLXjQgdJBRAevCmf0yK4_8vpnJX13UueJuNMmpBIp625tS_SlLXIAliD2RjNX_50DydjdP-6vm_dHoNt2ZHWT45nn5-AXfodlNqKZIDGKxX1-4l3LSb9WW9etVNqJ9ByB0B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Independent+Gradient+Model%3A+A+New+Approach+for+Probing+Strong+and+Weak+Interactions+in+Molecules+from+Wave+Function+Calculations&rft.jtitle=Chemphyschem&rft.au=Lefebvre%2C+Corentin&rft.au=Khartabil%2C+Hassan&rft.au=Jean%E2%80%90Charles+Boisson&rft.au=Julia+Contreras%E2%80%90Garc%C3%ADa&rft.date=2018-03-19&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=19&rft.issue=6&rft.spage=724&rft.epage=735&rft_id=info:doi/10.1002%2Fcphc.201701325&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon