The Independent Gradient Model: A New Approach for Probing Strong and Weak Interactions in Molecules from Wave Function Calculations
Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg , was defined. It represents the difference bet...
Uloženo v:
| Vydáno v: | Chemphyschem Ročník 19; číslo 6; s. 724 - 735 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
19.03.2018
Wiley-VCH Verlag |
| Témata: | |
| ISSN: | 1439-4235, 1439-7641, 1439-7641 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg
, was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM
, IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ
). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGM
is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient‐based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa‐coordinated carbon atom, and β‐thioaminoacrolein. It will be shown how a bond‐by‐bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths.
Take a fresh look: The new δg
‐IGM (IGM=independent gradient model) approach, hereby extended to electron density obtained from quantum mechanics, is able to provide chemists with a visual understanding of interactions by specifically probing a given atom pair in a molecule. It paves the way for targeted mechanistic exploration of reactions. |
|---|---|
| AbstractList | Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg , was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM , IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGM is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient-based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa-coordinated carbon atom, and β-thioaminoacrolein. It will be shown how a bond-by-bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths. Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg , was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM , IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGM is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient-based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa-coordinated carbon atom, and β-thioaminoacrolein. It will be shown how a bond-by-bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths.Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg , was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM , IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGM is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient-based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa-coordinated carbon atom, and β-thioaminoacrolein. It will be shown how a bond-by-bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths. Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, , was defined. It represents the difference between a virtual upper limit of the ED gradient ( , IGM=independent gradient model) that represents a noninteracting system and the true ED gradient ( ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient‐based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa‐coordinated carbon atom, and β‐thioaminoacrolein. It will be shown how a bond‐by‐bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths. Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg , was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM , IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGM is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient‐based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa‐coordinated carbon atom, and β‐thioaminoacrolein. It will be shown how a bond‐by‐bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths. Take a fresh look: The new δg ‐IGM (IGM=independent gradient model) approach, hereby extended to electron density obtained from quantum mechanics, is able to provide chemists with a visual understanding of interactions by specifically probing a given atom pair in a molecule. It paves the way for targeted mechanistic exploration of reactions. Extracting the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work using promolecular ED (frozen ED), the new descriptor was defined. It represents the difference between a virtual upper limit of the ED gradient (| ρ !"# |) representing a non-interacting system and the true ED gradient | |. It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the NCI (Non Covalent Interaction) approach, it provides chemists with a visual understanding of interactions present in chemical systems. | ρ !"# | is achieved simply by using absolute values upon summing the individual gradient contributions making up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulate the Gradient-Based Partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication involving a hexa-coordinated carbon atom and the b-thioaminoacrolein. It will be shown how a bond-bybond picture can be obtained from a wave function opening the way to monitor specific interactions along reaction paths. Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg, was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM, IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGMis achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient‐based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa‐coordinated carbon atom, and β‐thioaminoacrolein. It will be shown how a bond‐by‐bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths. |
| Author | Piquemal, Jean‐Philip Contreras‐García, Julia Boisson, Jean‐Charles Hénon, Eric Lefebvre, Corentin Khartabil, Hassan |
| Author_xml | – sequence: 1 givenname: Corentin orcidid: 0000-0001-5358-102X surname: Lefebvre fullname: Lefebvre, Corentin organization: University of Reims Champagne-Ardenne – sequence: 2 givenname: Hassan orcidid: 0000-0002-8511-0895 surname: Khartabil fullname: Khartabil, Hassan organization: University of Reims Champagne-Ardenne – sequence: 3 givenname: Jean‐Charles orcidid: 0000-0003-0970-3901 surname: Boisson fullname: Boisson, Jean‐Charles organization: University of Reims Champagne-Ardenne – sequence: 4 givenname: Julia orcidid: 0000-0002-8947-9526 surname: Contreras‐García fullname: Contreras‐García, Julia organization: Sorbonne Universités, UPMC – sequence: 5 givenname: Jean‐Philip orcidid: 0000-0001-6615-9426 surname: Piquemal fullname: Piquemal, Jean‐Philip organization: Sorbonne Universités, UPMC – sequence: 6 givenname: Eric orcidid: 0000-0001-9308-6947 surname: Hénon fullname: Hénon, Eric email: eric.henon@univ-reims.fr organization: University of Reims Champagne-Ardenne |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29250908$$D View this record in MEDLINE/PubMed https://hal.univ-reims.fr/hal-03377532$$DView record in HAL |
| BookMark | eNqFkU1vEzEQhi1URD_gyhFZ4gKHBH-s17vcohVtKgWoRFGPluOdJS6Ondq7rXrnh-NNQpAqIS6e0fh5ZzTznqIjHzwg9JqSKSWEfTCblZkyQiWhnIln6IQWvJ7IsqBH-7xgXByj05RuCSEVkfQFOmY1E6Qm1Qn6db0CfOlb2EB-fI8vom7tmHwOLbiPeIa_wAOebTYxaLPCXYj4Koal9T_wtz6GHLRv8Q3on7lND1Gb3gafsPW5gwMzOEi4i2GNb_Q94PPBbwHcaJf_9BZ-iZ532iV4tY9n6Pv5p-tmPll8vbhsZouJEYKISVvIrpaad2VR0YJCIQjTHLipBciSAaGiZJKTlrKyM3VZGUFN1bGlrEvWGcPP0Ptd35V2ahPtWsdHFbRV89lCjTXCuZSCs3ua2Xc7Ni9-N0Dq1domA85pD2FIitay4rQq6Ii-fYLehiH6vIkanZEkX7vM1Js9NSzX0B7m__EiA9MdYGJIKUJ3QChRo9lqNFsdzM6C4onA2H570T5q6_4tq3eyB-vg8T9DVHM1b_5qfwOnL7wg |
| CitedBy_id | crossref_primary_10_1016_j_cej_2025_165553 crossref_primary_10_1016_j_jcis_2022_01_149 crossref_primary_10_1134_S0036023623600338 crossref_primary_10_3390_molecules26185708 crossref_primary_10_1002_adfm_202423566 crossref_primary_10_1016_j_apsusc_2021_151780 crossref_primary_10_1016_j_jmgm_2020_107763 crossref_primary_10_1016_j_molliq_2022_121054 crossref_primary_10_1007_s11224_024_02300_w crossref_primary_10_3390_solids5030023 crossref_primary_10_1016_j_comptc_2021_113297 crossref_primary_10_1002_chem_202200200 crossref_primary_10_1016_j_surfin_2025_107682 crossref_primary_10_1016_j_watres_2025_123394 crossref_primary_10_1002_jcc_26812 crossref_primary_10_1016_j_comptc_2024_114665 crossref_primary_10_3390_ijms241310554 crossref_primary_10_1002_anie_202506810 crossref_primary_10_1016_j_eehl_2023_09_002 crossref_primary_10_1016_j_molliq_2022_120534 crossref_primary_10_1002_slct_202100978 crossref_primary_10_2298_JSC211014106A crossref_primary_10_1016_j_jorganchem_2021_121765 crossref_primary_10_1016_j_comptc_2023_114394 crossref_primary_10_1016_j_poly_2021_115131 crossref_primary_10_3390_org1010002 crossref_primary_10_1016_j_envpol_2020_115798 crossref_primary_10_1002_jcc_25836 crossref_primary_10_1016_j_molstruc_2024_138400 crossref_primary_10_1007_s00214_023_03013_9 crossref_primary_10_1016_S1003_6326_24_66474_5 crossref_primary_10_1016_j_diamond_2019_107575 crossref_primary_10_1007_s00894_020_04547_6 crossref_primary_10_1016_j_foodchem_2023_135539 crossref_primary_10_1002_qua_27338 crossref_primary_10_1007_s00706_025_03334_4 crossref_primary_10_3390_ph16040479 crossref_primary_10_1007_s12039_024_02314_1 crossref_primary_10_3390_inorganics10100149 crossref_primary_10_1016_j_seppur_2025_133443 crossref_primary_10_1002_poc_4357 crossref_primary_10_1002_chem_202302933 crossref_primary_10_1016_j_surfin_2024_104911 crossref_primary_10_1002_jcc_26390 crossref_primary_10_1016_j_jics_2021_100208 crossref_primary_10_1038_s44160_024_00704_4 crossref_primary_10_1016_j_mssp_2023_108099 crossref_primary_10_1016_j_inoche_2020_108043 crossref_primary_10_1016_j_molliq_2024_124350 crossref_primary_10_1016_j_seppur_2024_130683 crossref_primary_10_1016_j_surfin_2021_101446 crossref_primary_10_1002_jcc_27123 crossref_primary_10_1002_crat_201800244 crossref_primary_10_1016_j_jece_2025_119146 crossref_primary_10_3390_org2010001 crossref_primary_10_1002_ejic_202200581 crossref_primary_10_1155_2024_9307714 crossref_primary_10_1021_acs_cgd_5c00061 crossref_primary_10_1016_j_gee_2020_10_022 crossref_primary_10_3390_cryst11020207 crossref_primary_10_3390_ijms20061410 crossref_primary_10_1016_j_seppur_2025_132342 crossref_primary_10_1016_j_rechem_2025_102621 crossref_primary_10_3390_molecules27238449 crossref_primary_10_1016_j_ces_2024_119810 crossref_primary_10_1016_j_poly_2023_116448 crossref_primary_10_1002_jcc_27235 crossref_primary_10_1039_D0QM00942C crossref_primary_10_1039_D2NJ02671F crossref_primary_10_1016_j_seppur_2024_127146 crossref_primary_10_1016_j_molstruc_2024_139756 crossref_primary_10_3390_ijms23031263 crossref_primary_10_1016_j_seppur_2022_122856 crossref_primary_10_3390_ijms25074052 crossref_primary_10_1002_cphc_202400755 crossref_primary_10_1016_j_fluid_2022_113710 crossref_primary_10_1016_j_chemosphere_2023_138172 crossref_primary_10_3389_fchem_2021_668400 crossref_primary_10_3390_molecules29163833 crossref_primary_10_1016_j_molstruc_2023_135967 crossref_primary_10_1039_D1SE02069B crossref_primary_10_1016_j_molstruc_2022_132974 crossref_primary_10_1002_ange_202506810 crossref_primary_10_1016_j_compbiolchem_2020_107311 crossref_primary_10_1016_j_foostr_2022_100267 crossref_primary_10_1016_j_inoche_2025_114278 crossref_primary_10_1016_j_jclepro_2025_145930 crossref_primary_10_1016_j_seppur_2025_132331 crossref_primary_10_1002_poc_4213 crossref_primary_10_1016_j_fuel_2020_120102 crossref_primary_10_1016_j_foodchem_2023_137731 crossref_primary_10_1016_j_molstruc_2025_141610 crossref_primary_10_1016_j_mtbio_2025_101793 crossref_primary_10_1080_00268976_2022_2040629 crossref_primary_10_1016_j_chemphys_2021_111376 crossref_primary_10_1016_j_apsusc_2024_161273 crossref_primary_10_3390_molecules26247479 crossref_primary_10_1016_j_dyepig_2020_108323 crossref_primary_10_1002_aic_17662 crossref_primary_10_1016_j_ces_2023_118817 crossref_primary_10_3390_inorganics10010011 crossref_primary_10_1039_D4CP04748F crossref_primary_10_1007_s11696_024_03485_4 crossref_primary_10_1016_j_molliq_2024_126157 crossref_primary_10_1002_ange_202315345 crossref_primary_10_1021_acs_jpcb_5c04023 crossref_primary_10_1039_D2NJ02468C crossref_primary_10_1016_j_compbiolchem_2024_108029 crossref_primary_10_1080_07391102_2020_1737574 crossref_primary_10_3390_ijms25094587 crossref_primary_10_3390_molecules27228078 crossref_primary_10_1080_03067319_2022_2071612 crossref_primary_10_1021_acs_joc_5c01048 crossref_primary_10_1002_ange_202504895 crossref_primary_10_1002_slct_202102942 crossref_primary_10_1038_s41545_024_00328_3 crossref_primary_10_1002_slct_202404703 crossref_primary_10_1002_ejoc_202101298 crossref_primary_10_1002_anie_202315345 crossref_primary_10_1016_j_jmgm_2019_107458 crossref_primary_10_1016_j_molstruc_2024_141110 crossref_primary_10_1016_j_poly_2022_116119 crossref_primary_10_1007_s00214_023_02972_3 crossref_primary_10_1016_j_vacuum_2019_06_021 crossref_primary_10_1016_j_cej_2024_158804 crossref_primary_10_1016_j_inoche_2023_110531 crossref_primary_10_1016_j_molliq_2021_117806 crossref_primary_10_1002_cplu_202400393 crossref_primary_10_1016_j_jorganchem_2025_123514 crossref_primary_10_1016_j_tet_2022_133165 crossref_primary_10_3390_chemistry5030133 crossref_primary_10_1002_qua_26859 crossref_primary_10_1016_j_seppur_2021_120056 crossref_primary_10_1111_ppl_70011 crossref_primary_10_1016_j_colsurfa_2022_129944 crossref_primary_10_1002_adsu_202300054 crossref_primary_10_1002_anie_202504895 crossref_primary_10_1016_j_chemphys_2025_112876 crossref_primary_10_1039_D2QO00423B crossref_primary_10_1016_j_seppur_2021_119622 crossref_primary_10_1002_cphc_202300854 crossref_primary_10_1002_ejic_202400721 crossref_primary_10_1038_s41598_025_91459_1 crossref_primary_10_1039_D3QI00087G crossref_primary_10_1002_ejoc_202300954 crossref_primary_10_1002_slct_201902100 crossref_primary_10_1016_j_cej_2021_129168 crossref_primary_10_1002_adom_202402875 crossref_primary_10_3390_mi14122161 crossref_primary_10_1080_00268976_2024_2331622 crossref_primary_10_3390_ijms241713324 crossref_primary_10_1021_jacs_2c06298 crossref_primary_10_1016_j_ces_2018_12_046 crossref_primary_10_3390_inorganics7030040 crossref_primary_10_1002_cplu_202100518 crossref_primary_10_1039_C9QM00744J crossref_primary_10_1007_s11224_020_01639_0 crossref_primary_10_1021_acscatal_5c02848 crossref_primary_10_3390_molecules27196532 crossref_primary_10_1016_j_ces_2024_120895 crossref_primary_10_1016_j_diamond_2020_107968 crossref_primary_10_1002_chem_202304138 crossref_primary_10_1039_D2DT02307E crossref_primary_10_1016_j_physe_2022_115632 crossref_primary_10_1016_j_cej_2024_154546 crossref_primary_10_3390_polym12051054 crossref_primary_10_1016_j_molliq_2021_117345 crossref_primary_10_1002_cbic_202000380 crossref_primary_10_1016_j_flatc_2025_100899 crossref_primary_10_1038_s41598_023_29336_y crossref_primary_10_1007_s00214_023_02978_x crossref_primary_10_1016_j_molliq_2023_122016 crossref_primary_10_1016_j_envpol_2024_125197 crossref_primary_10_1002_aic_18394 crossref_primary_10_1002_ejic_202400420 crossref_primary_10_1016_j_physe_2021_114949 crossref_primary_10_1002_ajoc_202500088 crossref_primary_10_1063_5_0280981 crossref_primary_10_1002_chem_202202594 crossref_primary_10_2147_DDDT_S536132 crossref_primary_10_1016_j_molliq_2024_124062 crossref_primary_10_1080_00268976_2021_2007307 crossref_primary_10_1007_s11051_025_06318_x crossref_primary_10_1002_wcms_1497 crossref_primary_10_1002_poc_4517 crossref_primary_10_1002_ejoc_202101417 crossref_primary_10_1007_s10593_025_03384_w crossref_primary_10_1016_j_foodres_2025_116481 crossref_primary_10_1080_10406638_2022_2150658 crossref_primary_10_1016_j_seppur_2023_124809 crossref_primary_10_1002_lpor_202401508 crossref_primary_10_1016_j_physe_2023_115811 crossref_primary_10_1016_j_seppur_2024_129731 crossref_primary_10_1016_j_comptc_2024_115019 crossref_primary_10_1021_acs_jpca_4c08102 crossref_primary_10_3390_molecules26113119 crossref_primary_10_1016_j_watres_2020_115797 crossref_primary_10_1016_j_comptc_2024_114603 crossref_primary_10_1109_TTHZ_2020_3039462 crossref_primary_10_1039_D3RA02130K crossref_primary_10_1016_j_scitotenv_2023_167392 crossref_primary_10_1016_j_comptc_2022_113817 crossref_primary_10_1016_j_cej_2023_144545 crossref_primary_10_1016_j_jphotochem_2023_114648 crossref_primary_10_3390_molecules29092064 crossref_primary_10_1002_smll_202309360 crossref_primary_10_1016_j_molliq_2022_120357 crossref_primary_10_1016_j_seppur_2024_129843 crossref_primary_10_3390_ijms23158816 crossref_primary_10_3390_molecules26247688 crossref_primary_10_1002_anie_202425569 crossref_primary_10_1007_s12598_022_02201_z crossref_primary_10_3390_molecules26092705 crossref_primary_10_1021_acsorginorgau_5c00004 crossref_primary_10_1016_j_molstruc_2019_06_036 crossref_primary_10_1002_ange_202425569 crossref_primary_10_1016_j_seppur_2022_122002 crossref_primary_10_1016_j_jmgm_2022_108263 crossref_primary_10_1055_a_1937_9296 crossref_primary_10_1002_chem_202300811 crossref_primary_10_1038_s41467_024_49803_y crossref_primary_10_1039_D2RA00797E crossref_primary_10_1016_j_heliyon_2022_e11408 crossref_primary_10_1016_j_cej_2021_129773 crossref_primary_10_1016_j_chemosphere_2022_134490 crossref_primary_10_3390_molecules27113421 crossref_primary_10_1016_j_seppur_2021_120108 crossref_primary_10_1016_j_colsurfa_2022_130627 crossref_primary_10_1016_j_comptc_2024_114984 crossref_primary_10_1111_cbdd_14299 crossref_primary_10_1016_j_enmf_2024_11_005 crossref_primary_10_1016_j_dyepig_2019_108093 crossref_primary_10_1016_j_jorganchem_2024_123048 crossref_primary_10_1021_acs_jpclett_5c01207 crossref_primary_10_1016_j_nantod_2024_102456 crossref_primary_10_1002_poc_4189 crossref_primary_10_1016_j_physe_2024_116115 crossref_primary_10_1016_j_polymer_2021_124032 crossref_primary_10_1016_j_jece_2022_108789 crossref_primary_10_3390_molecules27051487 crossref_primary_10_1016_j_seppur_2024_131222 crossref_primary_10_1002_aic_18907 crossref_primary_10_1016_j_ijhydene_2023_01_112 crossref_primary_10_1016_j_seppur_2022_121610 crossref_primary_10_1021_jacs_5c01738 crossref_primary_10_1016_j_diamond_2023_110162 crossref_primary_10_1016_j_physe_2021_114719 crossref_primary_10_1002_chem_202301360 crossref_primary_10_1007_s10593_023_03174_2 crossref_primary_10_1016_j_molstruc_2022_133404 crossref_primary_10_1007_s11696_023_03018_5 crossref_primary_10_1007_s11696_025_03958_0 crossref_primary_10_1007_s00214_023_03030_8 crossref_primary_10_1021_acssuschemeng_4c10268 crossref_primary_10_1016_j_diamond_2020_107905 crossref_primary_10_1021_acs_jpca_5c01596 crossref_primary_10_1016_j_jhazmat_2020_123507 crossref_primary_10_1021_acs_jpcb_5c04452 crossref_primary_10_1002_open_202100108 crossref_primary_10_1007_s11224_021_01835_6 crossref_primary_10_3390_ijms23094674 crossref_primary_10_1016_j_rechem_2025_102706 crossref_primary_10_1016_j_comptc_2019_112640 crossref_primary_10_1016_j_seppur_2022_121618 crossref_primary_10_1007_s40843_022_2278_5 crossref_primary_10_1002_chem_202400156 crossref_primary_10_1016_j_jcis_2024_11_179 crossref_primary_10_1039_D3RA01782F crossref_primary_10_1016_j_ijbiomac_2025_146040 crossref_primary_10_1016_j_porgcoat_2022_107311 crossref_primary_10_1016_j_fuel_2018_12_010 crossref_primary_10_1016_j_molliq_2025_126994 crossref_primary_10_1002_cbdv_202400844 crossref_primary_10_1038_s41598_019_46725_4 crossref_primary_10_1002_jcc_70146 crossref_primary_10_1073_pnas_2213480120 crossref_primary_10_1039_C9QM00312F crossref_primary_10_1016_j_comptc_2025_115468 crossref_primary_10_1016_j_comptc_2024_114511 crossref_primary_10_1039_D1RA08258B |
| Cites_doi | 10.1007/s00894-014-2401-7 10.1016/j.comptc.2014.10.011 10.1021/ct100641a 10.1016/0009-2614(70)80126-9 10.1002/qua.24241 10.1002/qua.22662 10.1103/PhysRevB.93.054102 10.1007/s00214-010-0745-3 10.1063/1.1740588 10.1021/jp204278k 10.1002/ange.201405240 10.1002/chem.201201290 10.1002/(SICI)1097-461X(1997)61:5<835::AID-QUA9>3.0.CO;2-X 10.1039/C3SC53416B 10.1002/anie.201608795 10.1002/qua.21901 10.1021/acs.jctc.5b00330 10.1126/science.aah5975 10.1371/journal.pcbi.1003902 10.1002/9783527610709.ch1 10.1039/c2cp41395g 10.1007/s00214-010-0727-5 10.1038/371683a0 10.1021/ct300234g 10.1039/C7CP02110K 10.1002/anie.201405240 10.1021/ja100936w 10.1002/ange.201608795 10.1021/j100401a010 |
| ContentType | Journal Article |
| Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION NPM K9. 7X8 1XC VOOES |
| DOI | 10.1002/cphc.201701325 |
| DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1439-7641 |
| EndPage | 735 |
| ExternalDocumentID | oai:HAL:hal-03377532v1 29250908 10_1002_cphc_201701325 CPHC201701325 |
| Genre | article Journal Article |
| GroupedDBID | --- -DZ -~X 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 4ZD 50Y 5GY 5VS 66C 6J9 77Q 8-0 8-1 8UM AAESR AAHQN AAIHA AAMMB AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IH2 IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- OIG P2P P2W PQQKQ QRW R.K RNS ROL RX1 SUPJJ SV3 UPT V2E W99 WBKPD WH7 WJL WOHZO WXSBR XPP XV2 Y6R YZZ ZZTAW ~S- AAYXX CITATION A00 AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AIWBW AJBDE NPM P4E RWI WYJ K9. 7X8 .GJ 1XC 31~ 53G AANHP ACBWZ ACRPL ACYXJ ADNMO AGQPQ AI. ASPBG AVWKF AZFZN FEDTE GODZA HF~ HVGLF VH1 VOOES XSW ZGI |
| ID | FETCH-LOGICAL-c5505-d47f97a3f648141e4502a3e3c95e762e01562730d126fc968c51c8f2b7962fcc3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 384 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428380500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1439-4235 1439-7641 |
| IngestDate | Tue Oct 14 20:20:15 EDT 2025 Sun Nov 09 14:43:47 EST 2025 Sat Nov 29 14:38:21 EST 2025 Wed Feb 19 02:43:06 EST 2025 Sat Nov 29 07:15:43 EST 2025 Tue Nov 18 21:37:22 EST 2025 Tue Sep 09 05:06:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | quantum chemistry electron density noncovalent interactions independent gradient model interactions Quantum Chemistry Topological analysis |
| Language | English |
| License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5505-d47f97a3f648141e4502a3e3c95e762e01562730d126fc968c51c8f2b7962fcc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8947-9526 0000-0001-9308-6947 0000-0001-5358-102X 0000-0002-8511-0895 0000-0003-0970-3901 0000-0001-6615-9426 |
| OpenAccessLink | https://hal.univ-reims.fr/hal-03377532 |
| PMID | 29250908 |
| PQID | 2017709256 |
| PQPubID | 986334 |
| PageCount | 12 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03377532v1 proquest_miscellaneous_1978318411 proquest_journals_2017709256 pubmed_primary_29250908 crossref_primary_10_1002_cphc_201701325 crossref_citationtrail_10_1002_cphc_201701325 wiley_primary_10_1002_cphc_201701325_CPHC201701325 |
| PublicationCentury | 2000 |
| PublicationDate | March 19, 2018 |
| PublicationDateYYYYMMDD | 2018-03-19 |
| PublicationDate_xml | – month: 03 year: 2018 text: March 19, 2018 day: 19 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Chemphyschem |
| PublicationTitleAlternate | Chemphyschem |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc Wiley-VCH Verlag |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag |
| References | 2014 2014; 53 126 2011; 115 1986; 90 1997; 61 2010; 127 1994; 371 2007 1994 2012; 18 2016; 93 2017 2017; 56 129 2012; 14 2017; 355 2015; 1053 1970; 5 1955; 23 2011; 7 2014; 20 2014; 5 2012; 112 2011; 128 2010; 110 2010; 132 2016 2017; 19 2009; 109 2014; 10 2012; 8 e_1_2_8_28_1 e_1_2_8_29_1 Bader R. F. W. (e_1_2_8_2_2) 1994 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_2 e_1_2_8_18_2 e_1_2_8_19_1 e_1_2_8_11_3 e_1_2_8_13_2 e_1_2_8_35_1 e_1_2_8_14_2 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_30_2 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_12_1 e_1_2_8_33_1 Narth C. (e_1_2_8_7_1) 2016 e_1_2_8_30_1 |
| References_xml | – volume: 18 start-page: 15523 year: 2012 end-page: 15536 publication-title: Chem. Eur. J. – volume: 132 start-page: 6498 year: 2010 end-page: 6506 publication-title: J. Am. Chem. Soc. – start-page: 1 year: 2007 end-page: 34 – volume: 128 start-page: 39 year: 2011 end-page: 46 publication-title: Theor. Chem. Acc. – volume: 10 start-page: 1003902 year: 2014 publication-title: PLOS Comput. Biol. – volume: 61 start-page: 835 year: 1997 end-page: 845 publication-title: Int. J. Quantum Chem. – volume: 1053 start-page: 53 year: 2015 end-page: 59 publication-title: Comput. Theor. Chem. – volume: 7 start-page: 625 year: 2011 end-page: 632 publication-title: J. Chem. Theory Comput. – volume: 23 start-page: 1833 year: 1955 end-page: 1840 publication-title: J. Chem. Phys. – volume: 19 start-page: 17928 year: 2017 end-page: 17936 publication-title: Phys. Chem. Chem. Phys. – volume: 93 start-page: 054102 year: 2016 publication-title: Phys. Rev. B – volume: 90 start-page: 2020 year: 1986 end-page: 2027 publication-title: J. Phys. Chem. – volume: 56 129 start-page: 368 374 year: 2017 2017 end-page: 370 376 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 355 start-page: 49 year: 2017 publication-title: Science – volume: 5 start-page: 45 year: 1970 end-page: 49 publication-title: Chem. Phys. Lett. – volume: 109 start-page: 1790 year: 2009 end-page: 1806 publication-title: Int. J. Quantum Chem. – volume: 20 start-page: 2401 year: 2014 publication-title: J. Mol. Model. – start-page: 458 year: 1994 – volume: 110 start-page: 2418 year: 2010 end-page: 2425 publication-title: Int. J. Quantum Chem. – volume: 371 start-page: 683 year: 1994 end-page: 686 publication-title: Nature – volume: 127 start-page: 393 year: 2010 end-page: 400 publication-title: Theor. Chem. Acc. – volume: 115 start-page: 12983 year: 2011 end-page: 12990 publication-title: J. Phys. Chem. A – volume: 53 126 start-page: 9827 9985 year: 2014 2014 end-page: 9831 9989 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 12165 year: 2012 end-page: 12172 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 3993 year: 2012 end-page: 3997 publication-title: J. Chem. Theory Comput. – start-page: 491 year: 2016 end-page: 527 – volume: 112 start-page: 3594 year: 2012 end-page: 3598 publication-title: Int. J. Quantum Chem. – volume: 5 start-page: 2057 year: 2014 end-page: 2071 publication-title: Chem. Sci. – ident: e_1_2_8_10_2 doi: 10.1007/s00894-014-2401-7 – ident: e_1_2_8_20_1 doi: 10.1016/j.comptc.2014.10.011 – ident: e_1_2_8_34_1 doi: 10.1021/ct100641a – ident: e_1_2_8_25_1 doi: 10.1016/0009-2614(70)80126-9 – ident: e_1_2_8_22_1 doi: 10.1002/qua.24241 – ident: e_1_2_8_5_1 doi: 10.1002/qua.22662 – ident: e_1_2_8_15_1 doi: 10.1103/PhysRevB.93.054102 – ident: e_1_2_8_32_1 doi: 10.1007/s00214-010-0745-3 – ident: e_1_2_8_27_1 doi: 10.1063/1.1740588 – ident: e_1_2_8_33_1 – start-page: 491 volume-title: A Complete NCI perspective: From New Bonds to Reactivity year: 2016 ident: e_1_2_8_7_1 – ident: e_1_2_8_19_1 doi: 10.1021/jp204278k – ident: e_1_2_8_11_3 doi: 10.1002/ange.201405240 – ident: e_1_2_8_17_2 doi: 10.1002/chem.201201290 – ident: e_1_2_8_23_1 doi: 10.1002/(SICI)1097-461X(1997)61:5<835::AID-QUA9>3.0.CO;2-X – ident: e_1_2_8_1_1 – ident: e_1_2_8_8_1 doi: 10.1039/C3SC53416B – ident: e_1_2_8_30_1 doi: 10.1002/anie.201608795 – ident: e_1_2_8_26_1 doi: 10.1002/qua.21901 – ident: e_1_2_8_16_1 – ident: e_1_2_8_14_2 doi: 10.1021/acs.jctc.5b00330 – ident: e_1_2_8_28_1 doi: 10.1126/science.aah5975 – ident: e_1_2_8_13_2 doi: 10.1371/journal.pcbi.1003902 – ident: e_1_2_8_3_2 doi: 10.1002/9783527610709.ch1 – ident: e_1_2_8_35_1 – ident: e_1_2_8_18_2 doi: 10.1039/c2cp41395g – ident: e_1_2_8_29_1 doi: 10.1007/s00214-010-0727-5 – ident: e_1_2_8_4_1 doi: 10.1038/371683a0 – ident: e_1_2_8_31_1 doi: 10.1021/ct300234g – ident: e_1_2_8_21_1 doi: 10.1039/C7CP02110K – ident: e_1_2_8_11_2 doi: 10.1002/anie.201405240 – ident: e_1_2_8_12_1 – ident: e_1_2_8_9_1 – start-page: 458 volume-title: Atoms in Molecules: a Quantum Theory year: 1994 ident: e_1_2_8_2_2 – ident: e_1_2_8_6_1 doi: 10.1021/ja100936w – ident: e_1_2_8_30_2 doi: 10.1002/ange.201608795 – ident: e_1_2_8_24_1 doi: 10.1021/j100401a010 |
| SSID | ssj0008071 |
| Score | 2.6580894 |
| Snippet | Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical... Extracting the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical... |
| SourceID | hal proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 724 |
| SubjectTerms | Chemical Sciences Chemists Electron density Feature extraction independent gradient model interactions Mathematical models noncovalent interactions or physical chemistry Organic chemistry quantum chemistry Theoretical and Workflow |
| Title | The Independent Gradient Model: A New Approach for Probing Strong and Weak Interactions in Molecules from Wave Function Calculations |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.201701325 https://www.ncbi.nlm.nih.gov/pubmed/29250908 https://www.proquest.com/docview/2017709256 https://www.proquest.com/docview/1978318411 https://hal.univ-reims.fr/hal-03377532 |
| Volume | 19 |
| WOSCitedRecordID | wos000428380500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1439-7641 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008071 issn: 1439-4235 databaseCode: DRFUL dateStart: 20000101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_RDgleGF-DwJgOhMRTtNhO6oS3KqMUaZoqYFrfIsdxtokqm5qufwF_OHdJmq1CCAne8uFcLN-d7872_Q7gvbJlbmQsfIpQjM_nCH22cr7TphTWhVFpwqbYhD45iefzZHYni7_Fh-gX3FgzmvmaFdzk9eEtaKi9vmAIQsYTVzIawI4k4Y2GsHP0dXJ63M_GcdAGXSHveEoVbYAbA3m4TWHLMA0u-Fjk7z7ntgvb2KDJ7v_3_jE86vxPHLcC8wTuueopPEg3Zd-ewU8SHPzSF8dd4edlcypshVw2bfERx0gTI447LHIkpxdnDOZUneM3Xlc_R1MVeObMD2yWG9vMiRovK6LQ1OJ1NXJWC56ZtcMJGVZugKlZ2K6WWP0cTiefvqdTvyvV4FsOcfwi1GWijSpHYSxCQTwOpFFO2SRyNN06TtgmRykohByVNhnFNhI2LmWuk5EsrVV7MKyuKvcS0CmdK-m01kUS5jKKC-fI0DqiYEJy1jzwN3zKbIdjzuU0FlmLwCwzHtusH1sPPvTtr1sEjz-2fEds7xsx8PZ0fJzxs0ApTYGdXAsP9jdSkXXqXjckdJCQ--jB2_41MY53X0zlrm7qTPAiG8XTgki8aKWp_5WkT4MkiD2QjdD8paNZOpum_d2rf_noNTyk6ya7UiT7MFwtb9wbuG_Xq8t6eQADPY8POlX6BZohGn4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xDWm8bHwNwgYcCImnaLGd1MneqozSiVJVsGl7i1zH2SaqbGq6_gX7w7lL0qAKISTEY5LzxbLPvg_7fgfwQdliamQsfPJQjM_3CH3Wcr7TphDWhVFhwrrYhB6P44uLZNLeJuRcmAYfogu48cqo92te4ByQPvyFGmpvrxiDkAHFlYw2YCskWSIh3zr-NjgbddtxHDReV8hHnlJFK-TGQB6uc1jTTBtXfC_yd6Nz3YatldBg9z90_zHstBYo9huReQIPXPkUttNV4bdncE-igyddedwFfp7X98IWyIXTZkfYR9oasd-ikSOZvThhOKfyEr9zZP0STZnjuTM_sA44NrkTFV6XxKGuxusq5LwWPDdLhwNSrUyAqZnZtppY9RzOBp9O06HfFmvwLTs5fh7qItFGFb0wFqGgWQ6kUU7ZJHK04TpO2SZTKciF7BU26cU2EjYu5FQnPVlYq_Zgs7wp3UtAp_RUSae1zpNwKqM4d45UrSMOJiRzzQN_NVGZbZHMuaDGLGswmGXGY5t1Y-vBx47-tsHw-CPle5r3joiht4f9UcbvAqU0uXZyKTw4WIlF1i74qmahg4QMSA_edZ9p4vj8xZTu5q7KBIfZyKMWxOJFI07dryQ1DZIg9kDWUvOXjmbpZJh2T6_-pdFb2B6efh1lo5Pxl314RO_rXEuRHMDmYn7nXsNDu1xcV_M37Yr6CeRgHYY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xDgEvfH8EBhwIiadosZ3UCW9VRuhEVVXAtL1FruNsE1VWNV3_Av5w7pI0qEIICfGYxL5EvrPvzvH9fgDvlC3nRsbCpwzF-HyO0Gcv5zttSmFdGJUmbMgm9HQan50ls-40IdfCtPgQ_YYbz4xmveYJ7pZFefgLNdQuLxiDkAHFlYz2YD9kJpkB7B99yU4m_XIcB23WFfIvT6miLXJjIA93Jex4pr0LPhf5e9C5G8M2Tii79x8-_z7c7SJQHLUm8wBuuOoh3E63xG-P4AeZDh739Lhr_LRqzoWtkYnTFh9whLQ04qhDI0cKe3HGcE7VOX7lnfVzNFWBp858x2bDsa2dqPGyIgkNG6-rketa8NRsHGbkWrkBpmZhOzax-jGcZB-_pWO_I2vwLSc5fhHqMtFGlcMwFqEgLQfSKKdsEjlacB2XbFOoFBRCDkubDGMbCRuXcq5JaaW16gkMqqvKPQN0Ss-VdFrrIgnnMooL58jVOpJgQgrXPPC3ispth2TOhBqLvMVgljmPbd6PrQfv-_bLFsPjjy3fkt77Rgy9PR5Ncr4XKKUptZMb4cHB1izybsLXjQgdJBRAevCmf0yK4_8vpnJX13UueJuNMmpBIp625tS_SlLXIAliD2RjNX_50DydjdP-6vm_dHoNt2ZHWT45nn5-AXfodlNqKZIDGKxX1-4l3LSb9WW9etVNqJ9ByB0B |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Independent+Gradient+Model%3A+A+New+Approach+for+Probing+Strong+and+Weak+Interactions+in+Molecules+from+Wave+Function+Calculations&rft.jtitle=Chemphyschem&rft.au=Lefebvre%2C+Corentin&rft.au=Khartabil%2C+Hassan&rft.au=Jean%E2%80%90Charles+Boisson&rft.au=Julia+Contreras%E2%80%90Garc%C3%ADa&rft.date=2018-03-19&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=19&rft.issue=6&rft.spage=724&rft.epage=735&rft_id=info:doi/10.1002%2Fcphc.201701325&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon |