Impaired myofibroblast proliferation is a central feature of pathologic post-natal alveolar simplification
Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack s...
Uloženo v:
| Vydáno v: | eLife Ročník 13 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
eLife Science Publications, Ltd
11.12.2024
eLife Sciences Publications, Ltd eLife Sciences Publications Ltd |
| Témata: | |
| ISSN: | 2050-084X, 2050-084X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFβ signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD. |
|---|---|
| AbstractList | Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFβ signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD. Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGF[beta]) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGF[beta] signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGF[beta] signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGF[beta] signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD. Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFβ signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFβ signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD. |
| Audience | Academic |
| Author | Sheppard, Dean Khan, Imran S Ren, Xin Molina, Christopher Auyeung, Vincent C Atakilit, Amha Cohen, Max Tsukui, Tatsuya |
| Author_xml | – sequence: 1 givenname: Imran S orcidid: 0000-0003-4570-4143 surname: Khan fullname: Khan, Imran S – sequence: 2 givenname: Christopher surname: Molina fullname: Molina, Christopher – sequence: 3 givenname: Xin surname: Ren fullname: Ren, Xin – sequence: 4 givenname: Vincent C orcidid: 0000-0001-6273-1595 surname: Auyeung fullname: Auyeung, Vincent C – sequence: 5 givenname: Max surname: Cohen fullname: Cohen, Max – sequence: 6 givenname: Tatsuya orcidid: 0000-0003-3100-6934 surname: Tsukui fullname: Tsukui, Tatsuya – sequence: 7 givenname: Amha surname: Atakilit fullname: Atakilit, Amha – sequence: 8 givenname: Dean orcidid: 0000-0002-6277-2036 surname: Sheppard fullname: Sheppard, Dean |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39660606$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkktr3DAURk1JadI0q-6LoZuWMlPJlmV7VULoY2Cg0Ad0J_S4mmiQLVfShObf98YzDZkSa2Fxfe7Rw9_z4mQMIxTFS0qWbdOw97B2FpY9Y1XzpDirSEMWpGO_Th7MT4uLlLYEn5Z1He2fFad1zznBcVZsV8MkXQRTDrfBOhWD8jLlcorBoznK7MJYulTKUsOYo_SlBZl3Ecpgy0nm6-DDxulyCikvRpkRkP4GgpexTG6Y0OL0bHlRPLXSJ7g4vM-Ln58-_rj6slh__by6ulwvdMP6vEC96khtW6YrDhK4MZpJpVUNlal7TZSixvKq6ojRVUs06YlRvGsr1VNooD4vVnuvCXIrpugGGW9FkE7MhRA3QsbstAfRtoDXYrqmkj3TgCvXtAJgqmZGW23R9WHvmnZqAHO4giPp8ZfRXYtNuBGU8poRztHw5mCI4fcOUhaDSxq8lyOEXRI1ZZxXLeMdoq_36Ebi3txoAyr1HS4u8b81bccJRWr5CIXDwOA0psM6rB81vD1qQCbDn7yRu5TE6vu3Y_bVw_PeH_RfYBB4twd0DClFsPcIJeIukWJOpJgTiTT9j9Yuz2HAPTv_aM9fdLTmiw |
| CitedBy_id | crossref_primary_10_1165_rcmb_2024_0452OC crossref_primary_10_3390_bioengineering12070760 crossref_primary_10_7554_eLife_105095 crossref_primary_10_1038_s41467_025_57163_4 |
| Cites_doi | 10.1165/rcmb.2016-0268OC 10.1038/pr.2017.21 10.1242/dev.163014 10.4049/jimmunol.142.5.1536 10.1242/dev.176354 10.1002/sctm.20-0526 10.1172/JCI11963 10.1038/s41467-020-15647-5 10.1016/j.ajpath.2015.11.024 10.1038/nm.3282 10.1016/j.cell.2021.04.048 10.1159/000014219 10.3389/fmed.2015.00091 10.1152/ajplung.00342.2013 10.3390/ijms19082460 10.1152/ajplung.00389.2006 10.1083/jcb.133.4.921 10.1016/j.ajpath.2014.08.010 10.1242/dev.200081 10.1186/s12915-016-0242-9 10.1186/s12890-019-0915-6 10.1152/ajplung.00343.2017 10.1242/dev.199512 10.15252/emmm.201607308 10.1183/09031936.00075713 10.1186/s40348-017-0076-8 10.1172/JCI132189 10.1038/nbt.4096 10.7554/eLife.36865 10.1016/j.celrep.2022.110608 10.1083/jcb.200109100 10.1038/nature01413 10.1203/00006450-199912000-00007 10.1038/s41572-019-0127-7 10.1016/j.cels.2019.03.003 10.1186/s12931-014-0162-6 10.1242/dev.117200 10.1152/ajplung.00298.2004 10.1183/09031936.00165407 10.7554/eLife.68598 10.1080/080352500300002606 10.1016/s0022-3476(96)70355-4 10.1074/jbc.M806786200 10.1074/jbc.271.39.24144 10.1002/dvdy.21633 10.1016/S0092-8674(00)80545-0 10.1002/dvdy.271 10.1152/ajplung.00050.2006 10.1371/journal.pone.0031336 10.1164/rccm.200902-0215OC 10.1007/s00134-006-0138-1 10.1084/jem.20190103 10.1152/ajplung.00329.2006 10.1242/dev.181032 10.1007/s00441-016-2545-0 10.1152/ajplung.00144.2014 10.1038/s41467-021-21865-2 10.1152/ajplung.00299.2020 10.1093/bioinformatics/btt703 10.1002/stem.1911 10.1016/j.cell.2004.07.023 10.1172/jci.insight.152404 10.1002/gene.10046 10.1038/s41592-019-0667-5 10.1016/j.ydbio.2015.11.017 10.1016/S0002-9440(10)62986-0 10.1165/rcmb.2006-0116OC 10.1073/pnas.90.2.770 10.1165/rcmb.2008-0480OC 10.1152/ajplung.00109.2013 10.1152/ajplung.00062.2017 10.1056/NEJM196702162760701 10.1152/ajplung.00252.2022 10.1177/1947601912437035 10.1152/ajplung.00039.2015 10.1038/s41374-019-0256-3 10.1165/rcmb.2022-0269OC 10.1186/1465-9921-10-119 10.1152/ajplung.00023.2009 10.1177/41.10.8245410 10.1016/j.cell.2023.07.036 10.1152/ajplung.00106.2021 10.1126/scitranslmed.aaa5094 |
| ContentType | Journal Article |
| Copyright | 2024, Khan et al. COPYRIGHT 2024 eLife Science Publications, Ltd. 2024, Khan et al 2024 Khan et al |
| Copyright_xml | – notice: 2024, Khan et al. – notice: COPYRIGHT 2024 eLife Science Publications, Ltd. – notice: 2024, Khan et al 2024 Khan et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
| DOI | 10.7554/eLife.94425 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2050-084X |
| ExternalDocumentID | oai_doaj_org_article_77e000d852a94ceeab312ee4b34dcfcf PMC11634066 A819578601 39660606 10_7554_eLife_94425 |
| Genre | Journal Article |
| GeographicLocations | Canada California United States Massachusetts |
| GeographicLocations_xml | – name: Canada – name: California – name: United States – name: Massachusetts |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL142568 – fundername: NIH HHS grantid: S10 OD028511 – fundername: NHLBI NIH HHS grantid: R00 HL155786 – fundername: NHLBI NIH HHS grantid: HL145037 – fundername: NCI NIH HHS grantid: P30 CA082103 – fundername: NHLBI NIH HHS grantid: T32 HL007185 – fundername: University of California, San Francisco grantid: Nina Ireland Program For Lung Health – fundername: NHLBI NIH HHS grantid: R01 HL145037 – fundername: National Institute of Child Health and Human Development grantid: HD000850 – fundername: National Institute of Child Health and Human Development grantid: Pediatric Scientist Development Program – fundername: ; – fundername: ; grantid: HD000850 – fundername: ; grantid: Pediatric Scientist Development Program – fundername: ; grantid: Nina Ireland Program For Lung Health – fundername: ; grantid: HL145037 – fundername: ; grantid: HL142568 |
| GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RHI RNS RPM UKHRP ALIPV CGR CUY CVF ECM EIF NPM 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c549t-feab803f74c26eae6ddc4abcb3e2d39c0bb1df62280dc270c090db6872b91e5e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001394453500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-084X |
| IngestDate | Fri Oct 03 12:42:23 EDT 2025 Tue Nov 04 02:05:01 EST 2025 Fri Sep 05 08:22:05 EDT 2025 Tue Nov 11 10:49:06 EST 2025 Tue Nov 04 18:27:04 EST 2025 Thu Nov 13 15:57:29 EST 2025 Wed Jul 23 01:47:07 EDT 2025 Sat Nov 29 06:59:29 EST 2025 Tue Nov 18 21:35:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | mouse hyperoxia bronchopulmonary dysplasia myofibroblast developmental biology lung development |
| Language | English |
| License | 2024, Khan et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c549t-feab803f74c26eae6ddc4abcb3e2d39c0bb1df62280dc270c090db6872b91e5e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6273-1595 0000-0003-4570-4143 0000-0003-3100-6934 0000-0002-6277-2036 |
| OpenAccessLink | https://doaj.org/article/77e000d852a94ceeab312ee4b34dcfcf |
| PMID | 39660606 |
| PQID | 3146627468 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_77e000d852a94ceeab312ee4b34dcfcf pubmedcentral_primary_oai_pubmedcentral_nih_gov_11634066 proquest_miscellaneous_3146627468 gale_infotracmisc_A819578601 gale_infotracacademiconefile_A819578601 gale_incontextgauss_ISR_A819578601 pubmed_primary_39660606 crossref_primary_10_7554_eLife_94425 crossref_citationtrail_10_7554_eLife_94425 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-11 |
| PublicationDateYYYYMMDD | 2024-12-11 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | eLife |
| PublicationTitleAlternate | Elife |
| PublicationYear | 2024 |
| Publisher | eLife Science Publications, Ltd eLife Sciences Publications, Ltd eLife Sciences Publications Ltd |
| Publisher_xml | – name: eLife Science Publications, Ltd – name: eLife Sciences Publications, Ltd – name: eLife Sciences Publications Ltd |
| References | Hogmalm (bib26) 2010; 43 Kugler (bib34) 2017; 57 Butler (bib11) 2018; 36 Cook (bib18) 2011; 2 Li (bib38) 2008; 283 Munger (bib54) 1999; 96 Jónsson (bib30) 2000; 89 Calthorpe (bib12) 2023; 324 Hagan (bib23) 2020; 147 Vila Ellis (bib77) 2021; 250 Yee (bib81) 2009; 297 Chytil (bib16) 2002; 32 Mižíková (bib50) 2015; 308 Vento (bib76) 2006; 32 Dasch (bib20) 1989; 142 Narvaez Del Pilar (bib56) 2022; 149 Sureshbabu (bib71) 2015; 16 Bozyk (bib5) 2012; 7 Colarossi (bib17) 2005; 167 Zhang (bib84) 2022; 11 Browaeys (bib8) 2020; 17 Ahn (bib2) 2004; 118 Yie (bib82) 2023; 68 Li (bib43) 2020; 130 Liu (bib44) 2014; 184 Yokosaki (bib83) 1996; 271 Morris (bib51) 2003; 422 Mund (bib53) 2008; 237 Breuss (bib7) 1993; 41 Chen (bib14) 2008; 32 Crowley (bib19) 2019; 19 Negretti (bib57) 2021; 148 Bry (bib10) 2007; 36 Saito (bib68) 2018; 19 Benjamin (bib4) 2007; 292 Li (bib40) 2016; 14 Mu (bib52) 2002; 157 Reed (bib66) 2015; 7 Rath (bib65) 2017; 81 Branchfield (bib6) 2016; 409 Huang (bib27) 1996; 133 Li (bib39) 2015; 33 McGinnis (bib46) 2019; 8 McGowan (bib47) 2014; 307 Hurskainen (bib28) 2021; 12 Thébaud (bib72) 2019; 5 Henderson (bib25) 2013; 19 Lecart (bib37) 2000; 77 Gao (bib22) 2022; 39 Alejandre-Alcázar (bib3) 2007; 292 Plosa (bib63) 2014; 141 Riccetti (bib67) 2022; 7 Witsch (bib79) 2014; 306 Kulkarni (bib35) 1993; 90 Northway (bib59) 1967; 276 Massagué (bib45) 2023; 186 Nakanishi (bib55) 2007; 293 Noe (bib58) 2019; 99 Chen (bib13) 2005; 288 Schittny (bib69) 2017; 367 Ahlfeld (bib1) 2016; 186 Kumarasamy (bib36) 2009; 180 Surate Solaligue (bib70) 2017; 313 Krämer (bib33) 2014; 30 Oak (bib61) 2017; 9 Chung (bib15) 2018; 145 Popova (bib64) 2014; 307 Hao (bib24) 2021; 184 Miao (bib48) 2021; 320 Jobe (bib29) 1999; 46 Pittet (bib62) 2001; 107 Kimani (bib31) 2009; 10 Ushakumary (bib75) 2021; 10 Xia (bib80) 2023; 324 Browaeys (bib9) 2024 Mižíková (bib49) 2015; 2 Oak (bib60) 2017; 4 Li (bib41) 2018; 7 Frangogiannis (bib21) 2020; 217 Li (bib42) 2019; 146 Tsujino (bib73) 2017; 313 Tsukui (bib74) 2020; 11 Witsch (bib78) 2014; 44 Kotecha (bib32) 1996; 128 38187712 - bioRxiv. 2024 Sep 16:2023.12.21.572766. doi: 10.1101/2023.12.21.572766. |
| References_xml | – volume: 57 start-page: 280 year: 2017 ident: bib34 article-title: Sonic hedgehog signaling regulates myofibroblast function during alveolar septum formation in murine postnatal lung publication-title: American Journal of Respiratory Cell and Molecular Biology doi: 10.1165/rcmb.2016-0268OC – volume: 81 start-page: 795 year: 2017 ident: bib65 article-title: Caffeine administration modulates TGF-β signaling but does not attenuate blunted alveolarization in a hyperoxia-based mouse model of bronchopulmonary dysplasia publication-title: Pediatric Research doi: 10.1038/pr.2017.21 – volume: 145 year: 2018 ident: bib15 article-title: Niche-mediated BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation publication-title: Development doi: 10.1242/dev.163014 – volume: 142 start-page: 1536 year: 1989 ident: bib20 article-title: Monoclonal antibodies recognizing transforming growth factor-beta. Bioactivity neutralization and transforming growth factor beta 2 affinity purification publication-title: Journal of Immunology doi: 10.4049/jimmunol.142.5.1536 – volume: 146 year: 2019 ident: bib42 article-title: Secondary crest myofibroblast PDGFRα controls the elastogenesis pathway via a secondary tier of signaling networks during alveologenesis publication-title: Development doi: 10.1242/dev.176354 – volume: 10 start-page: 1021 year: 2021 ident: bib75 article-title: Resident interstitial lung fibroblasts and their role in alveolar stem cell niche development, homeostasis, injury, and regeneration publication-title: Stem Cells Translational Medicine doi: 10.1002/sctm.20-0526 – volume: 107 start-page: 1537 year: 2001 ident: bib62 article-title: TGF-beta is a critical mediator of acute lung injury publication-title: The Journal of Clinical Investigation doi: 10.1172/JCI11963 – volume: 11 year: 2020 ident: bib74 article-title: Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis publication-title: Nature Communications doi: 10.1038/s41467-020-15647-5 – volume: 186 start-page: 777 year: 2016 ident: bib1 article-title: Initial Suppression of Transforming Growth Factor-β Signaling and Loss of TGFBI Causes Early Alveolar Structural Defects Resulting in Bronchopulmonary Dysplasia publication-title: The American Journal of Pathology doi: 10.1016/j.ajpath.2015.11.024 – volume: 19 start-page: 1617 year: 2013 ident: bib25 article-title: Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs publication-title: Nature Medicine doi: 10.1038/nm.3282 – volume: 184 start-page: 3573 year: 2021 ident: bib24 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 77 start-page: 217 year: 2000 ident: bib37 article-title: Bioactive transforming growth factor-beta in the lungs of extremely low birthweight neonates predicts the need for home oxygen supplementation publication-title: Biology of the Neonate doi: 10.1159/000014219 – volume: 2 year: 2015 ident: bib49 article-title: The extracellular matrix in bronchopulmonary dysplasia: target and source publication-title: Frontiers in Medicine doi: 10.3389/fmed.2015.00091 – volume: 307 start-page: L231 year: 2014 ident: bib64 article-title: Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00342.2013 – volume: 19 year: 2018 ident: bib68 article-title: TGF-β signaling in lung health and disease publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms19082460 – volume: 293 start-page: L151 year: 2007 ident: bib55 article-title: TGF-beta-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00389.2006 – volume: 133 start-page: 921 year: 1996 ident: bib27 article-title: Inactivation of the integrin beta 6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin publication-title: The Journal of Cell Biology doi: 10.1083/jcb.133.4.921 – volume: 184 start-page: 3344 year: 2014 ident: bib44 article-title: Intranasal versus intraperitoneal delivery of human umbilical cord tissue-derived cultured mesenchymal stromal cells in a murine model of neonatal lung injury publication-title: The American Journal of Pathology doi: 10.1016/j.ajpath.2014.08.010 – volume: 149 year: 2022 ident: bib56 article-title: Three-axis classification of mouse lung mesenchymal cells reveals two populations of myofibroblasts publication-title: Development doi: 10.1242/dev.200081 – volume: 14 year: 2016 ident: bib40 article-title: Mesodermal ALK5 controls lung myofibroblast versus lipofibroblast cell fate publication-title: BMC Biology doi: 10.1186/s12915-016-0242-9 – volume: 19 year: 2019 ident: bib19 article-title: Quantitative lung morphology: semi-automated measurement of mean linear intercept publication-title: BMC Pulmonary Medicine doi: 10.1186/s12890-019-0915-6 – volume: 313 start-page: L1101 year: 2017 ident: bib70 article-title: Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00343.2017 – volume: 148 year: 2021 ident: bib57 article-title: A single-cell atlas of mouse lung development publication-title: Development doi: 10.1242/dev.199512 – volume: 9 start-page: 1504 year: 2017 ident: bib61 article-title: Attenuated PDGF signaling drives alveolar and microvascular defects in neonatal chronic lung disease publication-title: EMBO Molecular Medicine doi: 10.15252/emmm.201607308 – volume: 44 start-page: 109 year: 2014 ident: bib78 article-title: Transglutaminase 2: a new player in bronchopulmonary dysplasia? publication-title: The European Respiratory Journal doi: 10.1183/09031936.00075713 – volume: 4 year: 2017 ident: bib60 article-title: The BPD trio? Interaction of dysregulated PDGF, VEGF, and TGF signaling in neonatal chronic lung disease publication-title: Molecular and Cellular Pediatrics doi: 10.1186/s40348-017-0076-8 – volume: 130 start-page: 2859 year: 2020 ident: bib43 article-title: Myofibroblast contraction is essential for generating and regenerating the gas-exchange surface publication-title: The Journal of Clinical Investigation doi: 10.1172/JCI132189 – volume: 36 start-page: 411 year: 2018 ident: bib11 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nature Biotechnology doi: 10.1038/nbt.4096 – volume: 7 year: 2018 ident: bib41 article-title: Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response publication-title: eLife doi: 10.7554/eLife.36865 – volume: 39 year: 2022 ident: bib22 article-title: Hedgehog-responsive PDGFRa(+) fibroblasts maintain a unique pool of alveolar epithelial progenitor cells during alveologenesis publication-title: Cell Reports doi: 10.1016/j.celrep.2022.110608 – volume: 157 start-page: 493 year: 2002 ident: bib52 article-title: The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1 publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200109100 – volume: 422 start-page: 169 year: 2003 ident: bib51 article-title: Loss of integrin alpha(v)beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema publication-title: Nature doi: 10.1038/nature01413 – volume: 46 start-page: 641 year: 1999 ident: bib29 article-title: The new BPD: an arrest of lung development publication-title: Pediatric Research doi: 10.1203/00006450-199912000-00007 – volume: 5 year: 2019 ident: bib72 article-title: Bronchopulmonary dysplasia publication-title: Nature Reviews. Disease Primers doi: 10.1038/s41572-019-0127-7 – volume: 8 start-page: 329 year: 2019 ident: bib46 article-title: Doubletfinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors publication-title: Cell Systems doi: 10.1016/j.cels.2019.03.003 – volume: 16 year: 2015 ident: bib71 article-title: Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung publication-title: Respiratory Research doi: 10.1186/s12931-014-0162-6 – volume-title: GitHub year: 2024 ident: bib9 article-title: Nichenetr – volume: 141 start-page: 4751 year: 2014 ident: bib63 article-title: Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization publication-title: Development doi: 10.1242/dev.117200 – volume: 288 start-page: L683 year: 2005 ident: bib13 article-title: Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00298.2004 – volume: 32 start-page: 285 year: 2008 ident: bib14 article-title: TGF-beta receptor II in epithelia versus mesenchyme plays distinct roles in the developing lung publication-title: The European Respiratory Journal doi: 10.1183/09031936.00165407 – volume: 11 year: 2022 ident: bib84 article-title: Acquisition of cellular properties during alveolar formation requires differential activity and distribution of mitochondria publication-title: eLife doi: 10.7554/eLife.68598 – volume: 89 start-page: 1375 year: 2000 ident: bib30 article-title: Downregulatory cytokines in tracheobronchial aspirate fluid from infants with chronic lung disease of prematurity publication-title: Acta Paediatrica doi: 10.1080/080352500300002606 – volume: 128 start-page: 464 year: 1996 ident: bib32 article-title: Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity publication-title: The Journal of Pediatrics doi: 10.1016/s0022-3476(96)70355-4 – volume: 283 start-page: 36257 year: 2008 ident: bib38 article-title: Mesodermal deletion of transforming growth factor-beta receptor II disrupts lung epithelial morphogenesis: cross-talk between TGF-beta and Sonic hedgehog pathways publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M806786200 – volume: 271 start-page: 24144 year: 1996 ident: bib83 article-title: Differential effects of the integrins alpha9beta1, alphavbeta3, and alphavbeta6 on cell proliferative responses to tenascin. Roles of the beta subunit extracellular and cytoplasmic domains publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.271.39.24144 – volume: 237 start-page: 2108 year: 2008 ident: bib53 article-title: Developmental alveolarization of the mouse lung publication-title: Developmental Dynamics doi: 10.1002/dvdy.21633 – volume: 96 start-page: 319 year: 1999 ident: bib54 article-title: A mechanism for regulating pulmonary inflammation and fibrosis: the integrin αvβ6 binds and activates latent TGF β1 publication-title: Cell doi: 10.1016/S0092-8674(00)80545-0 – volume: 250 start-page: 482 year: 2021 ident: bib77 article-title: A cell-centric view of lung alveologenesis publication-title: Developmental Dynamics doi: 10.1002/dvdy.271 – volume: 292 start-page: L537 year: 2007 ident: bib3 article-title: Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00050.2006 – volume: 7 year: 2012 ident: bib5 article-title: Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication publication-title: PLOS ONE doi: 10.1371/journal.pone.0031336 – volume: 180 start-page: 1239 year: 2009 ident: bib36 article-title: Lysyl oxidase activity is dysregulated during impaired alveolarization of mouse and human lungs publication-title: American Journal of Respiratory and Critical Care Medicine doi: 10.1164/rccm.200902-0215OC – volume: 32 start-page: 723 year: 2006 ident: bib76 article-title: Serum levels of seven cytokines in premature ventilated newborns: correlations with old and new forms of bronchopulmonary dysplasia publication-title: Intensive Care Medicine doi: 10.1007/s00134-006-0138-1 – volume: 217 year: 2020 ident: bib21 article-title: Transforming growth factor-β in tissue fibrosis publication-title: The Journal of Experimental Medicine doi: 10.1084/jem.20190103 – volume: 292 start-page: L550 year: 2007 ident: bib4 article-title: FGF-10 is decreased in bronchopulmonary dysplasia and suppressed by Toll-like receptor activation publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00329.2006 – volume: 147 year: 2020 ident: bib23 article-title: Identification of a FGF18-expressing alveolar myofibroblast that is developmentally cleared during alveologenesis publication-title: Development doi: 10.1242/dev.181032 – volume: 367 start-page: 427 year: 2017 ident: bib69 article-title: Development of the lung publication-title: Cell and Tissue Research doi: 10.1007/s00441-016-2545-0 – volume: 307 start-page: L618 year: 2014 ident: bib47 article-title: Regulation of fibroblast lipid storage and myofibroblast phenotypes during alveolar septation in mice publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00144.2014 – volume: 12 year: 2021 ident: bib28 article-title: Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage publication-title: Nature Communications doi: 10.1038/s41467-021-21865-2 – volume: 320 start-page: L1158 year: 2021 ident: bib48 article-title: Abrogation of mesenchyme-specific TGF-β signaling results in lung malformation with prenatal pulmonary cysts in mice publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00299.2020 – volume: 30 start-page: 523 year: 2014 ident: bib33 article-title: Causal analysis approaches in ingenuity pathway analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt703 – volume: 33 start-page: 999 year: 2015 ident: bib39 article-title: Progenitors of secondary crest myofibroblasts are developmentally committed in early lung mesoderm publication-title: Stem Cells doi: 10.1002/stem.1911 – volume: 118 start-page: 505 year: 2004 ident: bib2 article-title: Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning publication-title: Cell doi: 10.1016/j.cell.2004.07.023 – volume: 7 year: 2022 ident: bib67 article-title: Maladaptive functional changes in alveolar fibroblasts due to perinatal hyperoxia impair epithelial differentiation publication-title: JCI Insight doi: 10.1172/jci.insight.152404 – volume: 32 start-page: 73 year: 2002 ident: bib16 article-title: Conditional inactivation of the TGF-beta type II receptor using Cre:Lox publication-title: Genesis doi: 10.1002/gene.10046 – volume: 17 start-page: 159 year: 2020 ident: bib8 article-title: NicheNet: modeling intercellular communication by linking ligands to target genes publication-title: Nature Methods doi: 10.1038/s41592-019-0667-5 – volume: 409 start-page: 429 year: 2016 ident: bib6 article-title: A three-dimensional study of alveologenesis in mouse lung publication-title: Developmental Biology doi: 10.1016/j.ydbio.2015.11.017 – volume: 167 start-page: 419 year: 2005 ident: bib17 article-title: Lung alveolar septation defects in Ltbp-3-null mice publication-title: The American Journal of Pathology doi: 10.1016/S0002-9440(10)62986-0 – volume: 36 start-page: 32 year: 2007 ident: bib10 article-title: IL-1beta disrupts postnatal lung morphogenesis in the mouse publication-title: American Journal of Respiratory Cell and Molecular Biology doi: 10.1165/rcmb.2006-0116OC – volume: 90 start-page: 770 year: 1993 ident: bib35 article-title: Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death publication-title: PNAS doi: 10.1073/pnas.90.2.770 – volume: 43 start-page: 88 year: 2010 ident: bib26 article-title: beta6 Integrin subunit deficiency alleviates lung injury in a mouse model of bronchopulmonary dysplasia publication-title: American Journal of Respiratory Cell and Molecular Biology doi: 10.1165/rcmb.2008-0480OC – volume: 306 start-page: L246 year: 2014 ident: bib79 article-title: Deregulation of the lysyl hydroxylase matrix cross-linking system in experimental and clinical bronchopulmonary dysplasia publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00109.2013 – volume: 313 start-page: L878 year: 2017 ident: bib73 article-title: Fra-2 negatively regulates postnatal alveolar septation by modulating myofibroblast function publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00062.2017 – volume: 276 start-page: 357 year: 1967 ident: bib59 article-title: Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia publication-title: The New England Journal of Medicine doi: 10.1056/NEJM196702162760701 – volume: 324 start-page: L123 year: 2023 ident: bib80 article-title: Neonatal hyperoxia induces activated pulmonary cellular states and sex-dependent transcriptomic changes in a model of experimental bronchopulmonary dysplasia publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00252.2022 – volume: 2 start-page: 932 year: 2011 ident: bib18 article-title: The ect2 rho Guanine nucleotide exchange factor is essential for early mouse development and normal cell cytokinesis and migration publication-title: Genes & Cancer doi: 10.1177/1947601912437035 – volume: 308 start-page: L1145 year: 2015 ident: bib50 article-title: Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00039.2015 – volume: 99 start-page: 1363 year: 2019 ident: bib58 article-title: Mesenchyme-specific deletion of Tgf-β1 in the embryonic lung disrupts branching morphogenesis and induces lung hypoplasia publication-title: Laboratory Investigation; a Journal of Technical Methods and Pathology doi: 10.1038/s41374-019-0256-3 – volume: 68 start-page: 523 year: 2023 ident: bib82 article-title: Hedgehog and platelet-derived growth factor signaling intersect during postnatal lung development publication-title: American Journal of Respiratory Cell and Molecular Biology doi: 10.1165/rcmb.2022-0269OC – volume: 10 year: 2009 ident: bib31 article-title: PDGF-Ralpha gene expression predicts proliferation, but PDGF-A suppresses transdifferentiation of neonatal mouse lung myofibroblasts publication-title: Respiratory Research doi: 10.1186/1465-9921-10-119 – volume: 297 start-page: L641 year: 2009 ident: bib81 article-title: Neonatal oxygen adversely affects lung function in adult mice without altering surfactant composition or activity publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00023.2009 – volume: 41 start-page: 1521 year: 1993 ident: bib7 article-title: Restricted distribution of integrin beta 6 mRNA in primate epithelial tissues publication-title: The Journal of Histochemistry and Cytochemistry doi: 10.1177/41.10.8245410 – volume: 186 start-page: 4007 year: 2023 ident: bib45 article-title: TGF-β signaling in health and disease publication-title: Cell doi: 10.1016/j.cell.2023.07.036 – volume: 324 start-page: L285 year: 2023 ident: bib12 article-title: Complex roles of TGF-β signaling pathways in lung development and bronchopulmonary dysplasia publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00106.2021 – volume: 7 year: 2015 ident: bib66 article-title: The αvβ1 integrin plays a critical in vivo role in tissue fibrosis publication-title: Science Translational Medicine doi: 10.1126/scitranslmed.aaa5094 – reference: 38187712 - bioRxiv. 2024 Sep 16:2023.12.21.572766. doi: 10.1101/2023.12.21.572766. |
| SSID | ssj0000748819 |
| Score | 2.4240677 |
| Snippet | Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| SubjectTerms | Analysis Animals Animals, Newborn bronchopulmonary dysplasia Bronchopulmonary Dysplasia - metabolism Bronchopulmonary Dysplasia - pathology Cell Proliferation Developmental Biology Disease Models, Animal Dysplasia Female Gene expression Humans hyperoxia Hyperoxia - metabolism Infants (Premature) lung development Mice Mice, Inbred C57BL myofibroblast Myofibroblasts - metabolism Myofibroblasts - pathology Pulmonary Alveoli - metabolism Pulmonary Alveoli - pathology RNA sequencing Signal Transduction Transforming Growth Factor beta - metabolism Transforming growth factors |
| Title | Impaired myofibroblast proliferation is a central feature of pathologic post-natal alveolar simplification |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39660606 https://www.proquest.com/docview/3146627468 https://pubmed.ncbi.nlm.nih.gov/PMC11634066 https://doaj.org/article/77e000d852a94ceeab312ee4b34dcfcf |
| Volume | 13 |
| WOSCitedRecordID | wos001394453500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M7P dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M2P dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB60VeiLeG-0LqMUBCE2l9nM5LGVFhfsEqrC-jTMVSM1WZpsof_ec5J0SVDwRRbmYeeQzcw5cy7Zk-8j5JAbNo-cSUPDcihQUmdC4b0JlVcKIr5VkYo6sgm-XIrVKi9GVF_YE9bDA_cbd8S5g1NrxTxROQOPrnQaJ84xnTJrvPHofSHrGRVTnQ_mYJhx3r-QxyFkHrlPpXfvc8aQFHsUgjqk_j_98SggTZslR9Hn7CF5MKSN9Li_3Ufkjqsek_s9keTNE_JzAacanJelv27AWjSyxKimpWvk5PGu1zItG6ro8APUuw7Sk9aeIitx7wPpum7asMJHOlRdXjuse2lTYte5Hx7uPSVfz06_fPgYDiwKoYHarw3hclpEqefMJJlTLrPWMKWNTl1i09xEWsfWZwiLY03CIxPlkdWZ4InOYzd36TOyU9WV2yc0yiCiZswJzj0TsYKzb5mxc7y45ioPyLvbjZVmgBhHpotLCaUGakF2WpCdFgJyuBVe98gafxc7QQ1tRRAOu_sCjEQORiL_ZSQBeYP6lQh4UWFHzXe1aRq5-Hwhj_GPRC6gLg3I20HI13DXRg0vKMDaESNrInkwkYQTaSbTr2_NSOIUtrFVrt40MoW4hGRHmQjI896stgtLEScVPgERE4ObrHw6U5U_OkDwGJJqSMyyF_9jr16SvQQSN2zZieMDstNebdwrcs9ct2VzNSN3-Yp3o5iR3ZPTZXEx644ejOdJgSOHcbdYnBfffgPkHzsi |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impaired+myofibroblast+proliferation+is+a+central+feature+of+pathologic+post-natal+alveolar+simplification&rft.jtitle=eLife&rft.au=Khan%2C+Imran+S&rft.au=Molina%2C+Christopher&rft.au=Ren%2C+Xin&rft.au=Auyeung%2C+Vincent+C&rft.date=2024-12-11&rft.pub=eLife+Sciences+Publications%2C+Ltd&rft.eissn=2050-084X&rft.volume=13&rft_id=info:doi/10.7554%2FeLife.94425&rft_id=info%3Apmid%2F39660606&rft.externalDocID=PMC11634066 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |