Impaired myofibroblast proliferation is a central feature of pathologic post-natal alveolar simplification

Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:eLife Ročník 13
Hlavní autoři: Khan, Imran S, Molina, Christopher, Ren, Xin, Auyeung, Vincent C, Cohen, Max, Tsukui, Tatsuya, Atakilit, Amha, Sheppard, Dean
Médium: Journal Article
Jazyk:angličtina
Vydáno: England eLife Science Publications, Ltd 11.12.2024
eLife Sciences Publications, Ltd
eLife Sciences Publications Ltd
Témata:
ISSN:2050-084X, 2050-084X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFβ signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.
AbstractList Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFβ signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.
Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGF[beta]) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGF[beta] signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGF[beta] signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGF[beta] signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.
Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFβ signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFβ signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.
Audience Academic
Author Sheppard, Dean
Khan, Imran S
Ren, Xin
Molina, Christopher
Auyeung, Vincent C
Atakilit, Amha
Cohen, Max
Tsukui, Tatsuya
Author_xml – sequence: 1
  givenname: Imran S
  orcidid: 0000-0003-4570-4143
  surname: Khan
  fullname: Khan, Imran S
– sequence: 2
  givenname: Christopher
  surname: Molina
  fullname: Molina, Christopher
– sequence: 3
  givenname: Xin
  surname: Ren
  fullname: Ren, Xin
– sequence: 4
  givenname: Vincent C
  orcidid: 0000-0001-6273-1595
  surname: Auyeung
  fullname: Auyeung, Vincent C
– sequence: 5
  givenname: Max
  surname: Cohen
  fullname: Cohen, Max
– sequence: 6
  givenname: Tatsuya
  orcidid: 0000-0003-3100-6934
  surname: Tsukui
  fullname: Tsukui, Tatsuya
– sequence: 7
  givenname: Amha
  surname: Atakilit
  fullname: Atakilit, Amha
– sequence: 8
  givenname: Dean
  orcidid: 0000-0002-6277-2036
  surname: Sheppard
  fullname: Sheppard, Dean
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39660606$$D View this record in MEDLINE/PubMed
BookMark eNptkktr3DAURk1JadI0q-6LoZuWMlPJlmV7VULoY2Cg0Ad0J_S4mmiQLVfShObf98YzDZkSa2Fxfe7Rw9_z4mQMIxTFS0qWbdOw97B2FpY9Y1XzpDirSEMWpGO_Th7MT4uLlLYEn5Z1He2fFad1zznBcVZsV8MkXQRTDrfBOhWD8jLlcorBoznK7MJYulTKUsOYo_SlBZl3Ecpgy0nm6-DDxulyCikvRpkRkP4GgpexTG6Y0OL0bHlRPLXSJ7g4vM-Ln58-_rj6slh__by6ulwvdMP6vEC96khtW6YrDhK4MZpJpVUNlal7TZSixvKq6ojRVUs06YlRvGsr1VNooD4vVnuvCXIrpugGGW9FkE7MhRA3QsbstAfRtoDXYrqmkj3TgCvXtAJgqmZGW23R9WHvmnZqAHO4giPp8ZfRXYtNuBGU8poRztHw5mCI4fcOUhaDSxq8lyOEXRI1ZZxXLeMdoq_36Ebi3txoAyr1HS4u8b81bccJRWr5CIXDwOA0psM6rB81vD1qQCbDn7yRu5TE6vu3Y_bVw_PeH_RfYBB4twd0DClFsPcIJeIukWJOpJgTiTT9j9Yuz2HAPTv_aM9fdLTmiw
CitedBy_id crossref_primary_10_1165_rcmb_2024_0452OC
crossref_primary_10_3390_bioengineering12070760
crossref_primary_10_7554_eLife_105095
crossref_primary_10_1038_s41467_025_57163_4
Cites_doi 10.1165/rcmb.2016-0268OC
10.1038/pr.2017.21
10.1242/dev.163014
10.4049/jimmunol.142.5.1536
10.1242/dev.176354
10.1002/sctm.20-0526
10.1172/JCI11963
10.1038/s41467-020-15647-5
10.1016/j.ajpath.2015.11.024
10.1038/nm.3282
10.1016/j.cell.2021.04.048
10.1159/000014219
10.3389/fmed.2015.00091
10.1152/ajplung.00342.2013
10.3390/ijms19082460
10.1152/ajplung.00389.2006
10.1083/jcb.133.4.921
10.1016/j.ajpath.2014.08.010
10.1242/dev.200081
10.1186/s12915-016-0242-9
10.1186/s12890-019-0915-6
10.1152/ajplung.00343.2017
10.1242/dev.199512
10.15252/emmm.201607308
10.1183/09031936.00075713
10.1186/s40348-017-0076-8
10.1172/JCI132189
10.1038/nbt.4096
10.7554/eLife.36865
10.1016/j.celrep.2022.110608
10.1083/jcb.200109100
10.1038/nature01413
10.1203/00006450-199912000-00007
10.1038/s41572-019-0127-7
10.1016/j.cels.2019.03.003
10.1186/s12931-014-0162-6
10.1242/dev.117200
10.1152/ajplung.00298.2004
10.1183/09031936.00165407
10.7554/eLife.68598
10.1080/080352500300002606
10.1016/s0022-3476(96)70355-4
10.1074/jbc.M806786200
10.1074/jbc.271.39.24144
10.1002/dvdy.21633
10.1016/S0092-8674(00)80545-0
10.1002/dvdy.271
10.1152/ajplung.00050.2006
10.1371/journal.pone.0031336
10.1164/rccm.200902-0215OC
10.1007/s00134-006-0138-1
10.1084/jem.20190103
10.1152/ajplung.00329.2006
10.1242/dev.181032
10.1007/s00441-016-2545-0
10.1152/ajplung.00144.2014
10.1038/s41467-021-21865-2
10.1152/ajplung.00299.2020
10.1093/bioinformatics/btt703
10.1002/stem.1911
10.1016/j.cell.2004.07.023
10.1172/jci.insight.152404
10.1002/gene.10046
10.1038/s41592-019-0667-5
10.1016/j.ydbio.2015.11.017
10.1016/S0002-9440(10)62986-0
10.1165/rcmb.2006-0116OC
10.1073/pnas.90.2.770
10.1165/rcmb.2008-0480OC
10.1152/ajplung.00109.2013
10.1152/ajplung.00062.2017
10.1056/NEJM196702162760701
10.1152/ajplung.00252.2022
10.1177/1947601912437035
10.1152/ajplung.00039.2015
10.1038/s41374-019-0256-3
10.1165/rcmb.2022-0269OC
10.1186/1465-9921-10-119
10.1152/ajplung.00023.2009
10.1177/41.10.8245410
10.1016/j.cell.2023.07.036
10.1152/ajplung.00106.2021
10.1126/scitranslmed.aaa5094
ContentType Journal Article
Copyright 2024, Khan et al.
COPYRIGHT 2024 eLife Science Publications, Ltd.
2024, Khan et al 2024 Khan et al
Copyright_xml – notice: 2024, Khan et al.
– notice: COPYRIGHT 2024 eLife Science Publications, Ltd.
– notice: 2024, Khan et al 2024 Khan et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.7554/eLife.94425
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_77e000d852a94ceeab312ee4b34dcfcf
PMC11634066
A819578601
39660606
10_7554_eLife_94425
Genre Journal Article
GeographicLocations Canada
California
United States
Massachusetts
GeographicLocations_xml – name: Canada
– name: California
– name: United States
– name: Massachusetts
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL142568
– fundername: NIH HHS
  grantid: S10 OD028511
– fundername: NHLBI NIH HHS
  grantid: R00 HL155786
– fundername: NHLBI NIH HHS
  grantid: HL145037
– fundername: NCI NIH HHS
  grantid: P30 CA082103
– fundername: NHLBI NIH HHS
  grantid: T32 HL007185
– fundername: University of California, San Francisco
  grantid: Nina Ireland Program For Lung Health
– fundername: NHLBI NIH HHS
  grantid: R01 HL145037
– fundername: National Institute of Child Health and Human Development
  grantid: HD000850
– fundername: National Institute of Child Health and Human Development
  grantid: Pediatric Scientist Development Program
– fundername: ;
– fundername: ;
  grantid: HD000850
– fundername: ;
  grantid: Pediatric Scientist Development Program
– fundername: ;
  grantid: Nina Ireland Program For Lung Health
– fundername: ;
  grantid: HL145037
– fundername: ;
  grantid: HL142568
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c549t-feab803f74c26eae6ddc4abcb3e2d39c0bb1df62280dc270c090db6872b91e5e3
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001394453500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-084X
IngestDate Fri Oct 03 12:42:23 EDT 2025
Tue Nov 04 02:05:01 EST 2025
Fri Sep 05 08:22:05 EDT 2025
Tue Nov 11 10:49:06 EST 2025
Tue Nov 04 18:27:04 EST 2025
Thu Nov 13 15:57:29 EST 2025
Wed Jul 23 01:47:07 EDT 2025
Sat Nov 29 06:59:29 EST 2025
Tue Nov 18 21:35:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords mouse
hyperoxia
bronchopulmonary dysplasia
myofibroblast
developmental biology
lung development
Language English
License 2024, Khan et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-feab803f74c26eae6ddc4abcb3e2d39c0bb1df62280dc270c090db6872b91e5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6273-1595
0000-0003-4570-4143
0000-0003-3100-6934
0000-0002-6277-2036
OpenAccessLink https://doaj.org/article/77e000d852a94ceeab312ee4b34dcfcf
PMID 39660606
PQID 3146627468
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_77e000d852a94ceeab312ee4b34dcfcf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11634066
proquest_miscellaneous_3146627468
gale_infotracmisc_A819578601
gale_infotracacademiconefile_A819578601
gale_incontextgauss_ISR_A819578601
pubmed_primary_39660606
crossref_primary_10_7554_eLife_94425
crossref_citationtrail_10_7554_eLife_94425
PublicationCentury 2000
PublicationDate 2024-12-11
PublicationDateYYYYMMDD 2024-12-11
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-11
  day: 11
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2024
Publisher eLife Science Publications, Ltd
eLife Sciences Publications, Ltd
eLife Sciences Publications Ltd
Publisher_xml – name: eLife Science Publications, Ltd
– name: eLife Sciences Publications, Ltd
– name: eLife Sciences Publications Ltd
References Hogmalm (bib26) 2010; 43
Kugler (bib34) 2017; 57
Butler (bib11) 2018; 36
Cook (bib18) 2011; 2
Li (bib38) 2008; 283
Munger (bib54) 1999; 96
Jónsson (bib30) 2000; 89
Calthorpe (bib12) 2023; 324
Hagan (bib23) 2020; 147
Vila Ellis (bib77) 2021; 250
Yee (bib81) 2009; 297
Chytil (bib16) 2002; 32
Mižíková (bib50) 2015; 308
Vento (bib76) 2006; 32
Dasch (bib20) 1989; 142
Narvaez Del Pilar (bib56) 2022; 149
Sureshbabu (bib71) 2015; 16
Bozyk (bib5) 2012; 7
Colarossi (bib17) 2005; 167
Zhang (bib84) 2022; 11
Browaeys (bib8) 2020; 17
Ahn (bib2) 2004; 118
Yie (bib82) 2023; 68
Li (bib43) 2020; 130
Liu (bib44) 2014; 184
Yokosaki (bib83) 1996; 271
Morris (bib51) 2003; 422
Mund (bib53) 2008; 237
Breuss (bib7) 1993; 41
Chen (bib14) 2008; 32
Crowley (bib19) 2019; 19
Negretti (bib57) 2021; 148
Bry (bib10) 2007; 36
Saito (bib68) 2018; 19
Benjamin (bib4) 2007; 292
Li (bib40) 2016; 14
Mu (bib52) 2002; 157
Reed (bib66) 2015; 7
Rath (bib65) 2017; 81
Branchfield (bib6) 2016; 409
Huang (bib27) 1996; 133
Li (bib39) 2015; 33
McGinnis (bib46) 2019; 8
McGowan (bib47) 2014; 307
Hurskainen (bib28) 2021; 12
Thébaud (bib72) 2019; 5
Henderson (bib25) 2013; 19
Lecart (bib37) 2000; 77
Gao (bib22) 2022; 39
Alejandre-Alcázar (bib3) 2007; 292
Plosa (bib63) 2014; 141
Riccetti (bib67) 2022; 7
Witsch (bib79) 2014; 306
Kulkarni (bib35) 1993; 90
Northway (bib59) 1967; 276
Massagué (bib45) 2023; 186
Nakanishi (bib55) 2007; 293
Noe (bib58) 2019; 99
Chen (bib13) 2005; 288
Schittny (bib69) 2017; 367
Ahlfeld (bib1) 2016; 186
Kumarasamy (bib36) 2009; 180
Surate Solaligue (bib70) 2017; 313
Krämer (bib33) 2014; 30
Oak (bib61) 2017; 9
Chung (bib15) 2018; 145
Popova (bib64) 2014; 307
Hao (bib24) 2021; 184
Miao (bib48) 2021; 320
Jobe (bib29) 1999; 46
Pittet (bib62) 2001; 107
Kimani (bib31) 2009; 10
Ushakumary (bib75) 2021; 10
Xia (bib80) 2023; 324
Browaeys (bib9) 2024
Mižíková (bib49) 2015; 2
Oak (bib60) 2017; 4
Li (bib41) 2018; 7
Frangogiannis (bib21) 2020; 217
Li (bib42) 2019; 146
Tsujino (bib73) 2017; 313
Tsukui (bib74) 2020; 11
Witsch (bib78) 2014; 44
Kotecha (bib32) 1996; 128
38187712 - bioRxiv. 2024 Sep 16:2023.12.21.572766. doi: 10.1101/2023.12.21.572766.
References_xml – volume: 57
  start-page: 280
  year: 2017
  ident: bib34
  article-title: Sonic hedgehog signaling regulates myofibroblast function during alveolar septum formation in murine postnatal lung
  publication-title: American Journal of Respiratory Cell and Molecular Biology
  doi: 10.1165/rcmb.2016-0268OC
– volume: 81
  start-page: 795
  year: 2017
  ident: bib65
  article-title: Caffeine administration modulates TGF-β signaling but does not attenuate blunted alveolarization in a hyperoxia-based mouse model of bronchopulmonary dysplasia
  publication-title: Pediatric Research
  doi: 10.1038/pr.2017.21
– volume: 145
  year: 2018
  ident: bib15
  article-title: Niche-mediated BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation
  publication-title: Development
  doi: 10.1242/dev.163014
– volume: 142
  start-page: 1536
  year: 1989
  ident: bib20
  article-title: Monoclonal antibodies recognizing transforming growth factor-beta. Bioactivity neutralization and transforming growth factor beta 2 affinity purification
  publication-title: Journal of Immunology
  doi: 10.4049/jimmunol.142.5.1536
– volume: 146
  year: 2019
  ident: bib42
  article-title: Secondary crest myofibroblast PDGFRα controls the elastogenesis pathway via a secondary tier of signaling networks during alveologenesis
  publication-title: Development
  doi: 10.1242/dev.176354
– volume: 10
  start-page: 1021
  year: 2021
  ident: bib75
  article-title: Resident interstitial lung fibroblasts and their role in alveolar stem cell niche development, homeostasis, injury, and regeneration
  publication-title: Stem Cells Translational Medicine
  doi: 10.1002/sctm.20-0526
– volume: 107
  start-page: 1537
  year: 2001
  ident: bib62
  article-title: TGF-beta is a critical mediator of acute lung injury
  publication-title: The Journal of Clinical Investigation
  doi: 10.1172/JCI11963
– volume: 11
  year: 2020
  ident: bib74
  article-title: Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-15647-5
– volume: 186
  start-page: 777
  year: 2016
  ident: bib1
  article-title: Initial Suppression of Transforming Growth Factor-β Signaling and Loss of TGFBI Causes Early Alveolar Structural Defects Resulting in Bronchopulmonary Dysplasia
  publication-title: The American Journal of Pathology
  doi: 10.1016/j.ajpath.2015.11.024
– volume: 19
  start-page: 1617
  year: 2013
  ident: bib25
  article-title: Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs
  publication-title: Nature Medicine
  doi: 10.1038/nm.3282
– volume: 184
  start-page: 3573
  year: 2021
  ident: bib24
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 77
  start-page: 217
  year: 2000
  ident: bib37
  article-title: Bioactive transforming growth factor-beta in the lungs of extremely low birthweight neonates predicts the need for home oxygen supplementation
  publication-title: Biology of the Neonate
  doi: 10.1159/000014219
– volume: 2
  year: 2015
  ident: bib49
  article-title: The extracellular matrix in bronchopulmonary dysplasia: target and source
  publication-title: Frontiers in Medicine
  doi: 10.3389/fmed.2015.00091
– volume: 307
  start-page: L231
  year: 2014
  ident: bib64
  article-title: Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia
  publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00342.2013
– volume: 19
  year: 2018
  ident: bib68
  article-title: TGF-β signaling in lung health and disease
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms19082460
– volume: 293
  start-page: L151
  year: 2007
  ident: bib55
  article-title: TGF-beta-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung
  publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00389.2006
– volume: 133
  start-page: 921
  year: 1996
  ident: bib27
  article-title: Inactivation of the integrin beta 6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.133.4.921
– volume: 184
  start-page: 3344
  year: 2014
  ident: bib44
  article-title: Intranasal versus intraperitoneal delivery of human umbilical cord tissue-derived cultured mesenchymal stromal cells in a murine model of neonatal lung injury
  publication-title: The American Journal of Pathology
  doi: 10.1016/j.ajpath.2014.08.010
– volume: 149
  year: 2022
  ident: bib56
  article-title: Three-axis classification of mouse lung mesenchymal cells reveals two populations of myofibroblasts
  publication-title: Development
  doi: 10.1242/dev.200081
– volume: 14
  year: 2016
  ident: bib40
  article-title: Mesodermal ALK5 controls lung myofibroblast versus lipofibroblast cell fate
  publication-title: BMC Biology
  doi: 10.1186/s12915-016-0242-9
– volume: 19
  year: 2019
  ident: bib19
  article-title: Quantitative lung morphology: semi-automated measurement of mean linear intercept
  publication-title: BMC Pulmonary Medicine
  doi: 10.1186/s12890-019-0915-6
– volume: 313
  start-page: L1101
  year: 2017
  ident: bib70
  article-title: Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia
  publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00343.2017
– volume: 148
  year: 2021
  ident: bib57
  article-title: A single-cell atlas of mouse lung development
  publication-title: Development
  doi: 10.1242/dev.199512
– volume: 9
  start-page: 1504
  year: 2017
  ident: bib61
  article-title: Attenuated PDGF signaling drives alveolar and microvascular defects in neonatal chronic lung disease
  publication-title: EMBO Molecular Medicine
  doi: 10.15252/emmm.201607308
– volume: 44
  start-page: 109
  year: 2014
  ident: bib78
  article-title: Transglutaminase 2: a new player in bronchopulmonary dysplasia?
  publication-title: The European Respiratory Journal
  doi: 10.1183/09031936.00075713
– volume: 4
  year: 2017
  ident: bib60
  article-title: The BPD trio? Interaction of dysregulated PDGF, VEGF, and TGF signaling in neonatal chronic lung disease
  publication-title: Molecular and Cellular Pediatrics
  doi: 10.1186/s40348-017-0076-8
– volume: 130
  start-page: 2859
  year: 2020
  ident: bib43
  article-title: Myofibroblast contraction is essential for generating and regenerating the gas-exchange surface
  publication-title: The Journal of Clinical Investigation
  doi: 10.1172/JCI132189
– volume: 36
  start-page: 411
  year: 2018
  ident: bib11
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.4096
– volume: 7
  year: 2018
  ident: bib41
  article-title: Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response
  publication-title: eLife
  doi: 10.7554/eLife.36865
– volume: 39
  year: 2022
  ident: bib22
  article-title: Hedgehog-responsive PDGFRa(+) fibroblasts maintain a unique pool of alveolar epithelial progenitor cells during alveologenesis
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2022.110608
– volume: 157
  start-page: 493
  year: 2002
  ident: bib52
  article-title: The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.200109100
– volume: 422
  start-page: 169
  year: 2003
  ident: bib51
  article-title: Loss of integrin alpha(v)beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema
  publication-title: Nature
  doi: 10.1038/nature01413
– volume: 46
  start-page: 641
  year: 1999
  ident: bib29
  article-title: The new BPD: an arrest of lung development
  publication-title: Pediatric Research
  doi: 10.1203/00006450-199912000-00007
– volume: 5
  year: 2019
  ident: bib72
  article-title: Bronchopulmonary dysplasia
  publication-title: Nature Reviews. Disease Primers
  doi: 10.1038/s41572-019-0127-7
– volume: 8
  start-page: 329
  year: 2019
  ident: bib46
  article-title: Doubletfinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2019.03.003
– volume: 16
  year: 2015
  ident: bib71
  article-title: Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung
  publication-title: Respiratory Research
  doi: 10.1186/s12931-014-0162-6
– volume-title: GitHub
  year: 2024
  ident: bib9
  article-title: Nichenetr
– volume: 141
  start-page: 4751
  year: 2014
  ident: bib63
  article-title: Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization
  publication-title: Development
  doi: 10.1242/dev.117200
– volume: 288
  start-page: L683
  year: 2005
  ident: bib13
  article-title: Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema
  publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00298.2004
– volume: 32
  start-page: 285
  year: 2008
  ident: bib14
  article-title: TGF-beta receptor II in epithelia versus mesenchyme plays distinct roles in the developing lung
  publication-title: The European Respiratory Journal
  doi: 10.1183/09031936.00165407
– volume: 11
  year: 2022
  ident: bib84
  article-title: Acquisition of cellular properties during alveolar formation requires differential activity and distribution of mitochondria
  publication-title: eLife
  doi: 10.7554/eLife.68598
– volume: 89
  start-page: 1375
  year: 2000
  ident: bib30
  article-title: Downregulatory cytokines in tracheobronchial aspirate fluid from infants with chronic lung disease of prematurity
  publication-title: Acta Paediatrica
  doi: 10.1080/080352500300002606
– volume: 128
  start-page: 464
  year: 1996
  ident: bib32
  article-title: Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity
  publication-title: The Journal of Pediatrics
  doi: 10.1016/s0022-3476(96)70355-4
– volume: 283
  start-page: 36257
  year: 2008
  ident: bib38
  article-title: Mesodermal deletion of transforming growth factor-beta receptor II disrupts lung epithelial morphogenesis: cross-talk between TGF-beta and Sonic hedgehog pathways
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M806786200
– volume: 271
  start-page: 24144
  year: 1996
  ident: bib83
  article-title: Differential effects of the integrins alpha9beta1, alphavbeta3, and alphavbeta6 on cell proliferative responses to tenascin. Roles of the beta subunit extracellular and cytoplasmic domains
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.271.39.24144
– volume: 237
  start-page: 2108
  year: 2008
  ident: bib53
  article-title: Developmental alveolarization of the mouse lung
  publication-title: Developmental Dynamics
  doi: 10.1002/dvdy.21633
– volume: 96
  start-page: 319
  year: 1999
  ident: bib54
  article-title: A mechanism for regulating pulmonary inflammation and fibrosis: the integrin αvβ6 binds and activates latent TGF β1
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80545-0
– volume: 250
  start-page: 482
  year: 2021
  ident: bib77
  article-title: A cell-centric view of lung alveologenesis
  publication-title: Developmental Dynamics
  doi: 10.1002/dvdy.271
– volume: 292
  start-page: L537
  year: 2007
  ident: bib3
  article-title: Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia
  publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00050.2006
– volume: 7
  year: 2012
  ident: bib5
  article-title: Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0031336
– volume: 180
  start-page: 1239
  year: 2009
  ident: bib36
  article-title: Lysyl oxidase activity is dysregulated during impaired alveolarization of mouse and human lungs
  publication-title: American Journal of Respiratory and Critical Care Medicine
  doi: 10.1164/rccm.200902-0215OC
– volume: 32
  start-page: 723
  year: 2006
  ident: bib76
  article-title: Serum levels of seven cytokines in premature ventilated newborns: correlations with old and new forms of bronchopulmonary dysplasia
  publication-title: Intensive Care Medicine
  doi: 10.1007/s00134-006-0138-1
– volume: 217
  year: 2020
  ident: bib21
  article-title: Transforming growth factor-β in tissue fibrosis
  publication-title: The Journal of Experimental Medicine
  doi: 10.1084/jem.20190103
– volume: 292
  start-page: L550
  year: 2007
  ident: bib4
  article-title: FGF-10 is decreased in bronchopulmonary dysplasia and suppressed by Toll-like receptor activation
  publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00329.2006
– volume: 147
  year: 2020
  ident: bib23
  article-title: Identification of a FGF18-expressing alveolar myofibroblast that is developmentally cleared during alveologenesis
  publication-title: Development
  doi: 10.1242/dev.181032
– volume: 367
  start-page: 427
  year: 2017
  ident: bib69
  article-title: Development of the lung
  publication-title: Cell and Tissue Research
  doi: 10.1007/s00441-016-2545-0
– volume: 307
  start-page: L618
  year: 2014
  ident: bib47
  article-title: Regulation of fibroblast lipid storage and myofibroblast phenotypes during alveolar septation in mice
  publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00144.2014
– volume: 12
  year: 2021
  ident: bib28
  article-title: Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-21865-2
– volume: 320
  start-page: L1158
  year: 2021
  ident: bib48
  article-title: Abrogation of mesenchyme-specific TGF-β signaling results in lung malformation with prenatal pulmonary cysts in mice
  publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00299.2020
– volume: 30
  start-page: 523
  year: 2014
  ident: bib33
  article-title: Causal analysis approaches in ingenuity pathway analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt703
– volume: 33
  start-page: 999
  year: 2015
  ident: bib39
  article-title: Progenitors of secondary crest myofibroblasts are developmentally committed in early lung mesoderm
  publication-title: Stem Cells
  doi: 10.1002/stem.1911
– volume: 118
  start-page: 505
  year: 2004
  ident: bib2
  article-title: Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning
  publication-title: Cell
  doi: 10.1016/j.cell.2004.07.023
– volume: 7
  year: 2022
  ident: bib67
  article-title: Maladaptive functional changes in alveolar fibroblasts due to perinatal hyperoxia impair epithelial differentiation
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.152404
– volume: 32
  start-page: 73
  year: 2002
  ident: bib16
  article-title: Conditional inactivation of the TGF-beta type II receptor using Cre:Lox
  publication-title: Genesis
  doi: 10.1002/gene.10046
– volume: 17
  start-page: 159
  year: 2020
  ident: bib8
  article-title: NicheNet: modeling intercellular communication by linking ligands to target genes
  publication-title: Nature Methods
  doi: 10.1038/s41592-019-0667-5
– volume: 409
  start-page: 429
  year: 2016
  ident: bib6
  article-title: A three-dimensional study of alveologenesis in mouse lung
  publication-title: Developmental Biology
  doi: 10.1016/j.ydbio.2015.11.017
– volume: 167
  start-page: 419
  year: 2005
  ident: bib17
  article-title: Lung alveolar septation defects in Ltbp-3-null mice
  publication-title: The American Journal of Pathology
  doi: 10.1016/S0002-9440(10)62986-0
– volume: 36
  start-page: 32
  year: 2007
  ident: bib10
  article-title: IL-1beta disrupts postnatal lung morphogenesis in the mouse
  publication-title: American Journal of Respiratory Cell and Molecular Biology
  doi: 10.1165/rcmb.2006-0116OC
– volume: 90
  start-page: 770
  year: 1993
  ident: bib35
  article-title: Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death
  publication-title: PNAS
  doi: 10.1073/pnas.90.2.770
– volume: 43
  start-page: 88
  year: 2010
  ident: bib26
  article-title: beta6 Integrin subunit deficiency alleviates lung injury in a mouse model of bronchopulmonary dysplasia
  publication-title: American Journal of Respiratory Cell and Molecular Biology
  doi: 10.1165/rcmb.2008-0480OC
– volume: 306
  start-page: L246
  year: 2014
  ident: bib79
  article-title: Deregulation of the lysyl hydroxylase matrix cross-linking system in experimental and clinical bronchopulmonary dysplasia
  publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00109.2013
– volume: 313
  start-page: L878
  year: 2017
  ident: bib73
  article-title: Fra-2 negatively regulates postnatal alveolar septation by modulating myofibroblast function
  publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00062.2017
– volume: 276
  start-page: 357
  year: 1967
  ident: bib59
  article-title: Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia
  publication-title: The New England Journal of Medicine
  doi: 10.1056/NEJM196702162760701
– volume: 324
  start-page: L123
  year: 2023
  ident: bib80
  article-title: Neonatal hyperoxia induces activated pulmonary cellular states and sex-dependent transcriptomic changes in a model of experimental bronchopulmonary dysplasia
  publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00252.2022
– volume: 2
  start-page: 932
  year: 2011
  ident: bib18
  article-title: The ect2 rho Guanine nucleotide exchange factor is essential for early mouse development and normal cell cytokinesis and migration
  publication-title: Genes & Cancer
  doi: 10.1177/1947601912437035
– volume: 308
  start-page: L1145
  year: 2015
  ident: bib50
  article-title: Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia
  publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00039.2015
– volume: 99
  start-page: 1363
  year: 2019
  ident: bib58
  article-title: Mesenchyme-specific deletion of Tgf-β1 in the embryonic lung disrupts branching morphogenesis and induces lung hypoplasia
  publication-title: Laboratory Investigation; a Journal of Technical Methods and Pathology
  doi: 10.1038/s41374-019-0256-3
– volume: 68
  start-page: 523
  year: 2023
  ident: bib82
  article-title: Hedgehog and platelet-derived growth factor signaling intersect during postnatal lung development
  publication-title: American Journal of Respiratory Cell and Molecular Biology
  doi: 10.1165/rcmb.2022-0269OC
– volume: 10
  year: 2009
  ident: bib31
  article-title: PDGF-Ralpha gene expression predicts proliferation, but PDGF-A suppresses transdifferentiation of neonatal mouse lung myofibroblasts
  publication-title: Respiratory Research
  doi: 10.1186/1465-9921-10-119
– volume: 297
  start-page: L641
  year: 2009
  ident: bib81
  article-title: Neonatal oxygen adversely affects lung function in adult mice without altering surfactant composition or activity
  publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00023.2009
– volume: 41
  start-page: 1521
  year: 1993
  ident: bib7
  article-title: Restricted distribution of integrin beta 6 mRNA in primate epithelial tissues
  publication-title: The Journal of Histochemistry and Cytochemistry
  doi: 10.1177/41.10.8245410
– volume: 186
  start-page: 4007
  year: 2023
  ident: bib45
  article-title: TGF-β signaling in health and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2023.07.036
– volume: 324
  start-page: L285
  year: 2023
  ident: bib12
  article-title: Complex roles of TGF-β signaling pathways in lung development and bronchopulmonary dysplasia
  publication-title: American Journal of Physiology. Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00106.2021
– volume: 7
  year: 2015
  ident: bib66
  article-title: The αvβ1 integrin plays a critical in vivo role in tissue fibrosis
  publication-title: Science Translational Medicine
  doi: 10.1126/scitranslmed.aaa5094
– reference: 38187712 - bioRxiv. 2024 Sep 16:2023.12.21.572766. doi: 10.1101/2023.12.21.572766.
SSID ssj0000748819
Score 2.4240677
Snippet Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Analysis
Animals
Animals, Newborn
bronchopulmonary dysplasia
Bronchopulmonary Dysplasia - metabolism
Bronchopulmonary Dysplasia - pathology
Cell Proliferation
Developmental Biology
Disease Models, Animal
Dysplasia
Female
Gene expression
Humans
hyperoxia
Hyperoxia - metabolism
Infants (Premature)
lung development
Mice
Mice, Inbred C57BL
myofibroblast
Myofibroblasts - metabolism
Myofibroblasts - pathology
Pulmonary Alveoli - metabolism
Pulmonary Alveoli - pathology
RNA sequencing
Signal Transduction
Transforming Growth Factor beta - metabolism
Transforming growth factors
Title Impaired myofibroblast proliferation is a central feature of pathologic post-natal alveolar simplification
URI https://www.ncbi.nlm.nih.gov/pubmed/39660606
https://www.proquest.com/docview/3146627468
https://pubmed.ncbi.nlm.nih.gov/PMC11634066
https://doaj.org/article/77e000d852a94ceeab312ee4b34dcfcf
Volume 13
WOSCitedRecordID wos001394453500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M7P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB60VeiLeG-0LqMUBCE2l9nM5LGVFhfsEqrC-jTMVSM1WZpsof_ec5J0SVDwRRbmYeeQzcw5cy7Zk-8j5JAbNo-cSUPDcihQUmdC4b0JlVcKIr5VkYo6sgm-XIrVKi9GVF_YE9bDA_cbd8S5g1NrxTxROQOPrnQaJ84xnTJrvPHofSHrGRVTnQ_mYJhx3r-QxyFkHrlPpXfvc8aQFHsUgjqk_j_98SggTZslR9Hn7CF5MKSN9Li_3Ufkjqsek_s9keTNE_JzAacanJelv27AWjSyxKimpWvk5PGu1zItG6ro8APUuw7Sk9aeIitx7wPpum7asMJHOlRdXjuse2lTYte5Hx7uPSVfz06_fPgYDiwKoYHarw3hclpEqefMJJlTLrPWMKWNTl1i09xEWsfWZwiLY03CIxPlkdWZ4InOYzd36TOyU9WV2yc0yiCiZswJzj0TsYKzb5mxc7y45ioPyLvbjZVmgBhHpotLCaUGakF2WpCdFgJyuBVe98gafxc7QQ1tRRAOu_sCjEQORiL_ZSQBeYP6lQh4UWFHzXe1aRq5-Hwhj_GPRC6gLg3I20HI13DXRg0vKMDaESNrInkwkYQTaSbTr2_NSOIUtrFVrt40MoW4hGRHmQjI896stgtLEScVPgERE4ObrHw6U5U_OkDwGJJqSMyyF_9jr16SvQQSN2zZieMDstNebdwrcs9ct2VzNSN3-Yp3o5iR3ZPTZXEx644ejOdJgSOHcbdYnBfffgPkHzsi
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impaired+myofibroblast+proliferation+is+a+central+feature+of+pathologic+post-natal+alveolar+simplification&rft.jtitle=eLife&rft.au=Khan%2C+Imran+S&rft.au=Molina%2C+Christopher&rft.au=Ren%2C+Xin&rft.au=Auyeung%2C+Vincent+C&rft.date=2024-12-11&rft.pub=eLife+Sciences+Publications%2C+Ltd&rft.eissn=2050-084X&rft.volume=13&rft_id=info:doi/10.7554%2FeLife.94425&rft_id=info%3Apmid%2F39660606&rft.externalDocID=PMC11634066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon