Modulation of Suppressive Activity and Proliferation of Human Regulatory T Cells by Splice-Switching Oligonucleotides Targeting FoxP3 Pre-mRNA
The maturation, development, and function of regulatory T cells (Tregs) are under the control of the crucial transcription factor Forkhead Box Protein 3 (FoxP3). Through alternative splicing, the human FoxP3 gene produces four different splice variants: a full-length variant (FL) and truncated varia...
Uloženo v:
| Vydáno v: | Cells (Basel, Switzerland) Ročník 13; číslo 1; s. 77 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
29.12.2023
MDPI |
| Témata: | |
| ISSN: | 2073-4409, 2073-4409 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The maturation, development, and function of regulatory T cells (Tregs) are under the control of the crucial transcription factor Forkhead Box Protein 3 (FoxP3). Through alternative splicing, the human FoxP3 gene produces four different splice variants: a full-length variant (FL) and truncated variants with deletions of each of exons 2 (∆2 variant) or 7 (∆7 variant) or a deletion of both exons (∆2∆7 variant). Their involvement in the biology of Tregs as well as their association with autoimmune diseases remains to be clarified. The aim of this work was to induce a single FoxP3 splice variant in human Tregs by splice switching oligonucleotides and to monitor their phenotype and proliferative and suppressive activity. We demonstrated that Tregs from peripheral blood from patients with multiple sclerosis preferentially expressed truncated splice variants, while the FL variant was the major variant in healthy donors. Tregs with induced expression of truncated FoxP3 splice variants demonstrated lower suppressive activity than those expressing FL variants. Reduced suppression was associated with the decreased expression of Treg-associated suppressive surface molecules and the production of cytokines. The deletion of exons 2 and/or 7 also reduced the cell proliferation rate. The results of this study show an association between FoxP3 splice variants and Treg function and proliferation. The modulation of Treg suppressive activity by the induction of the FoxP3 FL variant can become a promising strategy for regenerative immunotherapy. |
|---|---|
| AbstractList | The maturation, development, and function of regulatory T cells (Tregs) are under the control of the crucial transcription factor Forkhead Box Protein 3 (FoxP3). Through alternative splicing, the human FoxP3 gene produces four different splice variants: a full-length variant (FL) and truncated variants with deletions of each of exons 2 (∆2 variant) or 7 (∆7 variant) or a deletion of both exons (∆2∆7 variant). Their involvement in the biology of Tregs as well as their association with autoimmune diseases remains to be clarified. The aim of this work was to induce a single FoxP3 splice variant in human Tregs by splice switching oligonucleotides and to monitor their phenotype and proliferative and suppressive activity. We demonstrated that Tregs from peripheral blood from patients with multiple sclerosis preferentially expressed truncated splice variants, while the FL variant was the major variant in healthy donors. Tregs with induced expression of truncated FoxP3 splice variants demonstrated lower suppressive activity than those expressing FL variants. Reduced suppression was associated with the decreased expression of Treg-associated suppressive surface molecules and the production of cytokines. The deletion of exons 2 and/or 7 also reduced the cell proliferation rate. The results of this study show an association between FoxP3 splice variants and Treg function and proliferation. The modulation of Treg suppressive activity by the induction of the FoxP3 FL variant can become a promising strategy for regenerative immunotherapy.The maturation, development, and function of regulatory T cells (Tregs) are under the control of the crucial transcription factor Forkhead Box Protein 3 (FoxP3). Through alternative splicing, the human FoxP3 gene produces four different splice variants: a full-length variant (FL) and truncated variants with deletions of each of exons 2 (∆2 variant) or 7 (∆7 variant) or a deletion of both exons (∆2∆7 variant). Their involvement in the biology of Tregs as well as their association with autoimmune diseases remains to be clarified. The aim of this work was to induce a single FoxP3 splice variant in human Tregs by splice switching oligonucleotides and to monitor their phenotype and proliferative and suppressive activity. We demonstrated that Tregs from peripheral blood from patients with multiple sclerosis preferentially expressed truncated splice variants, while the FL variant was the major variant in healthy donors. Tregs with induced expression of truncated FoxP3 splice variants demonstrated lower suppressive activity than those expressing FL variants. Reduced suppression was associated with the decreased expression of Treg-associated suppressive surface molecules and the production of cytokines. The deletion of exons 2 and/or 7 also reduced the cell proliferation rate. The results of this study show an association between FoxP3 splice variants and Treg function and proliferation. The modulation of Treg suppressive activity by the induction of the FoxP3 FL variant can become a promising strategy for regenerative immunotherapy. The maturation, development, and function of regulatory T cells (Tregs) are under the control of the crucial transcription factor Forkhead Box Protein 3 (FoxP3). Through alternative splicing, the human FoxP3 gene produces four different splice variants: a full-length variant (FL) and truncated variants with deletions of each of exons 2 (∆2 variant) or 7 (∆7 variant) or a deletion of both exons (∆2∆7 variant). Their involvement in the biology of Tregs as well as their association with autoimmune diseases remains to be clarified. The aim of this work was to induce a single FoxP3 splice variant in human Tregs by splice switching oligonucleotides and to monitor their phenotype and proliferative and suppressive activity. We demonstrated that Tregs from peripheral blood from patients with multiple sclerosis preferentially expressed truncated splice variants, while the FL variant was the major variant in healthy donors. Tregs with induced expression of truncated FoxP3 splice variants demonstrated lower suppressive activity than those expressing FL variants. Reduced suppression was associated with the decreased expression of Treg-associated suppressive surface molecules and the production of cytokines. The deletion of exons 2 and/or 7 also reduced the cell proliferation rate. The results of this study show an association between FoxP3 splice variants and Treg function and proliferation. The modulation of Treg suppressive activity by the induction of the FoxP3 FL variant can become a promising strategy for regenerative immunotherapy. |
| Audience | Academic |
| Author | Zhdanov, Dmitry D. Gladilina, Yulia A. Blinova, Varvara G. Vtorushina, Valentina V. Shishparenok, Anastasia N. Abramova, Anna A. Eliseeva, Daria D. |
| AuthorAffiliation | 2 Research Center of Neurology, Volokolamskoe Shosse, 80, 125367 Moscow, Russia; ddeliseeva@gmail.com 4 Department of Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia 1 Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; varya.blinova@list.ru (V.G.B.); leonova_y@mail.ru (Y.A.G.); abramova.neurology@gmail.com (A.A.A.); a.shishparyonok@yandex.ru (A.N.S.) 3 National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of the Russian Federation, Laboratory of Clinical Immunology, Academician Oparin st. 4, 117997 Moscow, Russia; vtorushina@inbox.ru |
| AuthorAffiliation_xml | – name: 2 Research Center of Neurology, Volokolamskoe Shosse, 80, 125367 Moscow, Russia; ddeliseeva@gmail.com – name: 4 Department of Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia – name: 1 Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; varya.blinova@list.ru (V.G.B.); leonova_y@mail.ru (Y.A.G.); abramova.neurology@gmail.com (A.A.A.); a.shishparyonok@yandex.ru (A.N.S.) – name: 3 National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of the Russian Federation, Laboratory of Clinical Immunology, Academician Oparin st. 4, 117997 Moscow, Russia; vtorushina@inbox.ru |
| Author_xml | – sequence: 1 givenname: Varvara G. orcidid: 0000-0002-3290-9839 surname: Blinova fullname: Blinova, Varvara G. – sequence: 2 givenname: Yulia A. surname: Gladilina fullname: Gladilina, Yulia A. – sequence: 3 givenname: Anna A. orcidid: 0000-0002-7960-1006 surname: Abramova fullname: Abramova, Anna A. – sequence: 4 givenname: Daria D. surname: Eliseeva fullname: Eliseeva, Daria D. – sequence: 5 givenname: Valentina V. surname: Vtorushina fullname: Vtorushina, Valentina V. – sequence: 6 givenname: Anastasia N. surname: Shishparenok fullname: Shishparenok, Anastasia N. – sequence: 7 givenname: Dmitry D. orcidid: 0000-0003-4753-7588 surname: Zhdanov fullname: Zhdanov, Dmitry D. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38201281$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk9v0zAYxiM0xMbYkSuyxIVLhv-ljk-oqhibNNi0lrPlOE7mKrGD7RT6JfjMOOs21mnxIZb9ex6_j_2-zQ6sszrL3iN4SgiHn5XuuoAIRBAy9io7wpCRnFLID57MD7OTENYwfSWaIVi8yQ5JiSHCJTrK_n539djJaJwFrgHLcRi8DsFsNJiraDYmboG0Nbj2rjON9o_k-dhLC250O6md34IVWEzVgGoLlkNnlM6Xv01Ut8a24KozrbOj6rSLptYBrKRvdZy2ztyfa5Lsdd7f_Ji_y143sgv65P5_nP08-7panOeXV98uFvPLXBWUx7zEVOmm5hBDDgmnBFWao1nJCJeVTiEJbSpVkVKVSYAqBMta1RWuFJtxjDg5zi52vrWTazF400u_FU4acbfgfCukjyYVLNBM4YJRVUnGKWsKySDGRMp6RonENUxeX3Zew1j1ulbaRi-7PdP9HWtuRes2AqVHY7ycqvl07-Ddr1GHKHoTpreVVrsxCMwRoZSVFCf04zN07UZv011NFC4wZrz4T7UyJTC2celgNZmKeToSEcwITdTpC1Qate6NSp3WmLS-J_jwNOljxId2SgDZAcq7ELxuhDLxrmWSs-lSYjH1rdjr26TKn6kejF_m_wGJWO6G |
| CitedBy_id | crossref_primary_10_3390_cells13110959 crossref_primary_10_3390_biomedicines12051022 crossref_primary_10_3390_biomedicines12081893 |
| Cites_doi | 10.3390/ijms16022851 10.1093/nar/gkw533 10.1002/jnr.20522 10.1016/j.bbrc.2018.12.186 10.1074/jbc.272.18.11994 10.1101/pdb.prot087163 10.1038/nm.3411 10.3390/app11135776 10.3389/fimmu.2016.00315 10.1038/srep14674 10.1111/1756-185X.13962 10.4049/jimmunol.168.11.5397 10.1016/j.celrep.2012.04.012 10.4062/biomolther.2016.075 10.1016/j.biochi.2020.04.009 10.1155/2021/5574472 10.1016/S1474-4422(17)30470-2 10.1126/sciimmunol.abo5407 10.4049/jimmunol.180.9.5916 10.1093/nar/gkg616 10.1016/j.molimm.2018.07.017 10.1093/hmg/ddl171 10.3389/fimmu.2019.00882 10.2353/ajpath.2008.080246 10.1111/j.1600-065X.2011.01018.x 10.4049/jimmunol.1700575 10.1212/WNL.0b013e3182a2ce0e 10.1084/jem.20060772 10.4049/jimmunol.180.7.4785 10.1126/scitranslmed.3001809 10.1038/ni904 10.1038/s41598-021-88448-5 10.1016/S0165-5728(96)00236-6 10.1016/j.autrev.2014.10.012 10.1016/j.clim.2022.108957 10.1016/j.molimm.2010.03.017 10.3389/fimmu.2013.00469 10.4049/jimmunol.180.11.7423 10.1371/journal.pone.0007980 10.4049/jimmunol.175.2.641 10.1101/2023.03.18.533297 10.4049/jimmunol.177.5.3133 10.1038/jid.2011.139 10.3390/ijms17091398 10.3389/fimmu.2017.01508 10.1038/s41598-018-21861-5 10.1016/j.cellimm.2018.06.008 10.1126/science.1160062 10.1093/intimm/dxm043 10.1089/nat.2021.0067 10.3389/fimmu.2019.03100 10.1016/j.jneuroim.2013.06.007 10.1073/pnas.0600225103 10.1111/imm.13208 10.1038/nrm.2017.27 10.1038/s41598-019-38897-w 10.1177/1352458514567215 10.1080/08916934.2016.1199020 10.3389/fimmu.2019.00835 10.1073/pnas.0509484103 10.1126/science.1079490 10.1016/j.biochi.2018.11.020 10.3389/fimmu.2012.00051 10.4049/jimmunol.146.9.3074 10.1111/j.0105-2896.2006.00417.x 10.1212/WNL.33.11.1444 10.3390/biomedicines10020335 10.1002/eji.200636435 10.1111/bjd.19380 10.3390/ijms23031863 10.1002/eji.200425523 10.1111/j.1365-2184.1995.tb00062.x 10.3389/fimmu.2021.752394 10.4049/jimmunol.155.3.1151 10.1073/pnas.1616710113 10.1182/blood-2011-12-396101 10.3389/fimmu.2013.00129 10.1038/nature06878 10.3390/cells12101359 10.26502/ami.93650036 10.1016/S0092-8674(00)80702-3 10.1093/intimm/dxm014 10.4049/jimmunol.2100850 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM DOA |
| DOI | 10.3390/cells13010077 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences ProQuest Biological Science Database (NC LIVE) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2073-4409 |
| ExternalDocumentID | oai_doaj_org_article_16c2574cba7947f5a70223aad643a2d0 PMC10777989 A779132734 38201281 10_3390_cells13010077 |
| Genre | Journal Article |
| GeographicLocations | Russia United States--US Germany |
| GeographicLocations_xml | – name: Russia – name: United States--US – name: Germany |
| GrantInformation_xml | – fundername: Russian Science Foundation grantid: 23-24-00326 – fundername: Russian Science Foundation grantid: No. 23-24-00326 |
| GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ABDBF ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EBD ESX GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM CGR CUY CVF ECM EIF NPM 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c549t-824cefd90209039431be9168739abe61034fbcb38c8c541b108dcdb2bc7692193 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001139260200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-4409 |
| IngestDate | Fri Oct 03 12:31:30 EDT 2025 Tue Nov 04 02:06:10 EST 2025 Fri Sep 05 12:02:39 EDT 2025 Fri Jul 25 11:48:59 EDT 2025 Tue Nov 11 10:58:39 EST 2025 Tue Nov 04 18:22:36 EST 2025 Wed Feb 19 02:12:55 EST 2025 Tue Nov 18 22:22:58 EST 2025 Sat Nov 29 07:10:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | regulatory T cells splicing-switching oligonucleotides alternative splicing FoxP3 multiple sclerosis suppressive activity |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c549t-824cefd90209039431be9168739abe61034fbcb38c8c541b108dcdb2bc7692193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3290-9839 0000-0002-7960-1006 0000-0003-4753-7588 |
| OpenAccessLink | https://www.proquest.com/docview/2912522795?pq-origsite=%requestingapplication% |
| PMID | 38201281 |
| PQID | 2912522795 |
| PQPubID | 2032536 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_16c2574cba7947f5a70223aad643a2d0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10777989 proquest_miscellaneous_2913447842 proquest_journals_2912522795 gale_infotracmisc_A779132734 gale_infotracacademiconefile_A779132734 pubmed_primary_38201281 crossref_citationtrail_10_3390_cells13010077 crossref_primary_10_3390_cells13010077 |
| PublicationCentury | 2000 |
| PublicationDate | 20231229 |
| PublicationDateYYYYMMDD | 2023-12-29 |
| PublicationDate_xml | – month: 12 year: 2023 text: 20231229 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Cells (Basel, Switzerland) |
| PublicationTitleAlternate | Cells |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Du (ref_74) 2008; 180 Rojas (ref_44) 2019; 10 Kouchaki (ref_67) 2014; 17 Hafler (ref_2) 2006; 212 Kurtzke (ref_18) 1983; 33 Zhdanov (ref_27) 2018; 331 King (ref_48) 2005; 175 Grant (ref_62) 2015; 14 Huan (ref_69) 2005; 81 Hoff (ref_37) 2010; 47 ref_11 Verma (ref_29) 2021; 11 Zhdanov (ref_21) 2019; 509 ref_54 Smith (ref_31) 2006; 15 Muls (ref_79) 2015; 21 Thompson (ref_17) 2018; 17 Wolf (ref_47) 1991; 146 Song (ref_77) 2012; 1 Sambucci (ref_14) 2018; 8 Rubesa (ref_81) 1997; 74 Li (ref_76) 2007; 19 Baralle (ref_9) 2017; 18 Mailer (ref_78) 2015; 5 Sergeeva (ref_16) 2022; 32 Hippen (ref_19) 2011; 3 Szabo (ref_55) 2000; 100 Shevyrev (ref_63) 2019; 10 Jones (ref_82) 2022; 208 Du (ref_12) 2022; 7 Larkin (ref_58) 2013; 4 ref_64 Madireddi (ref_43) 2017; 199 Chevalier (ref_50) 2008; 180 Kim (ref_57) 2017; 25 Quah (ref_25) 2010; 44 Fontenot (ref_53) 2003; 4 Klein (ref_38) 2016; 7 Mohajeri (ref_70) 2011; 10 Zhdanov (ref_24) 2019; 157 Ng (ref_46) 2013; 4 Balint (ref_65) 2013; 81 Nussbaum (ref_5) 2021; 184 Tan (ref_56) 2016; 113 Sato (ref_10) 2021; 12 Sherley (ref_20) 1995; 28 Crowley (ref_26) 2016; 2016 Zhou (ref_75) 2008; 453 Iwasaki (ref_52) 2015; 16 Wang (ref_84) 2007; 37 Yang (ref_60) 2017; 8 Lui (ref_87) 2020; 161 Carbone (ref_68) 2014; 20 ref_35 ref_33 ref_30 Bovenschen (ref_61) 2011; 131 Allan (ref_86) 2007; 19 Chae (ref_73) 2006; 103 Lifshitz (ref_3) 2016; 49 Wing (ref_42) 2008; 322 Jamshidian (ref_66) 2013; 262 Sakaguchi (ref_1) 1995; 155 Liang (ref_39) 2008; 180 Seitz (ref_13) 2022; 237 Lardone (ref_80) 2019; 9 Cartegni (ref_32) 2003; 31 Gavin (ref_85) 2006; 103 Tran (ref_59) 2012; 119 Lavon (ref_83) 2019; 10 Lopes (ref_72) 2006; 177 Liu (ref_36) 2006; 203 Wolk (ref_51) 2002; 168 Baker (ref_23) 1997; 272 Hori (ref_7) 2003; 299 Zhdanov (ref_22) 2017; 82 Yu (ref_40) 2021; 2021 Claeys (ref_34) 2019; 3 Schmidt (ref_41) 2012; 3 Zhdanov (ref_71) 2020; 174 Zhdanov (ref_28) 2018; 101 Christodoulou (ref_4) 2008; 173 Rudensky (ref_8) 2011; 241 Havens (ref_15) 2016; 44 Wang (ref_45) 2021; 24 Oral (ref_49) 2006; 36 ref_6 |
| References_xml | – volume: 16 start-page: 2851 year: 2015 ident: ref_52 article-title: Interleukin-27 in T cell immunity publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms16022851 – volume: 44 start-page: 6549 year: 2016 ident: ref_15 article-title: Splice-switching antisense oligonucleotides as therapeutic drugs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw533 – volume: 81 start-page: 45 year: 2005 ident: ref_69 article-title: Decreased FOXP3 levels in multiple sclerosis patients publication-title: J. Neurosci. Res. doi: 10.1002/jnr.20522 – volume: 509 start-page: 790 year: 2019 ident: ref_21 article-title: Inhibition of telomerase activity by splice-switching oligonucleotides targeting the mRNA of the telomerase catalytic subunit affects proliferation of human CD4+ T lymphocytes publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.12.186 – volume: 272 start-page: 11994 year: 1997 ident: ref_23 article-title: 2′-O-(2-Methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.18.11994 – volume: 2016 start-page: pdb-prot087163 year: 2016 ident: ref_26 article-title: Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot087163 – volume: 20 start-page: 69 year: 2014 ident: ref_68 article-title: Regulatory T cell proliferative potential is impaired in human autoimmune disease publication-title: Nat. Med. doi: 10.1038/nm.3411 – ident: ref_11 doi: 10.3390/app11135776 – volume: 7 start-page: 315 year: 2016 ident: ref_38 article-title: Cyclic AMP Represents a Crucial Component of Treg Cell-Mediated Immune Regulation publication-title: Front. Immunol. doi: 10.3389/fimmu.2016.00315 – volume: 5 start-page: 14674 year: 2015 ident: ref_78 article-title: IL-1β promotes Th17 differentiation by inducing alternative splicing of FOXP3 publication-title: Sci. Rep. doi: 10.1038/srep14674 – volume: 24 start-page: 21 year: 2021 ident: ref_45 article-title: Interleukin-35 regulates the balance of Th17 and Treg responses during the pathogenesis of connective tissue diseases publication-title: Int. J. Rheum. Dis. doi: 10.1111/1756-185X.13962 – volume: 168 start-page: 5397 year: 2002 ident: ref_51 article-title: Cutting edge: Immune cells as sources and targets of the IL-10 family members? publication-title: J. Immunol. doi: 10.4049/jimmunol.168.11.5397 – volume: 1 start-page: 665 year: 2012 ident: ref_77 article-title: Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.04.012 – volume: 25 start-page: 130 year: 2017 ident: ref_57 article-title: Enforced Expression of CXCR5 Drives T Follicular Regulatory-Like Features in Foxp3(+) T Cells publication-title: Biomol. Ther. doi: 10.4062/biomolther.2016.075 – volume: 174 start-page: 34 year: 2020 ident: ref_71 article-title: Inhibition of nuclease activity by a splice-switching oligonucleotide targeting deoxyribonuclease 1 mRNA prevents apoptosis progression and prolong viability of normal human CD4(+) T-lymphocytes publication-title: Biochimie doi: 10.1016/j.biochi.2020.04.009 – volume: 2021 start-page: 5574472 year: 2021 ident: ref_40 article-title: Coexpression of Helios in Foxp3(+) Regulatory T Cells and Its Role in Human Disease publication-title: Dis. Markers doi: 10.1155/2021/5574472 – volume: 17 start-page: 162 year: 2018 ident: ref_17 article-title: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(17)30470-2 – volume: 17 start-page: 250 year: 2014 ident: ref_67 article-title: Numerical status of CD4(+)CD25(+)FoxP3(+) and CD8(+)CD28(-) regulatory T cells in multiple sclerosis publication-title: Iran. J. Basic Med. Sci. – volume: 7 start-page: eabo5407 year: 2022 ident: ref_12 article-title: FOXP3 exon 2 controls T(reg) stability and autoimmunity publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abo5407 – volume: 180 start-page: 5916 year: 2008 ident: ref_39 article-title: Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II publication-title: J. Immunol. doi: 10.4049/jimmunol.180.9.5916 – volume: 31 start-page: 3568 year: 2003 ident: ref_32 article-title: ESEfinder: A web resource to identify exonic splicing enhancers publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg616 – volume: 101 start-page: 229 year: 2018 ident: ref_28 article-title: Contact-independent suppressive activity of regulatory T cells is associated with telomerase inhibition, telomere shortening and target lymphocyte apoptosis publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2018.07.017 – volume: 15 start-page: 2490 year: 2006 ident: ref_31 article-title: An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddl171 – volume: 10 start-page: 882 year: 2019 ident: ref_44 article-title: CD4+Foxp3+T Regulatory Cells Promote Transplantation Tolerance by Modulating Effector CD4+ T Cells in a Neuropilin-1-Dependent Manner publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00882 – volume: 173 start-page: 1389 year: 2008 ident: ref_4 article-title: Foxp3+ T-regulatory cells in Sjogren’s syndrome: Correlation with the grade of the autoimmune lesion and certain adverse prognostic factors publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2008.080246 – volume: 241 start-page: 260 year: 2011 ident: ref_8 article-title: Regulatory T cells and Foxp3 publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2011.01018.x – volume: 199 start-page: 2721 year: 2017 ident: ref_43 article-title: Regulatory T Cell-Mediated Suppression of Inflammation Induced by DR3 Signaling Is Dependent on Galectin-9 publication-title: J. Immunol. doi: 10.4049/jimmunol.1700575 – volume: 81 start-page: 784 year: 2013 ident: ref_65 article-title: T-cell homeostasis in pediatric multiple sclerosis: Old cells in young patients publication-title: Neurology doi: 10.1212/WNL.0b013e3182a2ce0e – volume: 203 start-page: 1701 year: 2006 ident: ref_36 article-title: CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells publication-title: J. Exp. Med. doi: 10.1084/jem.20060772 – volume: 180 start-page: 4785 year: 2008 ident: ref_74 article-title: Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3 publication-title: J. Immunol. doi: 10.4049/jimmunol.180.7.4785 – volume: 3 start-page: 83ra41 year: 2011 ident: ref_19 article-title: Massive ex vivo expansion of human natural regulatory T cells (T(regs)) with minimal loss of in vivo functional activity publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3001809 – volume: 4 start-page: 330 year: 2003 ident: ref_53 article-title: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells publication-title: Nat. Immunol. doi: 10.1038/ni904 – volume: 11 start-page: 10476 year: 2021 ident: ref_29 article-title: Multiple sclerosis patients have reduced resting and increased activated CD4(+)CD25(+)FOXP3(+)T regulatory cells publication-title: Sci. Rep. doi: 10.1038/s41598-021-88448-5 – volume: 74 start-page: 198 year: 1997 ident: ref_81 article-title: Increased perforin expression in multiple sclerosis patients during exacerbation of disease in peripheral blood lymphocytes publication-title: J. Neuroimmunol. doi: 10.1016/S0165-5728(96)00236-6 – volume: 14 start-page: 105 year: 2015 ident: ref_62 article-title: Regulatory T-cells in autoimmune diseases: Challenges, controversies and--yet--unanswered questions publication-title: Autoimmun. Rev. doi: 10.1016/j.autrev.2014.10.012 – volume: 237 start-page: 108957 year: 2022 ident: ref_13 article-title: The FOXP3 full-length isoform controls the lineage-stability of CD4(+)FOXP3(+) regulatory T cells publication-title: Clin. Immunol. doi: 10.1016/j.clim.2022.108957 – volume: 47 start-page: 1875 year: 2010 ident: ref_37 article-title: CTLA-4 (CD152) inhibits T cell function by activating the ubiquitin ligase Itch publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2010.03.017 – volume: 4 start-page: 469 year: 2013 ident: ref_58 article-title: Regulation of interferon gamma signaling by suppressors of cytokine signaling and regulatory T cells publication-title: Front. Immunol. doi: 10.3389/fimmu.2013.00469 – volume: 180 start-page: 7423 year: 2008 ident: ref_50 article-title: Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes publication-title: J. Immunol. doi: 10.4049/jimmunol.180.11.7423 – ident: ref_35 doi: 10.1371/journal.pone.0007980 – volume: 175 start-page: 641 year: 2005 ident: ref_48 article-title: Cutting edge: IL-12 induces CD4+CD25- T cell activation in the presence of T regulatory cells publication-title: J. Immunol. doi: 10.4049/jimmunol.175.2.641 – ident: ref_54 doi: 10.1101/2023.03.18.533297 – volume: 177 start-page: 3133 year: 2006 ident: ref_72 article-title: Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor publication-title: J. Immunol. doi: 10.4049/jimmunol.177.5.3133 – volume: 131 start-page: 1853 year: 2011 ident: ref_61 article-title: Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2011.139 – volume: 82 start-page: 894 year: 2017 ident: ref_22 article-title: Intracellular localization of apoptotic endonuclease EndoG and splice-variants of telomerase catalytic subunit hTERT publication-title: Biochemistry – ident: ref_64 doi: 10.3390/ijms17091398 – volume: 8 start-page: 1508 year: 2017 ident: ref_60 article-title: Interleukin-4 Supports the Suppressive Immune Responses Elicited by Regulatory T Cells publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.01508 – volume: 8 start-page: 3674 year: 2018 ident: ref_14 article-title: FoxP3 isoforms and PD-1 expression by T regulatory cells in multiple sclerosis publication-title: Sci. Rep. doi: 10.1038/s41598-018-21861-5 – volume: 331 start-page: 146 year: 2018 ident: ref_27 article-title: Murine regulatory T cells induce death of effector T, B, and NK lymphocytes through a contact-independent mechanism involving telomerase suppression and telomere-associated senescence publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2018.06.008 – volume: 322 start-page: 271 year: 2008 ident: ref_42 article-title: CTLA-4 control over Foxp3+ regulatory T cell function publication-title: Science doi: 10.1126/science.1160062 – volume: 19 start-page: 825 year: 2007 ident: ref_76 article-title: FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease publication-title: Int. Immunol. doi: 10.1093/intimm/dxm043 – volume: 32 start-page: 123 year: 2022 ident: ref_16 article-title: Modulation of RNA Splicing by Oligonucleotides: Mechanisms of Action and Therapeutic Implications publication-title: Nucleic Acid Ther. doi: 10.1089/nat.2021.0067 – volume: 10 start-page: 3100 year: 2019 ident: ref_63 article-title: Treg Heterogeneity, Function, and Homeostasis publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.03100 – volume: 262 start-page: 106 year: 2013 ident: ref_66 article-title: Biased Treg/Th17 balance away from regulatory toward inflammatory phenotype in relapsed multiple sclerosis and its correlation with severity of symptoms publication-title: J. Neuroimmunol. doi: 10.1016/j.jneuroim.2013.06.007 – volume: 103 start-page: 9631 year: 2006 ident: ref_73 article-title: The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0600225103 – volume: 161 start-page: 4 year: 2020 ident: ref_87 article-title: Tissue regulatory T cells publication-title: Immunology doi: 10.1111/imm.13208 – volume: 18 start-page: 437 year: 2017 ident: ref_9 article-title: Alternative splicing as a regulator of development and tissue identity publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.27 – volume: 9 start-page: 2302 year: 2019 ident: ref_80 article-title: Peripheral CD39-expressing T regulatory cells are increased and associated with relapsing-remitting multiple sclerosis in relapsing patients publication-title: Sci. Rep. doi: 10.1038/s41598-019-38897-w – volume: 21 start-page: 1533 year: 2015 ident: ref_79 article-title: Regulation of Treg-associated CD39 in multiple sclerosis and effects of corticotherapy during relapse publication-title: Mult. Scler. doi: 10.1177/1352458514567215 – volume: 49 start-page: 388 year: 2016 ident: ref_3 article-title: Ex vivo expanded regulatory T cells CD4 + CD25 + FoxP3 + CD127 Low develop strong immunosuppressive activity in patients with remitting-relapsing multiple sclerosis publication-title: Autoimmunity doi: 10.1080/08916934.2016.1199020 – volume: 10 start-page: 835 year: 2019 ident: ref_83 article-title: Blood Levels of Co-inhibitory-Receptors: A Biomarker of Disease Prognosis in Multiple Sclerosis publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00835 – volume: 103 start-page: 6659 year: 2006 ident: ref_85 article-title: Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0509484103 – volume: 299 start-page: 1057 year: 2003 ident: ref_7 article-title: Control of regulatory T cell development by the transcription factor Foxp3 publication-title: Science doi: 10.1126/science.1079490 – volume: 10 start-page: 155 year: 2011 ident: ref_70 article-title: FOXP3 gene expression in multiple sclerosis patients pre- and post mesenchymal stem cell therapy publication-title: Iran. J. Allergy. Asthma. Immunol. – volume: 157 start-page: 158 year: 2019 ident: ref_24 article-title: Endonuclease G modulates the alternative splicing of deoxyribonuclease 1 mRNA in human CD4+ T lymphocytes and prevents the progression of apoptosis publication-title: Biochimie doi: 10.1016/j.biochi.2018.11.020 – volume: 3 start-page: 51 year: 2012 ident: ref_41 article-title: Molecular mechanisms of treg-mediated T cell suppression publication-title: Front. Immunol. doi: 10.3389/fimmu.2012.00051 – volume: 146 start-page: 3074 year: 1991 ident: ref_47 article-title: Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells publication-title: J. Immunol. doi: 10.4049/jimmunol.146.9.3074 – volume: 212 start-page: 203 year: 2006 ident: ref_2 article-title: Human regulatory T cells and their role in autoimmune disease publication-title: Immunol. Rev. doi: 10.1111/j.0105-2896.2006.00417.x – volume: 33 start-page: 1444 year: 1983 ident: ref_18 article-title: Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS) publication-title: Neurology doi: 10.1212/WNL.33.11.1444 – ident: ref_30 doi: 10.3390/biomedicines10020335 – volume: 37 start-page: 129 year: 2007 ident: ref_84 article-title: Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells publication-title: Eur. J. Immunol. doi: 10.1002/eji.200636435 – volume: 184 start-page: 14 year: 2021 ident: ref_5 article-title: Role of regulatory T cells in psoriasis pathogenesis and treatment publication-title: Br. J. Dermatol. doi: 10.1111/bjd.19380 – ident: ref_33 doi: 10.3390/ijms23031863 – volume: 36 start-page: 380 year: 2006 ident: ref_49 article-title: Regulation of T cells and cytokines by the interleukin-10 (IL-10)-family cytokines IL-19, IL-20, IL-22, IL-24 and IL-26 publication-title: Eur. J. Immunol. doi: 10.1002/eji.200425523 – volume: 28 start-page: 137 year: 1995 ident: ref_20 article-title: A quantitative method for the analysis of mammalian cell proliferation in culture in terms of dividing and non-dividing cells publication-title: Cell Prolif. doi: 10.1111/j.1365-2184.1995.tb00062.x – volume: 12 start-page: 752394 year: 2021 ident: ref_10 article-title: Co-Expression of FOXP3FL and FOXP3Δ2 Isoforms Is Required for Optimal Treg-Like Cell Phenotypes and Suppressive Function publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.752394 – volume: 155 start-page: 1151 year: 1995 ident: ref_1 article-title: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases publication-title: J. Immunol. doi: 10.4049/jimmunol.155.3.1151 – volume: 113 start-page: 14103 year: 2016 ident: ref_56 article-title: Singular role for T-BET+CXCR3+ regulatory T cells in protection from autoimmune diabetes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1616710113 – volume: 119 start-page: 4441 year: 2012 ident: ref_59 article-title: IL-5 promotes induction of antigen-specific CD4+CD25+ T regulatory cells that suppress autoimmunity publication-title: Blood doi: 10.1182/blood-2011-12-396101 – volume: 4 start-page: 129 year: 2013 ident: ref_46 article-title: Regulation of adaptive immunity; the role of interleukin-10 publication-title: Front. Immunol. doi: 10.3389/fimmu.2013.00129 – volume: 453 start-page: 236 year: 2008 ident: ref_75 article-title: TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function publication-title: Nature doi: 10.1038/nature06878 – ident: ref_6 doi: 10.3390/cells12101359 – volume: 3 start-page: 133 year: 2019 ident: ref_34 article-title: The CD4 Receptor: An Indispensable Protein in T Cell Activation and A Promising Target for Immunosuppression publication-title: Arch. Microbiol. Immunol. doi: 10.26502/ami.93650036 – volume: 100 start-page: 655 year: 2000 ident: ref_55 article-title: A novel transcription factor, T-bet, directs Th1 lineage commitment publication-title: Cell doi: 10.1016/S0092-8674(00)80702-3 – volume: 19 start-page: 345 year: 2007 ident: ref_86 article-title: Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production publication-title: Int. Immunol. doi: 10.1093/intimm/dxm014 – volume: 44 start-page: 2259 year: 2010 ident: ref_25 article-title: The Use of Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) to Monitor Lymphocyte Proliferation publication-title: J. Vis. Exp. – volume: 208 start-page: 594 year: 2022 ident: ref_82 article-title: Fewer LAG-3(+) T Cells in Relapsing-Remitting Multiple Sclerosis and Type 1 Diabetes publication-title: J. Immunol. doi: 10.4049/jimmunol.2100850 |
| SSID | ssj0000816105 |
| Score | 2.2818308 |
| Snippet | The maturation, development, and function of regulatory T cells (Tregs) are under the control of the crucial transcription factor Forkhead Box Protein 3... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 77 |
| SubjectTerms | Alternative splicing Antibodies Autoimmune diseases Cell Proliferation Cloning Dehydrogenases Exons Flow cytometry Forkhead protein Forkhead Transcription Factors - genetics FoxP3 Foxp3 protein Health aspects Humans Immunoregulation Immunotherapy Lymphocytes T Messenger RNA Multiple sclerosis Oligonucleotides Peripheral blood Phenotypes Proteins regulatory T cells RNA Precursors - genetics Software splicing-switching oligonucleotides suppressive activity T cells T-Lymphocytes, Regulatory Transcription factors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtNAFB2hCiQ2qLxNCxokBBusxjO2Z2YZKioWEKI2oO6seRZLxUaJW5Sf4Ju5d-xasRBiwzZzHc3jzH04N-cQ8oqXyjgVQiqUdmnuuU9V4cq0tBD8jdczH3m2v34Ui4U8P1fLHakv7Anr6YH7jTvKSguoyq3RgBwRCi0g6nCtHYRSzVys1iHr2Smmog-WkMnMip5Uk0Ndf4TvwTfgsLErQEyCUOTq_9Mj74SkabvkTvw52Sf3hsSRzvsJ3ye3fPOA3OmlJLcPya9PrRuUuGgbKIp1xg7Xa0_ntleIoLpxdIkqPcGvR8v4Fp-e9pL07XpLV_QYF0HNlp7hj9s-PftZd7Hlkn6-rC_aBimQ2652fkNXsZEchyCMLTl8vU-_ny7mj8iXk_er4w_poLWQWqgQu1Sy3PrgFGSPasYVpBXGQ-YoBVfaeNhLngdjDZdWwgOZyWbSWWeYsaJU4PX4Y7LXtI1_SqgJxuVMFCILPrdga1Sw0kEU9AUzzibk7c3mV3YgIkc9jMsKChI8q2pyVgl5PZr_6Bk4_mb4Dk9yNELi7PgBwKka4FT9C04JeYM4qPB6w6SsHv6lAEtDoqxqLoSCAl7wPCGHE0u4lnY6fIOkanALm4opyCeRs7FIyMtxGJ_EVrfGt1fRBlkYZc4S8qQH3rgkjvkak1lC5ASSkzVPR5r6WyQNhzIf5ibVs_-xSwfkLoNkD9t6mDoke936yj8nt-11V2_WL-JV_A0q4jrv priority: 102 providerName: Directory of Open Access Journals |
| Title | Modulation of Suppressive Activity and Proliferation of Human Regulatory T Cells by Splice-Switching Oligonucleotides Targeting FoxP3 Pre-mRNA |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38201281 https://www.proquest.com/docview/2912522795 https://www.proquest.com/docview/2913447842 https://pubmed.ncbi.nlm.nih.gov/PMC10777989 https://doaj.org/article/16c2574cba7947f5a70223aad643a2d0 |
| Volume | 13 |
| WOSCitedRecordID | wos001139260200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2073-4409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816105 issn: 2073-4409 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816105 issn: 2073-4409 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Biological Science Database (NC LIVE) customDbUrl: eissn: 2073-4409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816105 issn: 2073-4409 databaseCode: M7P dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-4409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816105 issn: 2073-4409 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-4409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816105 issn: 2073-4409 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RFiQuvB-GEi0SggtWY6-T3T2htEoFEg1WGlA5Wd6HS6RilyQtyoWfwG9mZu2YWgguXHLIjKNd7-zM7Ozk-wBe8KHSVhVFKFRuw8RxF6qBHYZDg8Ffu7zvPM72p_diMpEnJyptCm7Lpq1y4xO9o7aVoRr5XqwwFBPc3eDN-beQWKPodrWh0NiCHUJJ4L51L21rLEQqgflDDa3J8XS_R9XwJbpt6g0QnVDkEfv_9MtXAlO3afJKFDq8_b_jvwO3mvyTjWqDuQvXXHkPbtSMlOv78POosg2hF6sKRpyfvlH20rGRqYkmWF5alhLZT-EWraa_DGDTmtm-WqzZjB3QW2B6zY7pjtyFx9_nK9-5yT6czU-rkpCUq9XcuiWb-X50EmE0TDn-vAu_TiejB_DxcDw7eBs2lA2hwYPmKpRxYlxhFSahqs8VZifaYQIqBVe5drgYPCm00VwaiQ9EOupLa6yOtRFDhc6TP4TtsirdY2C60DaJxUBEhUsM6mpVGGkxmLpBrK0J4PVm9TLT4JkTrcZZhucaWuyss9gBvGzVz2sgj78p7pMptEqEv-2_qBanWbOds2ho0NclRufoz0QxyAXmQjzPLSZ4eWz7AbwiQ8rIS-CgTN782QGnRnhb2UgIFXGCFgpgt6OJu9t0xRtzyhrvssx-21IAz1sxPUkdc6WrLrwOgTnKJA7gUW257ZQ4pX2xjAKQHZvuzLkrKedfPPZ4hG9IKKme_HtcT-FmjNkg9f3Eahe2V4sL9wyum8vVfLnowZY4kT3Y2R9P0mnPl0F6fufS548xStJ3R-nnXycLT9I |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qLQg2vB-GAoPEY4PVeMbJeBYIpaVVq6YhSgPqzngeDpGKXZK0VX6CT-Ebudd2TC0Euy7YZu5Y9uQ-zoyvzwF4KTpKW5WmvlSJ9UMnnK_atuN3DBZ_7ZKWK3i2P_dkvx8dHanBCvxcfgtDbZXLnFgkapsbOiPf4ApLMdHdtd-ffPdJNYreri4lNEq32HeLc9yyzd7tfcD_9xXnO9ujrV2_UhXwDe6F5n7EQ-NSqxAnqZZQWEC1Q4wUSaES7RBNiDDVRovIRDgh0EErssZqro3sKIxvgde9AmuhCCXG1drmdn8wrE91SMYCEUtJ5imEam3Q-fsMCwV1I8hG8Ss0Av6sBBdKYbNN80Ld27n1v63YbbhZIWzWLUPiDqy47C5cKzU3F_fgx0FuK8kylqeMVE2LVuAzx7qmlNJgSWbZgOSMUjetLYvXHWzoxjQ7ny7YiG3RqjO9YIfUBeD8w_PJvOhNZR-PJ-M8I67ofD6xbsZGRcc9DWG9Hwi8vPO_Dfvd-_DpUhbjAaxmeeYeAdOptiGXbRmkLjRoq1VqIotwwbW5tsaDt0tviU3F2E7CIccx7tzIueKGc3nwujY_KalK_ma4Sa5XGxHDePFDPh3HVcKKg47BbB4anWDGlmk7kYj2RJJYhLAJty0P3pDjxpQH8aZMUn3OgY9GjGJxV0oVCCJP8mC9YYn5yzSHl-4bV_lzFv_2XQ9e1MM0k3oCM5efFjZEVxmF3IOHZaTUjyQI2PIo8CBqxFDjmZsj2eRrwa4e4ApJFanH_76v53B9d3TQi3t7_f0ncIMj9qUuJ67WYXU-PXVP4ao5m09m02dVjmDw5bKD7BdCdqZK |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qLSA2vB-GAoPEY4OVeMbJeBYIhZaKqG2I2hSVlfE8HCIVuyRpq_wEH8TXca_tmFoIdl2w9dyx7PF9HI-vzwF4LrpKW5WmvlSJ9UMnnK86tut3DRZ_7ZK2K3i2P-3IwSA6PFTDFfi5_BeG2iqXObFI1DY3tEfe4gpLMdHddVpp1RYx3Nx6e_zdJwUp-tK6lNMoXWTbLc7w9W32pr-Jz_oF51vvRxsf_EphwDf4XjT3Ix4al1qFmEm1hcJiqh3ipUgKlWiHyEKEqTZaRCbCCYEO2pE1VnNtZFdhrAs87yVYQ0geYoytDfu7w8_1Dg9JWiB6KYk9hVDtFu3Fz7BoUGeCbBTCQi_gz6pwriw2WzbP1cCtG__z6t2E6xXyZr0yVG7Bistuw5VSi3NxB37s5raSMmN5ykjttGgRPnWsZ0qJDZZklg1J5ih109qy-AzC9tyYZufTBRuxDXoCTC_YPnUHOH__bDIvelbZx6PJOM-IQzqfT6ybsVHRiU9DiAOGAk_v_G97g95dOLiQxbgHq1meuQfAdKptyGVHBqkLDdpqlZrIIoxwHa6t8eD10nNiUzG5k6DIUYxvdORoccPRPHhZmx-XFCZ_M3xHblgbEfN4cSCfjuMqkcVB12CWD41OMJPLtJNIRIEiSSxC24TbtgevyIljyo94USapfvPAWyOmsbgnpQoEkSp5sN6wxLxmmsNLV46rvDqLf_uxB8_qYZpJvYKZy08KG6KxjELuwf0yaupbEgR4eRR4EDXiqXHPzZFs8rVgXQ9whaSK1MN_X9dTuIqRFe_0B9uP4BpHSEzNT1ytw-p8euIew2VzOp_Mpk-qdMHgy0XH2C8k_a88 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+Suppressive+Activity+and+Proliferation+of+Human+Regulatory+T+Cells+by+Splice-Switching+Oligonucleotides+Targeting+FoxP3+Pre-mRNA&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Blinova%2C+Varvara+G&rft.au=Gladilina%2C+Yulia+A&rft.au=Abramova%2C+Anna+A&rft.au=Eliseeva%2C+Daria+D&rft.date=2023-12-29&rft.issn=2073-4409&rft.eissn=2073-4409&rft.volume=13&rft.issue=1&rft_id=info:doi/10.3390%2Fcells13010077&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon |