Machine learning applications in radiation oncology
Machine learning technology has a growing impact on radiation oncology with an increasing presence in research and industry. The prevalence of diverse data including 3D imaging and the 3D radiation dose delivery presents potential for future automation and scope for treatment improvements for cancer...
Uloženo v:
| Vydáno v: | Physics and imaging in radiation oncology Ročník 19; s. 13 - 24 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.07.2021
Elsevier |
| Témata: | |
| ISSN: | 2405-6316, 2405-6316 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Machine learning technology has a growing impact on radiation oncology with an increasing presence in research and industry. The prevalence of diverse data including 3D imaging and the 3D radiation dose delivery presents potential for future automation and scope for treatment improvements for cancer patients. Harnessing this potential requires standardization of tools and data, and focused collaboration between fields of expertise. The rapid advancement of radiation oncology treatment technologies presents opportunities for machine learning integration with investments targeted towards data quality, data extraction, software, and engagement with clinical expertise. In this review, we provide an overview of machine learning concepts before reviewing advances in applying machine learning to radiation oncology and integrating these techniques into the radiation oncology workflows. Several key areas are outlined in the radiation oncology workflow where machine learning has been applied and where it can have a significant impact in terms of efficiency, consistency in treatment and overall treatment outcomes. This review highlights that machine learning has key early applications in radiation oncology due to the repetitive nature of many tasks that also currently have human review. Standardized data management of routinely collected imaging and radiation dose data are also highlighted as enabling engagement in research utilizing machine learning and the ability integrate these technologies into clinical workflow to benefit patients. Physicists need to be part of the conversation to facilitate this technical integration. |
|---|---|
| AbstractList | Machine learning technology has a growing impact on radiation oncology with an increasing presence in research and industry. The prevalence of diverse data including 3D imaging and the 3D radiation dose delivery presents potential for future automation and scope for treatment improvements for cancer patients. Harnessing this potential requires standardization of tools and data, and focused collaboration between fields of expertise. The rapid advancement of radiation oncology treatment technologies presents opportunities for machine learning integration with investments targeted towards data quality, data extraction, software, and engagement with clinical expertise. In this review, we provide an overview of machine learning concepts before reviewing advances in applying machine learning to radiation oncology and integrating these techniques into the radiation oncology workflows. Several key areas are outlined in the radiation oncology workflow where machine learning has been applied and where it can have a significant impact in terms of efficiency, consistency in treatment and overall treatment outcomes. This review highlights that machine learning has key early applications in radiation oncology due to the repetitive nature of many tasks that also currently have human review. Standardized data management of routinely collected imaging and radiation dose data are also highlighted as enabling engagement in research utilizing machine learning and the ability integrate these technologies into clinical workflow to benefit patients. Physicists need to be part of the conversation to facilitate this technical integration. Machine learning technology has a growing impact on radiation oncology with an increasing presence in research and industry. The prevalence of diverse data including 3D imaging and the 3D radiation dose delivery presents potential for future automation and scope for treatment improvements for cancer patients. Harnessing this potential requires standardization of tools and data, and focused collaboration between fields of expertise. The rapid advancement of radiation oncology treatment technologies presents opportunities for machine learning integration with investments targeted towards data quality, data extraction, software, and engagement with clinical expertise. In this review, we provide an overview of machine learning concepts before reviewing advances in applying machine learning to radiation oncology and integrating these techniques into the radiation oncology workflows. Several key areas are outlined in the radiation oncology workflow where machine learning has been applied and where it can have a significant impact in terms of efficiency, consistency in treatment and overall treatment outcomes. This review highlights that machine learning has key early applications in radiation oncology due to the repetitive nature of many tasks that also currently have human review. Standardized data management of routinely collected imaging and radiation dose data are also highlighted as enabling engagement in research utilizing machine learning and the ability integrate these technologies into clinical workflow to benefit patients. Physicists need to be part of the conversation to facilitate this technical integration.Machine learning technology has a growing impact on radiation oncology with an increasing presence in research and industry. The prevalence of diverse data including 3D imaging and the 3D radiation dose delivery presents potential for future automation and scope for treatment improvements for cancer patients. Harnessing this potential requires standardization of tools and data, and focused collaboration between fields of expertise. The rapid advancement of radiation oncology treatment technologies presents opportunities for machine learning integration with investments targeted towards data quality, data extraction, software, and engagement with clinical expertise. In this review, we provide an overview of machine learning concepts before reviewing advances in applying machine learning to radiation oncology and integrating these techniques into the radiation oncology workflows. Several key areas are outlined in the radiation oncology workflow where machine learning has been applied and where it can have a significant impact in terms of efficiency, consistency in treatment and overall treatment outcomes. This review highlights that machine learning has key early applications in radiation oncology due to the repetitive nature of many tasks that also currently have human review. Standardized data management of routinely collected imaging and radiation dose data are also highlighted as enabling engagement in research utilizing machine learning and the ability integrate these technologies into clinical workflow to benefit patients. Physicists need to be part of the conversation to facilitate this technical integration. |
| Author | Field, Matthew Hardcastle, Nicholas Jameson, Michael Aherne, Noel Holloway, Lois |
| Author_xml | – sequence: 1 givenname: Matthew surname: Field fullname: Field, Matthew organization: South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia – sequence: 2 givenname: Nicholas surname: Hardcastle fullname: Hardcastle, Nicholas organization: Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia – sequence: 3 givenname: Michael surname: Jameson fullname: Jameson, Michael organization: GenesisCare, Alexandria, NSW, Australia – sequence: 4 givenname: Noel surname: Aherne fullname: Aherne, Noel email: noel.aherne@health.nsw.gov.au organization: Mid North Coast Cancer Institute, NSW, Australia – sequence: 5 givenname: Lois surname: Holloway fullname: Holloway, Lois organization: South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia |
| BookMark | eNqFkk1vEzEQhi1UREvpH-C0Ry5Z_L1ehJBQBbRSERc4W97Z2cTBsYO9qZR_j5tUqO2hnPwx87zjmdevyUlMEQl5y2jLKNPv1-12lVPLKWctVS2l3QtyxiVVCy2YPnmwPyUXpawppbzrhRL0FTkVUtCuZ-qMiO8OVj5iE9Dl6OOycdtt8OBmn2JpfGyyG_3h1KQIKaTl_g15OblQ8OJ-PSe_vn75eXm1uPnx7fry880ClOznBXP9wPVoDJsGzQEE7_igmZ5EZzgbnJHGDJOUkktDRwWj1tJpB8wMUvfIxTm5PuqOya3tNvuNy3ubnLeHi5SX1uXZQ0BrahWnNO0VTnLsWN8zPapJMgUwgcaq9emotd0NGxwB45xdeCT6OBL9yi7TrTW8V0bRKvDuXiCnPzsss934AhiCi5h2xXKllJBSKFZT-TEVciol4_SvDKP2zjxbu6nm2TvzLFW2mlch8wQCPx_mXp_jw_PoxyOK1Yxbj9kW8BgBR58R5jot_zz-4QkOwcf6BcJv3P8P_gutw8jY |
| CitedBy_id | crossref_primary_10_1007_s12672_025_02064_7 crossref_primary_10_1109_ACCESS_2023_3333920 crossref_primary_10_1016_j_eswa_2025_126801 crossref_primary_10_1177_11795549241303606 crossref_primary_10_3389_fphar_2022_909784 crossref_primary_10_1016_j_phro_2023_100485 crossref_primary_10_1016_j_phro_2022_09_004 crossref_primary_10_1097_CCO_0000000000001068 crossref_primary_10_1016_j_zemedi_2022_10_005 crossref_primary_10_1016_j_radphyschem_2024_111533 crossref_primary_10_3390_cancers15113061 crossref_primary_10_1016_j_radonc_2022_10_029 crossref_primary_10_1109_TETCI_2022_3230958 crossref_primary_10_4251_wjgo_v17_i2_101888 crossref_primary_10_1002_pro6_1206 crossref_primary_10_1016_j_jrras_2024_101252 crossref_primary_10_1038_s41391_023_00684_0 crossref_primary_10_3389_fpubh_2022_1008794 crossref_primary_10_1002_hed_27241 crossref_primary_10_1007_s12194_025_00916_z crossref_primary_10_1016_j_phro_2023_100494 crossref_primary_10_1016_j_jbi_2022_104181 crossref_primary_10_1007_s10916_023_01907_6 crossref_primary_10_1016_j_compind_2025_104361 crossref_primary_10_1016_j_jrras_2024_101141 crossref_primary_10_1016_j_semradonc_2022_06_007 crossref_primary_10_1186_s42269_024_01254_7 crossref_primary_10_1088_1361_6560_ac7e18 crossref_primary_10_1259_bjr_20220239 crossref_primary_10_1016_j_jrras_2023_100757 crossref_primary_10_1016_j_arth_2024_05_056 crossref_primary_10_1016_j_compbiomed_2022_105444 crossref_primary_10_1002_acm2_70229 crossref_primary_10_1016_j_phro_2025_100710 crossref_primary_10_1007_s13246_022_01160_0 crossref_primary_10_7759_cureus_92964 crossref_primary_10_1007_s11426_025_2942_5 crossref_primary_10_1080_20476965_2024_2395567 crossref_primary_10_1155_2023_1102715 crossref_primary_10_1016_j_csbj_2022_06_036 crossref_primary_10_1002_jmrs_791 crossref_primary_10_1088_1361_6560_adc86c crossref_primary_10_1016_j_drudis_2024_104068 crossref_primary_10_1016_j_radonc_2025_110779 crossref_primary_10_1016_j_clon_2024_03_003 crossref_primary_10_1016_j_clon_2021_12_002 crossref_primary_10_1016_j_clon_2024_03_008 crossref_primary_10_1016_j_fluid_2025_114395 crossref_primary_10_1007_s40860_022_00192_3 |
| Cites_doi | 10.3389/fonc.2019.01333 10.1088/0031-9155/55/11/002 10.1002/mp.13262 10.1109/JPROC.2015.2494218 10.1016/j.ijrobp.2009.07.1754 10.1145/3236009 10.1038/nrclinonc.2012.196 10.1016/j.radonc.2019.11.019 10.3389/fonc.2015.00272 10.1088/1361-6560/ab039b 10.1136/amiajnl-2011-000094 10.1088/1361-6560/aa6393 10.1016/j.radonc.2014.08.013 10.1016/j.ijrobp.2017.12.281 10.1118/1.4938583 10.1016/j.ijrobp.2014.11.030 10.1002/mp.13338 10.1155/2015/103843 10.1016/j.ijrobp.2019.05.071 10.1016/j.radonc.2017.11.012 10.1088/0031-9155/58/23/8419 10.1186/s13058-017-0852-3 10.1016/j.radonc.2016.05.015 10.1002/mp.14173 10.3109/0284186X.2015.1062136 10.1016/j.ijrobp.2014.11.014 10.1109/TPAMI.2018.2857768 10.1186/s13014-019-1300-6 10.1109/ICMLA.2009.92 10.3389/fonc.2017.00315 10.1158/2159-8290.CD-13-0197 10.1118/1.2349696 10.1016/j.ijrobp.2020.03.014 10.1002/mp.13264 10.1118/1.3582947 10.1186/s12916-014-0241-z 10.1136/bmj.38398.500764.8F 10.1016/j.juro.2014.12.090 10.1118/1.3574874 10.1088/0031-9155/55/5/004 10.1088/1361-6560/aa58c3 10.1016/j.phro.2019.09.003 10.1016/j.radonc.2013.05.032 10.1088/0031-9155/56/6/008 10.1016/j.ijrobp.2016.10.005 10.1148/radiol.2020191145 10.1002/mp.12045 10.1016/j.radonc.2019.03.004 10.1016/j.ijrobp.2015.07.2286 10.1145/2523813 10.1155/2015/571351 10.1088/0031-9155/56/16/015 10.1109/TPAMI.2012.269 10.1016/j.radonc.2019.06.027 10.21037/tcr.2018.05.02 10.1371/journal.pone.0020055 10.1200/JCO.2005.06.178 10.1088/2057-1976/2/2/025012 10.1159/000493575 10.1016/j.prro.2013.01.004 10.1371/journal.pone.0184604 10.1093/carcin/bgr300 10.1038/nature21056 10.1088/0031-9155/54/18/S02 10.1002/mp.12155 10.1002/mp.13519 10.1088/2057-1976/1/4/045015 10.1088/0031-9155/55/19/025 10.1002/mp.13953 10.1016/j.radonc.2014.03.010 10.2217/fon.09.121 10.1038/s41598-017-05728-9 10.1118/1.3539749 10.1038/srep23431 10.1186/s12916-018-1099-2 10.1088/0031-9155/54/19/005 10.1016/j.phro.2020.11.002 10.3389/fonc.2019.00964 10.1109/ACCESS.2014.2373335 10.1016/j.radonc.2019.10.019 10.1002/mp.13656 10.1016/j.ijrobp.2012.02.021 10.1126/science.aaa8415 10.1002/mp.12321 10.1002/mp.13597 10.1038/nature14541 10.1088/0031-9155/49/5/007 10.12688/f1000research.9525.1 10.1109/ICCV.2017.74 10.1016/j.radonc.2016.09.009 10.1016/j.tipsro.2020.10.003 10.1002/mp.13175 10.1007/978-3-319-24574-4_28 10.1088/0031-9155/54/6/010 10.7326/0003-4819-144-3-200602070-00009 10.1088/0031-9155/45/9/308 10.1088/0031-9155/60/1/233 10.1007/978-3-319-19551-3_8 10.1002/mp.12479 10.1118/1.4794489 10.1016/j.ijrobp.2013.11.216 10.1016/j.oraloncology.2017.06.015 10.1007/978-3-319-66179-7_42 10.1038/nature14539 10.1088/0031-9155/57/20/6707 10.1016/j.ijrobp.2010.11.030 10.1093/neuonc/nou146 10.1111/j.1754-9485.2010.02192.x 10.1088/0031-9155/50/15/002 10.1016/j.radonc.2020.09.008 10.1038/nrclinonc.2017.141 10.1259/bjr.20190001 10.1002/mp.13271 10.1118/1.4908000 10.1002/mp.12879 10.1016/j.addr.2016.01.006 10.1002/mp.12602 10.1002/mp.14065 10.1109/CVPR.2017.243 10.1200/JCO.19.03141 10.1016/j.radonc.2014.10.001 10.1016/j.ejmp.2018.05.006 10.1016/j.radonc.2018.10.037 10.1002/mp.13976 10.1088/0031-9155/54/4/011 10.1002/acm2.12816 10.1016/j.radonc.2016.10.002 10.1007/s00330-019-06360-z 10.1088/0031-9155/49/10/007 10.1118/1.4788671 10.1080/17434440.2017.1300057 10.1016/S0360-3016(98)00035-2 10.1007/s11548-009-0355-5 10.1016/j.radonc.2014.04.012 10.1016/j.ijrobp.2013.03.015 10.1088/0031-9155/46/4/313 10.1001/jamainternmed.2015.1679 10.1088/1361-6560/ab25bc 10.1002/mp.14004 10.1148/radiol.15141208 10.1088/0031-9155/60/10/N209 10.1016/j.ijrobp.2010.05.026 10.1259/dmfr/30642039 10.1016/j.radonc.2015.12.029 10.1016/j.ijrobp.2017.06.002 10.1002/mp.13890 10.1002/mp.13583 10.1200/JCO.2010.28.5478 10.1016/j.radonc.2019.03.026 10.1016/j.canlet.2017.06.004 10.1088/1361-6560/abcd17 10.1016/j.ijrobp.2015.11.011 10.1016/0360-3016(95)02120-5 10.1109/TPAMI.2006.79 10.1002/mp.14114 10.1088/0954-898X_6_3_011 |
| ContentType | Journal Article |
| Copyright | 2021 2021 Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology. 2021 Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology. 2021 |
| Copyright_xml | – notice: 2021 – notice: 2021 Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology. – notice: 2021 Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology. 2021 |
| DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.1016/j.phro.2021.05.007 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2405-6316 |
| EndPage | 24 |
| ExternalDocumentID | oai_doaj_org_article_8881a56095ef4d719916d5f415ccfc6e PMC8295850 10_1016_j_phro_2021_05_007 S2405631621000300 |
| GroupedDBID | .1- .FO 0R~ AAEDW AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADVLN AEUPX AFJKZ AFPUW AFRHN AFTJW AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ M41 M~E O9- OK1 ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH NCXOZ RIG AAYXX CITATION 7X8 5PM |
| ID | FETCH-LOGICAL-c549t-1a9b26d881fb62cc3272b616f37821ba8488bf4442480d5cd664a6ac18b469e23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 55 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694711800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2405-6316 |
| IngestDate | Fri Oct 03 12:42:57 EDT 2025 Thu Aug 21 14:09:15 EDT 2025 Thu Jul 10 23:15:32 EDT 2025 Tue Nov 18 22:34:27 EST 2025 Thu Nov 13 04:22:17 EST 2025 Thu Jul 20 20:14:14 EDT 2023 Tue Aug 26 17:19:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Automation Radiation therapy Data mining Artificial intelligence Machine learning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c549t-1a9b26d881fb62cc3272b616f37821ba8488bf4442480d5cd664a6ac18b469e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://doaj.org/article/8881a56095ef4d719916d5f415ccfc6e |
| PMID | 34307915 |
| PQID | 2555344351 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8881a56095ef4d719916d5f415ccfc6e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8295850 proquest_miscellaneous_2555344351 crossref_primary_10_1016_j_phro_2021_05_007 crossref_citationtrail_10_1016_j_phro_2021_05_007 elsevier_sciencedirect_doi_10_1016_j_phro_2021_05_007 elsevier_clinicalkey_doi_10_1016_j_phro_2021_05_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Physics and imaging in radiation oncology |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Hsu, Cao, Huang, Feng, Balter (b0685) 2013; 58 Jochems, Deist, van Soest, Eble, Bulens, Coucke (b0320) 2016; 121 Huff, Weisman, Jeraj (b0310) 2021; 66 Traverso, van Soest, Wee, Dekker (b0865) 2018; 45 Deist, Dankers, Ojha, Scott Marshall, Janssen, Faivre-Finn (b0155) 2020; 144 Moore, Brame, Low, Mutic (b0635) 2011; 81 Lustberg, van Soest, Gooding, Peressutti, Aljabar, van der Stoep (b0010) 2018; 126 Tanaka, Sanada, Sakuta, Kawashima (b0760) 2015; 60 Jurkovic, Stathakis, Papanikolaou, Mavroidis (b0815) 2016; 2 Machine Learning in Radiation Oncology – Theory and Applications Springer; 2015. Park, Kim, Kim, Park, Kim, Cho (b0300) 2020; 30 Nguyen, Jia, Sher, Lin, Iqbal, Liu (b0580) 2019; 64 Gross, Honnorat, Varol, Wallner, Trappanese, Sharp (b0095) 2016; 6 Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Cham: Springer International Publishing; 2015. p. 234-41 doi: 10.1007/978-3-319-24574-4_28. Klement, Allgäuer, Appold, Dieckmann, Ernst, Ganswindt (b0190) 2014; 88 Kawamoto, Houlihan, Balas, Lobach (b0340) 2005; 330 Tol, Delaney, Dahele, Slotman, Verbakel (b0540) 2015; 91 Kang, Schwartz, Flickinger, Beriwal (b0070) 2015; 93 Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. International Conference on Learning Representations (ICLR). San Diego, CA, USA2015. Pella, Cambria, Riboldi, Jereczek-Fossa, Fodor, Zerini (b0220) 2011; 38 Kosmin, Ledsam, Romera-Paredes, Mendes, Moinuddin, de Souza (b0455) 2019; 135 Tong, Laura, Xiaoli, Nuno, Steve (b0740) 2009; 54 LeCun, Bengio, Hinton (b0160) 2015; 521 Zhovannik, Bussink, Traverso, Shi, Kalendralis, Wee (b0860) 2019; 19 Chu C, De Fauw J, Tomasev N, Paredes BR, Hughes C, Ledsam J, et al. Applying machine learning to automated segmentation of head and neck tumour volumes and organs at risk on radiotherapy planning CT and MRI scans. F1000Research. 2016;5 doi: 10.12688/f1000research.9525.1. Men, Zhang, Chen, Chen, Tang, Wang (b0475) 2018; 50 Keall, Nguyen, O'Brien, Hewson, Ball, Poulsen (b0660) 2020; 107 Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D. A Survey of Methods for Explaining Black Box Models. ACM Comput Surv. 2018;51:Article 93; doi: 10.1145/3236009. Skrobala, Malicki (b0505) 2014; 111 Otto, Osterberg, Salgado, Scherr, Shariat (b0330) 2015; 193 Nomura, Xu, Shirato, Shimizu, Xing (b0830) 2019; 46 Tucker, Li, Xu, Gomez, Yuan, Yu (b0285) 2013; 85 Liu, Lei, Wang, Wang, Ren, Lin (b0695) 2019; 64 Bukhari, Hong (b0795) 2015; 60 Ibragimov, Xing (b0450) 2017; 44 Ch (b0410) 2013 Heus, Damen, Pajouheshnia, Scholten, Reitsma, Collins (b0295) 2018; 16 Wang, Tyagi, Rimner, Hu, Veeraraghavan, Li (b0480) 2019; 131 Krauss, Nill, Oelfke (b0765) 2011; 56 Marks, Yorke, Jackson, Ten Haken, Constine, Eisbruch (b0205) 2010; 76 Nadeem, Piyush, Rodney, Olafur, Weihua, Bernard (b0775) 2009; 54 Chanyavanich, Das, Lee, Lo (b0545) 2011; 38 Dekker A, Dehing-Oberije C, De Ruysscher D, Lambin P, Komati K, Fung G, et al. Survival prediction in lung cancer treated with radiotherapy: Bayesian networks vs. support vector machines in handling missing data. International Conference on Machine Learning and Applications (ICMLA): IEEE; 2009. p. 494-7. doi: 10.1109/ICMLA.2009.92. Yin, Liao, Huang, Liu, Yuan, Gomez (b0270) 2011; 6 Lambin, Leijenaar, Deist, Peerlings, de Jong, van Timmeren (b0060) 2017; 14 Li, Yao, Yao (b0515) 2004; 49 Han (b0690) 2017; 44 Dean, Wong, Welsh, Jones, Schick, Newbold (b0210) 2016; 120 Xian, Lampert, Schiele, Akata (b0115) 2019; 41 Batumalai, Jameson, King, Walker, Slater, Dundas (b0045) 2020; 16 Brock (b0405) 2013 Shariat, Kattan, Vickers, Karakiewicz, Scardino (b0350) 2009; 5 Goodfellow IP-A, J; Mirza, M; Xu, B; Warde-Farley, D; Ozair, S; Courville, A; Bengio, Y. Generative Adversarial Nets. Advances in Neural Information Processing Systems 27 (NIPS 2014). Montreal, Quebec, Canada2014. p. 2672-80. Anas EMA, Nouranian S, Mahdavi SS, Spadinger I, Morris WJ, Salcudean SE, et al. Clinical Target-Volume Delineation in Prostate Brachytherapy Using Residual Neural Networks. International Conference on Medical Image Computing and Computer-Assisted Intervention: Springer; 2017. p. 365-73 DOI: 10.1007/978-3-319-66179-7_42. Keall, Mageras, Balter, Emery, Forster, Jiang (b0725) 2006; 33 Bangert, Oelfke (b0500) 2010; 55 Mackay (b0120) 1995; 6 Chaney EL, Pizer SM. Ch 10 Deformable Shape Models for Image Segmentation. In: Brock KK, editor. Image processing in radiation therapy: CRC Press; 2013. Schreibmann E, Fox TH. Ch 12 Atlas-Based Segmentation: Concepts and Applications. In: Brock KK, editor. Image processing in radiation therapy: CRC Press; 2013. Good, Lo, Lee, Wu, Yin, Das (b0640) 2013; 87 Zhang, He, Ouyang, Gu, Dong, Zhang (b0250) 2017; 403 Vinod, Jameson, Min, Holloway (b0400) 2016; 121 Liu, Miao, Huang, Wang, Wang, Zhai (b0835) 2020; 47 Hansen, Landry, Kamp, Li, Belka, Parodi (b0825) 2018; 45 Vial, Stirling, Field, Ros, Ritz, Carolan (b0065) 2018; 7 Balasubramanian, Shamsuddin, Prabhakaran, Sawant (b0800) 2017; 62 Nyflot, Thammasorn, Wootton, Ford, Chaovalitwongse (b0675) 2019; 46 Shen, Nguyen, Chen, Gonzalez, McBeth, Qin (b0530) 2020; 47 Damiani A, Vallati M, Gatta R, Dinapoli N, Jochems A, Deist T, et al. Distributed Learning to Protect Privacy in Multi-centric Clinical Studies. In: Holmes JH, Bellazzi R, Sacchi L, Peek N, editors. Artif Intell Med. Cham: Springer International Publishing; 2015. p. 65-75. Fei-Fei, Fergus, Perona (b0110) 2006; 28 Teo MTW, Landi D, Taylor CF, Elliott F, Vaslin L, Cox DG, et al. The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis. 2012;33:581-6; DOI: 10.1093/carcin/bgr300. Hsu, DuPre, Peng, Tome (b0680) 2020; 21 Wang, Liu, Zhang, Deng (b0710) 2019; 9 Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors. Advances in Neural Information Processing Systems 25: Curran Associates, Inc.; 2012. p. 1097-105. Salakhutdinov, Tenenbaum, Torralba (b0175) 2013; 35 Chen, Men, Li, Yi, Dai (b0585) 2019; 46 Willoughby, Starkschall, Janjan, Rosen (b0625) 1996; 34 Xing, Nguyen, Lu, Yang, Jiang (b0595) 2020; 47 Cheng, Roelofs, Ramaekers, Eekers, van Soest, Lustberg (b0370) 2016; 118 Mahmood R, Babier A, McNiven A, Diamant A, Chan TCY. Automated Treatment Planning in Radiation Therapy using Generative Adversarial Networks. In: Finale D-V, Jim F, Ken J, David K, Rajesh R, Byron W, et al., editors. Proceedings of the 3rd Machine Learning for Healthcare Conference. Proceedings of Machine Learning Research: PMLR; 2018. p. 484–99. Cunliffe, Armato, Castillo, Pham, Guerrero, Al-Hallaq (b0255) 2015; 91 Lambin, van Stiphout, Starmans, Rios-Velazquez, Nalbantov, Aerts (b0180) 2013; 10 Mylonas, Keall, Booth, Shieh, Eade, Poulsen (b0735) 2019; 46 Kerns, Ostrer, Rosenstein (b0265) 2014; 4 Zhao, Shen, Han, Yang, Cheng, Toesca (b0755) 2019; 105 Bishop (b0080) 2006 Hawkins, Korecki, Balagurunathan, Gu, Kumar, Basu (b0235) 2014; 2 Wu, Zhu (b0520) 2001; 46 Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5 DOI: 10.1038/srep13087. Volk, Llewellyn-Thomas, Stacey, Elwyn (b0390) 2013; 13 Kazemifar, McGuire, Timmerman, Wardak, Nguyen, Park (b0700) 2019; 136 Bossi, Miceli, Granata, Naimo, Infante, Locati (b0140) 2018; 100 Schreibmann, Lahanas, Xing, Baltas (b0490) 2004; 49 Dekker, Vinod, Holloway, Oberije, George, Goozee (b0130) 2014; 113 Shiraishi, Moore (b0570) 2016; 43 Nguyen, Long, Jia, Lu, Gu, Iqbal (b0600) 2019; 9 Ruan, Keall (b0780) 2010; 55 Lin, Maire, Belongie, Hays, Perona, Ramanan (b0430) 2014 Slomka, Dey, Sitek, Motwani, Berman, Germano (b0090) 2017; 14 Oh, Craft, Al Lozi, Vaidya, Meng, Deasy (b0195) 2011; 56 Schulze, Heil, Groβ, Bruellmann, Dranischnikow, Schwanecke (b0820) 2011; 40 Sahiner, Pezeshk, Hadjiiski, Wang, Drukker, Cha (b0050) 2019; 46 Ghahramani (b0100) 2015; 521 Men, Chen, Zhang, Zhang, Dai, Yi (b0465) 2017; 7 Candido dos Reis, Wishart, Dicks, Greenberg, Rashbass, Schmidt (b0360) 2017; 19 Zhu, Ge, Li, Thongphiew, Yin, Wu (b0645) 2011; 38 Ruan (b0785) 2010; 55 Chen, Jabbour, Qin, Haffty, Yue (b0805) 2013; 40 Delaney, Tol, Dahele, Cuijpers, Slotman, Verbakel (b0630) 2016; 94 Lambin, Zindler, Vanneste, van de Voorde, Jacobs, Eekers (b0025) 2015; 54 Men, Dai, Li (b0425) 2017; 44 Wu, Zhu, Dai, Wang (b0525) 2000; 45 Wu, Ricchetti, Sanguineti, Kazhdan, Simari, Jacques (b0535) 2011; 79 Huang G. LZ, van der Maaten L., Weinberger K. Q. Densely connected neural networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI2017. p. 2261-9. doi: 10.1109/CVPR.2017.243. Skripcak, Belka, Bosch, Brink, Brunner, Budach (b0325) 2014; 113 Bangert, Ziegenhein, Oelfke (b0495) 2012; 57 Amit, Purdie, Levinshtein, Hope, Lindsay, Marshall (b0485) 2015; 42 Zwanenburg, Vallieres, Abdalah, Aerts, Andrearczyk, Apte (b0870) 2020; 295 Markham, Wachter, Agarwal, Bertagnolli, Chang, Dale (b0020) 2020; 38 Fu, Lei, Wang, Higgins, Bradley, Curran (b0840) 2020; 47 Rai, Holloway, Brink, Field, Christiansen, Sun (b0855) 2020; 47 Tseng, Wei, Cui, Luo, Ten Haken, El Naqa (b0075) 2020; 98 Gupta, Kim, Vineberg, Balter (b0705) 2019; 9 Wang, Zolnay, Incrocci, Joosten, McNutt, Heijmen (b0555) 2013; 107 Abernethy, Etheredge, Ganz, Wallace, German, Neti (b0030) 2010; 28 Jaspers, Smeulers, Vermeulen, Peute (b0345) 2011; 18 Brouwer, Dinkla, Vandewinckele, Crijns, Claessens, Verellen (b0040) 2020; 16 Olivotto, Bajdik, Ravdin, Speers, Coldman, Norris (b0355) 2005; 23 Li, Carmona, Sirak, Kasaova, Followill, Michalski (b0650) 2017; 97 Neylon, Min, Low, Santhanam (b0850) 2017; 44 Clark, Gagliardi, Heijmen, Malicki, Thorwarth, Verellen (b0875) 2019; 11 Li, Yao, Yao, Chen (b0510) 2005; 50 Engelhardt, Révész, Tamminga, Punt, Koopman, Onwuteaka-Philipsen (b0365) 2018; 17 Harms, Lei, Wang, Zhang, Zhou, Tang (b0670) 2019; 46 Lambin, Zindler, Vanneste, De Voorde, Eekers, Compter (b0035) 2017; 109 Galib, 10.1016/j.phro.2021.05.007_b0415 Balasubramanian (10.1016/j.phro.2021.05.007_b0800) 2017; 62 Bukhari (10.1016/j.phro.2021.05.007_b0795) 2015; 60 Gargett (10.1016/j.phro.2021.05.007_b0730) 2019; 14 Mackay (10.1016/j.phro.2021.05.007_b0120) 1995; 6 Schreibmann (10.1016/j.phro.2021.05.007_b0490) 2004; 49 Wang (10.1016/j.phro.2021.05.007_b0710) 2019; 9 Tol (10.1016/j.phro.2021.05.007_b0540) 2015; 91 Liu (10.1016/j.phro.2021.05.007_b0695) 2019; 64 Marcu (10.1016/j.phro.2021.05.007_b0225) 2015; 2015 Ruan (10.1016/j.phro.2021.05.007_b0785) 2010; 55 Zhang (10.1016/j.phro.2021.05.007_b0250) 2017; 403 Jordan (10.1016/j.phro.2021.05.007_b0085) 2015; 349 10.1016/j.phro.2021.05.007_b0135 Reilly (10.1016/j.phro.2021.05.007_b0335) 2006; 144 10.1016/j.phro.2021.05.007_b0305 Tong (10.1016/j.phro.2021.05.007_b0745) 2009; 54 Oberije (10.1016/j.phro.2021.05.007_b0015) 2014; 112 Pella (10.1016/j.phro.2021.05.007_b0220) 2011; 38 Tseng (10.1016/j.phro.2021.05.007_b0075) 2020; 98 Slomka (10.1016/j.phro.2021.05.007_b0090) 2017; 14 Neylon (10.1016/j.phro.2021.05.007_b0850) 2017; 44 Mylonas (10.1016/j.phro.2021.05.007_b0735) 2019; 46 Gama (10.1016/j.phro.2021.05.007_b0125) 2014; 46 Deist (10.1016/j.phro.2021.05.007_b0155) 2020; 144 10.1016/j.phro.2021.05.007_b0260 Shen (10.1016/j.phro.2021.05.007_b0530) 2020; 47 Heus (10.1016/j.phro.2021.05.007_b0295) 2018; 16 Lambin (10.1016/j.phro.2021.05.007_b0025) 2015; 54 Krauss (10.1016/j.phro.2021.05.007_b0765) 2011; 56 10.1016/j.phro.2021.05.007_b0420 Men (10.1016/j.phro.2021.05.007_b0425) 2017; 44 LeCun (10.1016/j.phro.2021.05.007_b0160) 2015; 521 Shahriari (10.1016/j.phro.2021.05.007_b0170) 2016; 104 Klement (10.1016/j.phro.2021.05.007_b0190) 2014; 88 Men (10.1016/j.phro.2021.05.007_b0475) 2018; 50 Vandewinckele (10.1016/j.phro.2021.05.007_b0055) 2020; 153 Jarrett (10.1016/j.phro.2021.05.007_b0005) 2019; 92 Olivotto (10.1016/j.phro.2021.05.007_b0355) 2005; 23 Gross (10.1016/j.phro.2021.05.007_b0095) 2016; 6 Zhao (10.1016/j.phro.2021.05.007_b0755) 2019; 105 Nomura (10.1016/j.phro.2021.05.007_b0830) 2019; 46 Rai (10.1016/j.phro.2021.05.007_b0855) 2020; 47 Willoughby (10.1016/j.phro.2021.05.007_b0625) 1996; 34 Wu (10.1016/j.phro.2021.05.007_b0525) 2000; 45 Skrobala (10.1016/j.phro.2021.05.007_b0505) 2014; 111 Wang (10.1016/j.phro.2021.05.007_b0480) 2019; 131 Fei-Fei (10.1016/j.phro.2021.05.007_b0110) 2006; 28 Vinod (10.1016/j.phro.2021.05.007_b0400) 2016; 121 Zhu (10.1016/j.phro.2021.05.007_b0645) 2011; 38 Ch (10.1016/j.phro.2021.05.007_b0410) 2013 Nguyen (10.1016/j.phro.2021.05.007_b0580) 2019; 64 Clark (10.1016/j.phro.2021.05.007_b0875) 2019; 11 Shariat (10.1016/j.phro.2021.05.007_b0350) 2009; 5 Vial (10.1016/j.phro.2021.05.007_b0065) 2018; 7 Younge (10.1016/j.phro.2021.05.007_b0655) 2018 Traverso (10.1016/j.phro.2021.05.007_b0865) 2018; 45 Li (10.1016/j.phro.2021.05.007_b0510) 2005; 50 Park (10.1016/j.phro.2021.05.007_b0300) 2020; 30 Skripcak (10.1016/j.phro.2021.05.007_b0325) 2014; 113 Oh (10.1016/j.phro.2021.05.007_b0195) 2011; 56 Wu (10.1016/j.phro.2021.05.007_b0560) 2013; 40 Ghahramani (10.1016/j.phro.2021.05.007_b0100) 2015; 521 Austin (10.1016/j.phro.2021.05.007_b0385) 2015; 175 Moore (10.1016/j.phro.2021.05.007_b0635) 2011; 81 Zhao (10.1016/j.phro.2021.05.007_b0665) 2019; 140 Fu (10.1016/j.phro.2021.05.007_b0840) 2020; 47 Jameson (10.1016/j.phro.2021.05.007_b0395) 2010; 54 Sahiner (10.1016/j.phro.2021.05.007_b0050) 2019; 46 Jaspers (10.1016/j.phro.2021.05.007_b0345) 2011; 18 Dekker (10.1016/j.phro.2021.05.007_b0130) 2014; 113 Kerns (10.1016/j.phro.2021.05.007_b0265) 2014; 4 Hansen (10.1016/j.phro.2021.05.007_b0825) 2018; 45 Tong (10.1016/j.phro.2021.05.007_b0740) 2009; 54 Barragán‐Montero (10.1016/j.phro.2021.05.007_b0590) 2019; 46 Han (10.1016/j.phro.2021.05.007_b0690) 2017; 44 Liu (10.1016/j.phro.2021.05.007_b0835) 2020; 47 10.1016/j.phro.2021.05.007_b0615 Kazemifar (10.1016/j.phro.2021.05.007_b0700) 2019; 136 Tatinati (10.1016/j.phro.2021.05.007_b0790) 2014; 2014 Hawkins (10.1016/j.phro.2021.05.007_b0235) 2014; 2 Shieh (10.1016/j.phro.2021.05.007_b0750) 2017; 62 Keall (10.1016/j.phro.2021.05.007_b0725) 2006; 33 Cunliffe (10.1016/j.phro.2021.05.007_b0255) 2015; 91 Nyflot (10.1016/j.phro.2021.05.007_b0675) 2019; 46 Xian (10.1016/j.phro.2021.05.007_b0115) 2019; 41 Cheng (10.1016/j.phro.2021.05.007_b0370) 2016; 118 Dunne (10.1016/j.phro.2021.05.007_b0375) 2015; 276 Lambin (10.1016/j.phro.2021.05.007_b0035) 2017; 109 Ou (10.1016/j.phro.2021.05.007_b0240) 2017; 71 Huff (10.1016/j.phro.2021.05.007_b0310) 2021; 66 Bogowicz (10.1016/j.phro.2021.05.007_b0245) 2017; 99 Tanaka (10.1016/j.phro.2021.05.007_b0760) 2015; 60 Brock (10.1016/j.phro.2021.05.007_b0405) 2013 Ibragimov (10.1016/j.phro.2021.05.007_b0450) 2017; 44 10.1016/j.phro.2021.05.007_b0610 Delaney (10.1016/j.phro.2021.05.007_b0630) 2016; 94 Wu (10.1016/j.phro.2021.05.007_b0535) 2011; 79 Mak (10.1016/j.phro.2021.05.007_b0280) 2015; 17 Kosmin (10.1016/j.phro.2021.05.007_b0455) 2019; 135 Lambin (10.1016/j.phro.2021.05.007_b0180) 2013; 10 Ernst (10.1016/j.phro.2021.05.007_b0770) 2009; 4 Jurkovic (10.1016/j.phro.2021.05.007_b0815) 2016; 2 Li (10.1016/j.phro.2021.05.007_b0650) 2017; 97 Jochems (10.1016/j.phro.2021.05.007_b0320) 2016; 121 Zhovannik (10.1016/j.phro.2021.05.007_b0860) 2019; 19 Shiraishi (10.1016/j.phro.2021.05.007_b0570) 2016; 43 Candido dos Reis (10.1016/j.phro.2021.05.007_b0360) 2017; 19 Xing (10.1016/j.phro.2021.05.007_b0595) 2020; 47 Bishop (10.1016/j.phro.2021.05.007_b0080) 2006 Esteva (10.1016/j.phro.2021.05.007_b0435) 2017; 542 Ziemer (10.1016/j.phro.2021.05.007_b0565) 2017; 44 10.1016/j.phro.2021.05.007_b0185 El Naqa (10.1016/j.phro.2021.05.007_b0215) 2009; 54 Men (10.1016/j.phro.2021.05.007_b0465) 2017; 7 Salakhutdinov (10.1016/j.phro.2021.05.007_b0175) 2013; 35 Marks (10.1016/j.phro.2021.05.007_b0205) 2010; 76 Wu (10.1016/j.phro.2021.05.007_b0520) 2001; 46 Fan (10.1016/j.phro.2021.05.007_b0575) 2019; 46 10.1016/j.phro.2021.05.007_b0620 10.1016/j.phro.2021.05.007_b0105 Wong (10.1016/j.phro.2021.05.007_b0460) 2020; 144 McKenzie (10.1016/j.phro.2021.05.007_b0715) 2020; 47 Keall (10.1016/j.phro.2021.05.007_b0660) 2020; 107 10.1016/j.phro.2021.05.007_b0315 Trebeschi (10.1016/j.phro.2021.05.007_b0470) 2017; 7 Collins (10.1016/j.phro.2021.05.007_b0290) 2015; 13 Galib (10.1016/j.phro.2021.05.007_b0845) 2020; 47 Harms (10.1016/j.phro.2021.05.007_b0670) 2019; 46 Chen (10.1016/j.phro.2021.05.007_b0805) 2013; 40 Parmar (10.1016/j.phro.2021.05.007_b0200) 2015; 5 Zwanenburg (10.1016/j.phro.2021.05.007_b0870) 2020; 295 Abernethy (10.1016/j.phro.2021.05.007_b0030) 2010; 28 DeMasi (10.1016/j.phro.2021.05.007_b0145) 2017; 12 10.1016/j.phro.2021.05.007_b0150 Ruan (10.1016/j.phro.2021.05.007_b0780) 2010; 55 Mera Iglesias (10.1016/j.phro.2021.05.007_b0230) 2015; 2015 Yin (10.1016/j.phro.2021.05.007_b0270) 2011; 6 Good (10.1016/j.phro.2021.05.007_b0640) 2013; 87 Gupta (10.1016/j.phro.2021.05.007_b0705) 2019; 9 10.1016/j.phro.2021.05.007_b0275 Amit (10.1016/j.phro.2021.05.007_b0485) 2015; 42 Schulze (10.1016/j.phro.2021.05.007_b0820) 2011; 40 Kane (10.1016/j.phro.2021.05.007_b0380) 2014; 64 Hsu (10.1016/j.phro.2021.05.007_b0680) 2020; 21 Nguyen (10.1016/j.phro.2021.05.007_b0600) 2019; 9 Wang (10.1016/j.phro.2021.05.007_b0555) 2013; 107 Lambin (10.1016/j.phro.2021.05.007_b0060) 2017; 14 Otto (10.1016/j.phro.2021.05.007_b0330) 2015; 193 Nadeem (10.1016/j.phro.2021.05.007_b0775) 2009; 54 Bossi (10.1016/j.phro.2021.05.007_b0140) 2018; 100 Tucker (10.1016/j.phro.2021.05.007_b0285) 2013; 85 Li (10.1016/j.phro.2021.05.007_b0515) 2004; 49 Batumalai (10.1016/j.phro.2021.05.007_b0045) 2020; 16 10.1016/j.phro.2021.05.007_b0605 Hsu (10.1016/j.phro.2021.05.007_b0685) 2013; 58 Kawamoto (10.1016/j.phro.2021.05.007_b0340) 2005; 330 Guang (10.1016/j.phro.2021.05.007_b0810) 2015; 1 Volk (10.1016/j.phro.2021.05.007_b0390) 2013; 13 Markham (10.1016/j.phro.2021.05.007_b0020) 2020; 38 Chen (10.1016/j.phro.2021.05.007_b0585) 2019; 46 Bangert (10.1016/j.phro.2021.05.007_b0500) 2010; 55 Chanyavanich (10.1016/j.phro.2021.05.007_b0545) 2011; 38 Dean (10.1016/j.phro.2021.05.007_b0210) 2016; 120 Lustberg (10.1016/j.phro.2021.05.007_b0010) 2018; 126 Kang (10.1016/j.phro.2021.05.007_b0070) 2015; 93 10.1016/j.phro.2021.05.007_b0165 10.1016/j.phro.2021.05.007_b0440 Brouwer (10.1016/j.phro.2021.05.007_b0040) 2020; 16 Engelhardt (10.1016/j.phro.2021.05.007_b0365) 2018; 17 Lin (10.1016/j.phro.2021.05.007_b0430) 2014 Bangert (10.1016/j.phro.2021.05.007_b0495) 2012; 57 10.1016/j.phro.2021.05.007_b0445 Wells (10.1016/j.phro.2021.05.007_b0550) 1998; 41 10.1016/j.phro.2021.05.007_b0720 |
| References_xml | – volume: 17 start-page: e1 year: 2018 end-page: e12 ident: b0365 article-title: Clinical usefulness of tools to support decision-making for palliative treatment of metastatic colorectal cancer: a systematic review publication-title: Clin Colorectal Cancer. – volume: 91 start-page: 612 year: 2015 end-page: 620 ident: b0540 article-title: Evaluation of a knowledge-based planning solution for head and neck cancer publication-title: Int J Radiat Oncol Biol Phys – volume: 41 start-page: 173 year: 1998 end-page: 182 ident: b0550 article-title: A medical expert system approach using artificial neural networks for standardized treatment planning <sup>1</sup> publication-title: Int J Radiat Oncol Biol Phys – volume: 9 start-page: 964 year: 2019 ident: b0705 article-title: Generation of synthetic CT images from MRI for treatment planning and patient positioning using a 3-channel U-net trained on sagittal images publication-title: Front Oncol – volume: 46 start-page: 3998 year: 2019 end-page: 4009 ident: b0670 article-title: Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography publication-title: Med Phys – volume: 21 start-page: 136 year: 2020 end-page: 143 ident: b0680 article-title: A technique to generate synthetic CT from MRI for abdominal radiotherapy publication-title: J Appl Clin Med Phys – volume: 16 start-page: 58 year: 2020 end-page: 64 ident: b0045 article-title: Cautiously optimistic: a survey of radiation oncology professionals' perceptions of automation in radiotherapy planning publication-title: Tech Innov Patient Support Radiat Oncol. – volume: 131 start-page: 101 year: 2019 end-page: 107 ident: b0480 article-title: Segmenting lung tumors on longitudinal imaging studies via a patient-specific adaptive convolutional neural network publication-title: Radiother Oncol – volume: 47 start-page: 2329 year: 2020 end-page: 2336 ident: b0530 article-title: Operating a treatment planning system using a deep-reinforcement learning-based virtual treatment planner for prostate cancer intensity-modulated radiation therapy treatment planning publication-title: Med Phys – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: b0435 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – volume: 44 start-page: 5001 year: 2017 end-page: 5009 ident: b0565 article-title: Heuristic knowledge-based planning for single-isocenter stereotactic radiosurgery to multiple brain metastases publication-title: Med Phys – volume: 46 start-page: 1085 year: 2001 end-page: 1099 ident: b0520 article-title: An optimization method for importance factors and beam weights based on genetic algorithms for radiotherapy treatment planning publication-title: Phys Med Biol – volume: 40 start-page: 265 year: 2011 end-page: 273 ident: b0820 article-title: Artefacts in CBCT: a review publication-title: Dentomaxillofac Radiol – reference: Chu C, De Fauw J, Tomasev N, Paredes BR, Hughes C, Ledsam J, et al. Applying machine learning to automated segmentation of head and neck tumour volumes and organs at risk on radiotherapy planning CT and MRI scans. F1000Research. 2016;5 doi: 10.12688/f1000research.9525.1. – volume: 2015 start-page: 1 year: 2015 end-page: 10 ident: b0230 article-title: Multimodality functional imaging in radiation therapy planning: relationships between dynamic contrast-enhanced MRI, diffusion-weighted MRI, and 18F-FDG PET publication-title: Comput Math Methods Med – volume: 11 start-page: 71 year: 2019 end-page: 75 ident: b0875 article-title: Adapting training for medical physicists to match future trends in radiation oncology publication-title: Phys Imaging Radiat Oncol – volume: 13 start-page: S1 year: 2013 ident: b0390 article-title: Ten years of the International Patient Decision Aid Standards Collaboration: evolution of the core dimensions for assessing the quality of patient decision aids publication-title: BMC Med Inf Decis Making – volume: 94 start-page: 469 year: 2016 end-page: 477 ident: b0630 article-title: Effect of dosimetric outliers on the performance of a commercial knowledge-based planning solution publication-title: Int J Radiat Oncol Biol Phys – volume: 135 start-page: 130 year: 2019 end-page: 140 ident: b0455 article-title: Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer publication-title: Radiother Oncol – volume: 16 start-page: 144 year: 2020 end-page: 148 ident: b0040 article-title: Machine learning applications in radiation oncology: Current use and needs to support clinical implementation publication-title: Phys Imaging Radiat Oncol. – volume: 4 start-page: 155 year: 2014 end-page: 165 ident: b0265 article-title: Radiogenomics: using genetics to identify cancer patients at risk for development of adverse effects following radiotherapy publication-title: Cancer Discov – reference: Schreibmann E, Fox TH. Ch 12 Atlas-Based Segmentation: Concepts and Applications. In: Brock KK, editor. Image processing in radiation therapy: CRC Press; 2013. – volume: 12 start-page: e0184604 year: 2017 ident: b0145 article-title: Meaningless comparisons lead to false optimism in medical machine learning publication-title: PLoS ONE – volume: 2 start-page: 025012 year: 2016 ident: b0815 article-title: Prediction of lung tumor motion extent through artificial neural network (ANN) using tumor size and location data publication-title: Biomed Phys Eng Express – volume: 521 start-page: 452 year: 2015 end-page: 459 ident: b0100 article-title: Probabilistic machine learning and artificial intelligence publication-title: Nature – volume: 54 start-page: 1555 year: 2009 end-page: 1563 ident: b0745 article-title: Markerless gating for lung cancer radiotherapy based on machine learning techniques publication-title: Phys Med Biol – volume: 85 start-page: 251 year: 2013 end-page: 257 ident: b0285 article-title: Incorporating single-nucleotide polymorphisms into the lyman model to improve prediction of radiation pneumonitis publication-title: Int J Radiat Oncol Biol Phys – volume: 46 start-page: 56 year: 2019 end-page: 64 ident: b0585 article-title: A feasibility study on an automated method to generate patient-specific dose distributions for radiotherapy using deep learning publication-title: Med Phys – volume: 47 start-page: 1763 year: 2020 end-page: 1774 ident: b0840 article-title: LungRegNet: an unsupervised deformable image registration method for 4D-CT lung publication-title: Med Phys – volume: 1 start-page: 045015 year: 2015 ident: b0810 article-title: Automatic assessment of average diaphragm motion trajectory from 4DCT images through machine learning publication-title: Biomed Phys Eng Express – volume: 45 start-page: e854 year: 2018 end-page: e862 ident: b0865 article-title: The radiation oncology ontology (ROO): publishing linked data in radiation oncology using semantic web and ontology techniques publication-title: Med Phys – volume: 113 start-page: 47 year: 2014 end-page: 53 ident: b0130 article-title: Rapid learning in practice: a lung cancer survival decision support system in routine patient care data publication-title: Radiother Oncol – volume: 97 start-page: 164 year: 2017 end-page: 172 ident: b0650 article-title: Highly efficient training, refinement, and validation of a knowledge-based planning quality-control system for radiation therapy clinical trials publication-title: Int J Radiat Oncol Biol Phys – volume: 121 start-page: 459 year: 2016 end-page: 467 ident: b0320 article-title: Distributed learning: developing a predictive model based on data from multiple hospitals without data leaving the hospital–a real life proof of concept publication-title: Radiother Oncol – reference: Huang G. LZ, van der Maaten L., Weinberger K. Q. Densely connected neural networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI2017. p. 2261-9. doi: 10.1109/CVPR.2017.243. – volume: 14 start-page: 93 year: 2019 ident: b0730 article-title: Clinical impact of removing respiratory motion during liver SABR publication-title: Radiat Oncol. – reference: Anas EMA, Nouranian S, Mahdavi SS, Spadinger I, Morris WJ, Salcudean SE, et al. Clinical Target-Volume Delineation in Prostate Brachytherapy Using Residual Neural Networks. International Conference on Medical Image Computing and Computer-Assisted Intervention: Springer; 2017. p. 365-73 DOI: 10.1007/978-3-319-66179-7_42. – volume: 144 start-page: 201 year: 2006 ident: b0335 article-title: Translating clinical research into clinical practice: impact of using prediction rules to make decisions publication-title: Ann Intern Med – volume: 44 start-page: 6377 year: 2017 end-page: 6389 ident: b0425 article-title: Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks publication-title: Med Phys – volume: 46 start-page: e1 year: 2019 end-page: e36 ident: b0050 article-title: Deep learning in medical imaging and radiation therapy publication-title: Med Phys – volume: 92 start-page: 20190001 year: 2019 ident: b0005 article-title: Applications and limitations of machine learning in radiation oncology publication-title: Br J Radiol – volume: 14 start-page: 197 year: 2017 end-page: 212 ident: b0090 article-title: Cardiac imaging: working towards fully-automated machine analysis & interpretation publication-title: Expert Rev Med Devices – volume: 100 start-page: 1217 year: 2018 end-page: 1221 ident: b0140 article-title: Failure of further validation for survival nomograms in oropharyngeal cancer: issues and challenges publication-title: Int J Radiat Oncol Biol Phys – volume: 46 start-page: 370 year: 2019 end-page: 381 ident: b0575 article-title: Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique publication-title: Med Phys – volume: 45 start-page: 2547 year: 2000 end-page: 2558 ident: b0525 article-title: Selection and determination of beam weights based on genetic algorithms for conformal radiotherapy treatment planning publication-title: Phys Med Biol – volume: 60 start-page: N209 year: 2015 end-page: N218 ident: b0760 article-title: Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT) publication-title: Phys Med Biol – year: 2006 ident: b0080 article-title: Pattern recognition and machine learning – volume: 46 start-page: 1 year: 2014 end-page: 37 ident: b0125 article-title: A survey on concept drift adaptation publication-title: ACM Comput Surv – volume: 14 start-page: 749 year: 2017 end-page: 762 ident: b0060 article-title: Radiomics: the bridge between medical imaging and personalized medicine publication-title: Nat Rev Clin Oncol – volume: 55 start-page: 6023 year: 2010 end-page: 6037 ident: b0500 article-title: Spherical cluster analysis for beam angle optimization in intensity-modulated radiation therapy treatment planning publication-title: Phys Med Biol – volume: 144 start-page: 189 year: 2020 end-page: 200 ident: b0155 article-title: Distributed learning on 20 000+ lung cancer patients - The Personal Health Train publication-title: Radiother Oncol – volume: 19 start-page: 33 year: 2019 end-page: 38 ident: b0860 article-title: Learning from scanners: bias reduction and feature correction in radiomics publication-title: Clin Transl Radiat Oncol – volume: 17 start-page: 296 year: 2015 end-page: 302 ident: b0280 article-title: Significance of targeted therapy and genetic alterations in EGFR, ALK, or KRAS on survival in patients with non–small cell lung cancer treated with radiotherapy for brain metastases publication-title: Neuro Oncol – volume: 54 start-page: 981 year: 2009 end-page: 992 ident: b0740 article-title: Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy publication-title: Phys Med Biol – volume: 153 start-page: 55 year: 2020 end-page: 66 ident: b0055 article-title: Overview of artificial intelligence-based applications in radiotherapy: recommendations for implementation and quality assurance publication-title: Radiother Oncol – volume: 7 start-page: 803 year: 2018 end-page: 816 ident: b0065 article-title: The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review publication-title: Transl Cancer Res – volume: 54 start-page: S9 year: 2009 end-page: S30 ident: b0215 article-title: Predicting radiotherapy outcomes using statistical learning techniques publication-title: Phys Med Biol – volume: 107 start-page: 352 year: 2013 end-page: 357 ident: b0555 article-title: A quality control model that uses PTV-rectal distances to predict the lowest achievable rectum dose, improves IMRT planning for patients with prostate cancer publication-title: Radiother Oncol – volume: 41 start-page: 2251 year: 2019 end-page: 2265 ident: b0115 article-title: Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 349 start-page: 255 year: 2015 end-page: 260 ident: b0085 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science – volume: 23 start-page: 2716 year: 2005 end-page: 2725 ident: b0355 article-title: Population-based validation of the prognostic model ADJUVANT! for early breast cancer publication-title: J Clin Oncol – volume: 6 start-page: 469 year: 1995 end-page: 505 ident: b0120 article-title: Probable networks and plausible predictions — a review of practical Bayesian methods for supervised neural networks publication-title: Network: Computation in Neural Systems. – volume: 9 start-page: 1333 year: 2019 ident: b0710 article-title: Synthetic CT Generation Based on T2 Weighted MRI of Nasopharyngeal Carcinoma (NPC) Using a Deep Convolutional Neural Network (DCNN) publication-title: Front Oncol – volume: 175 start-page: 1213 year: 2015 end-page: 1221 ident: b0385 article-title: Tools to promote shared decision making in serious illness publication-title: JAMA Internal Med – volume: 57 start-page: 6707 year: 2012 end-page: 6723 ident: b0495 article-title: Characterizing the combinatorial beam angle selection problem publication-title: Phys Med Biol – volume: 56 start-page: 1635 year: 2011 end-page: 1651 ident: b0195 article-title: A Bayesian network approach for modeling local failure in lung cancer publication-title: Phys Med Biol – volume: 403 start-page: 21 year: 2017 end-page: 27 ident: b0250 article-title: Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma publication-title: Cancer Lett – volume: 46 start-page: 456 year: 2019 end-page: 464 ident: b0675 article-title: Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks publication-title: Med Phys – volume: 34 start-page: 923 year: 1996 end-page: 930 ident: b0625 article-title: Evaluation and scoring of radiotherapy treatment plans using an artificial neural network publication-title: Int J Radiat Oncol Biol Phys – volume: 18 start-page: 327 year: 2011 end-page: 334 ident: b0345 article-title: Effects of clinical decision-support systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic review findings publication-title: J Am Med Inform Assoc – volume: 19 year: 2017 ident: b0360 article-title: An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation publication-title: Breast Cancer Res – volume: 44 start-page: 4126 year: 2017 end-page: 4138 ident: b0850 article-title: A neural network approach for fast, automated quantification of DIR performance publication-title: Med Phys – volume: 295 start-page: 328 year: 2020 end-page: 338 ident: b0870 article-title: The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping publication-title: Radiology – volume: 54 start-page: 5735 year: 2009 end-page: 5748 ident: b0775 article-title: Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression publication-title: Phys Med Biol – volume: 47 start-page: 1249 year: 2020 end-page: 1257 ident: b0835 article-title: A deep learning method for producing ventilation images from 4DCT: First comparison with technegas SPECT ventilation publication-title: Med Phys – volume: 49 start-page: 747 year: 2004 end-page: 770 ident: b0490 article-title: Multiobjective evolutionary optimization of the number of beams, their orientations and weights for intensity-modulated radiation therapy publication-title: Phys Med Biol – volume: 107 start-page: 530 year: 2020 end-page: 538 ident: b0660 article-title: Real-time image-guided ablative prostate cancer radiation therapy: results from the TROG 15.01 SPARK trial publication-title: Int J Radiat Oncol Biol Phys – volume: 93 start-page: 1127 year: 2015 end-page: 1135 ident: b0070 article-title: Machine learning approaches for predicting radiation therapy outcomes: a clinician’s perspective publication-title: Int J Radiat Oncol Biol Phys – volume: 64 start-page: 145015 year: 2019 ident: b0695 article-title: MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method publication-title: Phys Med Biol – volume: 193 start-page: 1933 year: 2015 end-page: 1937 ident: b0330 article-title: Prostate cancer risk estimation tool use by members of the American Urological Association: a survey based study publication-title: J Urol – volume: 46 start-page: 3679 year: 2019 end-page: 3691 ident: b0590 article-title: Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations publication-title: Med Phys – reference: Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5 DOI: 10.1038/srep13087. – volume: 54 start-page: 401 year: 2010 end-page: 410 ident: b0395 article-title: A review of methods of analysis in contouring studies for radiation oncology publication-title: J Med Imaging Radiat Oncol. – reference: Mahmood R, Babier A, McNiven A, Diamant A, Chan TCY. Automated Treatment Planning in Radiation Therapy using Generative Adversarial Networks. In: Finale D-V, Jim F, Ken J, David K, Rajesh R, Byron W, et al., editors. Proceedings of the 3rd Machine Learning for Healthcare Conference. Proceedings of Machine Learning Research: PMLR; 2018. p. 484–99. – volume: 2015 start-page: 1 year: 2015 end-page: 2 ident: b0225 article-title: Predictive models of tumour response to treatment using functional imaging techniques publication-title: Comput Math Methods Med – volume: 33 start-page: 3874 year: 2006 end-page: 3900 ident: b0725 article-title: The management of respiratory motion in radiation oncology report of AAPM Task Group 76 publication-title: Med Phys – volume: 98 start-page: 344 year: 2020 end-page: 362 ident: b0075 article-title: Machine learning and imaging informatics in oncology publication-title: Oncology – volume: 10 start-page: 27 year: 2013 end-page: 40 ident: b0180 article-title: Predicting outcomes in radiation oncology—multifactorial decision support systems publication-title: Nat Rev Clin Oncol – volume: 46 start-page: 2286 year: 2019 end-page: 2297 ident: b0735 article-title: A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images publication-title: Med Phys – volume: 56 start-page: 5303 year: 2011 end-page: 5317 ident: b0765 article-title: The comparative performance of four respiratory motion predictors for real-time tumour tracking publication-title: Phys Med Biol – volume: 81 start-page: 545 year: 2011 end-page: 551 ident: b0635 article-title: Experience-based quality control of clinical intensity-modulated radiotherapy planning publication-title: Int J Radiat Oncol Biol Phys – volume: 6 start-page: e20055 year: 2011 ident: b0270 article-title: Polymorphisms of homologous recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy publication-title: PLoS ONE – volume: 79 start-page: 1241 year: 2011 end-page: 1247 ident: b0535 article-title: Data-driven approach to generating achievable dose-volume histogram objectives in intensity-modulated radiotherapy planning publication-title: Int J Radiat Oncol Biol Phys – volume: 120 start-page: 21 year: 2016 end-page: 27 ident: b0210 article-title: Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy publication-title: Radiother Oncol – volume: 105 start-page: 432 year: 2019 end-page: 439 ident: b0755 article-title: Markerless Pancreatic Tumor Target Localization Enabled By Deep Learning publication-title: Int J Radiat Oncol Biol Phys – volume: 140 start-page: 167 year: 2019 end-page: 174 ident: b0665 article-title: Incorporating imaging information from deep neural network layers into image guided radiation therapy (IGRT) publication-title: Radiother Oncol – volume: 50 start-page: 3491 year: 2005 end-page: 3514 ident: b0510 article-title: A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning publication-title: Phys Med Biol – volume: 121 start-page: 169 year: 2016 end-page: 179 ident: b0400 article-title: Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies publication-title: Radiother Oncol – volume: 2014 start-page: 4204 year: 2014 end-page: 4207 ident: b0790 article-title: Real-time prediction of respiratory motion traces for radiotherapy with ensemble learning publication-title: Conf Proc IEEE Eng Med Biol Soc. – reference: Teo MTW, Landi D, Taylor CF, Elliott F, Vaslin L, Cox DG, et al. The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis. 2012;33:581-6; DOI: 10.1093/carcin/bgr300. – volume: 38 start-page: 2515 year: 2011 end-page: 2522 ident: b0545 article-title: Knowledge-based IMRT treatment planning for prostate cancer publication-title: Med Phys – volume: 55 start-page: 1311 year: 2010 end-page: 1326 ident: b0785 article-title: Kernel density estimation-based real-time prediction for respiratory motion publication-title: Phys Med Biol – volume: 66 start-page: 04TR01 year: 2021 ident: b0310 article-title: Interpretation and visualization techniques for deep learning models in medical imaging publication-title: Phys Med Biol – volume: 4 start-page: 439 year: 2009 end-page: 447 ident: b0770 article-title: Forecasting respiratory motion with accurate online support vector regression (SVRpred) publication-title: Int J Comput Assist Radiol Surg – volume: 43 start-page: 378 year: 2016 end-page: 387 ident: b0570 article-title: Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy publication-title: Med Phys – volume: 112 start-page: 37 year: 2014 end-page: 43 ident: b0015 article-title: A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making publication-title: Radiother Oncol – volume: 118 start-page: 281 year: 2016 end-page: 285 ident: b0370 article-title: Development and evaluation of an online three-level proton vs photon decision support prototype for head and neck cancer – comparison of dose, toxicity and cost-effectiveness publication-title: Radiother Oncol – volume: 55 start-page: 3011 year: 2010 end-page: 3025 ident: b0780 article-title: Online prediction of respiratory motion: multidimensional processing with low-dimensional feature learning publication-title: Phys Med Biol – volume: 330 start-page: 765 year: 2005 ident: b0340 article-title: Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success publication-title: BMJ – volume: 144 start-page: 152 year: 2020 end-page: 158 ident: b0460 article-title: Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning publication-title: Radiother Oncol – volume: 62 start-page: 1791 year: 2017 end-page: 1809 ident: b0800 article-title: Predictive modeling of respiratory tumor motion for real-time prediction of baseline shifts publication-title: Phys Med Biol – volume: 76 start-page: S10 year: 2010 end-page: S19 ident: b0205 article-title: Use of normal tissue complication probability models in the clinic publication-title: Int J Radiat Oncol Biol Phys – volume: 60 start-page: 233 year: 2015 end-page: 252 ident: b0795 article-title: Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression publication-title: Phys Med Biol – volume: 42 start-page: 1992 year: 2015 end-page: 2005 ident: b0485 article-title: Automatic learning-based beam angle selection for thoracic IMRT publication-title: Med Phys – reference: Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D. A Survey of Methods for Explaining Black Box Models. ACM Comput Surv. 2018;51:Article 93; doi: 10.1145/3236009. – volume: 5 year: 2015 ident: b0200 article-title: Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front publication-title: Oncol. – volume: 49 start-page: 1915 year: 2004 end-page: 1932 ident: b0515 article-title: Automatic beam angle selection in IMRT planning using genetic algorithm publication-title: Phys Med Biol – volume: 7 year: 2017 ident: b0470 article-title: Deep Learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR publication-title: Sci Rep – volume: 109 start-page: 131 year: 2017 end-page: 153 ident: b0035 article-title: Decision support systems for personalized and participative radiation oncology publication-title: Adv Drug Deliv Rev – reference: Damiani A, Vallati M, Gatta R, Dinapoli N, Jochems A, Deist T, et al. Distributed Learning to Protect Privacy in Multi-centric Clinical Studies. In: Holmes JH, Bellazzi R, Sacchi L, Peek N, editors. Artif Intell Med. Cham: Springer International Publishing; 2015. p. 65-75. – volume: 28 start-page: 4268 year: 2010 end-page: 4274 ident: b0030 article-title: Rapid-learning system for cancer care publication-title: J Clin Oncol – volume: 35 start-page: 1958 year: 2013 end-page: 1971 ident: b0175 article-title: Learning with hierarchical-deep models publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 38 start-page: 2859 year: 2011 end-page: 2867 ident: b0220 article-title: Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy publication-title: Med Phys – start-page: 740 year: 2014 end-page: 755 ident: b0430 article-title: Microsoft coco: common objects in context publication-title: European conference on computer vision: Springer – volume: 91 start-page: 1048 year: 2015 end-page: 1056 ident: b0255 article-title: Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development publication-title: Int J Radiat Oncol Biol Phys – volume: 276 start-page: 167 year: 2015 end-page: 174 ident: b0375 article-title: Effect of evidence-based clinical decision support on the use and yield of CT pulmonary angiographic imaging in hospitalized patients publication-title: Radiology – year: 2013 ident: b0405 article-title: Image processing in radiation therapy – volume: 50 start-page: 13 year: 2018 end-page: 19 ident: b0475 article-title: Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning publication-title: Phys Med – volume: 47 start-page: 3054 year: 2020 end-page: 3063 ident: b0855 article-title: Multicenter evaluation of MRI-based radiomic features: a phantom study publication-title: Med Phys – volume: 5 start-page: 1555 year: 2009 end-page: 1584 ident: b0350 article-title: Critical review of prostate cancer predictive tools publication-title: Future Oncol – reference: Jaffray DA, Langen KM, Mageras G, Dawson LA, Yan D, Ed DR, et al. Safety considerations for IGRT: Executive summary. Pract Radiat Oncol. 2013;3:167-70; DOI: 10.1016/j.prro.2013.01.004. – volume: 87 start-page: 176 year: 2013 end-page: 181 ident: b0640 article-title: A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning publication-title: Int J Radiat Oncol Biol Phys – volume: 99 start-page: 921 year: 2017 end-page: 928 ident: b0245 article-title: Computed tomography radiomics predicts HPV status and local tumor control after definitive radiochemotherapy in head and neck squamous cell carcinoma publication-title: Int J Radiat Oncol Biol Phys – volume: 6 year: 2016 ident: b0095 article-title: Nuquantus: Machine learning software for the characterization and quantification of cell nuclei in complex immunofluorescent tissue images publication-title: Sci Rep – volume: 47 start-page: 753 year: 2020 end-page: 758 ident: b0595 article-title: Technical Note: A feasibility study on deep learning-based radiotherapy dose calculation publication-title: Med Phys – volume: 58 start-page: 8419 year: 2013 end-page: 8435 ident: b0685 article-title: Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy publication-title: Phys Med Biol – volume: 71 start-page: 150 year: 2017 end-page: 155 ident: b0240 article-title: Predictive and prognostic value of CT based radiomics signature in locally advanced head and neck cancers patients treated with concurrent chemoradiotherapy or bioradiotherapy and its added value to Human Papillomavirus status publication-title: Oral Oncol – volume: 40 start-page: 021714 year: 2013 ident: b0560 article-title: Using overlap volume histogram and IMRT plan data to guide and automate VMAT planning: a head-and-neck case study publication-title: Med Phys – volume: 47 start-page: 99 year: 2020 end-page: 109 ident: b0845 article-title: A fast and scalable method for quality assurance of deformable image registration on lung CT scans using convolutional neural networks publication-title: Med Phys – reference: Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. International Conference on Learning Representations (ICLR). San Diego, CA, USA2015. – volume: 113 start-page: 303 year: 2014 end-page: 309 ident: b0325 article-title: Creating a data exchange strategy for radiotherapy research: towards federated databases and anonymised public datasets publication-title: Radiother Oncol – reference: Chaney EL, Pizer SM. Ch 10 Deformable Shape Models for Image Segmentation. In: Brock KK, editor. Image processing in radiation therapy: CRC Press; 2013. – year: 2013 ident: b0410 article-title: 9 Basic segmentation publication-title: Image processing in radiation therapy – volume: 9 year: 2019 ident: b0600 article-title: A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning publication-title: Sci Rep – reference: Goodfellow IP-A, J; Mirza, M; Xu, B; Warde-Farley, D; Ozair, S; Courville, A; Bengio, Y. Generative Adversarial Nets. Advances in Neural Information Processing Systems 27 (NIPS 2014). Montreal, Quebec, Canada2014. p. 2672-80. – volume: 64 start-page: 065020 year: 2019 ident: b0580 article-title: 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture publication-title: Phys Med Biol – reference: Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors. Advances in Neural Information Processing Systems 25: Curran Associates, Inc.; 2012. p. 1097-105. – volume: 136 start-page: 56 year: 2019 end-page: 63 ident: b0700 article-title: MRI-only brain radiotherapy: assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach publication-title: Radiother Oncol – reference: Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Cham: Springer International Publishing; 2015. p. 234-41 doi: 10.1007/978-3-319-24574-4_28. – volume: 7 start-page: 315 year: 2017 ident: b0465 article-title: Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images publication-title: Front Oncol – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0160 article-title: Deep learning publication-title: Nature – volume: 54 start-page: 1289 year: 2015 end-page: 1300 ident: b0025 article-title: Modern clinical research: How rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine publication-title: Acta Oncol – volume: 88 start-page: 732 year: 2014 end-page: 738 ident: b0190 article-title: Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer publication-title: Int J Radiat Oncol Biol Phys – reference: Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. IEEE International Conference on Computer Vision (ICCV)2017. p. 618-26 DOI: 10.1109/ICCV.2017.74. – volume: 126 start-page: 312 year: 2018 end-page: 317 ident: b0010 article-title: Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer publication-title: Radiother Oncol – volume: 47 start-page: 1094 year: 2020 end-page: 1104 ident: b0715 article-title: Multimodality image registration in the head-and-neck using a deep learning-derived synthetic CT as a bridge publication-title: Med Phys – volume: 30 start-page: 523 year: 2020 end-page: 536 ident: b0300 article-title: Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement publication-title: Eur Radiol – volume: 44 start-page: 1408 year: 2017 end-page: 1419 ident: b0690 article-title: MR-based synthetic CT generation using a deep convolutional neural network method publication-title: Med Phys – volume: 62 start-page: 3065 year: 2017 end-page: 3080 ident: b0750 article-title: A Bayesian approach for three-dimensional markerless tumor tracking using kV imaging during lung radiotherapy publication-title: Phys Med Biol – volume: 64 start-page: 377 year: 2014 end-page: 388 ident: b0380 article-title: Implementing and evaluating shared decision making in oncology practice publication-title: CA Cancer J Clin – volume: 111 start-page: 296 year: 2014 end-page: 300 ident: b0505 article-title: Beam orientation in stereotactic radiosurgery using an artificial neural network publication-title: Radiother Oncol – volume: 46 start-page: 3142 year: 2019 end-page: 3155 ident: b0830 article-title: Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network publication-title: Med Phys – volume: 13 start-page: 1 year: 2015 ident: b0290 article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement publication-title: BMC Med – volume: 2 start-page: 1418 year: 2014 end-page: 1426 ident: b0235 article-title: Predicting outcomes of nonsmall cell lung cancer using CT image features publication-title: IEEE Access – volume: 45 start-page: 4916 year: 2018 end-page: 4926 ident: b0825 article-title: ScatterNet: A convolutional neural network for cone-beam CT intensity correction publication-title: Med Phys – volume: 28 start-page: 594 year: 2006 end-page: 611 ident: b0110 article-title: One-shot learning of object categories publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 38 start-page: 1081 year: 2020 ident: b0020 article-title: Clinical Cancer Advances 2020: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology publication-title: J Clin Oncol – volume: 44 start-page: 547 year: 2017 end-page: 557 ident: b0450 article-title: Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks publication-title: Med Phys – volume: 38 start-page: 719 year: 2011 end-page: 726 ident: b0645 article-title: A planning quality evaluation tool for prostate adaptive IMRT based on machine learning publication-title: Med Phys – year: 2018 ident: b0655 article-title: Improving quality and consistency in NRG oncology RTOG 0631 for spine radiosurgery via knowledge-based planning publication-title: Int J Radiat Oncol Biol Phys – reference: Machine Learning in Radiation Oncology – Theory and Applications Springer; 2015. – volume: 40 start-page: 041710 year: 2013 ident: b0805 article-title: Objected constrained registration and manifold learning: a new patient setup approach in image guided radiation therapy of thoracic cancer publication-title: Med Phys – volume: 104 start-page: 148 year: 2016 end-page: 175 ident: b0170 article-title: Taking the human out of the loop: a review of bayesian optimization publication-title: Proc IEEE – volume: 16 year: 2018 ident: b0295 article-title: Poor reporting of multivariable prediction model studies: towards a targeted implementation strategy of the TRIPOD statement publication-title: BMC Med – reference: Dekker A, Dehing-Oberije C, De Ruysscher D, Lambin P, Komati K, Fung G, et al. Survival prediction in lung cancer treated with radiotherapy: Bayesian networks vs. support vector machines in handling missing data. International Conference on Machine Learning and Applications (ICMLA): IEEE; 2009. p. 494-7. doi: 10.1109/ICMLA.2009.92. – volume: 9 start-page: 1333 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0710 article-title: Synthetic CT Generation Based on T2 Weighted MRI of Nasopharyngeal Carcinoma (NPC) Using a Deep Convolutional Neural Network (DCNN) publication-title: Front Oncol doi: 10.3389/fonc.2019.01333 – volume: 55 start-page: 3011 issue: 11 year: 2010 ident: 10.1016/j.phro.2021.05.007_b0780 article-title: Online prediction of respiratory motion: multidimensional processing with low-dimensional feature learning publication-title: Phys Med Biol doi: 10.1088/0031-9155/55/11/002 – volume: 46 start-page: 56 issue: 1 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0585 article-title: A feasibility study on an automated method to generate patient-specific dose distributions for radiotherapy using deep learning publication-title: Med Phys doi: 10.1002/mp.13262 – volume: 104 start-page: 148 issue: 1 year: 2016 ident: 10.1016/j.phro.2021.05.007_b0170 article-title: Taking the human out of the loop: a review of bayesian optimization publication-title: Proc IEEE doi: 10.1109/JPROC.2015.2494218 – volume: 76 start-page: S10 issue: 3 year: 2010 ident: 10.1016/j.phro.2021.05.007_b0205 article-title: Use of normal tissue complication probability models in the clinic publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2009.07.1754 – ident: 10.1016/j.phro.2021.05.007_b0305 doi: 10.1145/3236009 – volume: 10 start-page: 27 issue: 1 year: 2013 ident: 10.1016/j.phro.2021.05.007_b0180 article-title: Predicting outcomes in radiation oncology—multifactorial decision support systems publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2012.196 – volume: 144 start-page: 189 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0155 article-title: Distributed learning on 20 000+ lung cancer patients - The Personal Health Train publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.11.019 – ident: 10.1016/j.phro.2021.05.007_b0260 doi: 10.3389/fonc.2015.00272 – volume: 64 start-page: 065020 issue: 6 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0580 article-title: 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture publication-title: Phys Med Biol doi: 10.1088/1361-6560/ab039b – volume: 18 start-page: 327 issue: 3 year: 2011 ident: 10.1016/j.phro.2021.05.007_b0345 article-title: Effects of clinical decision-support systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic review findings publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2011-000094 – volume: 64 start-page: 377 issue: 6 year: 2014 ident: 10.1016/j.phro.2021.05.007_b0380 article-title: Implementing and evaluating shared decision making in oncology practice publication-title: CA Cancer J Clin – volume: 13 start-page: S1 year: 2013 ident: 10.1016/j.phro.2021.05.007_b0390 article-title: Ten years of the International Patient Decision Aid Standards Collaboration: evolution of the core dimensions for assessing the quality of patient decision aids publication-title: BMC Med Inf Decis Making – volume: 62 start-page: 3065 issue: 8 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0750 article-title: A Bayesian approach for three-dimensional markerless tumor tracking using kV imaging during lung radiotherapy publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa6393 – volume: 113 start-page: 47 issue: 1 year: 2014 ident: 10.1016/j.phro.2021.05.007_b0130 article-title: Rapid learning in practice: a lung cancer survival decision support system in routine patient care data publication-title: Radiother Oncol doi: 10.1016/j.radonc.2014.08.013 – volume: 100 start-page: 1217 issue: 5 year: 2018 ident: 10.1016/j.phro.2021.05.007_b0140 article-title: Failure of further validation for survival nomograms in oropharyngeal cancer: issues and challenges publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2017.12.281 – ident: 10.1016/j.phro.2021.05.007_b0135 – volume: 2014 start-page: 4204 year: 2014 ident: 10.1016/j.phro.2021.05.007_b0790 article-title: Real-time prediction of respiratory motion traces for radiotherapy with ensemble learning publication-title: Conf Proc IEEE Eng Med Biol Soc. – volume: 43 start-page: 378 issue: 1 year: 2016 ident: 10.1016/j.phro.2021.05.007_b0570 article-title: Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy publication-title: Med Phys doi: 10.1118/1.4938583 – volume: 91 start-page: 1048 issue: 5 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0255 article-title: Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2014.11.030 – volume: 46 start-page: 456 issue: 2 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0675 article-title: Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks publication-title: Med Phys doi: 10.1002/mp.13338 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0230 article-title: Multimodality functional imaging in radiation therapy planning: relationships between dynamic contrast-enhanced MRI, diffusion-weighted MRI, and 18F-FDG PET publication-title: Comput Math Methods Med doi: 10.1155/2015/103843 – volume: 105 start-page: 432 issue: 2 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0755 article-title: Markerless Pancreatic Tumor Target Localization Enabled By Deep Learning publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2019.05.071 – volume: 126 start-page: 312 issue: 2 year: 2018 ident: 10.1016/j.phro.2021.05.007_b0010 article-title: Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer publication-title: Radiother Oncol doi: 10.1016/j.radonc.2017.11.012 – volume: 58 start-page: 8419 issue: 23 year: 2013 ident: 10.1016/j.phro.2021.05.007_b0685 article-title: Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy publication-title: Phys Med Biol doi: 10.1088/0031-9155/58/23/8419 – volume: 19 issue: 1 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0360 article-title: An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation publication-title: Breast Cancer Res doi: 10.1186/s13058-017-0852-3 – volume: 120 start-page: 21 issue: 1 year: 2016 ident: 10.1016/j.phro.2021.05.007_b0210 article-title: Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy publication-title: Radiother Oncol doi: 10.1016/j.radonc.2016.05.015 – volume: 47 start-page: 3054 issue: 7 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0855 article-title: Multicenter evaluation of MRI-based radiomic features: a phantom study publication-title: Med Phys doi: 10.1002/mp.14173 – volume: 54 start-page: 1289 issue: 9 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0025 article-title: Modern clinical research: How rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine publication-title: Acta Oncol doi: 10.3109/0284186X.2015.1062136 – volume: 91 start-page: 612 issue: 3 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0540 article-title: Evaluation of a knowledge-based planning solution for head and neck cancer publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2014.11.014 – ident: 10.1016/j.phro.2021.05.007_b0605 – volume: 41 start-page: 2251 issue: 9 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0115 article-title: Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2857768 – volume: 14 start-page: 93 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0730 article-title: Clinical impact of removing respiratory motion during liver SABR publication-title: Radiat Oncol. doi: 10.1186/s13014-019-1300-6 – ident: 10.1016/j.phro.2021.05.007_b0185 doi: 10.1109/ICMLA.2009.92 – volume: 7 start-page: 315 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0465 article-title: Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images publication-title: Front Oncol doi: 10.3389/fonc.2017.00315 – volume: 4 start-page: 155 issue: 2 year: 2014 ident: 10.1016/j.phro.2021.05.007_b0265 article-title: Radiogenomics: using genetics to identify cancer patients at risk for development of adverse effects following radiotherapy publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-13-0197 – volume: 33 start-page: 3874 year: 2006 ident: 10.1016/j.phro.2021.05.007_b0725 article-title: The management of respiratory motion in radiation oncology report of AAPM Task Group 76 publication-title: Med Phys doi: 10.1118/1.2349696 – volume: 107 start-page: 530 issue: 3 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0660 article-title: Real-time image-guided ablative prostate cancer radiation therapy: results from the TROG 15.01 SPARK trial publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2020.03.014 – volume: 46 start-page: e1 issue: 1 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0050 article-title: Deep learning in medical imaging and radiation therapy publication-title: Med Phys doi: 10.1002/mp.13264 – volume: 38 start-page: 2859 issue: 6Part1 year: 2011 ident: 10.1016/j.phro.2021.05.007_b0220 article-title: Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy publication-title: Med Phys doi: 10.1118/1.3582947 – volume: 13 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0290 article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement publication-title: BMC Med doi: 10.1186/s12916-014-0241-z – volume: 330 start-page: 765 issue: 7494 year: 2005 ident: 10.1016/j.phro.2021.05.007_b0340 article-title: Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success publication-title: BMJ doi: 10.1136/bmj.38398.500764.8F – volume: 193 start-page: 1933 issue: 6 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0330 article-title: Prostate cancer risk estimation tool use by members of the American Urological Association: a survey based study publication-title: J Urol doi: 10.1016/j.juro.2014.12.090 – volume: 38 start-page: 2515 issue: 5 year: 2011 ident: 10.1016/j.phro.2021.05.007_b0545 article-title: Knowledge-based IMRT treatment planning for prostate cancer publication-title: Med Phys doi: 10.1118/1.3574874 – volume: 55 start-page: 1311 issue: 5 year: 2010 ident: 10.1016/j.phro.2021.05.007_b0785 article-title: Kernel density estimation-based real-time prediction for respiratory motion publication-title: Phys Med Biol doi: 10.1088/0031-9155/55/5/004 – volume: 62 start-page: 1791 issue: 5 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0800 article-title: Predictive modeling of respiratory tumor motion for real-time prediction of baseline shifts publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa58c3 – volume: 11 start-page: 71 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0875 article-title: Adapting training for medical physicists to match future trends in radiation oncology publication-title: Phys Imaging Radiat Oncol doi: 10.1016/j.phro.2019.09.003 – volume: 107 start-page: 352 issue: 3 year: 2013 ident: 10.1016/j.phro.2021.05.007_b0555 article-title: A quality control model that uses PTV-rectal distances to predict the lowest achievable rectum dose, improves IMRT planning for patients with prostate cancer publication-title: Radiother Oncol doi: 10.1016/j.radonc.2013.05.032 – volume: 56 start-page: 1635 issue: 6 year: 2011 ident: 10.1016/j.phro.2021.05.007_b0195 article-title: A Bayesian network approach for modeling local failure in lung cancer publication-title: Phys Med Biol doi: 10.1088/0031-9155/56/6/008 – volume: 97 start-page: 164 issue: 1 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0650 article-title: Highly efficient training, refinement, and validation of a knowledge-based planning quality-control system for radiation therapy clinical trials publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2016.10.005 – year: 2018 ident: 10.1016/j.phro.2021.05.007_b0655 article-title: Improving quality and consistency in NRG oncology RTOG 0631 for spine radiosurgery via knowledge-based planning publication-title: Int J Radiat Oncol Biol Phys – volume: 295 start-page: 328 issue: 2 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0870 article-title: The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping publication-title: Radiology doi: 10.1148/radiol.2020191145 – volume: 44 start-page: 547 issue: 2 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0450 article-title: Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks publication-title: Med Phys doi: 10.1002/mp.12045 – volume: 135 start-page: 130 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0455 article-title: Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.03.004 – volume: 93 start-page: 1127 issue: 5 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0070 article-title: Machine learning approaches for predicting radiation therapy outcomes: a clinician’s perspective publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2015.07.2286 – volume: 46 start-page: 1 issue: 4 year: 2014 ident: 10.1016/j.phro.2021.05.007_b0125 article-title: A survey on concept drift adaptation publication-title: ACM Comput Surv doi: 10.1145/2523813 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0225 article-title: Predictive models of tumour response to treatment using functional imaging techniques publication-title: Comput Math Methods Med doi: 10.1155/2015/571351 – ident: 10.1016/j.phro.2021.05.007_b0415 – volume: 56 start-page: 5303 issue: 16 year: 2011 ident: 10.1016/j.phro.2021.05.007_b0765 article-title: The comparative performance of four respiratory motion predictors for real-time tumour tracking publication-title: Phys Med Biol doi: 10.1088/0031-9155/56/16/015 – volume: 35 start-page: 1958 issue: 8 year: 2013 ident: 10.1016/j.phro.2021.05.007_b0175 article-title: Learning with hierarchical-deep models publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.269 – volume: 140 start-page: 167 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0665 article-title: Incorporating imaging information from deep neural network layers into image guided radiation therapy (IGRT) publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.06.027 – volume: 5 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0200 article-title: Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front publication-title: Oncol. – volume: 7 start-page: 803 issue: 3 year: 2018 ident: 10.1016/j.phro.2021.05.007_b0065 article-title: The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review publication-title: Transl Cancer Res doi: 10.21037/tcr.2018.05.02 – volume: 6 start-page: e20055 issue: 5 year: 2011 ident: 10.1016/j.phro.2021.05.007_b0270 article-title: Polymorphisms of homologous recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy publication-title: PLoS ONE doi: 10.1371/journal.pone.0020055 – volume: 23 start-page: 2716 issue: 12 year: 2005 ident: 10.1016/j.phro.2021.05.007_b0355 article-title: Population-based validation of the prognostic model ADJUVANT! for early breast cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2005.06.178 – volume: 19 start-page: 33 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0860 article-title: Learning from scanners: bias reduction and feature correction in radiomics publication-title: Clin Transl Radiat Oncol – volume: 2 start-page: 025012 issue: 2 year: 2016 ident: 10.1016/j.phro.2021.05.007_b0815 article-title: Prediction of lung tumor motion extent through artificial neural network (ANN) using tumor size and location data publication-title: Biomed Phys Eng Express doi: 10.1088/2057-1976/2/2/025012 – volume: 98 start-page: 344 issue: Suppl. 6 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0075 article-title: Machine learning and imaging informatics in oncology publication-title: Oncology doi: 10.1159/000493575 – ident: 10.1016/j.phro.2021.05.007_b0720 doi: 10.1016/j.prro.2013.01.004 – volume: 12 start-page: e0184604 issue: 9 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0145 article-title: Meaningless comparisons lead to false optimism in medical machine learning publication-title: PLoS ONE doi: 10.1371/journal.pone.0184604 – ident: 10.1016/j.phro.2021.05.007_b0275 doi: 10.1093/carcin/bgr300 – volume: 542 start-page: 115 issue: 7639 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0435 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 54 start-page: S9 issue: 18 year: 2009 ident: 10.1016/j.phro.2021.05.007_b0215 article-title: Predicting radiotherapy outcomes using statistical learning techniques publication-title: Phys Med Biol doi: 10.1088/0031-9155/54/18/S02 – ident: 10.1016/j.phro.2021.05.007_b0420 – volume: 44 start-page: 1408 issue: 4 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0690 article-title: MR-based synthetic CT generation using a deep convolutional neural network method publication-title: Med Phys doi: 10.1002/mp.12155 – volume: 46 start-page: 2286 issue: 5 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0735 article-title: A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images publication-title: Med Phys doi: 10.1002/mp.13519 – volume: 1 start-page: 045015 issue: 4 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0810 article-title: Automatic assessment of average diaphragm motion trajectory from 4DCT images through machine learning publication-title: Biomed Phys Eng Express doi: 10.1088/2057-1976/1/4/045015 – volume: 55 start-page: 6023 issue: 19 year: 2010 ident: 10.1016/j.phro.2021.05.007_b0500 article-title: Spherical cluster analysis for beam angle optimization in intensity-modulated radiation therapy treatment planning publication-title: Phys Med Biol doi: 10.1088/0031-9155/55/19/025 – volume: 47 start-page: 753 issue: 2 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0595 article-title: Technical Note: A feasibility study on deep learning-based radiotherapy dose calculation publication-title: Med Phys doi: 10.1002/mp.13953 – volume: 111 start-page: 296 issue: 2 year: 2014 ident: 10.1016/j.phro.2021.05.007_b0505 article-title: Beam orientation in stereotactic radiosurgery using an artificial neural network publication-title: Radiother Oncol doi: 10.1016/j.radonc.2014.03.010 – volume: 5 start-page: 1555 issue: 10 year: 2009 ident: 10.1016/j.phro.2021.05.007_b0350 article-title: Critical review of prostate cancer predictive tools publication-title: Future Oncol doi: 10.2217/fon.09.121 – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0470 article-title: Deep Learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR publication-title: Sci Rep doi: 10.1038/s41598-017-05728-9 – volume: 38 start-page: 719 issue: 2 year: 2011 ident: 10.1016/j.phro.2021.05.007_b0645 article-title: A planning quality evaluation tool for prostate adaptive IMRT based on machine learning publication-title: Med Phys doi: 10.1118/1.3539749 – volume: 6 issue: 1 year: 2016 ident: 10.1016/j.phro.2021.05.007_b0095 article-title: Nuquantus: Machine learning software for the characterization and quantification of cell nuclei in complex immunofluorescent tissue images publication-title: Sci Rep doi: 10.1038/srep23431 – ident: 10.1016/j.phro.2021.05.007_b0165 – volume: 16 issue: 1 year: 2018 ident: 10.1016/j.phro.2021.05.007_b0295 article-title: Poor reporting of multivariable prediction model studies: towards a targeted implementation strategy of the TRIPOD statement publication-title: BMC Med doi: 10.1186/s12916-018-1099-2 – volume: 54 start-page: 5735 issue: 19 year: 2009 ident: 10.1016/j.phro.2021.05.007_b0775 article-title: Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression publication-title: Phys Med Biol doi: 10.1088/0031-9155/54/19/005 – volume: 16 start-page: 144 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0040 article-title: Machine learning applications in radiation oncology: Current use and needs to support clinical implementation publication-title: Phys Imaging Radiat Oncol. doi: 10.1016/j.phro.2020.11.002 – volume: 9 start-page: 964 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0705 article-title: Generation of synthetic CT images from MRI for treatment planning and patient positioning using a 3-channel U-net trained on sagittal images publication-title: Front Oncol doi: 10.3389/fonc.2019.00964 – volume: 2 start-page: 1418 year: 2014 ident: 10.1016/j.phro.2021.05.007_b0235 article-title: Predicting outcomes of nonsmall cell lung cancer using CT image features publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2373335 – volume: 144 start-page: 152 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0460 article-title: Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.10.019 – volume: 46 start-page: 3998 issue: 9 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0670 article-title: Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography publication-title: Med Phys doi: 10.1002/mp.13656 – volume: 85 start-page: 251 issue: 1 year: 2013 ident: 10.1016/j.phro.2021.05.007_b0285 article-title: Incorporating single-nucleotide polymorphisms into the lyman model to improve prediction of radiation pneumonitis publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2012.02.021 – volume: 349 start-page: 255 issue: 6245 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0085 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 44 start-page: 4126 issue: 8 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0850 article-title: A neural network approach for fast, automated quantification of DIR performance publication-title: Med Phys doi: 10.1002/mp.12321 – volume: 46 start-page: 3679 issue: 8 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0590 article-title: Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations publication-title: Med Phys doi: 10.1002/mp.13597 – volume: 521 start-page: 452 issue: 7553 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0100 article-title: Probabilistic machine learning and artificial intelligence publication-title: Nature doi: 10.1038/nature14541 – volume: 49 start-page: 747 issue: 5 year: 2004 ident: 10.1016/j.phro.2021.05.007_b0490 article-title: Multiobjective evolutionary optimization of the number of beams, their orientations and weights for intensity-modulated radiation therapy publication-title: Phys Med Biol doi: 10.1088/0031-9155/49/5/007 – ident: 10.1016/j.phro.2021.05.007_b0445 doi: 10.12688/f1000research.9525.1 – ident: 10.1016/j.phro.2021.05.007_b0315 doi: 10.1109/ICCV.2017.74 – volume: 121 start-page: 169 issue: 2 year: 2016 ident: 10.1016/j.phro.2021.05.007_b0400 article-title: Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies publication-title: Radiother Oncol doi: 10.1016/j.radonc.2016.09.009 – ident: 10.1016/j.phro.2021.05.007_b0105 – volume: 16 start-page: 58 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0045 article-title: Cautiously optimistic: a survey of radiation oncology professionals' perceptions of automation in radiotherapy planning publication-title: Tech Innov Patient Support Radiat Oncol. doi: 10.1016/j.tipsro.2020.10.003 – volume: 45 start-page: 4916 issue: 11 year: 2018 ident: 10.1016/j.phro.2021.05.007_b0825 article-title: ScatterNet: A convolutional neural network for cone-beam CT intensity correction publication-title: Med Phys doi: 10.1002/mp.13175 – ident: 10.1016/j.phro.2021.05.007_b0610 doi: 10.1007/978-3-319-24574-4_28 – volume: 54 start-page: 1555 issue: 6 year: 2009 ident: 10.1016/j.phro.2021.05.007_b0745 article-title: Markerless gating for lung cancer radiotherapy based on machine learning techniques publication-title: Phys Med Biol doi: 10.1088/0031-9155/54/6/010 – volume: 144 start-page: 201 issue: 3 year: 2006 ident: 10.1016/j.phro.2021.05.007_b0335 article-title: Translating clinical research into clinical practice: impact of using prediction rules to make decisions publication-title: Ann Intern Med doi: 10.7326/0003-4819-144-3-200602070-00009 – volume: 45 start-page: 2547 issue: 9 year: 2000 ident: 10.1016/j.phro.2021.05.007_b0525 article-title: Selection and determination of beam weights based on genetic algorithms for conformal radiotherapy treatment planning publication-title: Phys Med Biol doi: 10.1088/0031-9155/45/9/308 – volume: 60 start-page: 233 issue: 1 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0795 article-title: Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression publication-title: Phys Med Biol doi: 10.1088/0031-9155/60/1/233 – ident: 10.1016/j.phro.2021.05.007_b0150 doi: 10.1007/978-3-319-19551-3_8 – volume: 44 start-page: 5001 issue: 10 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0565 article-title: Heuristic knowledge-based planning for single-isocenter stereotactic radiosurgery to multiple brain metastases publication-title: Med Phys doi: 10.1002/mp.12479 – volume: 40 start-page: 041710 issue: 4 year: 2013 ident: 10.1016/j.phro.2021.05.007_b0805 article-title: Objected constrained registration and manifold learning: a new patient setup approach in image guided radiation therapy of thoracic cancer publication-title: Med Phys doi: 10.1118/1.4794489 – volume: 88 start-page: 732 issue: 3 year: 2014 ident: 10.1016/j.phro.2021.05.007_b0190 article-title: Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2013.11.216 – volume: 71 start-page: 150 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0240 article-title: Predictive and prognostic value of CT based radiomics signature in locally advanced head and neck cancers patients treated with concurrent chemoradiotherapy or bioradiotherapy and its added value to Human Papillomavirus status publication-title: Oral Oncol doi: 10.1016/j.oraloncology.2017.06.015 – ident: 10.1016/j.phro.2021.05.007_b0440 doi: 10.1007/978-3-319-66179-7_42 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0160 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 57 start-page: 6707 issue: 20 year: 2012 ident: 10.1016/j.phro.2021.05.007_b0495 article-title: Characterizing the combinatorial beam angle selection problem publication-title: Phys Med Biol doi: 10.1088/0031-9155/57/20/6707 – volume: 81 start-page: 545 issue: 2 year: 2011 ident: 10.1016/j.phro.2021.05.007_b0635 article-title: Experience-based quality control of clinical intensity-modulated radiotherapy planning publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.11.030 – volume: 17 start-page: 296 issue: 2 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0280 article-title: Significance of targeted therapy and genetic alterations in EGFR, ALK, or KRAS on survival in patients with non–small cell lung cancer treated with radiotherapy for brain metastases publication-title: Neuro Oncol doi: 10.1093/neuonc/nou146 – volume: 54 start-page: 401 year: 2010 ident: 10.1016/j.phro.2021.05.007_b0395 article-title: A review of methods of analysis in contouring studies for radiation oncology publication-title: J Med Imaging Radiat Oncol. doi: 10.1111/j.1754-9485.2010.02192.x – volume: 50 start-page: 3491 issue: 15 year: 2005 ident: 10.1016/j.phro.2021.05.007_b0510 article-title: A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning publication-title: Phys Med Biol doi: 10.1088/0031-9155/50/15/002 – volume: 153 start-page: 55 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0055 article-title: Overview of artificial intelligence-based applications in radiotherapy: recommendations for implementation and quality assurance publication-title: Radiother Oncol doi: 10.1016/j.radonc.2020.09.008 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0600 article-title: A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning publication-title: Sci Rep – volume: 14 start-page: 749 issue: 12 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0060 article-title: Radiomics: the bridge between medical imaging and personalized medicine publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2017.141 – volume: 92 start-page: 20190001 issue: 1100 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0005 article-title: Applications and limitations of machine learning in radiation oncology publication-title: Br J Radiol doi: 10.1259/bjr.20190001 – volume: 46 start-page: 370 issue: 1 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0575 article-title: Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique publication-title: Med Phys doi: 10.1002/mp.13271 – volume: 42 start-page: 1992 issue: 4 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0485 article-title: Automatic learning-based beam angle selection for thoracic IMRT publication-title: Med Phys doi: 10.1118/1.4908000 – volume: 45 start-page: e854 issue: 10 year: 2018 ident: 10.1016/j.phro.2021.05.007_b0865 article-title: The radiation oncology ontology (ROO): publishing linked data in radiation oncology using semantic web and ontology techniques publication-title: Med Phys doi: 10.1002/mp.12879 – volume: 109 start-page: 131 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0035 article-title: Decision support systems for personalized and participative radiation oncology publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2016.01.006 – year: 2013 ident: 10.1016/j.phro.2021.05.007_b0405 – volume: 44 start-page: 6377 issue: 12 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0425 article-title: Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks publication-title: Med Phys doi: 10.1002/mp.12602 – volume: 47 start-page: 1763 issue: 4 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0840 article-title: LungRegNet: an unsupervised deformable image registration method for 4D-CT lung publication-title: Med Phys doi: 10.1002/mp.14065 – ident: 10.1016/j.phro.2021.05.007_b0615 doi: 10.1109/CVPR.2017.243 – volume: 38 start-page: 1081 issue: 10 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0020 article-title: Clinical Cancer Advances 2020: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology publication-title: J Clin Oncol doi: 10.1200/JCO.19.03141 – volume: 113 start-page: 303 issue: 3 year: 2014 ident: 10.1016/j.phro.2021.05.007_b0325 article-title: Creating a data exchange strategy for radiotherapy research: towards federated databases and anonymised public datasets publication-title: Radiother Oncol doi: 10.1016/j.radonc.2014.10.001 – volume: 50 start-page: 13 year: 2018 ident: 10.1016/j.phro.2021.05.007_b0475 article-title: Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning publication-title: Phys Med doi: 10.1016/j.ejmp.2018.05.006 – volume: 131 start-page: 101 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0480 article-title: Segmenting lung tumors on longitudinal imaging studies via a patient-specific adaptive convolutional neural network publication-title: Radiother Oncol doi: 10.1016/j.radonc.2018.10.037 – volume: 47 start-page: 1094 issue: 3 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0715 article-title: Multimodality image registration in the head-and-neck using a deep learning-derived synthetic CT as a bridge publication-title: Med Phys doi: 10.1002/mp.13976 – volume: 54 start-page: 981 issue: 4 year: 2009 ident: 10.1016/j.phro.2021.05.007_b0740 article-title: Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy publication-title: Phys Med Biol doi: 10.1088/0031-9155/54/4/011 – volume: 21 start-page: 136 issue: 2 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0680 article-title: A technique to generate synthetic CT from MRI for abdominal radiotherapy publication-title: J Appl Clin Med Phys doi: 10.1002/acm2.12816 – volume: 121 start-page: 459 issue: 3 year: 2016 ident: 10.1016/j.phro.2021.05.007_b0320 article-title: Distributed learning: developing a predictive model based on data from multiple hospitals without data leaving the hospital–a real life proof of concept publication-title: Radiother Oncol doi: 10.1016/j.radonc.2016.10.002 – volume: 30 start-page: 523 issue: 1 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0300 article-title: Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement publication-title: Eur Radiol doi: 10.1007/s00330-019-06360-z – volume: 49 start-page: 1915 issue: 10 year: 2004 ident: 10.1016/j.phro.2021.05.007_b0515 article-title: Automatic beam angle selection in IMRT planning using genetic algorithm publication-title: Phys Med Biol doi: 10.1088/0031-9155/49/10/007 – volume: 40 start-page: 021714 issue: 2 year: 2013 ident: 10.1016/j.phro.2021.05.007_b0560 article-title: Using overlap volume histogram and IMRT plan data to guide and automate VMAT planning: a head-and-neck case study publication-title: Med Phys doi: 10.1118/1.4788671 – volume: 14 start-page: 197 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0090 article-title: Cardiac imaging: working towards fully-automated machine analysis & interpretation publication-title: Expert Rev Med Devices doi: 10.1080/17434440.2017.1300057 – ident: 10.1016/j.phro.2021.05.007_b0620 – volume: 41 start-page: 173 issue: 1 year: 1998 ident: 10.1016/j.phro.2021.05.007_b0550 article-title: A medical expert system approach using artificial neural networks for standardized treatment planning 1 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(98)00035-2 – volume: 4 start-page: 439 issue: 5 year: 2009 ident: 10.1016/j.phro.2021.05.007_b0770 article-title: Forecasting respiratory motion with accurate online support vector regression (SVRpred) publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-009-0355-5 – volume: 112 start-page: 37 issue: 1 year: 2014 ident: 10.1016/j.phro.2021.05.007_b0015 article-title: A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making publication-title: Radiother Oncol doi: 10.1016/j.radonc.2014.04.012 – volume: 87 start-page: 176 issue: 1 year: 2013 ident: 10.1016/j.phro.2021.05.007_b0640 article-title: A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2013.03.015 – volume: 46 start-page: 1085 issue: 4 year: 2001 ident: 10.1016/j.phro.2021.05.007_b0520 article-title: An optimization method for importance factors and beam weights based on genetic algorithms for radiotherapy treatment planning publication-title: Phys Med Biol doi: 10.1088/0031-9155/46/4/313 – volume: 17 start-page: e1 issue: 1 year: 2018 ident: 10.1016/j.phro.2021.05.007_b0365 article-title: Clinical usefulness of tools to support decision-making for palliative treatment of metastatic colorectal cancer: a systematic review publication-title: Clin Colorectal Cancer. – volume: 175 start-page: 1213 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0385 article-title: Tools to promote shared decision making in serious illness publication-title: JAMA Internal Med doi: 10.1001/jamainternmed.2015.1679 – volume: 64 start-page: 145015 issue: 14 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0695 article-title: MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method publication-title: Phys Med Biol doi: 10.1088/1361-6560/ab25bc – volume: 47 start-page: 1249 issue: 3 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0835 article-title: A deep learning method for producing ventilation images from 4DCT: First comparison with technegas SPECT ventilation publication-title: Med Phys doi: 10.1002/mp.14004 – volume: 276 start-page: 167 issue: 1 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0375 article-title: Effect of evidence-based clinical decision support on the use and yield of CT pulmonary angiographic imaging in hospitalized patients publication-title: Radiology doi: 10.1148/radiol.15141208 – volume: 60 start-page: N209 issue: 10 year: 2015 ident: 10.1016/j.phro.2021.05.007_b0760 article-title: Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT) publication-title: Phys Med Biol doi: 10.1088/0031-9155/60/10/N209 – start-page: 740 year: 2014 ident: 10.1016/j.phro.2021.05.007_b0430 article-title: Microsoft coco: common objects in context – volume: 79 start-page: 1241 issue: 4 year: 2011 ident: 10.1016/j.phro.2021.05.007_b0535 article-title: Data-driven approach to generating achievable dose-volume histogram objectives in intensity-modulated radiotherapy planning publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.05.026 – volume: 40 start-page: 265 issue: 5 year: 2011 ident: 10.1016/j.phro.2021.05.007_b0820 article-title: Artefacts in CBCT: a review publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr/30642039 – year: 2006 ident: 10.1016/j.phro.2021.05.007_b0080 – volume: 118 start-page: 281 issue: 2 year: 2016 ident: 10.1016/j.phro.2021.05.007_b0370 article-title: Development and evaluation of an online three-level proton vs photon decision support prototype for head and neck cancer – comparison of dose, toxicity and cost-effectiveness publication-title: Radiother Oncol doi: 10.1016/j.radonc.2015.12.029 – volume: 99 start-page: 921 issue: 4 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0245 article-title: Computed tomography radiomics predicts HPV status and local tumor control after definitive radiochemotherapy in head and neck squamous cell carcinoma publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2017.06.002 – volume: 47 start-page: 99 issue: 1 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0845 article-title: A fast and scalable method for quality assurance of deformable image registration on lung CT scans using convolutional neural networks publication-title: Med Phys doi: 10.1002/mp.13890 – volume: 46 start-page: 3142 issue: 7 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0830 article-title: Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network publication-title: Med Phys doi: 10.1002/mp.13583 – volume: 28 start-page: 4268 issue: 27 year: 2010 ident: 10.1016/j.phro.2021.05.007_b0030 article-title: Rapid-learning system for cancer care publication-title: J Clin Oncol doi: 10.1200/JCO.2010.28.5478 – volume: 136 start-page: 56 year: 2019 ident: 10.1016/j.phro.2021.05.007_b0700 article-title: MRI-only brain radiotherapy: assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.03.026 – volume: 403 start-page: 21 year: 2017 ident: 10.1016/j.phro.2021.05.007_b0250 article-title: Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma publication-title: Cancer Lett doi: 10.1016/j.canlet.2017.06.004 – volume: 66 start-page: 04TR01 issue: 4 year: 2021 ident: 10.1016/j.phro.2021.05.007_b0310 article-title: Interpretation and visualization techniques for deep learning models in medical imaging publication-title: Phys Med Biol doi: 10.1088/1361-6560/abcd17 – volume: 94 start-page: 469 issue: 3 year: 2016 ident: 10.1016/j.phro.2021.05.007_b0630 article-title: Effect of dosimetric outliers on the performance of a commercial knowledge-based planning solution publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2015.11.011 – volume: 34 start-page: 923 issue: 4 year: 1996 ident: 10.1016/j.phro.2021.05.007_b0625 article-title: Evaluation and scoring of radiotherapy treatment plans using an artificial neural network publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/0360-3016(95)02120-5 – volume: 28 start-page: 594 year: 2006 ident: 10.1016/j.phro.2021.05.007_b0110 article-title: One-shot learning of object categories publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.79 – volume: 47 start-page: 2329 issue: 6 year: 2020 ident: 10.1016/j.phro.2021.05.007_b0530 article-title: Operating a treatment planning system using a deep-reinforcement learning-based virtual treatment planner for prostate cancer intensity-modulated radiation therapy treatment planning publication-title: Med Phys doi: 10.1002/mp.14114 – volume: 6 start-page: 469 issue: 3 year: 1995 ident: 10.1016/j.phro.2021.05.007_b0120 article-title: Probable networks and plausible predictions — a review of practical Bayesian methods for supervised neural networks publication-title: Network: Computation in Neural Systems. doi: 10.1088/0954-898X_6_3_011 – year: 2013 ident: 10.1016/j.phro.2021.05.007_b0410 article-title: 9 Basic segmentation |
| SSID | ssj0002793530 |
| Score | 2.4141948 |
| SecondaryResourceType | review_article |
| Snippet | Machine learning technology has a growing impact on radiation oncology with an increasing presence in research and industry. The prevalence of diverse data... |
| SourceID | doaj pubmedcentral proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13 |
| SubjectTerms | Artificial intelligence Automation Data mining Machine learning Radiation therapy Review |
| Title | Machine learning applications in radiation oncology |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2405631621000300 https://dx.doi.org/10.1016/j.phro.2021.05.007 https://www.proquest.com/docview/2555344351 https://pubmed.ncbi.nlm.nih.gov/PMC8295850 https://doaj.org/article/8881a56095ef4d719916d5f415ccfc6e |
| Volume | 19 |
| WOSCitedRecordID | wos000694711800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2405-6316 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793530 issn: 2405-6316 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2405-6316 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793530 issn: 2405-6316 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VVCEuFaVF3fJQkHqrosbv5FgQqJdFHKi0Nyt-waIqi3YXpF747YydZJVc4MIlUhI7cb6MPTOa8TcAP0rlJa_QLTEl5zlnzufoRtR54EwZ5n2sA5eKTairq3I2q64Hpb5iTlhLD9wC9ws9NFKLSIvmA3cqZupIJwLqHWuDlT6uvoWqBs7UfQqnVUykQiOosUQuGZHdjpk2uQuBijv_KEm0nbGW7EArJfL-kXIaGJ_j1MmBLrrcg0-dEZn9bgf_GT74Zh92pl2Y_AuwaUqR9FlXE-I2G8aps3mTLSMlQTzLFk3irf7_Ff5eXtyc_8m76gi5RZ9unZO6MlQ6hCcYSa1lVFEjiQwMlT4xdYlT0wTOOeVl4YR1UvJa1paUBl1iT9kBbDeLxn-DzPpQ2QpNCacYr21hVBFYkDI4R63wbAKkR0fbjjo8VrD4p_scsXsdEdURUV0IjYhO4Oemz0NLnPFq67MI-qZlJL1OF1AUdCcK-i1RmADrf5nu95XiSogPmr_6arHp1VkdrTXxZr_TXio0TskYZ6kbv3hcafTSBONoh5IJqJG4jL5vfKeZ3yVy75JW6MEV398DkEPYjQNus4uPYHu9fPTH8NE-reer5QlsqVl5kuYNHqfPFy-UYRtm |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+applications+in+radiation+oncology&rft.jtitle=Physics+and+imaging+in+radiation+oncology&rft.au=Field%2C+Matthew&rft.au=Hardcastle%2C+Nicholas&rft.au=Jameson%2C+Michael&rft.au=Aherne%2C+Noel&rft.date=2021-07-01&rft.pub=Elsevier+B.V&rft.issn=2405-6316&rft.eissn=2405-6316&rft.volume=19&rft.spage=13&rft.epage=24&rft_id=info:doi/10.1016%2Fj.phro.2021.05.007&rft.externalDocID=S2405631621000300 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-6316&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-6316&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-6316&client=summon |