Machine learning applications in radiation oncology

Machine learning technology has a growing impact on radiation oncology with an increasing presence in research and industry. The prevalence of diverse data including 3D imaging and the 3D radiation dose delivery presents potential for future automation and scope for treatment improvements for cancer...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physics and imaging in radiation oncology Ročník 19; s. 13 - 24
Hlavní autoři: Field, Matthew, Hardcastle, Nicholas, Jameson, Michael, Aherne, Noel, Holloway, Lois
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2021
Elsevier
Témata:
ISSN:2405-6316, 2405-6316
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Machine learning technology has a growing impact on radiation oncology with an increasing presence in research and industry. The prevalence of diverse data including 3D imaging and the 3D radiation dose delivery presents potential for future automation and scope for treatment improvements for cancer patients. Harnessing this potential requires standardization of tools and data, and focused collaboration between fields of expertise. The rapid advancement of radiation oncology treatment technologies presents opportunities for machine learning integration with investments targeted towards data quality, data extraction, software, and engagement with clinical expertise. In this review, we provide an overview of machine learning concepts before reviewing advances in applying machine learning to radiation oncology and integrating these techniques into the radiation oncology workflows. Several key areas are outlined in the radiation oncology workflow where machine learning has been applied and where it can have a significant impact in terms of efficiency, consistency in treatment and overall treatment outcomes. This review highlights that machine learning has key early applications in radiation oncology due to the repetitive nature of many tasks that also currently have human review. Standardized data management of routinely collected imaging and radiation dose data are also highlighted as enabling engagement in research utilizing machine learning and the ability integrate these technologies into clinical workflow to benefit patients. Physicists need to be part of the conversation to facilitate this technical integration.
AbstractList Machine learning technology has a growing impact on radiation oncology with an increasing presence in research and industry. The prevalence of diverse data including 3D imaging and the 3D radiation dose delivery presents potential for future automation and scope for treatment improvements for cancer patients. Harnessing this potential requires standardization of tools and data, and focused collaboration between fields of expertise. The rapid advancement of radiation oncology treatment technologies presents opportunities for machine learning integration with investments targeted towards data quality, data extraction, software, and engagement with clinical expertise. In this review, we provide an overview of machine learning concepts before reviewing advances in applying machine learning to radiation oncology and integrating these techniques into the radiation oncology workflows. Several key areas are outlined in the radiation oncology workflow where machine learning has been applied and where it can have a significant impact in terms of efficiency, consistency in treatment and overall treatment outcomes. This review highlights that machine learning has key early applications in radiation oncology due to the repetitive nature of many tasks that also currently have human review. Standardized data management of routinely collected imaging and radiation dose data are also highlighted as enabling engagement in research utilizing machine learning and the ability integrate these technologies into clinical workflow to benefit patients. Physicists need to be part of the conversation to facilitate this technical integration.
Machine learning technology has a growing impact on radiation oncology with an increasing presence in research and industry. The prevalence of diverse data including 3D imaging and the 3D radiation dose delivery presents potential for future automation and scope for treatment improvements for cancer patients. Harnessing this potential requires standardization of tools and data, and focused collaboration between fields of expertise. The rapid advancement of radiation oncology treatment technologies presents opportunities for machine learning integration with investments targeted towards data quality, data extraction, software, and engagement with clinical expertise. In this review, we provide an overview of machine learning concepts before reviewing advances in applying machine learning to radiation oncology and integrating these techniques into the radiation oncology workflows. Several key areas are outlined in the radiation oncology workflow where machine learning has been applied and where it can have a significant impact in terms of efficiency, consistency in treatment and overall treatment outcomes. This review highlights that machine learning has key early applications in radiation oncology due to the repetitive nature of many tasks that also currently have human review. Standardized data management of routinely collected imaging and radiation dose data are also highlighted as enabling engagement in research utilizing machine learning and the ability integrate these technologies into clinical workflow to benefit patients. Physicists need to be part of the conversation to facilitate this technical integration.Machine learning technology has a growing impact on radiation oncology with an increasing presence in research and industry. The prevalence of diverse data including 3D imaging and the 3D radiation dose delivery presents potential for future automation and scope for treatment improvements for cancer patients. Harnessing this potential requires standardization of tools and data, and focused collaboration between fields of expertise. The rapid advancement of radiation oncology treatment technologies presents opportunities for machine learning integration with investments targeted towards data quality, data extraction, software, and engagement with clinical expertise. In this review, we provide an overview of machine learning concepts before reviewing advances in applying machine learning to radiation oncology and integrating these techniques into the radiation oncology workflows. Several key areas are outlined in the radiation oncology workflow where machine learning has been applied and where it can have a significant impact in terms of efficiency, consistency in treatment and overall treatment outcomes. This review highlights that machine learning has key early applications in radiation oncology due to the repetitive nature of many tasks that also currently have human review. Standardized data management of routinely collected imaging and radiation dose data are also highlighted as enabling engagement in research utilizing machine learning and the ability integrate these technologies into clinical workflow to benefit patients. Physicists need to be part of the conversation to facilitate this technical integration.
Author Field, Matthew
Hardcastle, Nicholas
Jameson, Michael
Aherne, Noel
Holloway, Lois
Author_xml – sequence: 1
  givenname: Matthew
  surname: Field
  fullname: Field, Matthew
  organization: South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
– sequence: 2
  givenname: Nicholas
  surname: Hardcastle
  fullname: Hardcastle, Nicholas
  organization: Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
– sequence: 3
  givenname: Michael
  surname: Jameson
  fullname: Jameson, Michael
  organization: GenesisCare, Alexandria, NSW, Australia
– sequence: 4
  givenname: Noel
  surname: Aherne
  fullname: Aherne, Noel
  email: noel.aherne@health.nsw.gov.au
  organization: Mid North Coast Cancer Institute, NSW, Australia
– sequence: 5
  givenname: Lois
  surname: Holloway
  fullname: Holloway, Lois
  organization: South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
BookMark eNqFkk1vEzEQhi1UREvpH-C0Ry5Z_L1ehJBQBbRSERc4W97Z2cTBsYO9qZR_j5tUqO2hnPwx87zjmdevyUlMEQl5y2jLKNPv1-12lVPLKWctVS2l3QtyxiVVCy2YPnmwPyUXpawppbzrhRL0FTkVUtCuZ-qMiO8OVj5iE9Dl6OOycdtt8OBmn2JpfGyyG_3h1KQIKaTl_g15OblQ8OJ-PSe_vn75eXm1uPnx7fry880ClOznBXP9wPVoDJsGzQEE7_igmZ5EZzgbnJHGDJOUkktDRwWj1tJpB8wMUvfIxTm5PuqOya3tNvuNy3ubnLeHi5SX1uXZQ0BrahWnNO0VTnLsWN8zPapJMgUwgcaq9emotd0NGxwB45xdeCT6OBL9yi7TrTW8V0bRKvDuXiCnPzsss934AhiCi5h2xXKllJBSKFZT-TEVciol4_SvDKP2zjxbu6nm2TvzLFW2mlch8wQCPx_mXp_jw_PoxyOK1Yxbj9kW8BgBR58R5jot_zz-4QkOwcf6BcJv3P8P_gutw8jY
CitedBy_id crossref_primary_10_1007_s12672_025_02064_7
crossref_primary_10_1109_ACCESS_2023_3333920
crossref_primary_10_1016_j_eswa_2025_126801
crossref_primary_10_1177_11795549241303606
crossref_primary_10_3389_fphar_2022_909784
crossref_primary_10_1016_j_phro_2023_100485
crossref_primary_10_1016_j_phro_2022_09_004
crossref_primary_10_1097_CCO_0000000000001068
crossref_primary_10_1016_j_zemedi_2022_10_005
crossref_primary_10_1016_j_radphyschem_2024_111533
crossref_primary_10_3390_cancers15113061
crossref_primary_10_1016_j_radonc_2022_10_029
crossref_primary_10_1109_TETCI_2022_3230958
crossref_primary_10_4251_wjgo_v17_i2_101888
crossref_primary_10_1002_pro6_1206
crossref_primary_10_1016_j_jrras_2024_101252
crossref_primary_10_1038_s41391_023_00684_0
crossref_primary_10_3389_fpubh_2022_1008794
crossref_primary_10_1002_hed_27241
crossref_primary_10_1007_s12194_025_00916_z
crossref_primary_10_1016_j_phro_2023_100494
crossref_primary_10_1016_j_jbi_2022_104181
crossref_primary_10_1007_s10916_023_01907_6
crossref_primary_10_1016_j_compind_2025_104361
crossref_primary_10_1016_j_jrras_2024_101141
crossref_primary_10_1016_j_semradonc_2022_06_007
crossref_primary_10_1186_s42269_024_01254_7
crossref_primary_10_1088_1361_6560_ac7e18
crossref_primary_10_1259_bjr_20220239
crossref_primary_10_1016_j_jrras_2023_100757
crossref_primary_10_1016_j_arth_2024_05_056
crossref_primary_10_1016_j_compbiomed_2022_105444
crossref_primary_10_1002_acm2_70229
crossref_primary_10_1016_j_phro_2025_100710
crossref_primary_10_1007_s13246_022_01160_0
crossref_primary_10_7759_cureus_92964
crossref_primary_10_1007_s11426_025_2942_5
crossref_primary_10_1080_20476965_2024_2395567
crossref_primary_10_1155_2023_1102715
crossref_primary_10_1016_j_csbj_2022_06_036
crossref_primary_10_1002_jmrs_791
crossref_primary_10_1088_1361_6560_adc86c
crossref_primary_10_1016_j_drudis_2024_104068
crossref_primary_10_1016_j_radonc_2025_110779
crossref_primary_10_1016_j_clon_2024_03_003
crossref_primary_10_1016_j_clon_2021_12_002
crossref_primary_10_1016_j_clon_2024_03_008
crossref_primary_10_1016_j_fluid_2025_114395
crossref_primary_10_1007_s40860_022_00192_3
Cites_doi 10.3389/fonc.2019.01333
10.1088/0031-9155/55/11/002
10.1002/mp.13262
10.1109/JPROC.2015.2494218
10.1016/j.ijrobp.2009.07.1754
10.1145/3236009
10.1038/nrclinonc.2012.196
10.1016/j.radonc.2019.11.019
10.3389/fonc.2015.00272
10.1088/1361-6560/ab039b
10.1136/amiajnl-2011-000094
10.1088/1361-6560/aa6393
10.1016/j.radonc.2014.08.013
10.1016/j.ijrobp.2017.12.281
10.1118/1.4938583
10.1016/j.ijrobp.2014.11.030
10.1002/mp.13338
10.1155/2015/103843
10.1016/j.ijrobp.2019.05.071
10.1016/j.radonc.2017.11.012
10.1088/0031-9155/58/23/8419
10.1186/s13058-017-0852-3
10.1016/j.radonc.2016.05.015
10.1002/mp.14173
10.3109/0284186X.2015.1062136
10.1016/j.ijrobp.2014.11.014
10.1109/TPAMI.2018.2857768
10.1186/s13014-019-1300-6
10.1109/ICMLA.2009.92
10.3389/fonc.2017.00315
10.1158/2159-8290.CD-13-0197
10.1118/1.2349696
10.1016/j.ijrobp.2020.03.014
10.1002/mp.13264
10.1118/1.3582947
10.1186/s12916-014-0241-z
10.1136/bmj.38398.500764.8F
10.1016/j.juro.2014.12.090
10.1118/1.3574874
10.1088/0031-9155/55/5/004
10.1088/1361-6560/aa58c3
10.1016/j.phro.2019.09.003
10.1016/j.radonc.2013.05.032
10.1088/0031-9155/56/6/008
10.1016/j.ijrobp.2016.10.005
10.1148/radiol.2020191145
10.1002/mp.12045
10.1016/j.radonc.2019.03.004
10.1016/j.ijrobp.2015.07.2286
10.1145/2523813
10.1155/2015/571351
10.1088/0031-9155/56/16/015
10.1109/TPAMI.2012.269
10.1016/j.radonc.2019.06.027
10.21037/tcr.2018.05.02
10.1371/journal.pone.0020055
10.1200/JCO.2005.06.178
10.1088/2057-1976/2/2/025012
10.1159/000493575
10.1016/j.prro.2013.01.004
10.1371/journal.pone.0184604
10.1093/carcin/bgr300
10.1038/nature21056
10.1088/0031-9155/54/18/S02
10.1002/mp.12155
10.1002/mp.13519
10.1088/2057-1976/1/4/045015
10.1088/0031-9155/55/19/025
10.1002/mp.13953
10.1016/j.radonc.2014.03.010
10.2217/fon.09.121
10.1038/s41598-017-05728-9
10.1118/1.3539749
10.1038/srep23431
10.1186/s12916-018-1099-2
10.1088/0031-9155/54/19/005
10.1016/j.phro.2020.11.002
10.3389/fonc.2019.00964
10.1109/ACCESS.2014.2373335
10.1016/j.radonc.2019.10.019
10.1002/mp.13656
10.1016/j.ijrobp.2012.02.021
10.1126/science.aaa8415
10.1002/mp.12321
10.1002/mp.13597
10.1038/nature14541
10.1088/0031-9155/49/5/007
10.12688/f1000research.9525.1
10.1109/ICCV.2017.74
10.1016/j.radonc.2016.09.009
10.1016/j.tipsro.2020.10.003
10.1002/mp.13175
10.1007/978-3-319-24574-4_28
10.1088/0031-9155/54/6/010
10.7326/0003-4819-144-3-200602070-00009
10.1088/0031-9155/45/9/308
10.1088/0031-9155/60/1/233
10.1007/978-3-319-19551-3_8
10.1002/mp.12479
10.1118/1.4794489
10.1016/j.ijrobp.2013.11.216
10.1016/j.oraloncology.2017.06.015
10.1007/978-3-319-66179-7_42
10.1038/nature14539
10.1088/0031-9155/57/20/6707
10.1016/j.ijrobp.2010.11.030
10.1093/neuonc/nou146
10.1111/j.1754-9485.2010.02192.x
10.1088/0031-9155/50/15/002
10.1016/j.radonc.2020.09.008
10.1038/nrclinonc.2017.141
10.1259/bjr.20190001
10.1002/mp.13271
10.1118/1.4908000
10.1002/mp.12879
10.1016/j.addr.2016.01.006
10.1002/mp.12602
10.1002/mp.14065
10.1109/CVPR.2017.243
10.1200/JCO.19.03141
10.1016/j.radonc.2014.10.001
10.1016/j.ejmp.2018.05.006
10.1016/j.radonc.2018.10.037
10.1002/mp.13976
10.1088/0031-9155/54/4/011
10.1002/acm2.12816
10.1016/j.radonc.2016.10.002
10.1007/s00330-019-06360-z
10.1088/0031-9155/49/10/007
10.1118/1.4788671
10.1080/17434440.2017.1300057
10.1016/S0360-3016(98)00035-2
10.1007/s11548-009-0355-5
10.1016/j.radonc.2014.04.012
10.1016/j.ijrobp.2013.03.015
10.1088/0031-9155/46/4/313
10.1001/jamainternmed.2015.1679
10.1088/1361-6560/ab25bc
10.1002/mp.14004
10.1148/radiol.15141208
10.1088/0031-9155/60/10/N209
10.1016/j.ijrobp.2010.05.026
10.1259/dmfr/30642039
10.1016/j.radonc.2015.12.029
10.1016/j.ijrobp.2017.06.002
10.1002/mp.13890
10.1002/mp.13583
10.1200/JCO.2010.28.5478
10.1016/j.radonc.2019.03.026
10.1016/j.canlet.2017.06.004
10.1088/1361-6560/abcd17
10.1016/j.ijrobp.2015.11.011
10.1016/0360-3016(95)02120-5
10.1109/TPAMI.2006.79
10.1002/mp.14114
10.1088/0954-898X_6_3_011
ContentType Journal Article
Copyright 2021
2021 Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology.
2021 Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology. 2021
Copyright_xml – notice: 2021
– notice: 2021 Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology.
– notice: 2021 Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology. 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.phro.2021.05.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-6316
EndPage 24
ExternalDocumentID oai_doaj_org_article_8881a56095ef4d719916d5f415ccfc6e
PMC8295850
10_1016_j_phro_2021_05_007
S2405631621000300
GroupedDBID .1-
.FO
0R~
AAEDW
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AFRHN
AFTJW
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
O9-
OK1
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
NCXOZ
RIG
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c549t-1a9b26d881fb62cc3272b616f37821ba8488bf4442480d5cd664a6ac18b469e23
IEDL.DBID DOA
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694711800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2405-6316
IngestDate Fri Oct 03 12:42:57 EDT 2025
Thu Aug 21 14:09:15 EDT 2025
Thu Jul 10 23:15:32 EDT 2025
Tue Nov 18 22:34:27 EST 2025
Thu Nov 13 04:22:17 EST 2025
Thu Jul 20 20:14:14 EDT 2023
Tue Aug 26 17:19:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Automation
Radiation therapy
Data mining
Artificial intelligence
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-1a9b26d881fb62cc3272b616f37821ba8488bf4442480d5cd664a6ac18b469e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/8881a56095ef4d719916d5f415ccfc6e
PMID 34307915
PQID 2555344351
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_8881a56095ef4d719916d5f415ccfc6e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8295850
proquest_miscellaneous_2555344351
crossref_primary_10_1016_j_phro_2021_05_007
crossref_citationtrail_10_1016_j_phro_2021_05_007
elsevier_sciencedirect_doi_10_1016_j_phro_2021_05_007
elsevier_clinicalkey_doi_10_1016_j_phro_2021_05_007
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Physics and imaging in radiation oncology
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Hsu, Cao, Huang, Feng, Balter (b0685) 2013; 58
Jochems, Deist, van Soest, Eble, Bulens, Coucke (b0320) 2016; 121
Huff, Weisman, Jeraj (b0310) 2021; 66
Traverso, van Soest, Wee, Dekker (b0865) 2018; 45
Deist, Dankers, Ojha, Scott Marshall, Janssen, Faivre-Finn (b0155) 2020; 144
Moore, Brame, Low, Mutic (b0635) 2011; 81
Lustberg, van Soest, Gooding, Peressutti, Aljabar, van der Stoep (b0010) 2018; 126
Tanaka, Sanada, Sakuta, Kawashima (b0760) 2015; 60
Jurkovic, Stathakis, Papanikolaou, Mavroidis (b0815) 2016; 2
Machine Learning in Radiation Oncology – Theory and Applications Springer; 2015.
Park, Kim, Kim, Park, Kim, Cho (b0300) 2020; 30
Nguyen, Jia, Sher, Lin, Iqbal, Liu (b0580) 2019; 64
Gross, Honnorat, Varol, Wallner, Trappanese, Sharp (b0095) 2016; 6
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Cham: Springer International Publishing; 2015. p. 234-41 doi: 10.1007/978-3-319-24574-4_28.
Klement, Allgäuer, Appold, Dieckmann, Ernst, Ganswindt (b0190) 2014; 88
Kawamoto, Houlihan, Balas, Lobach (b0340) 2005; 330
Tol, Delaney, Dahele, Slotman, Verbakel (b0540) 2015; 91
Kang, Schwartz, Flickinger, Beriwal (b0070) 2015; 93
Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. International Conference on Learning Representations (ICLR). San Diego, CA, USA2015.
Pella, Cambria, Riboldi, Jereczek-Fossa, Fodor, Zerini (b0220) 2011; 38
Kosmin, Ledsam, Romera-Paredes, Mendes, Moinuddin, de Souza (b0455) 2019; 135
Tong, Laura, Xiaoli, Nuno, Steve (b0740) 2009; 54
LeCun, Bengio, Hinton (b0160) 2015; 521
Zhovannik, Bussink, Traverso, Shi, Kalendralis, Wee (b0860) 2019; 19
Chu C, De Fauw J, Tomasev N, Paredes BR, Hughes C, Ledsam J, et al. Applying machine learning to automated segmentation of head and neck tumour volumes and organs at risk on radiotherapy planning CT and MRI scans. F1000Research. 2016;5 doi: 10.12688/f1000research.9525.1.
Men, Zhang, Chen, Chen, Tang, Wang (b0475) 2018; 50
Keall, Nguyen, O'Brien, Hewson, Ball, Poulsen (b0660) 2020; 107
Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D. A Survey of Methods for Explaining Black Box Models. ACM Comput Surv. 2018;51:Article 93; doi: 10.1145/3236009.
Skrobala, Malicki (b0505) 2014; 111
Otto, Osterberg, Salgado, Scherr, Shariat (b0330) 2015; 193
Nomura, Xu, Shirato, Shimizu, Xing (b0830) 2019; 46
Tucker, Li, Xu, Gomez, Yuan, Yu (b0285) 2013; 85
Liu, Lei, Wang, Wang, Ren, Lin (b0695) 2019; 64
Bukhari, Hong (b0795) 2015; 60
Ibragimov, Xing (b0450) 2017; 44
Ch (b0410) 2013
Heus, Damen, Pajouheshnia, Scholten, Reitsma, Collins (b0295) 2018; 16
Wang, Tyagi, Rimner, Hu, Veeraraghavan, Li (b0480) 2019; 131
Krauss, Nill, Oelfke (b0765) 2011; 56
Marks, Yorke, Jackson, Ten Haken, Constine, Eisbruch (b0205) 2010; 76
Nadeem, Piyush, Rodney, Olafur, Weihua, Bernard (b0775) 2009; 54
Chanyavanich, Das, Lee, Lo (b0545) 2011; 38
Dekker A, Dehing-Oberije C, De Ruysscher D, Lambin P, Komati K, Fung G, et al. Survival prediction in lung cancer treated with radiotherapy: Bayesian networks vs. support vector machines in handling missing data. International Conference on Machine Learning and Applications (ICMLA): IEEE; 2009. p. 494-7. doi: 10.1109/ICMLA.2009.92.
Yin, Liao, Huang, Liu, Yuan, Gomez (b0270) 2011; 6
Lambin, Leijenaar, Deist, Peerlings, de Jong, van Timmeren (b0060) 2017; 14
Li, Yao, Yao (b0515) 2004; 49
Han (b0690) 2017; 44
Dean, Wong, Welsh, Jones, Schick, Newbold (b0210) 2016; 120
Xian, Lampert, Schiele, Akata (b0115) 2019; 41
Batumalai, Jameson, King, Walker, Slater, Dundas (b0045) 2020; 16
Brock (b0405) 2013
Shariat, Kattan, Vickers, Karakiewicz, Scardino (b0350) 2009; 5
Goodfellow IP-A, J; Mirza, M; Xu, B; Warde-Farley, D; Ozair, S; Courville, A; Bengio, Y. Generative Adversarial Nets. Advances in Neural Information Processing Systems 27 (NIPS 2014). Montreal, Quebec, Canada2014. p. 2672-80.
Anas EMA, Nouranian S, Mahdavi SS, Spadinger I, Morris WJ, Salcudean SE, et al. Clinical Target-Volume Delineation in Prostate Brachytherapy Using Residual Neural Networks. International Conference on Medical Image Computing and Computer-Assisted Intervention: Springer; 2017. p. 365-73 DOI: 10.1007/978-3-319-66179-7_42.
Keall, Mageras, Balter, Emery, Forster, Jiang (b0725) 2006; 33
Bangert, Oelfke (b0500) 2010; 55
Mackay (b0120) 1995; 6
Chaney EL, Pizer SM. Ch 10 Deformable Shape Models for Image Segmentation. In: Brock KK, editor. Image processing in radiation therapy: CRC Press; 2013.
Schreibmann E, Fox TH. Ch 12 Atlas-Based Segmentation: Concepts and Applications. In: Brock KK, editor. Image processing in radiation therapy: CRC Press; 2013.
Good, Lo, Lee, Wu, Yin, Das (b0640) 2013; 87
Zhang, He, Ouyang, Gu, Dong, Zhang (b0250) 2017; 403
Vinod, Jameson, Min, Holloway (b0400) 2016; 121
Liu, Miao, Huang, Wang, Wang, Zhai (b0835) 2020; 47
Hansen, Landry, Kamp, Li, Belka, Parodi (b0825) 2018; 45
Vial, Stirling, Field, Ros, Ritz, Carolan (b0065) 2018; 7
Balasubramanian, Shamsuddin, Prabhakaran, Sawant (b0800) 2017; 62
Nyflot, Thammasorn, Wootton, Ford, Chaovalitwongse (b0675) 2019; 46
Shen, Nguyen, Chen, Gonzalez, McBeth, Qin (b0530) 2020; 47
Damiani A, Vallati M, Gatta R, Dinapoli N, Jochems A, Deist T, et al. Distributed Learning to Protect Privacy in Multi-centric Clinical Studies. In: Holmes JH, Bellazzi R, Sacchi L, Peek N, editors. Artif Intell Med. Cham: Springer International Publishing; 2015. p. 65-75.
Fei-Fei, Fergus, Perona (b0110) 2006; 28
Teo MTW, Landi D, Taylor CF, Elliott F, Vaslin L, Cox DG, et al. The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis. 2012;33:581-6; DOI: 10.1093/carcin/bgr300.
Hsu, DuPre, Peng, Tome (b0680) 2020; 21
Wang, Liu, Zhang, Deng (b0710) 2019; 9
Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors. Advances in Neural Information Processing Systems 25: Curran Associates, Inc.; 2012. p. 1097-105.
Salakhutdinov, Tenenbaum, Torralba (b0175) 2013; 35
Chen, Men, Li, Yi, Dai (b0585) 2019; 46
Willoughby, Starkschall, Janjan, Rosen (b0625) 1996; 34
Xing, Nguyen, Lu, Yang, Jiang (b0595) 2020; 47
Cheng, Roelofs, Ramaekers, Eekers, van Soest, Lustberg (b0370) 2016; 118
Mahmood R, Babier A, McNiven A, Diamant A, Chan TCY. Automated Treatment Planning in Radiation Therapy using Generative Adversarial Networks. In: Finale D-V, Jim F, Ken J, David K, Rajesh R, Byron W, et al., editors. Proceedings of the 3rd Machine Learning for Healthcare Conference. Proceedings of Machine Learning Research: PMLR; 2018. p. 484–99.
Cunliffe, Armato, Castillo, Pham, Guerrero, Al-Hallaq (b0255) 2015; 91
Lambin, van Stiphout, Starmans, Rios-Velazquez, Nalbantov, Aerts (b0180) 2013; 10
Mylonas, Keall, Booth, Shieh, Eade, Poulsen (b0735) 2019; 46
Kerns, Ostrer, Rosenstein (b0265) 2014; 4
Zhao, Shen, Han, Yang, Cheng, Toesca (b0755) 2019; 105
Bishop (b0080) 2006
Hawkins, Korecki, Balagurunathan, Gu, Kumar, Basu (b0235) 2014; 2
Wu, Zhu (b0520) 2001; 46
Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5 DOI: 10.1038/srep13087.
Volk, Llewellyn-Thomas, Stacey, Elwyn (b0390) 2013; 13
Kazemifar, McGuire, Timmerman, Wardak, Nguyen, Park (b0700) 2019; 136
Bossi, Miceli, Granata, Naimo, Infante, Locati (b0140) 2018; 100
Schreibmann, Lahanas, Xing, Baltas (b0490) 2004; 49
Dekker, Vinod, Holloway, Oberije, George, Goozee (b0130) 2014; 113
Shiraishi, Moore (b0570) 2016; 43
Nguyen, Long, Jia, Lu, Gu, Iqbal (b0600) 2019; 9
Ruan, Keall (b0780) 2010; 55
Lin, Maire, Belongie, Hays, Perona, Ramanan (b0430) 2014
Slomka, Dey, Sitek, Motwani, Berman, Germano (b0090) 2017; 14
Oh, Craft, Al Lozi, Vaidya, Meng, Deasy (b0195) 2011; 56
Schulze, Heil, Groβ, Bruellmann, Dranischnikow, Schwanecke (b0820) 2011; 40
Sahiner, Pezeshk, Hadjiiski, Wang, Drukker, Cha (b0050) 2019; 46
Ghahramani (b0100) 2015; 521
Men, Chen, Zhang, Zhang, Dai, Yi (b0465) 2017; 7
Candido dos Reis, Wishart, Dicks, Greenberg, Rashbass, Schmidt (b0360) 2017; 19
Zhu, Ge, Li, Thongphiew, Yin, Wu (b0645) 2011; 38
Ruan (b0785) 2010; 55
Chen, Jabbour, Qin, Haffty, Yue (b0805) 2013; 40
Delaney, Tol, Dahele, Cuijpers, Slotman, Verbakel (b0630) 2016; 94
Lambin, Zindler, Vanneste, van de Voorde, Jacobs, Eekers (b0025) 2015; 54
Men, Dai, Li (b0425) 2017; 44
Wu, Zhu, Dai, Wang (b0525) 2000; 45
Wu, Ricchetti, Sanguineti, Kazhdan, Simari, Jacques (b0535) 2011; 79
Huang G. LZ, van der Maaten L., Weinberger K. Q. Densely connected neural networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI2017. p. 2261-9. doi: 10.1109/CVPR.2017.243.
Skripcak, Belka, Bosch, Brink, Brunner, Budach (b0325) 2014; 113
Bangert, Ziegenhein, Oelfke (b0495) 2012; 57
Amit, Purdie, Levinshtein, Hope, Lindsay, Marshall (b0485) 2015; 42
Zwanenburg, Vallieres, Abdalah, Aerts, Andrearczyk, Apte (b0870) 2020; 295
Markham, Wachter, Agarwal, Bertagnolli, Chang, Dale (b0020) 2020; 38
Fu, Lei, Wang, Higgins, Bradley, Curran (b0840) 2020; 47
Rai, Holloway, Brink, Field, Christiansen, Sun (b0855) 2020; 47
Tseng, Wei, Cui, Luo, Ten Haken, El Naqa (b0075) 2020; 98
Gupta, Kim, Vineberg, Balter (b0705) 2019; 9
Wang, Zolnay, Incrocci, Joosten, McNutt, Heijmen (b0555) 2013; 107
Abernethy, Etheredge, Ganz, Wallace, German, Neti (b0030) 2010; 28
Jaspers, Smeulers, Vermeulen, Peute (b0345) 2011; 18
Brouwer, Dinkla, Vandewinckele, Crijns, Claessens, Verellen (b0040) 2020; 16
Olivotto, Bajdik, Ravdin, Speers, Coldman, Norris (b0355) 2005; 23
Li, Carmona, Sirak, Kasaova, Followill, Michalski (b0650) 2017; 97
Neylon, Min, Low, Santhanam (b0850) 2017; 44
Clark, Gagliardi, Heijmen, Malicki, Thorwarth, Verellen (b0875) 2019; 11
Li, Yao, Yao, Chen (b0510) 2005; 50
Engelhardt, Révész, Tamminga, Punt, Koopman, Onwuteaka-Philipsen (b0365) 2018; 17
Harms, Lei, Wang, Zhang, Zhou, Tang (b0670) 2019; 46
Lambin, Zindler, Vanneste, De Voorde, Eekers, Compter (b0035) 2017; 109
Galib,
10.1016/j.phro.2021.05.007_b0415
Balasubramanian (10.1016/j.phro.2021.05.007_b0800) 2017; 62
Bukhari (10.1016/j.phro.2021.05.007_b0795) 2015; 60
Gargett (10.1016/j.phro.2021.05.007_b0730) 2019; 14
Mackay (10.1016/j.phro.2021.05.007_b0120) 1995; 6
Schreibmann (10.1016/j.phro.2021.05.007_b0490) 2004; 49
Wang (10.1016/j.phro.2021.05.007_b0710) 2019; 9
Tol (10.1016/j.phro.2021.05.007_b0540) 2015; 91
Liu (10.1016/j.phro.2021.05.007_b0695) 2019; 64
Marcu (10.1016/j.phro.2021.05.007_b0225) 2015; 2015
Ruan (10.1016/j.phro.2021.05.007_b0785) 2010; 55
Zhang (10.1016/j.phro.2021.05.007_b0250) 2017; 403
Jordan (10.1016/j.phro.2021.05.007_b0085) 2015; 349
10.1016/j.phro.2021.05.007_b0135
Reilly (10.1016/j.phro.2021.05.007_b0335) 2006; 144
10.1016/j.phro.2021.05.007_b0305
Tong (10.1016/j.phro.2021.05.007_b0745) 2009; 54
Oberije (10.1016/j.phro.2021.05.007_b0015) 2014; 112
Pella (10.1016/j.phro.2021.05.007_b0220) 2011; 38
Tseng (10.1016/j.phro.2021.05.007_b0075) 2020; 98
Slomka (10.1016/j.phro.2021.05.007_b0090) 2017; 14
Neylon (10.1016/j.phro.2021.05.007_b0850) 2017; 44
Mylonas (10.1016/j.phro.2021.05.007_b0735) 2019; 46
Gama (10.1016/j.phro.2021.05.007_b0125) 2014; 46
Deist (10.1016/j.phro.2021.05.007_b0155) 2020; 144
10.1016/j.phro.2021.05.007_b0260
Shen (10.1016/j.phro.2021.05.007_b0530) 2020; 47
Heus (10.1016/j.phro.2021.05.007_b0295) 2018; 16
Lambin (10.1016/j.phro.2021.05.007_b0025) 2015; 54
Krauss (10.1016/j.phro.2021.05.007_b0765) 2011; 56
10.1016/j.phro.2021.05.007_b0420
Men (10.1016/j.phro.2021.05.007_b0425) 2017; 44
LeCun (10.1016/j.phro.2021.05.007_b0160) 2015; 521
Shahriari (10.1016/j.phro.2021.05.007_b0170) 2016; 104
Klement (10.1016/j.phro.2021.05.007_b0190) 2014; 88
Men (10.1016/j.phro.2021.05.007_b0475) 2018; 50
Vandewinckele (10.1016/j.phro.2021.05.007_b0055) 2020; 153
Jarrett (10.1016/j.phro.2021.05.007_b0005) 2019; 92
Olivotto (10.1016/j.phro.2021.05.007_b0355) 2005; 23
Gross (10.1016/j.phro.2021.05.007_b0095) 2016; 6
Zhao (10.1016/j.phro.2021.05.007_b0755) 2019; 105
Nomura (10.1016/j.phro.2021.05.007_b0830) 2019; 46
Rai (10.1016/j.phro.2021.05.007_b0855) 2020; 47
Willoughby (10.1016/j.phro.2021.05.007_b0625) 1996; 34
Wu (10.1016/j.phro.2021.05.007_b0525) 2000; 45
Skrobala (10.1016/j.phro.2021.05.007_b0505) 2014; 111
Wang (10.1016/j.phro.2021.05.007_b0480) 2019; 131
Fei-Fei (10.1016/j.phro.2021.05.007_b0110) 2006; 28
Vinod (10.1016/j.phro.2021.05.007_b0400) 2016; 121
Zhu (10.1016/j.phro.2021.05.007_b0645) 2011; 38
Ch (10.1016/j.phro.2021.05.007_b0410) 2013
Nguyen (10.1016/j.phro.2021.05.007_b0580) 2019; 64
Clark (10.1016/j.phro.2021.05.007_b0875) 2019; 11
Shariat (10.1016/j.phro.2021.05.007_b0350) 2009; 5
Vial (10.1016/j.phro.2021.05.007_b0065) 2018; 7
Younge (10.1016/j.phro.2021.05.007_b0655) 2018
Traverso (10.1016/j.phro.2021.05.007_b0865) 2018; 45
Li (10.1016/j.phro.2021.05.007_b0510) 2005; 50
Park (10.1016/j.phro.2021.05.007_b0300) 2020; 30
Skripcak (10.1016/j.phro.2021.05.007_b0325) 2014; 113
Oh (10.1016/j.phro.2021.05.007_b0195) 2011; 56
Wu (10.1016/j.phro.2021.05.007_b0560) 2013; 40
Ghahramani (10.1016/j.phro.2021.05.007_b0100) 2015; 521
Austin (10.1016/j.phro.2021.05.007_b0385) 2015; 175
Moore (10.1016/j.phro.2021.05.007_b0635) 2011; 81
Zhao (10.1016/j.phro.2021.05.007_b0665) 2019; 140
Fu (10.1016/j.phro.2021.05.007_b0840) 2020; 47
Jameson (10.1016/j.phro.2021.05.007_b0395) 2010; 54
Sahiner (10.1016/j.phro.2021.05.007_b0050) 2019; 46
Jaspers (10.1016/j.phro.2021.05.007_b0345) 2011; 18
Dekker (10.1016/j.phro.2021.05.007_b0130) 2014; 113
Kerns (10.1016/j.phro.2021.05.007_b0265) 2014; 4
Hansen (10.1016/j.phro.2021.05.007_b0825) 2018; 45
Tong (10.1016/j.phro.2021.05.007_b0740) 2009; 54
Barragán‐Montero (10.1016/j.phro.2021.05.007_b0590) 2019; 46
Han (10.1016/j.phro.2021.05.007_b0690) 2017; 44
Liu (10.1016/j.phro.2021.05.007_b0835) 2020; 47
10.1016/j.phro.2021.05.007_b0615
Kazemifar (10.1016/j.phro.2021.05.007_b0700) 2019; 136
Tatinati (10.1016/j.phro.2021.05.007_b0790) 2014; 2014
Hawkins (10.1016/j.phro.2021.05.007_b0235) 2014; 2
Shieh (10.1016/j.phro.2021.05.007_b0750) 2017; 62
Keall (10.1016/j.phro.2021.05.007_b0725) 2006; 33
Cunliffe (10.1016/j.phro.2021.05.007_b0255) 2015; 91
Nyflot (10.1016/j.phro.2021.05.007_b0675) 2019; 46
Xian (10.1016/j.phro.2021.05.007_b0115) 2019; 41
Cheng (10.1016/j.phro.2021.05.007_b0370) 2016; 118
Dunne (10.1016/j.phro.2021.05.007_b0375) 2015; 276
Lambin (10.1016/j.phro.2021.05.007_b0035) 2017; 109
Ou (10.1016/j.phro.2021.05.007_b0240) 2017; 71
Huff (10.1016/j.phro.2021.05.007_b0310) 2021; 66
Bogowicz (10.1016/j.phro.2021.05.007_b0245) 2017; 99
Tanaka (10.1016/j.phro.2021.05.007_b0760) 2015; 60
Brock (10.1016/j.phro.2021.05.007_b0405) 2013
Ibragimov (10.1016/j.phro.2021.05.007_b0450) 2017; 44
10.1016/j.phro.2021.05.007_b0610
Delaney (10.1016/j.phro.2021.05.007_b0630) 2016; 94
Wu (10.1016/j.phro.2021.05.007_b0535) 2011; 79
Mak (10.1016/j.phro.2021.05.007_b0280) 2015; 17
Kosmin (10.1016/j.phro.2021.05.007_b0455) 2019; 135
Lambin (10.1016/j.phro.2021.05.007_b0180) 2013; 10
Ernst (10.1016/j.phro.2021.05.007_b0770) 2009; 4
Jurkovic (10.1016/j.phro.2021.05.007_b0815) 2016; 2
Li (10.1016/j.phro.2021.05.007_b0650) 2017; 97
Jochems (10.1016/j.phro.2021.05.007_b0320) 2016; 121
Zhovannik (10.1016/j.phro.2021.05.007_b0860) 2019; 19
Shiraishi (10.1016/j.phro.2021.05.007_b0570) 2016; 43
Candido dos Reis (10.1016/j.phro.2021.05.007_b0360) 2017; 19
Xing (10.1016/j.phro.2021.05.007_b0595) 2020; 47
Bishop (10.1016/j.phro.2021.05.007_b0080) 2006
Esteva (10.1016/j.phro.2021.05.007_b0435) 2017; 542
Ziemer (10.1016/j.phro.2021.05.007_b0565) 2017; 44
10.1016/j.phro.2021.05.007_b0185
El Naqa (10.1016/j.phro.2021.05.007_b0215) 2009; 54
Men (10.1016/j.phro.2021.05.007_b0465) 2017; 7
Salakhutdinov (10.1016/j.phro.2021.05.007_b0175) 2013; 35
Marks (10.1016/j.phro.2021.05.007_b0205) 2010; 76
Wu (10.1016/j.phro.2021.05.007_b0520) 2001; 46
Fan (10.1016/j.phro.2021.05.007_b0575) 2019; 46
10.1016/j.phro.2021.05.007_b0620
10.1016/j.phro.2021.05.007_b0105
Wong (10.1016/j.phro.2021.05.007_b0460) 2020; 144
McKenzie (10.1016/j.phro.2021.05.007_b0715) 2020; 47
Keall (10.1016/j.phro.2021.05.007_b0660) 2020; 107
10.1016/j.phro.2021.05.007_b0315
Trebeschi (10.1016/j.phro.2021.05.007_b0470) 2017; 7
Collins (10.1016/j.phro.2021.05.007_b0290) 2015; 13
Galib (10.1016/j.phro.2021.05.007_b0845) 2020; 47
Harms (10.1016/j.phro.2021.05.007_b0670) 2019; 46
Chen (10.1016/j.phro.2021.05.007_b0805) 2013; 40
Parmar (10.1016/j.phro.2021.05.007_b0200) 2015; 5
Zwanenburg (10.1016/j.phro.2021.05.007_b0870) 2020; 295
Abernethy (10.1016/j.phro.2021.05.007_b0030) 2010; 28
DeMasi (10.1016/j.phro.2021.05.007_b0145) 2017; 12
10.1016/j.phro.2021.05.007_b0150
Ruan (10.1016/j.phro.2021.05.007_b0780) 2010; 55
Mera Iglesias (10.1016/j.phro.2021.05.007_b0230) 2015; 2015
Yin (10.1016/j.phro.2021.05.007_b0270) 2011; 6
Good (10.1016/j.phro.2021.05.007_b0640) 2013; 87
Gupta (10.1016/j.phro.2021.05.007_b0705) 2019; 9
10.1016/j.phro.2021.05.007_b0275
Amit (10.1016/j.phro.2021.05.007_b0485) 2015; 42
Schulze (10.1016/j.phro.2021.05.007_b0820) 2011; 40
Kane (10.1016/j.phro.2021.05.007_b0380) 2014; 64
Hsu (10.1016/j.phro.2021.05.007_b0680) 2020; 21
Nguyen (10.1016/j.phro.2021.05.007_b0600) 2019; 9
Wang (10.1016/j.phro.2021.05.007_b0555) 2013; 107
Lambin (10.1016/j.phro.2021.05.007_b0060) 2017; 14
Otto (10.1016/j.phro.2021.05.007_b0330) 2015; 193
Nadeem (10.1016/j.phro.2021.05.007_b0775) 2009; 54
Bossi (10.1016/j.phro.2021.05.007_b0140) 2018; 100
Tucker (10.1016/j.phro.2021.05.007_b0285) 2013; 85
Li (10.1016/j.phro.2021.05.007_b0515) 2004; 49
Batumalai (10.1016/j.phro.2021.05.007_b0045) 2020; 16
10.1016/j.phro.2021.05.007_b0605
Hsu (10.1016/j.phro.2021.05.007_b0685) 2013; 58
Kawamoto (10.1016/j.phro.2021.05.007_b0340) 2005; 330
Guang (10.1016/j.phro.2021.05.007_b0810) 2015; 1
Volk (10.1016/j.phro.2021.05.007_b0390) 2013; 13
Markham (10.1016/j.phro.2021.05.007_b0020) 2020; 38
Chen (10.1016/j.phro.2021.05.007_b0585) 2019; 46
Bangert (10.1016/j.phro.2021.05.007_b0500) 2010; 55
Chanyavanich (10.1016/j.phro.2021.05.007_b0545) 2011; 38
Dean (10.1016/j.phro.2021.05.007_b0210) 2016; 120
Lustberg (10.1016/j.phro.2021.05.007_b0010) 2018; 126
Kang (10.1016/j.phro.2021.05.007_b0070) 2015; 93
10.1016/j.phro.2021.05.007_b0165
10.1016/j.phro.2021.05.007_b0440
Brouwer (10.1016/j.phro.2021.05.007_b0040) 2020; 16
Engelhardt (10.1016/j.phro.2021.05.007_b0365) 2018; 17
Lin (10.1016/j.phro.2021.05.007_b0430) 2014
Bangert (10.1016/j.phro.2021.05.007_b0495) 2012; 57
10.1016/j.phro.2021.05.007_b0445
Wells (10.1016/j.phro.2021.05.007_b0550) 1998; 41
10.1016/j.phro.2021.05.007_b0720
References_xml – volume: 17
  start-page: e1
  year: 2018
  end-page: e12
  ident: b0365
  article-title: Clinical usefulness of tools to support decision-making for palliative treatment of metastatic colorectal cancer: a systematic review
  publication-title: Clin Colorectal Cancer.
– volume: 91
  start-page: 612
  year: 2015
  end-page: 620
  ident: b0540
  article-title: Evaluation of a knowledge-based planning solution for head and neck cancer
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 41
  start-page: 173
  year: 1998
  end-page: 182
  ident: b0550
  article-title: A medical expert system approach using artificial neural networks for standardized treatment planning <sup>1</sup>
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 9
  start-page: 964
  year: 2019
  ident: b0705
  article-title: Generation of synthetic CT images from MRI for treatment planning and patient positioning using a 3-channel U-net trained on sagittal images
  publication-title: Front Oncol
– volume: 46
  start-page: 3998
  year: 2019
  end-page: 4009
  ident: b0670
  article-title: Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography
  publication-title: Med Phys
– volume: 21
  start-page: 136
  year: 2020
  end-page: 143
  ident: b0680
  article-title: A technique to generate synthetic CT from MRI for abdominal radiotherapy
  publication-title: J Appl Clin Med Phys
– volume: 16
  start-page: 58
  year: 2020
  end-page: 64
  ident: b0045
  article-title: Cautiously optimistic: a survey of radiation oncology professionals' perceptions of automation in radiotherapy planning
  publication-title: Tech Innov Patient Support Radiat Oncol.
– volume: 131
  start-page: 101
  year: 2019
  end-page: 107
  ident: b0480
  article-title: Segmenting lung tumors on longitudinal imaging studies via a patient-specific adaptive convolutional neural network
  publication-title: Radiother Oncol
– volume: 47
  start-page: 2329
  year: 2020
  end-page: 2336
  ident: b0530
  article-title: Operating a treatment planning system using a deep-reinforcement learning-based virtual treatment planner for prostate cancer intensity-modulated radiation therapy treatment planning
  publication-title: Med Phys
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: b0435
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 44
  start-page: 5001
  year: 2017
  end-page: 5009
  ident: b0565
  article-title: Heuristic knowledge-based planning for single-isocenter stereotactic radiosurgery to multiple brain metastases
  publication-title: Med Phys
– volume: 46
  start-page: 1085
  year: 2001
  end-page: 1099
  ident: b0520
  article-title: An optimization method for importance factors and beam weights based on genetic algorithms for radiotherapy treatment planning
  publication-title: Phys Med Biol
– volume: 40
  start-page: 265
  year: 2011
  end-page: 273
  ident: b0820
  article-title: Artefacts in CBCT: a review
  publication-title: Dentomaxillofac Radiol
– reference: Chu C, De Fauw J, Tomasev N, Paredes BR, Hughes C, Ledsam J, et al. Applying machine learning to automated segmentation of head and neck tumour volumes and organs at risk on radiotherapy planning CT and MRI scans. F1000Research. 2016;5 doi: 10.12688/f1000research.9525.1.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 10
  ident: b0230
  article-title: Multimodality functional imaging in radiation therapy planning: relationships between dynamic contrast-enhanced MRI, diffusion-weighted MRI, and 18F-FDG PET
  publication-title: Comput Math Methods Med
– volume: 11
  start-page: 71
  year: 2019
  end-page: 75
  ident: b0875
  article-title: Adapting training for medical physicists to match future trends in radiation oncology
  publication-title: Phys Imaging Radiat Oncol
– volume: 13
  start-page: S1
  year: 2013
  ident: b0390
  article-title: Ten years of the International Patient Decision Aid Standards Collaboration: evolution of the core dimensions for assessing the quality of patient decision aids
  publication-title: BMC Med Inf Decis Making
– volume: 94
  start-page: 469
  year: 2016
  end-page: 477
  ident: b0630
  article-title: Effect of dosimetric outliers on the performance of a commercial knowledge-based planning solution
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 135
  start-page: 130
  year: 2019
  end-page: 140
  ident: b0455
  article-title: Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer
  publication-title: Radiother Oncol
– volume: 16
  start-page: 144
  year: 2020
  end-page: 148
  ident: b0040
  article-title: Machine learning applications in radiation oncology: Current use and needs to support clinical implementation
  publication-title: Phys Imaging Radiat Oncol.
– volume: 4
  start-page: 155
  year: 2014
  end-page: 165
  ident: b0265
  article-title: Radiogenomics: using genetics to identify cancer patients at risk for development of adverse effects following radiotherapy
  publication-title: Cancer Discov
– reference: Schreibmann E, Fox TH. Ch 12 Atlas-Based Segmentation: Concepts and Applications. In: Brock KK, editor. Image processing in radiation therapy: CRC Press; 2013.
– volume: 12
  start-page: e0184604
  year: 2017
  ident: b0145
  article-title: Meaningless comparisons lead to false optimism in medical machine learning
  publication-title: PLoS ONE
– volume: 2
  start-page: 025012
  year: 2016
  ident: b0815
  article-title: Prediction of lung tumor motion extent through artificial neural network (ANN) using tumor size and location data
  publication-title: Biomed Phys Eng Express
– volume: 521
  start-page: 452
  year: 2015
  end-page: 459
  ident: b0100
  article-title: Probabilistic machine learning and artificial intelligence
  publication-title: Nature
– volume: 54
  start-page: 1555
  year: 2009
  end-page: 1563
  ident: b0745
  article-title: Markerless gating for lung cancer radiotherapy based on machine learning techniques
  publication-title: Phys Med Biol
– volume: 85
  start-page: 251
  year: 2013
  end-page: 257
  ident: b0285
  article-title: Incorporating single-nucleotide polymorphisms into the lyman model to improve prediction of radiation pneumonitis
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 46
  start-page: 56
  year: 2019
  end-page: 64
  ident: b0585
  article-title: A feasibility study on an automated method to generate patient-specific dose distributions for radiotherapy using deep learning
  publication-title: Med Phys
– volume: 47
  start-page: 1763
  year: 2020
  end-page: 1774
  ident: b0840
  article-title: LungRegNet: an unsupervised deformable image registration method for 4D-CT lung
  publication-title: Med Phys
– volume: 1
  start-page: 045015
  year: 2015
  ident: b0810
  article-title: Automatic assessment of average diaphragm motion trajectory from 4DCT images through machine learning
  publication-title: Biomed Phys Eng Express
– volume: 45
  start-page: e854
  year: 2018
  end-page: e862
  ident: b0865
  article-title: The radiation oncology ontology (ROO): publishing linked data in radiation oncology using semantic web and ontology techniques
  publication-title: Med Phys
– volume: 113
  start-page: 47
  year: 2014
  end-page: 53
  ident: b0130
  article-title: Rapid learning in practice: a lung cancer survival decision support system in routine patient care data
  publication-title: Radiother Oncol
– volume: 97
  start-page: 164
  year: 2017
  end-page: 172
  ident: b0650
  article-title: Highly efficient training, refinement, and validation of a knowledge-based planning quality-control system for radiation therapy clinical trials
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 121
  start-page: 459
  year: 2016
  end-page: 467
  ident: b0320
  article-title: Distributed learning: developing a predictive model based on data from multiple hospitals without data leaving the hospital–a real life proof of concept
  publication-title: Radiother Oncol
– reference: Huang G. LZ, van der Maaten L., Weinberger K. Q. Densely connected neural networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI2017. p. 2261-9. doi: 10.1109/CVPR.2017.243.
– volume: 14
  start-page: 93
  year: 2019
  ident: b0730
  article-title: Clinical impact of removing respiratory motion during liver SABR
  publication-title: Radiat Oncol.
– reference: Anas EMA, Nouranian S, Mahdavi SS, Spadinger I, Morris WJ, Salcudean SE, et al. Clinical Target-Volume Delineation in Prostate Brachytherapy Using Residual Neural Networks. International Conference on Medical Image Computing and Computer-Assisted Intervention: Springer; 2017. p. 365-73 DOI: 10.1007/978-3-319-66179-7_42.
– volume: 144
  start-page: 201
  year: 2006
  ident: b0335
  article-title: Translating clinical research into clinical practice: impact of using prediction rules to make decisions
  publication-title: Ann Intern Med
– volume: 44
  start-page: 6377
  year: 2017
  end-page: 6389
  ident: b0425
  article-title: Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks
  publication-title: Med Phys
– volume: 46
  start-page: e1
  year: 2019
  end-page: e36
  ident: b0050
  article-title: Deep learning in medical imaging and radiation therapy
  publication-title: Med Phys
– volume: 92
  start-page: 20190001
  year: 2019
  ident: b0005
  article-title: Applications and limitations of machine learning in radiation oncology
  publication-title: Br J Radiol
– volume: 14
  start-page: 197
  year: 2017
  end-page: 212
  ident: b0090
  article-title: Cardiac imaging: working towards fully-automated machine analysis & interpretation
  publication-title: Expert Rev Med Devices
– volume: 100
  start-page: 1217
  year: 2018
  end-page: 1221
  ident: b0140
  article-title: Failure of further validation for survival nomograms in oropharyngeal cancer: issues and challenges
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 46
  start-page: 370
  year: 2019
  end-page: 381
  ident: b0575
  article-title: Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique
  publication-title: Med Phys
– volume: 45
  start-page: 2547
  year: 2000
  end-page: 2558
  ident: b0525
  article-title: Selection and determination of beam weights based on genetic algorithms for conformal radiotherapy treatment planning
  publication-title: Phys Med Biol
– volume: 60
  start-page: N209
  year: 2015
  end-page: N218
  ident: b0760
  article-title: Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT)
  publication-title: Phys Med Biol
– year: 2006
  ident: b0080
  article-title: Pattern recognition and machine learning
– volume: 46
  start-page: 1
  year: 2014
  end-page: 37
  ident: b0125
  article-title: A survey on concept drift adaptation
  publication-title: ACM Comput Surv
– volume: 14
  start-page: 749
  year: 2017
  end-page: 762
  ident: b0060
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nat Rev Clin Oncol
– volume: 55
  start-page: 6023
  year: 2010
  end-page: 6037
  ident: b0500
  article-title: Spherical cluster analysis for beam angle optimization in intensity-modulated radiation therapy treatment planning
  publication-title: Phys Med Biol
– volume: 144
  start-page: 189
  year: 2020
  end-page: 200
  ident: b0155
  article-title: Distributed learning on 20 000+ lung cancer patients - The Personal Health Train
  publication-title: Radiother Oncol
– volume: 19
  start-page: 33
  year: 2019
  end-page: 38
  ident: b0860
  article-title: Learning from scanners: bias reduction and feature correction in radiomics
  publication-title: Clin Transl Radiat Oncol
– volume: 17
  start-page: 296
  year: 2015
  end-page: 302
  ident: b0280
  article-title: Significance of targeted therapy and genetic alterations in EGFR, ALK, or KRAS on survival in patients with non–small cell lung cancer treated with radiotherapy for brain metastases
  publication-title: Neuro Oncol
– volume: 54
  start-page: 981
  year: 2009
  end-page: 992
  ident: b0740
  article-title: Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy
  publication-title: Phys Med Biol
– volume: 153
  start-page: 55
  year: 2020
  end-page: 66
  ident: b0055
  article-title: Overview of artificial intelligence-based applications in radiotherapy: recommendations for implementation and quality assurance
  publication-title: Radiother Oncol
– volume: 7
  start-page: 803
  year: 2018
  end-page: 816
  ident: b0065
  article-title: The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review
  publication-title: Transl Cancer Res
– volume: 54
  start-page: S9
  year: 2009
  end-page: S30
  ident: b0215
  article-title: Predicting radiotherapy outcomes using statistical learning techniques
  publication-title: Phys Med Biol
– volume: 107
  start-page: 352
  year: 2013
  end-page: 357
  ident: b0555
  article-title: A quality control model that uses PTV-rectal distances to predict the lowest achievable rectum dose, improves IMRT planning for patients with prostate cancer
  publication-title: Radiother Oncol
– volume: 41
  start-page: 2251
  year: 2019
  end-page: 2265
  ident: b0115
  article-title: Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 349
  start-page: 255
  year: 2015
  end-page: 260
  ident: b0085
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
– volume: 23
  start-page: 2716
  year: 2005
  end-page: 2725
  ident: b0355
  article-title: Population-based validation of the prognostic model ADJUVANT! for early breast cancer
  publication-title: J Clin Oncol
– volume: 6
  start-page: 469
  year: 1995
  end-page: 505
  ident: b0120
  article-title: Probable networks and plausible predictions — a review of practical Bayesian methods for supervised neural networks
  publication-title: Network: Computation in Neural Systems.
– volume: 9
  start-page: 1333
  year: 2019
  ident: b0710
  article-title: Synthetic CT Generation Based on T2 Weighted MRI of Nasopharyngeal Carcinoma (NPC) Using a Deep Convolutional Neural Network (DCNN)
  publication-title: Front Oncol
– volume: 175
  start-page: 1213
  year: 2015
  end-page: 1221
  ident: b0385
  article-title: Tools to promote shared decision making in serious illness
  publication-title: JAMA Internal Med
– volume: 57
  start-page: 6707
  year: 2012
  end-page: 6723
  ident: b0495
  article-title: Characterizing the combinatorial beam angle selection problem
  publication-title: Phys Med Biol
– volume: 56
  start-page: 1635
  year: 2011
  end-page: 1651
  ident: b0195
  article-title: A Bayesian network approach for modeling local failure in lung cancer
  publication-title: Phys Med Biol
– volume: 403
  start-page: 21
  year: 2017
  end-page: 27
  ident: b0250
  article-title: Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma
  publication-title: Cancer Lett
– volume: 46
  start-page: 456
  year: 2019
  end-page: 464
  ident: b0675
  article-title: Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks
  publication-title: Med Phys
– volume: 34
  start-page: 923
  year: 1996
  end-page: 930
  ident: b0625
  article-title: Evaluation and scoring of radiotherapy treatment plans using an artificial neural network
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 18
  start-page: 327
  year: 2011
  end-page: 334
  ident: b0345
  article-title: Effects of clinical decision-support systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic review findings
  publication-title: J Am Med Inform Assoc
– volume: 19
  year: 2017
  ident: b0360
  article-title: An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation
  publication-title: Breast Cancer Res
– volume: 44
  start-page: 4126
  year: 2017
  end-page: 4138
  ident: b0850
  article-title: A neural network approach for fast, automated quantification of DIR performance
  publication-title: Med Phys
– volume: 295
  start-page: 328
  year: 2020
  end-page: 338
  ident: b0870
  article-title: The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping
  publication-title: Radiology
– volume: 54
  start-page: 5735
  year: 2009
  end-page: 5748
  ident: b0775
  article-title: Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression
  publication-title: Phys Med Biol
– volume: 47
  start-page: 1249
  year: 2020
  end-page: 1257
  ident: b0835
  article-title: A deep learning method for producing ventilation images from 4DCT: First comparison with technegas SPECT ventilation
  publication-title: Med Phys
– volume: 49
  start-page: 747
  year: 2004
  end-page: 770
  ident: b0490
  article-title: Multiobjective evolutionary optimization of the number of beams, their orientations and weights for intensity-modulated radiation therapy
  publication-title: Phys Med Biol
– volume: 107
  start-page: 530
  year: 2020
  end-page: 538
  ident: b0660
  article-title: Real-time image-guided ablative prostate cancer radiation therapy: results from the TROG 15.01 SPARK trial
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 93
  start-page: 1127
  year: 2015
  end-page: 1135
  ident: b0070
  article-title: Machine learning approaches for predicting radiation therapy outcomes: a clinician’s perspective
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 64
  start-page: 145015
  year: 2019
  ident: b0695
  article-title: MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method
  publication-title: Phys Med Biol
– volume: 193
  start-page: 1933
  year: 2015
  end-page: 1937
  ident: b0330
  article-title: Prostate cancer risk estimation tool use by members of the American Urological Association: a survey based study
  publication-title: J Urol
– volume: 46
  start-page: 3679
  year: 2019
  end-page: 3691
  ident: b0590
  article-title: Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations
  publication-title: Med Phys
– reference: Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5 DOI: 10.1038/srep13087.
– volume: 54
  start-page: 401
  year: 2010
  end-page: 410
  ident: b0395
  article-title: A review of methods of analysis in contouring studies for radiation oncology
  publication-title: J Med Imaging Radiat Oncol.
– reference: Mahmood R, Babier A, McNiven A, Diamant A, Chan TCY. Automated Treatment Planning in Radiation Therapy using Generative Adversarial Networks. In: Finale D-V, Jim F, Ken J, David K, Rajesh R, Byron W, et al., editors. Proceedings of the 3rd Machine Learning for Healthcare Conference. Proceedings of Machine Learning Research: PMLR; 2018. p. 484–99.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 2
  ident: b0225
  article-title: Predictive models of tumour response to treatment using functional imaging techniques
  publication-title: Comput Math Methods Med
– volume: 33
  start-page: 3874
  year: 2006
  end-page: 3900
  ident: b0725
  article-title: The management of respiratory motion in radiation oncology report of AAPM Task Group 76
  publication-title: Med Phys
– volume: 98
  start-page: 344
  year: 2020
  end-page: 362
  ident: b0075
  article-title: Machine learning and imaging informatics in oncology
  publication-title: Oncology
– volume: 10
  start-page: 27
  year: 2013
  end-page: 40
  ident: b0180
  article-title: Predicting outcomes in radiation oncology—multifactorial decision support systems
  publication-title: Nat Rev Clin Oncol
– volume: 46
  start-page: 2286
  year: 2019
  end-page: 2297
  ident: b0735
  article-title: A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images
  publication-title: Med Phys
– volume: 56
  start-page: 5303
  year: 2011
  end-page: 5317
  ident: b0765
  article-title: The comparative performance of four respiratory motion predictors for real-time tumour tracking
  publication-title: Phys Med Biol
– volume: 81
  start-page: 545
  year: 2011
  end-page: 551
  ident: b0635
  article-title: Experience-based quality control of clinical intensity-modulated radiotherapy planning
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 6
  start-page: e20055
  year: 2011
  ident: b0270
  article-title: Polymorphisms of homologous recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy
  publication-title: PLoS ONE
– volume: 79
  start-page: 1241
  year: 2011
  end-page: 1247
  ident: b0535
  article-title: Data-driven approach to generating achievable dose-volume histogram objectives in intensity-modulated radiotherapy planning
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 120
  start-page: 21
  year: 2016
  end-page: 27
  ident: b0210
  article-title: Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy
  publication-title: Radiother Oncol
– volume: 105
  start-page: 432
  year: 2019
  end-page: 439
  ident: b0755
  article-title: Markerless Pancreatic Tumor Target Localization Enabled By Deep Learning
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 140
  start-page: 167
  year: 2019
  end-page: 174
  ident: b0665
  article-title: Incorporating imaging information from deep neural network layers into image guided radiation therapy (IGRT)
  publication-title: Radiother Oncol
– volume: 50
  start-page: 3491
  year: 2005
  end-page: 3514
  ident: b0510
  article-title: A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning
  publication-title: Phys Med Biol
– volume: 121
  start-page: 169
  year: 2016
  end-page: 179
  ident: b0400
  article-title: Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies
  publication-title: Radiother Oncol
– volume: 2014
  start-page: 4204
  year: 2014
  end-page: 4207
  ident: b0790
  article-title: Real-time prediction of respiratory motion traces for radiotherapy with ensemble learning
  publication-title: Conf Proc IEEE Eng Med Biol Soc.
– reference: Teo MTW, Landi D, Taylor CF, Elliott F, Vaslin L, Cox DG, et al. The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis. 2012;33:581-6; DOI: 10.1093/carcin/bgr300.
– volume: 38
  start-page: 2515
  year: 2011
  end-page: 2522
  ident: b0545
  article-title: Knowledge-based IMRT treatment planning for prostate cancer
  publication-title: Med Phys
– volume: 55
  start-page: 1311
  year: 2010
  end-page: 1326
  ident: b0785
  article-title: Kernel density estimation-based real-time prediction for respiratory motion
  publication-title: Phys Med Biol
– volume: 66
  start-page: 04TR01
  year: 2021
  ident: b0310
  article-title: Interpretation and visualization techniques for deep learning models in medical imaging
  publication-title: Phys Med Biol
– volume: 4
  start-page: 439
  year: 2009
  end-page: 447
  ident: b0770
  article-title: Forecasting respiratory motion with accurate online support vector regression (SVRpred)
  publication-title: Int J Comput Assist Radiol Surg
– volume: 43
  start-page: 378
  year: 2016
  end-page: 387
  ident: b0570
  article-title: Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy
  publication-title: Med Phys
– volume: 112
  start-page: 37
  year: 2014
  end-page: 43
  ident: b0015
  article-title: A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making
  publication-title: Radiother Oncol
– volume: 118
  start-page: 281
  year: 2016
  end-page: 285
  ident: b0370
  article-title: Development and evaluation of an online three-level proton vs photon decision support prototype for head and neck cancer – comparison of dose, toxicity and cost-effectiveness
  publication-title: Radiother Oncol
– volume: 55
  start-page: 3011
  year: 2010
  end-page: 3025
  ident: b0780
  article-title: Online prediction of respiratory motion: multidimensional processing with low-dimensional feature learning
  publication-title: Phys Med Biol
– volume: 330
  start-page: 765
  year: 2005
  ident: b0340
  article-title: Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success
  publication-title: BMJ
– volume: 144
  start-page: 152
  year: 2020
  end-page: 158
  ident: b0460
  article-title: Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning
  publication-title: Radiother Oncol
– volume: 62
  start-page: 1791
  year: 2017
  end-page: 1809
  ident: b0800
  article-title: Predictive modeling of respiratory tumor motion for real-time prediction of baseline shifts
  publication-title: Phys Med Biol
– volume: 76
  start-page: S10
  year: 2010
  end-page: S19
  ident: b0205
  article-title: Use of normal tissue complication probability models in the clinic
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 60
  start-page: 233
  year: 2015
  end-page: 252
  ident: b0795
  article-title: Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression
  publication-title: Phys Med Biol
– volume: 42
  start-page: 1992
  year: 2015
  end-page: 2005
  ident: b0485
  article-title: Automatic learning-based beam angle selection for thoracic IMRT
  publication-title: Med Phys
– reference: Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D. A Survey of Methods for Explaining Black Box Models. ACM Comput Surv. 2018;51:Article 93; doi: 10.1145/3236009.
– volume: 5
  year: 2015
  ident: b0200
  article-title: Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front
  publication-title: Oncol.
– volume: 49
  start-page: 1915
  year: 2004
  end-page: 1932
  ident: b0515
  article-title: Automatic beam angle selection in IMRT planning using genetic algorithm
  publication-title: Phys Med Biol
– volume: 7
  year: 2017
  ident: b0470
  article-title: Deep Learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR
  publication-title: Sci Rep
– volume: 109
  start-page: 131
  year: 2017
  end-page: 153
  ident: b0035
  article-title: Decision support systems for personalized and participative radiation oncology
  publication-title: Adv Drug Deliv Rev
– reference: Damiani A, Vallati M, Gatta R, Dinapoli N, Jochems A, Deist T, et al. Distributed Learning to Protect Privacy in Multi-centric Clinical Studies. In: Holmes JH, Bellazzi R, Sacchi L, Peek N, editors. Artif Intell Med. Cham: Springer International Publishing; 2015. p. 65-75.
– volume: 28
  start-page: 4268
  year: 2010
  end-page: 4274
  ident: b0030
  article-title: Rapid-learning system for cancer care
  publication-title: J Clin Oncol
– volume: 35
  start-page: 1958
  year: 2013
  end-page: 1971
  ident: b0175
  article-title: Learning with hierarchical-deep models
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 38
  start-page: 2859
  year: 2011
  end-page: 2867
  ident: b0220
  article-title: Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy
  publication-title: Med Phys
– start-page: 740
  year: 2014
  end-page: 755
  ident: b0430
  article-title: Microsoft coco: common objects in context
  publication-title: European conference on computer vision: Springer
– volume: 91
  start-page: 1048
  year: 2015
  end-page: 1056
  ident: b0255
  article-title: Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 276
  start-page: 167
  year: 2015
  end-page: 174
  ident: b0375
  article-title: Effect of evidence-based clinical decision support on the use and yield of CT pulmonary angiographic imaging in hospitalized patients
  publication-title: Radiology
– year: 2013
  ident: b0405
  article-title: Image processing in radiation therapy
– volume: 50
  start-page: 13
  year: 2018
  end-page: 19
  ident: b0475
  article-title: Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning
  publication-title: Phys Med
– volume: 47
  start-page: 3054
  year: 2020
  end-page: 3063
  ident: b0855
  article-title: Multicenter evaluation of MRI-based radiomic features: a phantom study
  publication-title: Med Phys
– volume: 5
  start-page: 1555
  year: 2009
  end-page: 1584
  ident: b0350
  article-title: Critical review of prostate cancer predictive tools
  publication-title: Future Oncol
– reference: Jaffray DA, Langen KM, Mageras G, Dawson LA, Yan D, Ed DR, et al. Safety considerations for IGRT: Executive summary. Pract Radiat Oncol. 2013;3:167-70; DOI: 10.1016/j.prro.2013.01.004.
– volume: 87
  start-page: 176
  year: 2013
  end-page: 181
  ident: b0640
  article-title: A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 99
  start-page: 921
  year: 2017
  end-page: 928
  ident: b0245
  article-title: Computed tomography radiomics predicts HPV status and local tumor control after definitive radiochemotherapy in head and neck squamous cell carcinoma
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 6
  year: 2016
  ident: b0095
  article-title: Nuquantus: Machine learning software for the characterization and quantification of cell nuclei in complex immunofluorescent tissue images
  publication-title: Sci Rep
– volume: 47
  start-page: 753
  year: 2020
  end-page: 758
  ident: b0595
  article-title: Technical Note: A feasibility study on deep learning-based radiotherapy dose calculation
  publication-title: Med Phys
– volume: 58
  start-page: 8419
  year: 2013
  end-page: 8435
  ident: b0685
  article-title: Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy
  publication-title: Phys Med Biol
– volume: 71
  start-page: 150
  year: 2017
  end-page: 155
  ident: b0240
  article-title: Predictive and prognostic value of CT based radiomics signature in locally advanced head and neck cancers patients treated with concurrent chemoradiotherapy or bioradiotherapy and its added value to Human Papillomavirus status
  publication-title: Oral Oncol
– volume: 40
  start-page: 021714
  year: 2013
  ident: b0560
  article-title: Using overlap volume histogram and IMRT plan data to guide and automate VMAT planning: a head-and-neck case study
  publication-title: Med Phys
– volume: 47
  start-page: 99
  year: 2020
  end-page: 109
  ident: b0845
  article-title: A fast and scalable method for quality assurance of deformable image registration on lung CT scans using convolutional neural networks
  publication-title: Med Phys
– reference: Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. International Conference on Learning Representations (ICLR). San Diego, CA, USA2015.
– volume: 113
  start-page: 303
  year: 2014
  end-page: 309
  ident: b0325
  article-title: Creating a data exchange strategy for radiotherapy research: towards federated databases and anonymised public datasets
  publication-title: Radiother Oncol
– reference: Chaney EL, Pizer SM. Ch 10 Deformable Shape Models for Image Segmentation. In: Brock KK, editor. Image processing in radiation therapy: CRC Press; 2013.
– year: 2013
  ident: b0410
  article-title: 9 Basic segmentation
  publication-title: Image processing in radiation therapy
– volume: 9
  year: 2019
  ident: b0600
  article-title: A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning
  publication-title: Sci Rep
– reference: Goodfellow IP-A, J; Mirza, M; Xu, B; Warde-Farley, D; Ozair, S; Courville, A; Bengio, Y. Generative Adversarial Nets. Advances in Neural Information Processing Systems 27 (NIPS 2014). Montreal, Quebec, Canada2014. p. 2672-80.
– volume: 64
  start-page: 065020
  year: 2019
  ident: b0580
  article-title: 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture
  publication-title: Phys Med Biol
– reference: Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors. Advances in Neural Information Processing Systems 25: Curran Associates, Inc.; 2012. p. 1097-105.
– volume: 136
  start-page: 56
  year: 2019
  end-page: 63
  ident: b0700
  article-title: MRI-only brain radiotherapy: assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach
  publication-title: Radiother Oncol
– reference: Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Cham: Springer International Publishing; 2015. p. 234-41 doi: 10.1007/978-3-319-24574-4_28.
– volume: 7
  start-page: 315
  year: 2017
  ident: b0465
  article-title: Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images
  publication-title: Front Oncol
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0160
  article-title: Deep learning
  publication-title: Nature
– volume: 54
  start-page: 1289
  year: 2015
  end-page: 1300
  ident: b0025
  article-title: Modern clinical research: How rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine
  publication-title: Acta Oncol
– volume: 88
  start-page: 732
  year: 2014
  end-page: 738
  ident: b0190
  article-title: Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer
  publication-title: Int J Radiat Oncol Biol Phys
– reference: Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. IEEE International Conference on Computer Vision (ICCV)2017. p. 618-26 DOI: 10.1109/ICCV.2017.74.
– volume: 126
  start-page: 312
  year: 2018
  end-page: 317
  ident: b0010
  article-title: Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer
  publication-title: Radiother Oncol
– volume: 47
  start-page: 1094
  year: 2020
  end-page: 1104
  ident: b0715
  article-title: Multimodality image registration in the head-and-neck using a deep learning-derived synthetic CT as a bridge
  publication-title: Med Phys
– volume: 30
  start-page: 523
  year: 2020
  end-page: 536
  ident: b0300
  article-title: Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement
  publication-title: Eur Radiol
– volume: 44
  start-page: 1408
  year: 2017
  end-page: 1419
  ident: b0690
  article-title: MR-based synthetic CT generation using a deep convolutional neural network method
  publication-title: Med Phys
– volume: 62
  start-page: 3065
  year: 2017
  end-page: 3080
  ident: b0750
  article-title: A Bayesian approach for three-dimensional markerless tumor tracking using kV imaging during lung radiotherapy
  publication-title: Phys Med Biol
– volume: 64
  start-page: 377
  year: 2014
  end-page: 388
  ident: b0380
  article-title: Implementing and evaluating shared decision making in oncology practice
  publication-title: CA Cancer J Clin
– volume: 111
  start-page: 296
  year: 2014
  end-page: 300
  ident: b0505
  article-title: Beam orientation in stereotactic radiosurgery using an artificial neural network
  publication-title: Radiother Oncol
– volume: 46
  start-page: 3142
  year: 2019
  end-page: 3155
  ident: b0830
  article-title: Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network
  publication-title: Med Phys
– volume: 13
  start-page: 1
  year: 2015
  ident: b0290
  article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement
  publication-title: BMC Med
– volume: 2
  start-page: 1418
  year: 2014
  end-page: 1426
  ident: b0235
  article-title: Predicting outcomes of nonsmall cell lung cancer using CT image features
  publication-title: IEEE Access
– volume: 45
  start-page: 4916
  year: 2018
  end-page: 4926
  ident: b0825
  article-title: ScatterNet: A convolutional neural network for cone-beam CT intensity correction
  publication-title: Med Phys
– volume: 28
  start-page: 594
  year: 2006
  end-page: 611
  ident: b0110
  article-title: One-shot learning of object categories
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 38
  start-page: 1081
  year: 2020
  ident: b0020
  article-title: Clinical Cancer Advances 2020: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology
  publication-title: J Clin Oncol
– volume: 44
  start-page: 547
  year: 2017
  end-page: 557
  ident: b0450
  article-title: Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks
  publication-title: Med Phys
– volume: 38
  start-page: 719
  year: 2011
  end-page: 726
  ident: b0645
  article-title: A planning quality evaluation tool for prostate adaptive IMRT based on machine learning
  publication-title: Med Phys
– year: 2018
  ident: b0655
  article-title: Improving quality and consistency in NRG oncology RTOG 0631 for spine radiosurgery via knowledge-based planning
  publication-title: Int J Radiat Oncol Biol Phys
– reference: Machine Learning in Radiation Oncology – Theory and Applications Springer; 2015.
– volume: 40
  start-page: 041710
  year: 2013
  ident: b0805
  article-title: Objected constrained registration and manifold learning: a new patient setup approach in image guided radiation therapy of thoracic cancer
  publication-title: Med Phys
– volume: 104
  start-page: 148
  year: 2016
  end-page: 175
  ident: b0170
  article-title: Taking the human out of the loop: a review of bayesian optimization
  publication-title: Proc IEEE
– volume: 16
  year: 2018
  ident: b0295
  article-title: Poor reporting of multivariable prediction model studies: towards a targeted implementation strategy of the TRIPOD statement
  publication-title: BMC Med
– reference: Dekker A, Dehing-Oberije C, De Ruysscher D, Lambin P, Komati K, Fung G, et al. Survival prediction in lung cancer treated with radiotherapy: Bayesian networks vs. support vector machines in handling missing data. International Conference on Machine Learning and Applications (ICMLA): IEEE; 2009. p. 494-7. doi: 10.1109/ICMLA.2009.92.
– volume: 9
  start-page: 1333
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0710
  article-title: Synthetic CT Generation Based on T2 Weighted MRI of Nasopharyngeal Carcinoma (NPC) Using a Deep Convolutional Neural Network (DCNN)
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.01333
– volume: 55
  start-page: 3011
  issue: 11
  year: 2010
  ident: 10.1016/j.phro.2021.05.007_b0780
  article-title: Online prediction of respiratory motion: multidimensional processing with low-dimensional feature learning
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/55/11/002
– volume: 46
  start-page: 56
  issue: 1
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0585
  article-title: A feasibility study on an automated method to generate patient-specific dose distributions for radiotherapy using deep learning
  publication-title: Med Phys
  doi: 10.1002/mp.13262
– volume: 104
  start-page: 148
  issue: 1
  year: 2016
  ident: 10.1016/j.phro.2021.05.007_b0170
  article-title: Taking the human out of the loop: a review of bayesian optimization
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 76
  start-page: S10
  issue: 3
  year: 2010
  ident: 10.1016/j.phro.2021.05.007_b0205
  article-title: Use of normal tissue complication probability models in the clinic
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2009.07.1754
– ident: 10.1016/j.phro.2021.05.007_b0305
  doi: 10.1145/3236009
– volume: 10
  start-page: 27
  issue: 1
  year: 2013
  ident: 10.1016/j.phro.2021.05.007_b0180
  article-title: Predicting outcomes in radiation oncology—multifactorial decision support systems
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2012.196
– volume: 144
  start-page: 189
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0155
  article-title: Distributed learning on 20 000+ lung cancer patients - The Personal Health Train
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.11.019
– ident: 10.1016/j.phro.2021.05.007_b0260
  doi: 10.3389/fonc.2015.00272
– volume: 64
  start-page: 065020
  issue: 6
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0580
  article-title: 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ab039b
– volume: 18
  start-page: 327
  issue: 3
  year: 2011
  ident: 10.1016/j.phro.2021.05.007_b0345
  article-title: Effects of clinical decision-support systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic review findings
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2011-000094
– volume: 64
  start-page: 377
  issue: 6
  year: 2014
  ident: 10.1016/j.phro.2021.05.007_b0380
  article-title: Implementing and evaluating shared decision making in oncology practice
  publication-title: CA Cancer J Clin
– volume: 13
  start-page: S1
  year: 2013
  ident: 10.1016/j.phro.2021.05.007_b0390
  article-title: Ten years of the International Patient Decision Aid Standards Collaboration: evolution of the core dimensions for assessing the quality of patient decision aids
  publication-title: BMC Med Inf Decis Making
– volume: 62
  start-page: 3065
  issue: 8
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0750
  article-title: A Bayesian approach for three-dimensional markerless tumor tracking using kV imaging during lung radiotherapy
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa6393
– volume: 113
  start-page: 47
  issue: 1
  year: 2014
  ident: 10.1016/j.phro.2021.05.007_b0130
  article-title: Rapid learning in practice: a lung cancer survival decision support system in routine patient care data
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2014.08.013
– volume: 100
  start-page: 1217
  issue: 5
  year: 2018
  ident: 10.1016/j.phro.2021.05.007_b0140
  article-title: Failure of further validation for survival nomograms in oropharyngeal cancer: issues and challenges
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2017.12.281
– ident: 10.1016/j.phro.2021.05.007_b0135
– volume: 2014
  start-page: 4204
  year: 2014
  ident: 10.1016/j.phro.2021.05.007_b0790
  article-title: Real-time prediction of respiratory motion traces for radiotherapy with ensemble learning
  publication-title: Conf Proc IEEE Eng Med Biol Soc.
– volume: 43
  start-page: 378
  issue: 1
  year: 2016
  ident: 10.1016/j.phro.2021.05.007_b0570
  article-title: Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy
  publication-title: Med Phys
  doi: 10.1118/1.4938583
– volume: 91
  start-page: 1048
  issue: 5
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0255
  article-title: Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2014.11.030
– volume: 46
  start-page: 456
  issue: 2
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0675
  article-title: Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks
  publication-title: Med Phys
  doi: 10.1002/mp.13338
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0230
  article-title: Multimodality functional imaging in radiation therapy planning: relationships between dynamic contrast-enhanced MRI, diffusion-weighted MRI, and 18F-FDG PET
  publication-title: Comput Math Methods Med
  doi: 10.1155/2015/103843
– volume: 105
  start-page: 432
  issue: 2
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0755
  article-title: Markerless Pancreatic Tumor Target Localization Enabled By Deep Learning
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2019.05.071
– volume: 126
  start-page: 312
  issue: 2
  year: 2018
  ident: 10.1016/j.phro.2021.05.007_b0010
  article-title: Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2017.11.012
– volume: 58
  start-page: 8419
  issue: 23
  year: 2013
  ident: 10.1016/j.phro.2021.05.007_b0685
  article-title: Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/58/23/8419
– volume: 19
  issue: 1
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0360
  article-title: An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation
  publication-title: Breast Cancer Res
  doi: 10.1186/s13058-017-0852-3
– volume: 120
  start-page: 21
  issue: 1
  year: 2016
  ident: 10.1016/j.phro.2021.05.007_b0210
  article-title: Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2016.05.015
– volume: 47
  start-page: 3054
  issue: 7
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0855
  article-title: Multicenter evaluation of MRI-based radiomic features: a phantom study
  publication-title: Med Phys
  doi: 10.1002/mp.14173
– volume: 54
  start-page: 1289
  issue: 9
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0025
  article-title: Modern clinical research: How rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine
  publication-title: Acta Oncol
  doi: 10.3109/0284186X.2015.1062136
– volume: 91
  start-page: 612
  issue: 3
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0540
  article-title: Evaluation of a knowledge-based planning solution for head and neck cancer
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2014.11.014
– ident: 10.1016/j.phro.2021.05.007_b0605
– volume: 41
  start-page: 2251
  issue: 9
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0115
  article-title: Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2857768
– volume: 14
  start-page: 93
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0730
  article-title: Clinical impact of removing respiratory motion during liver SABR
  publication-title: Radiat Oncol.
  doi: 10.1186/s13014-019-1300-6
– ident: 10.1016/j.phro.2021.05.007_b0185
  doi: 10.1109/ICMLA.2009.92
– volume: 7
  start-page: 315
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0465
  article-title: Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images
  publication-title: Front Oncol
  doi: 10.3389/fonc.2017.00315
– volume: 4
  start-page: 155
  issue: 2
  year: 2014
  ident: 10.1016/j.phro.2021.05.007_b0265
  article-title: Radiogenomics: using genetics to identify cancer patients at risk for development of adverse effects following radiotherapy
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-13-0197
– volume: 33
  start-page: 3874
  year: 2006
  ident: 10.1016/j.phro.2021.05.007_b0725
  article-title: The management of respiratory motion in radiation oncology report of AAPM Task Group 76
  publication-title: Med Phys
  doi: 10.1118/1.2349696
– volume: 107
  start-page: 530
  issue: 3
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0660
  article-title: Real-time image-guided ablative prostate cancer radiation therapy: results from the TROG 15.01 SPARK trial
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2020.03.014
– volume: 46
  start-page: e1
  issue: 1
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0050
  article-title: Deep learning in medical imaging and radiation therapy
  publication-title: Med Phys
  doi: 10.1002/mp.13264
– volume: 38
  start-page: 2859
  issue: 6Part1
  year: 2011
  ident: 10.1016/j.phro.2021.05.007_b0220
  article-title: Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy
  publication-title: Med Phys
  doi: 10.1118/1.3582947
– volume: 13
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0290
  article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement
  publication-title: BMC Med
  doi: 10.1186/s12916-014-0241-z
– volume: 330
  start-page: 765
  issue: 7494
  year: 2005
  ident: 10.1016/j.phro.2021.05.007_b0340
  article-title: Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success
  publication-title: BMJ
  doi: 10.1136/bmj.38398.500764.8F
– volume: 193
  start-page: 1933
  issue: 6
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0330
  article-title: Prostate cancer risk estimation tool use by members of the American Urological Association: a survey based study
  publication-title: J Urol
  doi: 10.1016/j.juro.2014.12.090
– volume: 38
  start-page: 2515
  issue: 5
  year: 2011
  ident: 10.1016/j.phro.2021.05.007_b0545
  article-title: Knowledge-based IMRT treatment planning for prostate cancer
  publication-title: Med Phys
  doi: 10.1118/1.3574874
– volume: 55
  start-page: 1311
  issue: 5
  year: 2010
  ident: 10.1016/j.phro.2021.05.007_b0785
  article-title: Kernel density estimation-based real-time prediction for respiratory motion
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/55/5/004
– volume: 62
  start-page: 1791
  issue: 5
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0800
  article-title: Predictive modeling of respiratory tumor motion for real-time prediction of baseline shifts
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa58c3
– volume: 11
  start-page: 71
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0875
  article-title: Adapting training for medical physicists to match future trends in radiation oncology
  publication-title: Phys Imaging Radiat Oncol
  doi: 10.1016/j.phro.2019.09.003
– volume: 107
  start-page: 352
  issue: 3
  year: 2013
  ident: 10.1016/j.phro.2021.05.007_b0555
  article-title: A quality control model that uses PTV-rectal distances to predict the lowest achievable rectum dose, improves IMRT planning for patients with prostate cancer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2013.05.032
– volume: 56
  start-page: 1635
  issue: 6
  year: 2011
  ident: 10.1016/j.phro.2021.05.007_b0195
  article-title: A Bayesian network approach for modeling local failure in lung cancer
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/56/6/008
– volume: 97
  start-page: 164
  issue: 1
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0650
  article-title: Highly efficient training, refinement, and validation of a knowledge-based planning quality-control system for radiation therapy clinical trials
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2016.10.005
– year: 2018
  ident: 10.1016/j.phro.2021.05.007_b0655
  article-title: Improving quality and consistency in NRG oncology RTOG 0631 for spine radiosurgery via knowledge-based planning
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 295
  start-page: 328
  issue: 2
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0870
  article-title: The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping
  publication-title: Radiology
  doi: 10.1148/radiol.2020191145
– volume: 44
  start-page: 547
  issue: 2
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0450
  article-title: Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks
  publication-title: Med Phys
  doi: 10.1002/mp.12045
– volume: 135
  start-page: 130
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0455
  article-title: Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.03.004
– volume: 93
  start-page: 1127
  issue: 5
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0070
  article-title: Machine learning approaches for predicting radiation therapy outcomes: a clinician’s perspective
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2015.07.2286
– volume: 46
  start-page: 1
  issue: 4
  year: 2014
  ident: 10.1016/j.phro.2021.05.007_b0125
  article-title: A survey on concept drift adaptation
  publication-title: ACM Comput Surv
  doi: 10.1145/2523813
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0225
  article-title: Predictive models of tumour response to treatment using functional imaging techniques
  publication-title: Comput Math Methods Med
  doi: 10.1155/2015/571351
– ident: 10.1016/j.phro.2021.05.007_b0415
– volume: 56
  start-page: 5303
  issue: 16
  year: 2011
  ident: 10.1016/j.phro.2021.05.007_b0765
  article-title: The comparative performance of four respiratory motion predictors for real-time tumour tracking
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/56/16/015
– volume: 35
  start-page: 1958
  issue: 8
  year: 2013
  ident: 10.1016/j.phro.2021.05.007_b0175
  article-title: Learning with hierarchical-deep models
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.269
– volume: 140
  start-page: 167
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0665
  article-title: Incorporating imaging information from deep neural network layers into image guided radiation therapy (IGRT)
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.06.027
– volume: 5
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0200
  article-title: Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front
  publication-title: Oncol.
– volume: 7
  start-page: 803
  issue: 3
  year: 2018
  ident: 10.1016/j.phro.2021.05.007_b0065
  article-title: The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review
  publication-title: Transl Cancer Res
  doi: 10.21037/tcr.2018.05.02
– volume: 6
  start-page: e20055
  issue: 5
  year: 2011
  ident: 10.1016/j.phro.2021.05.007_b0270
  article-title: Polymorphisms of homologous recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0020055
– volume: 23
  start-page: 2716
  issue: 12
  year: 2005
  ident: 10.1016/j.phro.2021.05.007_b0355
  article-title: Population-based validation of the prognostic model ADJUVANT! for early breast cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2005.06.178
– volume: 19
  start-page: 33
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0860
  article-title: Learning from scanners: bias reduction and feature correction in radiomics
  publication-title: Clin Transl Radiat Oncol
– volume: 2
  start-page: 025012
  issue: 2
  year: 2016
  ident: 10.1016/j.phro.2021.05.007_b0815
  article-title: Prediction of lung tumor motion extent through artificial neural network (ANN) using tumor size and location data
  publication-title: Biomed Phys Eng Express
  doi: 10.1088/2057-1976/2/2/025012
– volume: 98
  start-page: 344
  issue: Suppl. 6
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0075
  article-title: Machine learning and imaging informatics in oncology
  publication-title: Oncology
  doi: 10.1159/000493575
– ident: 10.1016/j.phro.2021.05.007_b0720
  doi: 10.1016/j.prro.2013.01.004
– volume: 12
  start-page: e0184604
  issue: 9
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0145
  article-title: Meaningless comparisons lead to false optimism in medical machine learning
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0184604
– ident: 10.1016/j.phro.2021.05.007_b0275
  doi: 10.1093/carcin/bgr300
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0435
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 54
  start-page: S9
  issue: 18
  year: 2009
  ident: 10.1016/j.phro.2021.05.007_b0215
  article-title: Predicting radiotherapy outcomes using statistical learning techniques
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/54/18/S02
– ident: 10.1016/j.phro.2021.05.007_b0420
– volume: 44
  start-page: 1408
  issue: 4
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0690
  article-title: MR-based synthetic CT generation using a deep convolutional neural network method
  publication-title: Med Phys
  doi: 10.1002/mp.12155
– volume: 46
  start-page: 2286
  issue: 5
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0735
  article-title: A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images
  publication-title: Med Phys
  doi: 10.1002/mp.13519
– volume: 1
  start-page: 045015
  issue: 4
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0810
  article-title: Automatic assessment of average diaphragm motion trajectory from 4DCT images through machine learning
  publication-title: Biomed Phys Eng Express
  doi: 10.1088/2057-1976/1/4/045015
– volume: 55
  start-page: 6023
  issue: 19
  year: 2010
  ident: 10.1016/j.phro.2021.05.007_b0500
  article-title: Spherical cluster analysis for beam angle optimization in intensity-modulated radiation therapy treatment planning
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/55/19/025
– volume: 47
  start-page: 753
  issue: 2
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0595
  article-title: Technical Note: A feasibility study on deep learning-based radiotherapy dose calculation
  publication-title: Med Phys
  doi: 10.1002/mp.13953
– volume: 111
  start-page: 296
  issue: 2
  year: 2014
  ident: 10.1016/j.phro.2021.05.007_b0505
  article-title: Beam orientation in stereotactic radiosurgery using an artificial neural network
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2014.03.010
– volume: 5
  start-page: 1555
  issue: 10
  year: 2009
  ident: 10.1016/j.phro.2021.05.007_b0350
  article-title: Critical review of prostate cancer predictive tools
  publication-title: Future Oncol
  doi: 10.2217/fon.09.121
– volume: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0470
  article-title: Deep Learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-05728-9
– volume: 38
  start-page: 719
  issue: 2
  year: 2011
  ident: 10.1016/j.phro.2021.05.007_b0645
  article-title: A planning quality evaluation tool for prostate adaptive IMRT based on machine learning
  publication-title: Med Phys
  doi: 10.1118/1.3539749
– volume: 6
  issue: 1
  year: 2016
  ident: 10.1016/j.phro.2021.05.007_b0095
  article-title: Nuquantus: Machine learning software for the characterization and quantification of cell nuclei in complex immunofluorescent tissue images
  publication-title: Sci Rep
  doi: 10.1038/srep23431
– ident: 10.1016/j.phro.2021.05.007_b0165
– volume: 16
  issue: 1
  year: 2018
  ident: 10.1016/j.phro.2021.05.007_b0295
  article-title: Poor reporting of multivariable prediction model studies: towards a targeted implementation strategy of the TRIPOD statement
  publication-title: BMC Med
  doi: 10.1186/s12916-018-1099-2
– volume: 54
  start-page: 5735
  issue: 19
  year: 2009
  ident: 10.1016/j.phro.2021.05.007_b0775
  article-title: Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/54/19/005
– volume: 16
  start-page: 144
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0040
  article-title: Machine learning applications in radiation oncology: Current use and needs to support clinical implementation
  publication-title: Phys Imaging Radiat Oncol.
  doi: 10.1016/j.phro.2020.11.002
– volume: 9
  start-page: 964
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0705
  article-title: Generation of synthetic CT images from MRI for treatment planning and patient positioning using a 3-channel U-net trained on sagittal images
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.00964
– volume: 2
  start-page: 1418
  year: 2014
  ident: 10.1016/j.phro.2021.05.007_b0235
  article-title: Predicting outcomes of nonsmall cell lung cancer using CT image features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2373335
– volume: 144
  start-page: 152
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0460
  article-title: Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.10.019
– volume: 46
  start-page: 3998
  issue: 9
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0670
  article-title: Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography
  publication-title: Med Phys
  doi: 10.1002/mp.13656
– volume: 85
  start-page: 251
  issue: 1
  year: 2013
  ident: 10.1016/j.phro.2021.05.007_b0285
  article-title: Incorporating single-nucleotide polymorphisms into the lyman model to improve prediction of radiation pneumonitis
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2012.02.021
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0085
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 44
  start-page: 4126
  issue: 8
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0850
  article-title: A neural network approach for fast, automated quantification of DIR performance
  publication-title: Med Phys
  doi: 10.1002/mp.12321
– volume: 46
  start-page: 3679
  issue: 8
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0590
  article-title: Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations
  publication-title: Med Phys
  doi: 10.1002/mp.13597
– volume: 521
  start-page: 452
  issue: 7553
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0100
  article-title: Probabilistic machine learning and artificial intelligence
  publication-title: Nature
  doi: 10.1038/nature14541
– volume: 49
  start-page: 747
  issue: 5
  year: 2004
  ident: 10.1016/j.phro.2021.05.007_b0490
  article-title: Multiobjective evolutionary optimization of the number of beams, their orientations and weights for intensity-modulated radiation therapy
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/49/5/007
– ident: 10.1016/j.phro.2021.05.007_b0445
  doi: 10.12688/f1000research.9525.1
– ident: 10.1016/j.phro.2021.05.007_b0315
  doi: 10.1109/ICCV.2017.74
– volume: 121
  start-page: 169
  issue: 2
  year: 2016
  ident: 10.1016/j.phro.2021.05.007_b0400
  article-title: Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2016.09.009
– ident: 10.1016/j.phro.2021.05.007_b0105
– volume: 16
  start-page: 58
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0045
  article-title: Cautiously optimistic: a survey of radiation oncology professionals' perceptions of automation in radiotherapy planning
  publication-title: Tech Innov Patient Support Radiat Oncol.
  doi: 10.1016/j.tipsro.2020.10.003
– volume: 45
  start-page: 4916
  issue: 11
  year: 2018
  ident: 10.1016/j.phro.2021.05.007_b0825
  article-title: ScatterNet: A convolutional neural network for cone-beam CT intensity correction
  publication-title: Med Phys
  doi: 10.1002/mp.13175
– ident: 10.1016/j.phro.2021.05.007_b0610
  doi: 10.1007/978-3-319-24574-4_28
– volume: 54
  start-page: 1555
  issue: 6
  year: 2009
  ident: 10.1016/j.phro.2021.05.007_b0745
  article-title: Markerless gating for lung cancer radiotherapy based on machine learning techniques
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/54/6/010
– volume: 144
  start-page: 201
  issue: 3
  year: 2006
  ident: 10.1016/j.phro.2021.05.007_b0335
  article-title: Translating clinical research into clinical practice: impact of using prediction rules to make decisions
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-144-3-200602070-00009
– volume: 45
  start-page: 2547
  issue: 9
  year: 2000
  ident: 10.1016/j.phro.2021.05.007_b0525
  article-title: Selection and determination of beam weights based on genetic algorithms for conformal radiotherapy treatment planning
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/45/9/308
– volume: 60
  start-page: 233
  issue: 1
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0795
  article-title: Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/60/1/233
– ident: 10.1016/j.phro.2021.05.007_b0150
  doi: 10.1007/978-3-319-19551-3_8
– volume: 44
  start-page: 5001
  issue: 10
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0565
  article-title: Heuristic knowledge-based planning for single-isocenter stereotactic radiosurgery to multiple brain metastases
  publication-title: Med Phys
  doi: 10.1002/mp.12479
– volume: 40
  start-page: 041710
  issue: 4
  year: 2013
  ident: 10.1016/j.phro.2021.05.007_b0805
  article-title: Objected constrained registration and manifold learning: a new patient setup approach in image guided radiation therapy of thoracic cancer
  publication-title: Med Phys
  doi: 10.1118/1.4794489
– volume: 88
  start-page: 732
  issue: 3
  year: 2014
  ident: 10.1016/j.phro.2021.05.007_b0190
  article-title: Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2013.11.216
– volume: 71
  start-page: 150
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0240
  article-title: Predictive and prognostic value of CT based radiomics signature in locally advanced head and neck cancers patients treated with concurrent chemoradiotherapy or bioradiotherapy and its added value to Human Papillomavirus status
  publication-title: Oral Oncol
  doi: 10.1016/j.oraloncology.2017.06.015
– ident: 10.1016/j.phro.2021.05.007_b0440
  doi: 10.1007/978-3-319-66179-7_42
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0160
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 57
  start-page: 6707
  issue: 20
  year: 2012
  ident: 10.1016/j.phro.2021.05.007_b0495
  article-title: Characterizing the combinatorial beam angle selection problem
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/57/20/6707
– volume: 81
  start-page: 545
  issue: 2
  year: 2011
  ident: 10.1016/j.phro.2021.05.007_b0635
  article-title: Experience-based quality control of clinical intensity-modulated radiotherapy planning
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2010.11.030
– volume: 17
  start-page: 296
  issue: 2
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0280
  article-title: Significance of targeted therapy and genetic alterations in EGFR, ALK, or KRAS on survival in patients with non–small cell lung cancer treated with radiotherapy for brain metastases
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/nou146
– volume: 54
  start-page: 401
  year: 2010
  ident: 10.1016/j.phro.2021.05.007_b0395
  article-title: A review of methods of analysis in contouring studies for radiation oncology
  publication-title: J Med Imaging Radiat Oncol.
  doi: 10.1111/j.1754-9485.2010.02192.x
– volume: 50
  start-page: 3491
  issue: 15
  year: 2005
  ident: 10.1016/j.phro.2021.05.007_b0510
  article-title: A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/50/15/002
– volume: 153
  start-page: 55
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0055
  article-title: Overview of artificial intelligence-based applications in radiotherapy: recommendations for implementation and quality assurance
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2020.09.008
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0600
  article-title: A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning
  publication-title: Sci Rep
– volume: 14
  start-page: 749
  issue: 12
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0060
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.141
– volume: 92
  start-page: 20190001
  issue: 1100
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0005
  article-title: Applications and limitations of machine learning in radiation oncology
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20190001
– volume: 46
  start-page: 370
  issue: 1
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0575
  article-title: Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique
  publication-title: Med Phys
  doi: 10.1002/mp.13271
– volume: 42
  start-page: 1992
  issue: 4
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0485
  article-title: Automatic learning-based beam angle selection for thoracic IMRT
  publication-title: Med Phys
  doi: 10.1118/1.4908000
– volume: 45
  start-page: e854
  issue: 10
  year: 2018
  ident: 10.1016/j.phro.2021.05.007_b0865
  article-title: The radiation oncology ontology (ROO): publishing linked data in radiation oncology using semantic web and ontology techniques
  publication-title: Med Phys
  doi: 10.1002/mp.12879
– volume: 109
  start-page: 131
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0035
  article-title: Decision support systems for personalized and participative radiation oncology
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2016.01.006
– year: 2013
  ident: 10.1016/j.phro.2021.05.007_b0405
– volume: 44
  start-page: 6377
  issue: 12
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0425
  article-title: Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks
  publication-title: Med Phys
  doi: 10.1002/mp.12602
– volume: 47
  start-page: 1763
  issue: 4
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0840
  article-title: LungRegNet: an unsupervised deformable image registration method for 4D-CT lung
  publication-title: Med Phys
  doi: 10.1002/mp.14065
– ident: 10.1016/j.phro.2021.05.007_b0615
  doi: 10.1109/CVPR.2017.243
– volume: 38
  start-page: 1081
  issue: 10
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0020
  article-title: Clinical Cancer Advances 2020: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.19.03141
– volume: 113
  start-page: 303
  issue: 3
  year: 2014
  ident: 10.1016/j.phro.2021.05.007_b0325
  article-title: Creating a data exchange strategy for radiotherapy research: towards federated databases and anonymised public datasets
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2014.10.001
– volume: 50
  start-page: 13
  year: 2018
  ident: 10.1016/j.phro.2021.05.007_b0475
  article-title: Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2018.05.006
– volume: 131
  start-page: 101
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0480
  article-title: Segmenting lung tumors on longitudinal imaging studies via a patient-specific adaptive convolutional neural network
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2018.10.037
– volume: 47
  start-page: 1094
  issue: 3
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0715
  article-title: Multimodality image registration in the head-and-neck using a deep learning-derived synthetic CT as a bridge
  publication-title: Med Phys
  doi: 10.1002/mp.13976
– volume: 54
  start-page: 981
  issue: 4
  year: 2009
  ident: 10.1016/j.phro.2021.05.007_b0740
  article-title: Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/54/4/011
– volume: 21
  start-page: 136
  issue: 2
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0680
  article-title: A technique to generate synthetic CT from MRI for abdominal radiotherapy
  publication-title: J Appl Clin Med Phys
  doi: 10.1002/acm2.12816
– volume: 121
  start-page: 459
  issue: 3
  year: 2016
  ident: 10.1016/j.phro.2021.05.007_b0320
  article-title: Distributed learning: developing a predictive model based on data from multiple hospitals without data leaving the hospital–a real life proof of concept
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2016.10.002
– volume: 30
  start-page: 523
  issue: 1
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0300
  article-title: Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06360-z
– volume: 49
  start-page: 1915
  issue: 10
  year: 2004
  ident: 10.1016/j.phro.2021.05.007_b0515
  article-title: Automatic beam angle selection in IMRT planning using genetic algorithm
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/49/10/007
– volume: 40
  start-page: 021714
  issue: 2
  year: 2013
  ident: 10.1016/j.phro.2021.05.007_b0560
  article-title: Using overlap volume histogram and IMRT plan data to guide and automate VMAT planning: a head-and-neck case study
  publication-title: Med Phys
  doi: 10.1118/1.4788671
– volume: 14
  start-page: 197
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0090
  article-title: Cardiac imaging: working towards fully-automated machine analysis & interpretation
  publication-title: Expert Rev Med Devices
  doi: 10.1080/17434440.2017.1300057
– ident: 10.1016/j.phro.2021.05.007_b0620
– volume: 41
  start-page: 173
  issue: 1
  year: 1998
  ident: 10.1016/j.phro.2021.05.007_b0550
  article-title: A medical expert system approach using artificial neural networks for standardized treatment planning 1
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(98)00035-2
– volume: 4
  start-page: 439
  issue: 5
  year: 2009
  ident: 10.1016/j.phro.2021.05.007_b0770
  article-title: Forecasting respiratory motion with accurate online support vector regression (SVRpred)
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-009-0355-5
– volume: 112
  start-page: 37
  issue: 1
  year: 2014
  ident: 10.1016/j.phro.2021.05.007_b0015
  article-title: A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2014.04.012
– volume: 87
  start-page: 176
  issue: 1
  year: 2013
  ident: 10.1016/j.phro.2021.05.007_b0640
  article-title: A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2013.03.015
– volume: 46
  start-page: 1085
  issue: 4
  year: 2001
  ident: 10.1016/j.phro.2021.05.007_b0520
  article-title: An optimization method for importance factors and beam weights based on genetic algorithms for radiotherapy treatment planning
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/46/4/313
– volume: 17
  start-page: e1
  issue: 1
  year: 2018
  ident: 10.1016/j.phro.2021.05.007_b0365
  article-title: Clinical usefulness of tools to support decision-making for palliative treatment of metastatic colorectal cancer: a systematic review
  publication-title: Clin Colorectal Cancer.
– volume: 175
  start-page: 1213
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0385
  article-title: Tools to promote shared decision making in serious illness
  publication-title: JAMA Internal Med
  doi: 10.1001/jamainternmed.2015.1679
– volume: 64
  start-page: 145015
  issue: 14
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0695
  article-title: MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ab25bc
– volume: 47
  start-page: 1249
  issue: 3
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0835
  article-title: A deep learning method for producing ventilation images from 4DCT: First comparison with technegas SPECT ventilation
  publication-title: Med Phys
  doi: 10.1002/mp.14004
– volume: 276
  start-page: 167
  issue: 1
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0375
  article-title: Effect of evidence-based clinical decision support on the use and yield of CT pulmonary angiographic imaging in hospitalized patients
  publication-title: Radiology
  doi: 10.1148/radiol.15141208
– volume: 60
  start-page: N209
  issue: 10
  year: 2015
  ident: 10.1016/j.phro.2021.05.007_b0760
  article-title: Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT)
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/60/10/N209
– start-page: 740
  year: 2014
  ident: 10.1016/j.phro.2021.05.007_b0430
  article-title: Microsoft coco: common objects in context
– volume: 79
  start-page: 1241
  issue: 4
  year: 2011
  ident: 10.1016/j.phro.2021.05.007_b0535
  article-title: Data-driven approach to generating achievable dose-volume histogram objectives in intensity-modulated radiotherapy planning
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2010.05.026
– volume: 40
  start-page: 265
  issue: 5
  year: 2011
  ident: 10.1016/j.phro.2021.05.007_b0820
  article-title: Artefacts in CBCT: a review
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr/30642039
– year: 2006
  ident: 10.1016/j.phro.2021.05.007_b0080
– volume: 118
  start-page: 281
  issue: 2
  year: 2016
  ident: 10.1016/j.phro.2021.05.007_b0370
  article-title: Development and evaluation of an online three-level proton vs photon decision support prototype for head and neck cancer – comparison of dose, toxicity and cost-effectiveness
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2015.12.029
– volume: 99
  start-page: 921
  issue: 4
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0245
  article-title: Computed tomography radiomics predicts HPV status and local tumor control after definitive radiochemotherapy in head and neck squamous cell carcinoma
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2017.06.002
– volume: 47
  start-page: 99
  issue: 1
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0845
  article-title: A fast and scalable method for quality assurance of deformable image registration on lung CT scans using convolutional neural networks
  publication-title: Med Phys
  doi: 10.1002/mp.13890
– volume: 46
  start-page: 3142
  issue: 7
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0830
  article-title: Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network
  publication-title: Med Phys
  doi: 10.1002/mp.13583
– volume: 28
  start-page: 4268
  issue: 27
  year: 2010
  ident: 10.1016/j.phro.2021.05.007_b0030
  article-title: Rapid-learning system for cancer care
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2010.28.5478
– volume: 136
  start-page: 56
  year: 2019
  ident: 10.1016/j.phro.2021.05.007_b0700
  article-title: MRI-only brain radiotherapy: assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.03.026
– volume: 403
  start-page: 21
  year: 2017
  ident: 10.1016/j.phro.2021.05.007_b0250
  article-title: Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2017.06.004
– volume: 66
  start-page: 04TR01
  issue: 4
  year: 2021
  ident: 10.1016/j.phro.2021.05.007_b0310
  article-title: Interpretation and visualization techniques for deep learning models in medical imaging
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/abcd17
– volume: 94
  start-page: 469
  issue: 3
  year: 2016
  ident: 10.1016/j.phro.2021.05.007_b0630
  article-title: Effect of dosimetric outliers on the performance of a commercial knowledge-based planning solution
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2015.11.011
– volume: 34
  start-page: 923
  issue: 4
  year: 1996
  ident: 10.1016/j.phro.2021.05.007_b0625
  article-title: Evaluation and scoring of radiotherapy treatment plans using an artificial neural network
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/0360-3016(95)02120-5
– volume: 28
  start-page: 594
  year: 2006
  ident: 10.1016/j.phro.2021.05.007_b0110
  article-title: One-shot learning of object categories
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.79
– volume: 47
  start-page: 2329
  issue: 6
  year: 2020
  ident: 10.1016/j.phro.2021.05.007_b0530
  article-title: Operating a treatment planning system using a deep-reinforcement learning-based virtual treatment planner for prostate cancer intensity-modulated radiation therapy treatment planning
  publication-title: Med Phys
  doi: 10.1002/mp.14114
– volume: 6
  start-page: 469
  issue: 3
  year: 1995
  ident: 10.1016/j.phro.2021.05.007_b0120
  article-title: Probable networks and plausible predictions — a review of practical Bayesian methods for supervised neural networks
  publication-title: Network: Computation in Neural Systems.
  doi: 10.1088/0954-898X_6_3_011
– year: 2013
  ident: 10.1016/j.phro.2021.05.007_b0410
  article-title: 9 Basic segmentation
SSID ssj0002793530
Score 2.4141948
SecondaryResourceType review_article
Snippet Machine learning technology has a growing impact on radiation oncology with an increasing presence in research and industry. The prevalence of diverse data...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13
SubjectTerms Artificial intelligence
Automation
Data mining
Machine learning
Radiation therapy
Review
Title Machine learning applications in radiation oncology
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2405631621000300
https://dx.doi.org/10.1016/j.phro.2021.05.007
https://www.proquest.com/docview/2555344351
https://pubmed.ncbi.nlm.nih.gov/PMC8295850
https://doaj.org/article/8881a56095ef4d719916d5f415ccfc6e
Volume 19
WOSCitedRecordID wos000694711800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-6316
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793530
  issn: 2405-6316
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-6316
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793530
  issn: 2405-6316
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VVCEuFaVF3fJQkHqrosbv5FgQqJdFHKi0Nyt-waIqi3YXpF747YydZJVc4MIlUhI7cb6MPTOa8TcAP0rlJa_QLTEl5zlnzufoRtR54EwZ5n2sA5eKTairq3I2q64Hpb5iTlhLD9wC9ws9NFKLSIvmA3cqZupIJwLqHWuDlT6uvoWqBs7UfQqnVUykQiOosUQuGZHdjpk2uQuBijv_KEm0nbGW7EArJfL-kXIaGJ_j1MmBLrrcg0-dEZn9bgf_GT74Zh92pl2Y_AuwaUqR9FlXE-I2G8aps3mTLSMlQTzLFk3irf7_Ff5eXtyc_8m76gi5RZ9unZO6MlQ6hCcYSa1lVFEjiQwMlT4xdYlT0wTOOeVl4YR1UvJa1paUBl1iT9kBbDeLxn-DzPpQ2QpNCacYr21hVBFYkDI4R63wbAKkR0fbjjo8VrD4p_scsXsdEdURUV0IjYhO4Oemz0NLnPFq67MI-qZlJL1OF1AUdCcK-i1RmADrf5nu95XiSogPmr_6arHp1VkdrTXxZr_TXio0TskYZ6kbv3hcafTSBONoh5IJqJG4jL5vfKeZ3yVy75JW6MEV398DkEPYjQNus4uPYHu9fPTH8NE-reer5QlsqVl5kuYNHqfPFy-UYRtm
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+applications+in+radiation+oncology&rft.jtitle=Physics+and+imaging+in+radiation+oncology&rft.au=Field%2C+Matthew&rft.au=Hardcastle%2C+Nicholas&rft.au=Jameson%2C+Michael&rft.au=Aherne%2C+Noel&rft.date=2021-07-01&rft.pub=Elsevier+B.V&rft.issn=2405-6316&rft.eissn=2405-6316&rft.volume=19&rft.spage=13&rft.epage=24&rft_id=info:doi/10.1016%2Fj.phro.2021.05.007&rft.externalDocID=S2405631621000300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-6316&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-6316&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-6316&client=summon