Universal pulses: A new concept for calibration‐free parallel transmission
Purpose A calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Theory and Methods Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small‐tip‐angl...
Saved in:
| Published in: | Magnetic resonance in medicine Vol. 77; no. 2; pp. 635 - 643 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Wiley Subscription Services, Inc
01.02.2017
Wiley |
| Subjects: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Purpose
A calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T).
Theory and Methods
Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small‐tip‐angle and inversion pulses were designed with joint kT‐points trajectory optimization to work robustly on all six subjects. The returned “universal” pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject‐based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE).
Results
For both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject‐based optimized pulses (NRMSE∼7%).
Conclusion
RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject‐specific field maps. Magn Reson Med 77:635–643, 2017. © 2016 International Society for Magnetic Resonance in Medicine |
|---|---|
| AbstractList | A calibration-free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T).PURPOSEA calibration-free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T).Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small-tip-angle and inversion pulses were designed with joint kT -points trajectory optimization to work robustly on all six subjects. The returned "universal" pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject-based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE).THEORY AND METHODSSix volunteers were scanned to build a representative database of RF and static field maps at 7T. Small-tip-angle and inversion pulses were designed with joint kT -points trajectory optimization to work robustly on all six subjects. The returned "universal" pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject-based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE).For both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject-based optimized pulses (NRMSE∼7%).RESULTSFor both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject-based optimized pulses (NRMSE∼7%).RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject-specific field maps. Magn Reson Med 77:635-643, 2017. © 2016 International Society for Magnetic Resonance in Medicine.CONCLUSIONRF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject-specific field maps. Magn Reson Med 77:635-643, 2017. © 2016 International Society for Magnetic Resonance in Medicine. Purpose A calibration-free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Theory and Methods Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small-tip-angle and inversion pulses were designed with joint k sub(T)-points trajectory optimization to work robustly on all six subjects. The returned "universal" pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject-based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE). Results For both the excitation and inversion, the universal pulses (NRMSE11%) outperformed the circularly polarized (NRMSE28%) and RF shim modes (NRMSE20%) across all volunteers and returned slightly worse results than for subject-based optimized pulses (NRMSE7%). Conclusion RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject-specific field maps. Magn Reson Med 77:635-643, 2017. Purpose A calibration-free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Theory and Methods Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small-tip-angle and inversion pulses were designed with joint kT-points trajectory optimization to work robustly on all six subjects. The returned "universal" pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject-based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE). Results For both the excitation and inversion, the universal pulses (NRMSE11%) outperformed the circularly polarized (NRMSE28%) and RF shim modes (NRMSE20%) across all volunteers and returned slightly worse results than for subject-based optimized pulses (NRMSE7%). Conclusion RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject-specific field maps. Magn Reson Med 77:635-643, 2017. © 2016 International Society for Magnetic Resonance in Medicine Purpose A calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Theory and Methods Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small‐tip‐angle and inversion pulses were designed with joint kT‐points trajectory optimization to work robustly on all six subjects. The returned “universal” pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject‐based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE). Results For both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject‐based optimized pulses (NRMSE∼7%). Conclusion RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject‐specific field maps. Magn Reson Med 77:635–643, 2017. © 2016 International Society for Magnetic Resonance in Medicine A calibration-free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small-tip-angle and inversion pulses were designed with joint k -points trajectory optimization to work robustly on all six subjects. The returned "universal" pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject-based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE). For both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject-based optimized pulses (NRMSE∼7%). RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject-specific field maps. Magn Reson Med 77:635-643, 2017. © 2016 International Society for Magnetic Resonance in Medicine. PurposeA calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T).Theory and MethodsSix volunteers were scanned to build a representative database of RF and static field maps at 7T. Small‐tip‐angle and inversion pulses were designed with joint kT‐points trajectory optimization to work robustly on all six subjects. The returned “universal” pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject‐based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE).ResultsFor both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject‐based optimized pulses (NRMSE∼7%).ConclusionRF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject‐specific field maps. Magn Reson Med 77:635–643, 2017. © 2016 International Society for Magnetic Resonance in Medicine |
| Author | Gras, Vincent Boulant, Nicolas Amadon, Alexis Vignaud, Alexandre Bihan, Denis |
| Author_xml | – sequence: 1 givenname: Vincent surname: Gras fullname: Gras, Vincent organization: NeuroSpin, CEA, DSV, Gif sur Yvette – sequence: 2 givenname: Alexandre surname: Vignaud fullname: Vignaud, Alexandre organization: NeuroSpin, CEA, DSV, Gif sur Yvette – sequence: 3 givenname: Alexis surname: Amadon fullname: Amadon, Alexis organization: NeuroSpin, CEA, DSV, Gif sur Yvette – sequence: 4 givenname: Denis surname: Bihan fullname: Bihan, Denis organization: NeuroSpin, CEA, DSV, Gif sur Yvette – sequence: 5 givenname: Nicolas surname: Boulant fullname: Boulant, Nicolas email: nicolas.boulant@cea.fr organization: NeuroSpin, CEA, DSV, Gif sur Yvette |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26888654$$D View this record in MEDLINE/PubMed https://hal.science/hal-02103499$$DView record in HAL |
| BookMark | eNqNksFKHTEUhkOx1KvtwhcoA920i9Ekk2Qm7i7SqnBFkLoOmcwZjGSSMZlR3PUR-ox9kuZ6rxZKW7oKJN_5859z_j2044MHhA4IPiQY06MhDodUENa8QgvCKS0pl2wHLXDNcFkRyXbRXkq3GGMpa_YG7VLRNI3gbIFW197eQ0zaFePsEqTjYll4eChM8AbGqehDLIx2to16ssH_-Pa9jwDFqKN2DlwxRe3TYFPKj2_R615nkXfbcx9df_n89eSsXF2enp8sV6XhTDZlRbuu7nlrONeEiZZlL0CgIwSqpms173Bd9ZrWHLiuwdCe614YymrJZYtJtY8-bXRvtFNjtIOOjypoq86WK7W-w5Tgikl5v2Y_btgxhrsZ0qSyWQPOaQ9hToo0oqkYEYT-B0qFyKrVGv3wG3ob5uhz04pyLClh2e2_qPwtFhRLJjL1fkvN7QDdS0PPS8rA0QYwMaQUoVfGTk_byMO3ThGs1jFQOQbqKQa_BvRS8Sz6J3ar_mAdPP4dVBdXF5uKn1AGvyc |
| CODEN | MRMEEN |
| CitedBy_id | crossref_primary_10_1007_s10334_024_01149_8 crossref_primary_10_1002_mrm_30305 crossref_primary_10_1002_mrm_30426 crossref_primary_10_1002_nbm_4450 crossref_primary_10_1002_mrm_28988 crossref_primary_10_1007_s12194_021_00612_8 crossref_primary_10_1002_mrm_27417 crossref_primary_10_1016_j_mri_2022_08_006 crossref_primary_10_1002_nbm_70047 crossref_primary_10_1002_mrm_28749 crossref_primary_10_1002_mrm_28905 crossref_primary_10_1002_jmri_25723 crossref_primary_10_3389_fphy_2021_701330 crossref_primary_10_1002_mrm_30495 crossref_primary_10_1016_j_mri_2022_04_002 crossref_primary_10_1002_mrm_30014 crossref_primary_10_1002_mrm_30137 crossref_primary_10_1002_mrm_27001 crossref_primary_10_1162_IMAG_a_42 crossref_primary_10_1002_nbm_4728 crossref_primary_10_1002_mrm_27645 crossref_primary_10_1016_j_mri_2019_11_007 crossref_primary_10_1007_s00701_024_06385_4 crossref_primary_10_1002_mrm_27808 crossref_primary_10_1002_mrm_29948 crossref_primary_10_1103_PhysRevX_8_031083 crossref_primary_10_1016_j_zemedi_2021_12_003 crossref_primary_10_1016_j_ctro_2019_04_009 crossref_primary_10_1002_mrm_30565 crossref_primary_10_1007_s00234_025_03554_9 crossref_primary_10_1002_mrm_30601 crossref_primary_10_1002_nbm_5002 crossref_primary_10_1002_mrm_30329 crossref_primary_10_1002_mrm_26468 crossref_primary_10_1002_mrm_29617 crossref_primary_10_1002_mrm_26624 crossref_primary_10_1016_j_neuroimage_2018_09_038 crossref_primary_10_1002_mrm_28643 crossref_primary_10_1002_mrm_29459 crossref_primary_10_1177_1352458520981738 crossref_primary_10_1002_mrm_30032 crossref_primary_10_1371_journal_pone_0308565 crossref_primary_10_3174_ajnr_A8827 crossref_primary_10_1002_mrm_30436 crossref_primary_10_1002_mrm_28590 crossref_primary_10_1002_nbm_4387 crossref_primary_10_1007_s10334_022_01013_7 crossref_primary_10_1162_imag_a_00196 crossref_primary_10_1002_mrm_70011 crossref_primary_10_1002_mrm_26614 crossref_primary_10_1007_s10334_024_01182_7 crossref_primary_10_1016_j_mri_2020_12_013 crossref_primary_10_1002_mrm_29569 crossref_primary_10_1002_mrm_27149 crossref_primary_10_3171_2019_11_JNS193149 crossref_primary_10_7498_aps_74_20241759 crossref_primary_10_1007_s10334_025_01232_8 crossref_primary_10_1016_j_neuroimage_2021_118384 crossref_primary_10_1371_journal_pone_0183562 crossref_primary_10_1002_mrm_30185 crossref_primary_10_1007_s10334_023_01080_4 crossref_primary_10_1016_j_mri_2022_07_009 crossref_primary_10_1002_mrm_29510 crossref_primary_10_1007_s10334_023_01085_z crossref_primary_10_1002_mrm_30225 crossref_primary_10_1002_mrm_30346 crossref_primary_10_1016_j_ab_2021_114479 crossref_primary_10_1016_j_mri_2022_07_002 crossref_primary_10_1097_RMR_0000000000000202 crossref_primary_10_1109_TMI_2020_3013982 crossref_primary_10_1002_mrm_29238 crossref_primary_10_1002_mrm_26487 crossref_primary_10_1002_mrm_28667 crossref_primary_10_1002_nbm_70080 crossref_primary_10_1038_s44172_024_00233_0 crossref_primary_10_1097_RMR_0000000000000204 crossref_primary_10_1162_imag_a_00044 crossref_primary_10_1016_j_jmr_2017_04_012 crossref_primary_10_1002_mrm_29183 crossref_primary_10_1109_TMI_2021_3132576 crossref_primary_10_1002_mrm_29180 crossref_primary_10_1016_j_neuroimage_2025_121015 crossref_primary_10_1002_mrm_30453 crossref_primary_10_1002_mrm_30212 crossref_primary_10_1002_mrm_30333 crossref_primary_10_1002_mrm_29625 crossref_primary_10_1002_mrm_30607 crossref_primary_10_1371_journal_pone_0225286 crossref_primary_10_1002_nbm_4525 crossref_primary_10_1371_journal_pone_0259592 crossref_primary_10_1002_mrm_30480 crossref_primary_10_1002_mrm_27192 crossref_primary_10_1002_mrm_28441 crossref_primary_10_1002_mrm_30643 crossref_primary_10_1002_mrm_27870 crossref_primary_10_1002_mrm_29376 crossref_primary_10_1002_mrm_29011 crossref_primary_10_1002_mrm_29132 crossref_primary_10_1016_j_neuroimage_2019_03_040 crossref_primary_10_1002_mrm_28602 crossref_primary_10_1155_2020_6018107 crossref_primary_10_1002_mrm_29412 crossref_primary_10_1002_nbm_4876 crossref_primary_10_1088_1361_6560_ada683 crossref_primary_10_1088_1361_6560_aca4b7 crossref_primary_10_1002_mrm_29818 crossref_primary_10_1016_j_pneurobio_2020_101936 crossref_primary_10_1002_mrm_29819 crossref_primary_10_1002_mrm_30072 crossref_primary_10_1093_cercor_bhae343 crossref_primary_10_1002_mrm_28391 crossref_primary_10_1007_s10334_023_01134_7 crossref_primary_10_1002_mrm_30593 crossref_primary_10_1002_mrm_30596 crossref_primary_10_1002_mrm_28276 crossref_primary_10_1002_mrm_29884 crossref_primary_10_1016_j_pnmrs_2018_06_001 crossref_primary_10_1002_mrm_30116 crossref_primary_10_1002_mrm_30359 crossref_primary_10_1109_TMI_2024_3515035 crossref_primary_10_1002_mrm_28952 crossref_primary_10_1002_mrm_29402 crossref_primary_10_1162_imag_a_00435 crossref_primary_10_1097_RLI_0000000000000820 crossref_primary_10_1016_j_mri_2019_08_013 |
| Cites_doi | 10.1016/j.jmr.2015.10.017 10.1002/mrm.20321 10.1002/mrm.24805 10.1002/mrm.21042 10.1002/mrm.25637 10.1002/mrm.24138 10.1002/mrm.22927 10.1002/mrm.20840 10.1002/hbm.10062 10.1002/mrm.23140 10.1002/mrm.25353 10.1002/mrm.21513 10.1002/mrm.24378 10.1002/mrm.21893 10.1002/mrm.20978 10.1002/mrm.24800 10.1002/mrm.10353 10.1002/mrm.20708 10.1016/j.neuroimage.2012.05.068 10.1002/mrm.10137 10.1103/PhysRevA.31.2753 10.1002/mrm.21700 10.1002/mrm.22978 10.1002/mrm.20646 10.1002/mrm.25828 10.1002/mrm.25512 10.1002/mrm.1910150117 10.1016/j.neuroimage.2005.02.018 10.1109/TMI.2013.2295465 10.1002/mrm.20358 10.1002/jmri.23542 |
| ContentType | Journal Article |
| Copyright | 2016 International Society for Magnetic Resonance in Medicine 2016 International Society for Magnetic Resonance in Medicine. 2017 International Society for Magnetic Resonance in Medicine Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2016 International Society for Magnetic Resonance in Medicine – notice: 2016 International Society for Magnetic Resonance in Medicine. – notice: 2017 International Society for Magnetic Resonance in Medicine – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO 1XC VOOES |
| DOI | 10.1002/mrm.26148 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | MEDLINE - Academic Engineering Research Database Biochemistry Abstracts 1 MEDLINE Biochemistry Abstracts 1 |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 643 |
| ExternalDocumentID | oai:HAL:hal-02103499v1 4305946661 26888654 10_1002_mrm_26148 MRM26148 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: European Research Council funderid: 309674 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO 1XC VOOES |
| ID | FETCH-LOGICAL-c5498-32dd7f5bc55a146b4886e1ed11e38dba5d073fa275e5a7ec2f5af6c247959b013 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 131 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394544700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Tue Oct 14 20:20:11 EDT 2025 Tue Oct 07 09:24:44 EDT 2025 Thu Jul 10 18:31:51 EDT 2025 Sat Nov 29 14:35:34 EST 2025 Sat Nov 29 14:35:45 EST 2025 Thu Apr 03 07:02:23 EDT 2025 Sat Nov 29 02:37:39 EST 2025 Tue Nov 18 22:45:30 EST 2025 Wed Jan 22 16:23:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | RF pulse design parallel transmission ultra-high field plug and play |
| Language | English |
| License | 2016 International Society for Magnetic Resonance in Medicine. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5498-32dd7f5bc55a146b4886e1ed11e38dba5d073fa275e5a7ec2f5af6c247959b013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9203-0247 0000-0002-2667-9387 |
| OpenAccessLink | https://hal.science/hal-02103499 |
| PMID | 26888654 |
| PQID | 1860620946 |
| PQPubID | 1016391 |
| PageCount | 9 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02103499v1 proquest_miscellaneous_1868341612 proquest_miscellaneous_1826649932 proquest_journals_2509214247 proquest_journals_1860620946 pubmed_primary_26888654 crossref_citationtrail_10_1002_mrm_26148 crossref_primary_10_1002_mrm_26148 wiley_primary_10_1002_mrm_26148_MRM26148 |
| PublicationCentury | 2000 |
| PublicationDate | February 2017 |
| PublicationDateYYYYMMDD | 2017-02-01 |
| PublicationDate_xml | – month: 02 year: 2017 text: February 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc Wiley |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
| References | 2002; 17 2015; 261 2013; 69 2006; 56 1990; 15 2010; 603 2009; 61 2006; 55 2015; 74 2016; 76 2008; 59 2008 2016; 75 2007 2005; 26 2012; 35 2002; 47 2005; 53 2011; 66 2003; 49 2005; 54 2015 2014 2013 2014; 73 2012; 68 2012; 67 1985; 31 2014; 71 2008; 60 2014; 33 2012; 62 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 (e_1_2_8_23_1) 2010 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 60 start-page: 701 year: 2008 end-page: 708 article-title: Strongly modulating pulses for counteracting RF inhomogeneity at High fields publication-title: Magn Reson Med – volume: 55 start-page: 719 year: 2006 end-page: 724 article-title: Fast‐kz three‐dimensional tailored radiofrequency pulse for reduced B1 inhomogeneity publication-title: Magn Reson Med – volume: 76 start-page: 20 year: 2016 end-page: 31 article-title: Subject‐ and resource‐specific monitoring and proactive management of parallel radiofrequency transmission publication-title: Magn Reson Med – volume: 68 start-page: 1664 year: 2012 end-page: 1674 article-title: A specific absorption rate prediction concept for parallel transmission MR. MR publication-title: Magn Reson Med – volume: 54 start-page: 994 year: 2005 end-page: 1001 article-title: Experimental analysis of parallel excitation using dedicated coil setups and simultaneous RF transmission on multiple channels publication-title: Magn Reson Med – volume: 75 start-page: 249 year: 2016 end-page: 256 article-title: Direct control of the temperature rise in parallel transmission by means of virtual observation points: simulations at 10.5 T publication-title: Magn Reson Med – volume: 74 start-page: 1291 year: 2015 end-page: 1305 article-title: Design of parallel transmission radiofrequency pulses robust against respiration in cardiac MRI at 7 Tesla publication-title: Magn Reson Med – volume: 35 start-page: 1312 year: 2012 end-page: 1321 article-title: Thermal simulations in the human head for high field MRI using parallel transmission publication-title: J Magn Reson Imaging – volume: 15 start-page: 152 year: 1990 end-page: 157 article-title: Three‐dimensional magnetization‐prepared rapid gradient‐echo imaging (3D MP RAGE) publication-title: Magn Reson Med – volume: 56 start-page: 620 year: 2006 end-page: 629 article-title: Spatial domain method for the design of RF pulses in multicoil parallel excitation publication-title: Magn Reson Med – volume: 67 start-page: 1566 year: 2012 end-page: 1578 article-title: Local SAR in parallel transmission pulse design publication-title: Magn Reson Med – volume: 31 start-page: 2753 year: 1985 end-page: 2755 article-title: Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch‐Riccati equation publication-title: Phys Rev A – year: 2007 – volume: 71 start-page: 1478 year: 2014 end-page: 1488 article-title: Improving T2‐weighted imaging at high field through the use of kT‐points publication-title: Magn Reson Med – volume: 261 start-page: 181 year: 2015 end-page: 189 article-title: Joint design of k ‐points trajectories and RF pulses under explicit SAR and power constraints in the large flip angle regime publication-title: J Magn Reson – volume: 26 start-page: 839 year: 2005 end-page: 851 article-title: Unified segmentation publication-title: Neuroimage – volume: 603 start-page: 2 year: 2010 end-page: 33 – volume: 67 start-page: 72 year: 2012 end-page: 80 article-title: kT‐points: short three‐dimensional tailored RF pulses for flip‐angle homogenization over an extended volume publication-title: Magn Reson Med – volume: 17 start-page: 143 year: 2002 end-page: 155 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp – year: 2014 – volume: 33 start-page: 739 year: 2014 end-page: 748 article-title: On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints publication-title: IEEE Trans Med Imaging – volume: 62 start-page: 2140 year: 2012 end-page: 2150 article-title: Parallel‐transmission‐enabled magnetization‐prepared rapid gradient‐echo T1‐weighted imaging of the human brain at 7T publication-title: Neuroimage – volume: 59 start-page: 908 year: 2008 end-page: 915 article-title: Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels publication-title: Magn Reson Med – volume: 71 start-page: 1446 year: 2014 end-page: 1457 article-title: Local specific absorption rate (SAR), global SAR, transmitter power, and excitation accuracy trade‐offs in low flip‐angle parallel transmit pulse design publication-title: Magn Reson Med – volume: 54 start-page: 1503 year: 2005 end-page: 1518 article-title: B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil publication-title: Magn Reson Med – volume: 53 start-page: 479 year: 2005 end-page: 484 article-title: Small tip angle three‐dimensional tailored radiofrequency slab‐select pulse for reduced B1 inhomogeneity at 3 T publication-title: Magn Reson Med – year: 2008 – volume: 53 start-page: 434 year: 2005 end-page: 445 article-title: Transmit and receive transmission line arrays for 7 Tesla parallel imaging publication-title: Magn Reson Med – volume: 61 start-page: 1480 year: 2009 end-page: 1488 article-title: B1 + interferometry for the calibration of RF transmitter arrays publication-title: Magn Reson Med – volume: 56 start-page: 1163 year: 2006 end-page: 1171 article-title: Parallel RF transmission with eight channels at 3 Tesla publication-title: Magn Reson Med – volume: 73 start-page: 2195 year: 2014 end-page: 2203 article-title: Parallel‐ transmission‐enabled three‐dimensional T2‐weighted imaging of the human brain at 7 Tesla publication-title: Magn Reson Med – volume: 49 start-page: 144 year: 2003 end-page: 150 article-title: Transmit SENSE publication-title: Magn Reson Med – year: 2015 – volume: 69 start-page: 1476 year: 2013 end-page: 1485 article-title: Specific absorption rate intersubject variability in 7T parallel transmit MRI of the head publication-title: Magn Reson Med – volume: 47 start-page: 982 year: 2002 end-page: 989 article-title: Analysis of wave behavior in lossy dielectric samples at high field publication-title: Magn Reson Med – volume: 66 start-page: 1468 year: 2011 end-page: 1476 article-title: Local specific absorption rate control for parallel transmis‐ sion by virtual observation points publication-title: Magn Reson Med – year: 2013 – ident: e_1_2_8_31_1 – ident: e_1_2_8_35_1 doi: 10.1016/j.jmr.2015.10.017 – ident: e_1_2_8_3_1 doi: 10.1002/mrm.20321 – ident: e_1_2_8_12_1 doi: 10.1002/mrm.24805 – ident: e_1_2_8_5_1 doi: 10.1002/mrm.21042 – ident: e_1_2_8_41_1 doi: 10.1002/mrm.25637 – ident: e_1_2_8_17_1 doi: 10.1002/mrm.24138 – ident: e_1_2_8_26_1 doi: 10.1002/mrm.22927 – ident: e_1_2_8_39_1 – ident: e_1_2_8_8_1 doi: 10.1002/mrm.20840 – ident: e_1_2_8_34_1 doi: 10.1002/hbm.10062 – ident: e_1_2_8_27_1 doi: 10.1002/mrm.23140 – ident: e_1_2_8_32_1 – ident: e_1_2_8_40_1 – ident: e_1_2_8_11_1 doi: 10.1002/mrm.25353 – ident: e_1_2_8_22_1 doi: 10.1002/mrm.21513 – ident: e_1_2_8_18_1 doi: 10.1002/mrm.24378 – start-page: 2 volume-title: Medical electrical equipment‐part 2–33: particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis year: 2010 ident: e_1_2_8_23_1 – ident: e_1_2_8_16_1 – ident: e_1_2_8_33_1 doi: 10.1002/mrm.21893 – ident: e_1_2_8_6_1 doi: 10.1002/mrm.20978 – ident: e_1_2_8_25_1 doi: 10.1002/mrm.24800 – ident: e_1_2_8_2_1 doi: 10.1002/mrm.10353 – ident: e_1_2_8_15_1 doi: 10.1002/mrm.20708 – ident: e_1_2_8_10_1 doi: 10.1016/j.neuroimage.2012.05.068 – ident: e_1_2_8_19_1 – ident: e_1_2_8_30_1 – ident: e_1_2_8_14_1 doi: 10.1002/mrm.10137 – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevA.31.2753 – ident: e_1_2_8_38_1 doi: 10.1002/mrm.21700 – ident: e_1_2_8_9_1 doi: 10.1002/mrm.22978 – ident: e_1_2_8_4_1 doi: 10.1002/mrm.20646 – ident: e_1_2_8_13_1 doi: 10.1002/mrm.25828 – ident: e_1_2_8_20_1 doi: 10.1002/mrm.25512 – ident: e_1_2_8_21_1 doi: 10.1002/mrm.1910150117 – ident: e_1_2_8_37_1 doi: 10.1016/j.neuroimage.2005.02.018 – ident: e_1_2_8_24_1 doi: 10.1109/TMI.2013.2295465 – ident: e_1_2_8_29_1 – ident: e_1_2_8_7_1 doi: 10.1002/mrm.20358 – ident: e_1_2_8_42_1 – ident: e_1_2_8_28_1 doi: 10.1002/jmri.23542 |
| SSID | ssj0009974 |
| Score | 2.5621505 |
| Snippet | Purpose
A calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7... A calibration-free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla... Purpose A calibration-free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7... PurposeA calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7... |
| SourceID | hal proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 635 |
| SubjectTerms | Adult Algorithms Bioengineering Brain - anatomy & histology Calibration Circular polarization Engineering Sciences Female Humans Image analysis Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Inhomogeneity Life Sciences Magnetic resonance Magnetic Resonance Imaging - methods Male Neuroimaging parallel transmission Plug & play plug and play Radio frequency Reproducibility of Results RF pulse design Sensitivity and Specificity Signal Processing, Computer-Assisted Trajectory optimization ultra‐high field |
| Title | Universal pulses: A new concept for calibration‐free parallel transmission |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26148 https://www.ncbi.nlm.nih.gov/pubmed/26888654 https://www.proquest.com/docview/1860620946 https://www.proquest.com/docview/2509214247 https://www.proquest.com/docview/1826649932 https://www.proquest.com/docview/1868341612 https://hal.science/hal-02103499 |
| Volume | 77 |
| WOSCitedRecordID | wos000394544700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED7RwtBexmAb62DITHvYS6Bx7NiBpwqoQGqrCQ2tb5Hj2NqkUlDT8ryfsN-4X7K7JA1CsGnS3pL4kjjnO993tvMZ4CPnOcJ2GQXGxjYQkesGiOOSQMdC2jAT3lhdbjahRiM9HiefV-B4-S9MxQ_RDLiRZ5T9NTm4yYrDe9LQ69n1AScayxascrRb2YbV08v-1eCeczepSJiVoK4mEUtioS4_bG5-EI5a32gx5GOk-RC4lpGnv_FfdX4JL2rAyXqVhWzCiptuwfqwnlLfgmflGlBbvIJBvUgDpW8XGDGLI9ZjiLqZrX5tZIhvGTYp1YCa89ePn37mHCP28MnETdic4h7aDQ3AvYar_tmXk_Og3mwhsJgi6iDiea68zKyUBnvPDB07dqHLw9BFOs-MzLEz8IYr6aRRznIvjY8tF7RZOQ2mvoH29Gbq3gJLrHJCe4-iobA817Hi3dwR07rPrFAd-LTUeWprJnLaEGOSVhzKPEU9paWeOvChEb2t6DeeFMKGa8qJMPu8N0jpGmW0ESZ1d2EHdpftmtZuWqShxvyNY4YbP1mM8DAhSjqq8n5TjHqkSRUzdTcLegRCHHxDxP8mE-uIMkmU2a5MqqktjzVqWgpUSmk5f_7MdHg5LA_e_bvoDjznhEPKZea70J7PFu49rNm7-fditgctNdZ7tdvg2deL0W_hAxki |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BLW0vUCgtW16m4sAlZePYiVP1skKgReyuqoqq3KzEsUWlZXe1D879CfzG_pLOONkgVIqQuEXxJJmMPfY3fnwDcMB5gbBdRkFmYhOIyDYDxHFpoGIhTZgLlxnlk00kvZ66vEy_LcDX-VmYkh-innAjz_D9NTk4TUgf3bGGXo-vP3PisVyEFwKBBiVu-HnWu6PcTUsO5kRQT5OKOa9Qkx_Vj94bjRavaC_kv0DzPm71A8_p6vNUfgsrFeBkrbKFrMGCHazDq261pL4Oy34PqJm8g061SQOlRzMcMSdfWIsh6mamPNrIEN8yrFJSgarzz-9bN7aWEXt4v2_7bErjHrYbmoDbgB-nJxfH7aBKthAYDBFVEPGiSJzMjZQZ9p45OnZsQ1uEoY1UkWeywM7AZTyRVmaJNdzJzMWGC0pWTpOp72FpMBzYTWCpSaxQzqFoKAwvVJzwZmGJad3lRiQNOJwbXZuKiZwSYvR1yaHMNdpJezs14FMtOirpNx4Uwpqry4kwu93qaLpHEW2EQd1N2IDtecXqyk0nOlQYv3GMcOMHixEepkRJRyrv18VoR1pUyQZ2OKNXIMTBL0T8MZlYRRRJosyHsk3V2vJYoaWlQKP4pvP_39Td711_8fHponvwun3R7ejOWe98C95wwiR-y_k2LE3HM7sDL83N9NdkvOt95y_7MBnt |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6lKY248Ci0BErZVj1wMY3Xu_YacYlooyKSqKqo1NvK3odAStIoj575CfxGfgkztuOoolRIvVnesT2e3dn9Zh_fABxxbhG2yyjITGwCEblOgDguDVQspAlz4TOjimQTyXCorq7S8wZ8Wp2FKfkh6gk38oyivyYHd1Prj9esoePZ-AMnHssN2BSURKYJmycXvcv-mnQ3LVmYE0F9TSpWzEIdflw_fGs82vhOuyH_hpq3kWsx9PSePkzpZ_CkgpysW7aR59Bwk21oDapF9W3YKnaBmvkL6FfbNFB6usQxc_6RdRnibmbKw40MES7DSiUVqEJ___zlZ84x4g8fjdyILWjkw5ZDU3Av4bJ3-u3zWVClWwgMBokqiLi1iZe5kTLD_jNH145d6GwYukjZPJMWuwOf8UQ6mSXOcC8zHxsuKF05TafuQHNyPXGvgKUmcUJ5j6KhMNyqOOEd64hr3edGJG14vzK6NhUXOaXEGOmSRZlrtJMu7NSGw1p0WhJw3CmENVeXE2X2Wbev6R7FtBGGdTdhG_ZWFasrR53rUGEExzHGje8sRoCYEikdqXxQF6MdaVklm7jrJb0CQQ5-IeL3ycQqolgSZXbLNlVry2OFlpYCjVI0nX__ph5cDIqL1_8v-g5a5yc93f8y_PoGHnMCJcWe8z1oLmZL9xYemZvFj_lsv3KeP9WgGpY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+pulses%3A+A+new+concept+for+calibration-free+parallel+transmission&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Gras%2C+Vincent&rft.au=Vignaud%2C+Alexandre&rft.au=Amadon%2C+Alexis&rft.au=Bihan%2C+Denis&rft.date=2017-02-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=77&rft.issue=2&rft.spage=635&rft.epage=643&rft_id=info:doi/10.1002%2Fmrm.26148&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |