Universal pulses: A new concept for calibration‐free parallel transmission

Purpose A calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Theory and Methods Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small‐tip‐angl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 77; H. 2; S. 635 - 643
Hauptverfasser: Gras, Vincent, Vignaud, Alexandre, Amadon, Alexis, Bihan, Denis, Boulant, Nicolas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 01.02.2017
Wiley
Schlagworte:
ISSN:0740-3194, 1522-2594, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose A calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Theory and Methods Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small‐tip‐angle and inversion pulses were designed with joint kT‐points trajectory optimization to work robustly on all six subjects. The returned “universal” pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject‐based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE). Results For both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject‐based optimized pulses (NRMSE∼7%). Conclusion RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject‐specific field maps. Magn Reson Med 77:635–643, 2017. © 2016 International Society for Magnetic Resonance in Medicine
AbstractList A calibration-free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T).PURPOSEA calibration-free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T).Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small-tip-angle and inversion pulses were designed with joint kT -points trajectory optimization to work robustly on all six subjects. The returned "universal" pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject-based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE).THEORY AND METHODSSix volunteers were scanned to build a representative database of RF and static field maps at 7T. Small-tip-angle and inversion pulses were designed with joint kT -points trajectory optimization to work robustly on all six subjects. The returned "universal" pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject-based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE).For both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject-based optimized pulses (NRMSE∼7%).RESULTSFor both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject-based optimized pulses (NRMSE∼7%).RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject-specific field maps. Magn Reson Med 77:635-643, 2017. © 2016 International Society for Magnetic Resonance in Medicine.CONCLUSIONRF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject-specific field maps. Magn Reson Med 77:635-643, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Purpose A calibration-free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Theory and Methods Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small-tip-angle and inversion pulses were designed with joint k sub(T)-points trajectory optimization to work robustly on all six subjects. The returned "universal" pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject-based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE). Results For both the excitation and inversion, the universal pulses (NRMSE11%) outperformed the circularly polarized (NRMSE28%) and RF shim modes (NRMSE20%) across all volunteers and returned slightly worse results than for subject-based optimized pulses (NRMSE7%). Conclusion RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject-specific field maps. Magn Reson Med 77:635-643, 2017.
A calibration-free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small-tip-angle and inversion pulses were designed with joint k -points trajectory optimization to work robustly on all six subjects. The returned "universal" pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject-based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE). For both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject-based optimized pulses (NRMSE∼7%). RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject-specific field maps. Magn Reson Med 77:635-643, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
PurposeA calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T).Theory and MethodsSix volunteers were scanned to build a representative database of RF and static field maps at 7T. Small‐tip‐angle and inversion pulses were designed with joint kT‐points trajectory optimization to work robustly on all six subjects. The returned “universal” pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject‐based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE).ResultsFor both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject‐based optimized pulses (NRMSE∼7%).ConclusionRF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject‐specific field maps. Magn Reson Med 77:635–643, 2017. © 2016 International Society for Magnetic Resonance in Medicine
Purpose A calibration-free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Theory and Methods Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small-tip-angle and inversion pulses were designed with joint kT-points trajectory optimization to work robustly on all six subjects. The returned "universal" pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject-based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE). Results For both the excitation and inversion, the universal pulses (NRMSE11%) outperformed the circularly polarized (NRMSE28%) and RF shim modes (NRMSE20%) across all volunteers and returned slightly worse results than for subject-based optimized pulses (NRMSE7%). Conclusion RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject-specific field maps. Magn Reson Med 77:635-643, 2017. © 2016 International Society for Magnetic Resonance in Medicine
Purpose A calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla (T). Theory and Methods Six volunteers were scanned to build a representative database of RF and static field maps at 7T. Small‐tip‐angle and inversion pulses were designed with joint kT‐points trajectory optimization to work robustly on all six subjects. The returned “universal” pulses were then inserted in an MPRAGE sequence implemented on six additional volunteers without further field measurements and pulse optimizations. Similar acquisitions were performed in the circularly polarized mode and with subject‐based optimizations for comparison. Performance of the different approaches was evaluated by means of image analysis and computation of the flip angle normalized root mean square errors (NRMSE). Results For both the excitation and inversion, the universal pulses (NRMSE∼11%) outperformed the circularly polarized (NRMSE∼28%) and RF shim modes (NRMSE∼20%) across all volunteers and returned slightly worse results than for subject‐based optimized pulses (NRMSE∼7%). Conclusion RF pulses can be designed to robustly mitigate the RF field inhomogeneity problem over a population class. This appears as a first step toward another plug and play parallel transmission solution where the pulse design can be done offline and without measuring subject‐specific field maps. Magn Reson Med 77:635–643, 2017. © 2016 International Society for Magnetic Resonance in Medicine
Author Gras, Vincent
Boulant, Nicolas
Amadon, Alexis
Vignaud, Alexandre
Bihan, Denis
Author_xml – sequence: 1
  givenname: Vincent
  surname: Gras
  fullname: Gras, Vincent
  organization: NeuroSpin, CEA, DSV, Gif sur Yvette
– sequence: 2
  givenname: Alexandre
  surname: Vignaud
  fullname: Vignaud, Alexandre
  organization: NeuroSpin, CEA, DSV, Gif sur Yvette
– sequence: 3
  givenname: Alexis
  surname: Amadon
  fullname: Amadon, Alexis
  organization: NeuroSpin, CEA, DSV, Gif sur Yvette
– sequence: 4
  givenname: Denis
  surname: Bihan
  fullname: Bihan, Denis
  organization: NeuroSpin, CEA, DSV, Gif sur Yvette
– sequence: 5
  givenname: Nicolas
  surname: Boulant
  fullname: Boulant, Nicolas
  email: nicolas.boulant@cea.fr
  organization: NeuroSpin, CEA, DSV, Gif sur Yvette
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26888654$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02103499$$DView record in HAL
BookMark eNqNksFKHTEUhkOx1KvtwhcoA920i9Ekk2Qm7i7SqnBFkLoOmcwZjGSSMZlR3PUR-ox9kuZ6rxZKW7oKJN_5859z_j2044MHhA4IPiQY06MhDodUENa8QgvCKS0pl2wHLXDNcFkRyXbRXkq3GGMpa_YG7VLRNI3gbIFW197eQ0zaFePsEqTjYll4eChM8AbGqehDLIx2to16ssH_-Pa9jwDFqKN2DlwxRe3TYFPKj2_R615nkXfbcx9df_n89eSsXF2enp8sV6XhTDZlRbuu7nlrONeEiZZlL0CgIwSqpms173Bd9ZrWHLiuwdCe614YymrJZYtJtY8-bXRvtFNjtIOOjypoq86WK7W-w5Tgikl5v2Y_btgxhrsZ0qSyWQPOaQ9hToo0oqkYEYT-B0qFyKrVGv3wG3ob5uhz04pyLClh2e2_qPwtFhRLJjL1fkvN7QDdS0PPS8rA0QYwMaQUoVfGTk_byMO3ThGs1jFQOQbqKQa_BvRS8Sz6J3ar_mAdPP4dVBdXF5uKn1AGvyc
CODEN MRMEEN
CitedBy_id crossref_primary_10_1007_s10334_024_01149_8
crossref_primary_10_1002_mrm_30305
crossref_primary_10_1002_mrm_30426
crossref_primary_10_1002_nbm_4450
crossref_primary_10_1002_mrm_28988
crossref_primary_10_1007_s12194_021_00612_8
crossref_primary_10_1002_mrm_27417
crossref_primary_10_1016_j_mri_2022_08_006
crossref_primary_10_1002_nbm_70047
crossref_primary_10_1002_mrm_28749
crossref_primary_10_1002_mrm_28905
crossref_primary_10_1002_jmri_25723
crossref_primary_10_3389_fphy_2021_701330
crossref_primary_10_1002_mrm_30495
crossref_primary_10_1016_j_mri_2022_04_002
crossref_primary_10_1002_mrm_30014
crossref_primary_10_1002_mrm_30137
crossref_primary_10_1002_mrm_27001
crossref_primary_10_1162_IMAG_a_42
crossref_primary_10_1002_nbm_4728
crossref_primary_10_1002_mrm_27645
crossref_primary_10_1016_j_mri_2019_11_007
crossref_primary_10_1007_s00701_024_06385_4
crossref_primary_10_1002_mrm_27808
crossref_primary_10_1002_mrm_29948
crossref_primary_10_1103_PhysRevX_8_031083
crossref_primary_10_1016_j_zemedi_2021_12_003
crossref_primary_10_1016_j_ctro_2019_04_009
crossref_primary_10_1002_mrm_30565
crossref_primary_10_1007_s00234_025_03554_9
crossref_primary_10_1002_mrm_30601
crossref_primary_10_1002_nbm_5002
crossref_primary_10_1002_mrm_30329
crossref_primary_10_1002_mrm_26468
crossref_primary_10_1002_mrm_29617
crossref_primary_10_1002_mrm_26624
crossref_primary_10_1016_j_neuroimage_2018_09_038
crossref_primary_10_1002_mrm_28643
crossref_primary_10_1002_mrm_29459
crossref_primary_10_1177_1352458520981738
crossref_primary_10_1002_mrm_30032
crossref_primary_10_1371_journal_pone_0308565
crossref_primary_10_3174_ajnr_A8827
crossref_primary_10_1002_mrm_30436
crossref_primary_10_1002_mrm_28590
crossref_primary_10_1002_nbm_4387
crossref_primary_10_1007_s10334_022_01013_7
crossref_primary_10_1162_imag_a_00196
crossref_primary_10_1002_mrm_70011
crossref_primary_10_1002_mrm_26614
crossref_primary_10_1007_s10334_024_01182_7
crossref_primary_10_1016_j_mri_2020_12_013
crossref_primary_10_1002_mrm_29569
crossref_primary_10_1002_mrm_27149
crossref_primary_10_3171_2019_11_JNS193149
crossref_primary_10_7498_aps_74_20241759
crossref_primary_10_1007_s10334_025_01232_8
crossref_primary_10_1016_j_neuroimage_2021_118384
crossref_primary_10_1371_journal_pone_0183562
crossref_primary_10_1002_mrm_30185
crossref_primary_10_1007_s10334_023_01080_4
crossref_primary_10_1016_j_mri_2022_07_009
crossref_primary_10_1002_mrm_29510
crossref_primary_10_1007_s10334_023_01085_z
crossref_primary_10_1002_mrm_30225
crossref_primary_10_1002_mrm_30346
crossref_primary_10_1016_j_ab_2021_114479
crossref_primary_10_1016_j_mri_2022_07_002
crossref_primary_10_1097_RMR_0000000000000202
crossref_primary_10_1109_TMI_2020_3013982
crossref_primary_10_1002_mrm_29238
crossref_primary_10_1002_mrm_26487
crossref_primary_10_1002_mrm_28667
crossref_primary_10_1002_nbm_70080
crossref_primary_10_1038_s44172_024_00233_0
crossref_primary_10_1097_RMR_0000000000000204
crossref_primary_10_1162_imag_a_00044
crossref_primary_10_1016_j_jmr_2017_04_012
crossref_primary_10_1002_mrm_29183
crossref_primary_10_1109_TMI_2021_3132576
crossref_primary_10_1002_mrm_29180
crossref_primary_10_1016_j_neuroimage_2025_121015
crossref_primary_10_1002_mrm_30453
crossref_primary_10_1002_mrm_30212
crossref_primary_10_1002_mrm_30333
crossref_primary_10_1002_mrm_29625
crossref_primary_10_1002_mrm_30607
crossref_primary_10_1371_journal_pone_0225286
crossref_primary_10_1002_nbm_4525
crossref_primary_10_1371_journal_pone_0259592
crossref_primary_10_1002_mrm_30480
crossref_primary_10_1002_mrm_27192
crossref_primary_10_1002_mrm_28441
crossref_primary_10_1002_mrm_30643
crossref_primary_10_1002_mrm_27870
crossref_primary_10_1002_mrm_29376
crossref_primary_10_1002_mrm_29011
crossref_primary_10_1002_mrm_29132
crossref_primary_10_1016_j_neuroimage_2019_03_040
crossref_primary_10_1002_mrm_28602
crossref_primary_10_1155_2020_6018107
crossref_primary_10_1002_mrm_29412
crossref_primary_10_1002_nbm_4876
crossref_primary_10_1088_1361_6560_ada683
crossref_primary_10_1088_1361_6560_aca4b7
crossref_primary_10_1002_mrm_29818
crossref_primary_10_1016_j_pneurobio_2020_101936
crossref_primary_10_1002_mrm_29819
crossref_primary_10_1002_mrm_30072
crossref_primary_10_1093_cercor_bhae343
crossref_primary_10_1002_mrm_28391
crossref_primary_10_1007_s10334_023_01134_7
crossref_primary_10_1002_mrm_30593
crossref_primary_10_1002_mrm_30596
crossref_primary_10_1002_mrm_28276
crossref_primary_10_1002_mrm_29884
crossref_primary_10_1016_j_pnmrs_2018_06_001
crossref_primary_10_1002_mrm_30116
crossref_primary_10_1002_mrm_30359
crossref_primary_10_1109_TMI_2024_3515035
crossref_primary_10_1002_mrm_28952
crossref_primary_10_1002_mrm_29402
crossref_primary_10_1162_imag_a_00435
crossref_primary_10_1097_RLI_0000000000000820
crossref_primary_10_1016_j_mri_2019_08_013
Cites_doi 10.1016/j.jmr.2015.10.017
10.1002/mrm.20321
10.1002/mrm.24805
10.1002/mrm.21042
10.1002/mrm.25637
10.1002/mrm.24138
10.1002/mrm.22927
10.1002/mrm.20840
10.1002/hbm.10062
10.1002/mrm.23140
10.1002/mrm.25353
10.1002/mrm.21513
10.1002/mrm.24378
10.1002/mrm.21893
10.1002/mrm.20978
10.1002/mrm.24800
10.1002/mrm.10353
10.1002/mrm.20708
10.1016/j.neuroimage.2012.05.068
10.1002/mrm.10137
10.1103/PhysRevA.31.2753
10.1002/mrm.21700
10.1002/mrm.22978
10.1002/mrm.20646
10.1002/mrm.25828
10.1002/mrm.25512
10.1002/mrm.1910150117
10.1016/j.neuroimage.2005.02.018
10.1109/TMI.2013.2295465
10.1002/mrm.20358
10.1002/jmri.23542
ContentType Journal Article
Copyright 2016 International Society for Magnetic Resonance in Medicine
2016 International Society for Magnetic Resonance in Medicine.
2017 International Society for Magnetic Resonance in Medicine
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 International Society for Magnetic Resonance in Medicine
– notice: 2016 International Society for Magnetic Resonance in Medicine.
– notice: 2017 International Society for Magnetic Resonance in Medicine
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
1XC
VOOES
DOI 10.1002/mrm.26148
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic
Engineering Research Database
MEDLINE
Biochemistry Abstracts 1
Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 643
ExternalDocumentID oai:HAL:hal-02103499v1
4305946661
26888654
10_1002_mrm_26148
MRM26148
Genre article
Journal Article
GrantInformation_xml – fundername: European Research Council
  funderid: 309674
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
1XC
VOOES
ID FETCH-LOGICAL-c5498-32dd7f5bc55a146b4886e1ed11e38dba5d073fa275e5a7ec2f5af6c247959b013
IEDL.DBID DRFUL
ISICitedReferencesCount 131
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394544700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Oct 14 20:20:11 EDT 2025
Tue Oct 07 09:24:44 EDT 2025
Thu Jul 10 18:31:51 EDT 2025
Sat Nov 29 14:35:34 EST 2025
Sat Nov 29 14:35:45 EST 2025
Thu Apr 03 07:02:23 EDT 2025
Sat Nov 29 02:37:39 EST 2025
Tue Nov 18 22:45:30 EST 2025
Wed Jan 22 16:23:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords RF pulse design
parallel transmission
ultra-high field
plug and play
Language English
License 2016 International Society for Magnetic Resonance in Medicine.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5498-32dd7f5bc55a146b4886e1ed11e38dba5d073fa275e5a7ec2f5af6c247959b013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9203-0247
0000-0002-2667-9387
OpenAccessLink https://hal.science/hal-02103499
PMID 26888654
PQID 1860620946
PQPubID 1016391
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_02103499v1
proquest_miscellaneous_1868341612
proquest_miscellaneous_1826649932
proquest_journals_2509214247
proquest_journals_1860620946
pubmed_primary_26888654
crossref_citationtrail_10_1002_mrm_26148
crossref_primary_10_1002_mrm_26148
wiley_primary_10_1002_mrm_26148_MRM26148
PublicationCentury 2000
PublicationDate February 2017
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: February 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2002; 17
2015; 261
2013; 69
2006; 56
1990; 15
2010; 603
2009; 61
2006; 55
2015; 74
2016; 76
2008; 59
2008
2016; 75
2007
2005; 26
2012; 35
2002; 47
2005; 53
2011; 66
2003; 49
2005; 54
2015
2014
2013
2014; 73
2012; 68
2012; 67
1985; 31
2014; 71
2008; 60
2014; 33
2012; 62
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
(e_1_2_8_23_1) 2010
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 60
  start-page: 701
  year: 2008
  end-page: 708
  article-title: Strongly modulating pulses for counteracting RF inhomogeneity at High fields
  publication-title: Magn Reson Med
– volume: 55
  start-page: 719
  year: 2006
  end-page: 724
  article-title: Fast‐kz three‐dimensional tailored radiofrequency pulse for reduced B1 inhomogeneity
  publication-title: Magn Reson Med
– volume: 76
  start-page: 20
  year: 2016
  end-page: 31
  article-title: Subject‐ and resource‐specific monitoring and proactive management of parallel radiofrequency transmission
  publication-title: Magn Reson Med
– volume: 68
  start-page: 1664
  year: 2012
  end-page: 1674
  article-title: A specific absorption rate prediction concept for parallel transmission MR. MR
  publication-title: Magn Reson Med
– volume: 54
  start-page: 994
  year: 2005
  end-page: 1001
  article-title: Experimental analysis of parallel excitation using dedicated coil setups and simultaneous RF transmission on multiple channels
  publication-title: Magn Reson Med
– volume: 75
  start-page: 249
  year: 2016
  end-page: 256
  article-title: Direct control of the temperature rise in parallel transmission by means of virtual observation points: simulations at 10.5 T
  publication-title: Magn Reson Med
– volume: 74
  start-page: 1291
  year: 2015
  end-page: 1305
  article-title: Design of parallel transmission radiofrequency pulses robust against respiration in cardiac MRI at 7 Tesla
  publication-title: Magn Reson Med
– volume: 35
  start-page: 1312
  year: 2012
  end-page: 1321
  article-title: Thermal simulations in the human head for high field MRI using parallel transmission
  publication-title: J Magn Reson Imaging
– volume: 15
  start-page: 152
  year: 1990
  end-page: 157
  article-title: Three‐dimensional magnetization‐prepared rapid gradient‐echo imaging (3D MP RAGE)
  publication-title: Magn Reson Med
– volume: 56
  start-page: 620
  year: 2006
  end-page: 629
  article-title: Spatial domain method for the design of RF pulses in multicoil parallel excitation
  publication-title: Magn Reson Med
– volume: 67
  start-page: 1566
  year: 2012
  end-page: 1578
  article-title: Local SAR in parallel transmission pulse design
  publication-title: Magn Reson Med
– volume: 31
  start-page: 2753
  year: 1985
  end-page: 2755
  article-title: Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch‐Riccati equation
  publication-title: Phys Rev A
– year: 2007
– volume: 71
  start-page: 1478
  year: 2014
  end-page: 1488
  article-title: Improving T2‐weighted imaging at high field through the use of kT‐points
  publication-title: Magn Reson Med
– volume: 261
  start-page: 181
  year: 2015
  end-page: 189
  article-title: Joint design of k ‐points trajectories and RF pulses under explicit SAR and power constraints in the large flip angle regime
  publication-title: J Magn Reson
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  article-title: Unified segmentation
  publication-title: Neuroimage
– volume: 603
  start-page: 2
  year: 2010
  end-page: 33
– volume: 67
  start-page: 72
  year: 2012
  end-page: 80
  article-title: kT‐points: short three‐dimensional tailored RF pulses for flip‐angle homogenization over an extended volume
  publication-title: Magn Reson Med
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  article-title: Fast robust automated brain extraction
  publication-title: Hum Brain Mapp
– year: 2014
– volume: 33
  start-page: 739
  year: 2014
  end-page: 748
  article-title: On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints
  publication-title: IEEE Trans Med Imaging
– volume: 62
  start-page: 2140
  year: 2012
  end-page: 2150
  article-title: Parallel‐transmission‐enabled magnetization‐prepared rapid gradient‐echo T1‐weighted imaging of the human brain at 7T
  publication-title: Neuroimage
– volume: 59
  start-page: 908
  year: 2008
  end-page: 915
  article-title: Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels
  publication-title: Magn Reson Med
– volume: 71
  start-page: 1446
  year: 2014
  end-page: 1457
  article-title: Local specific absorption rate (SAR), global SAR, transmitter power, and excitation accuracy trade‐offs in low flip‐angle parallel transmit pulse design
  publication-title: Magn Reson Med
– volume: 54
  start-page: 1503
  year: 2005
  end-page: 1518
  article-title: B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil
  publication-title: Magn Reson Med
– volume: 53
  start-page: 479
  year: 2005
  end-page: 484
  article-title: Small tip angle three‐dimensional tailored radiofrequency slab‐select pulse for reduced B1 inhomogeneity at 3 T
  publication-title: Magn Reson Med
– year: 2008
– volume: 53
  start-page: 434
  year: 2005
  end-page: 445
  article-title: Transmit and receive transmission line arrays for 7 Tesla parallel imaging
  publication-title: Magn Reson Med
– volume: 61
  start-page: 1480
  year: 2009
  end-page: 1488
  article-title: B1 + interferometry for the calibration of RF transmitter arrays
  publication-title: Magn Reson Med
– volume: 56
  start-page: 1163
  year: 2006
  end-page: 1171
  article-title: Parallel RF transmission with eight channels at 3 Tesla
  publication-title: Magn Reson Med
– volume: 73
  start-page: 2195
  year: 2014
  end-page: 2203
  article-title: Parallel‐ transmission‐enabled three‐dimensional T2‐weighted imaging of the human brain at 7 Tesla
  publication-title: Magn Reson Med
– volume: 49
  start-page: 144
  year: 2003
  end-page: 150
  article-title: Transmit SENSE
  publication-title: Magn Reson Med
– year: 2015
– volume: 69
  start-page: 1476
  year: 2013
  end-page: 1485
  article-title: Specific absorption rate intersubject variability in 7T parallel transmit MRI of the head
  publication-title: Magn Reson Med
– volume: 47
  start-page: 982
  year: 2002
  end-page: 989
  article-title: Analysis of wave behavior in lossy dielectric samples at high field
  publication-title: Magn Reson Med
– volume: 66
  start-page: 1468
  year: 2011
  end-page: 1476
  article-title: Local specific absorption rate control for parallel transmis‐ sion by virtual observation points
  publication-title: Magn Reson Med
– year: 2013
– ident: e_1_2_8_31_1
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jmr.2015.10.017
– ident: e_1_2_8_3_1
  doi: 10.1002/mrm.20321
– ident: e_1_2_8_12_1
  doi: 10.1002/mrm.24805
– ident: e_1_2_8_5_1
  doi: 10.1002/mrm.21042
– ident: e_1_2_8_41_1
  doi: 10.1002/mrm.25637
– ident: e_1_2_8_17_1
  doi: 10.1002/mrm.24138
– ident: e_1_2_8_26_1
  doi: 10.1002/mrm.22927
– ident: e_1_2_8_39_1
– ident: e_1_2_8_8_1
  doi: 10.1002/mrm.20840
– ident: e_1_2_8_34_1
  doi: 10.1002/hbm.10062
– ident: e_1_2_8_27_1
  doi: 10.1002/mrm.23140
– ident: e_1_2_8_32_1
– ident: e_1_2_8_40_1
– ident: e_1_2_8_11_1
  doi: 10.1002/mrm.25353
– ident: e_1_2_8_22_1
  doi: 10.1002/mrm.21513
– ident: e_1_2_8_18_1
  doi: 10.1002/mrm.24378
– start-page: 2
  volume-title: Medical electrical equipment‐part 2–33: particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis
  year: 2010
  ident: e_1_2_8_23_1
– ident: e_1_2_8_16_1
– ident: e_1_2_8_33_1
  doi: 10.1002/mrm.21893
– ident: e_1_2_8_6_1
  doi: 10.1002/mrm.20978
– ident: e_1_2_8_25_1
  doi: 10.1002/mrm.24800
– ident: e_1_2_8_2_1
  doi: 10.1002/mrm.10353
– ident: e_1_2_8_15_1
  doi: 10.1002/mrm.20708
– ident: e_1_2_8_10_1
  doi: 10.1016/j.neuroimage.2012.05.068
– ident: e_1_2_8_19_1
– ident: e_1_2_8_30_1
– ident: e_1_2_8_14_1
  doi: 10.1002/mrm.10137
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevA.31.2753
– ident: e_1_2_8_38_1
  doi: 10.1002/mrm.21700
– ident: e_1_2_8_9_1
  doi: 10.1002/mrm.22978
– ident: e_1_2_8_4_1
  doi: 10.1002/mrm.20646
– ident: e_1_2_8_13_1
  doi: 10.1002/mrm.25828
– ident: e_1_2_8_20_1
  doi: 10.1002/mrm.25512
– ident: e_1_2_8_21_1
  doi: 10.1002/mrm.1910150117
– ident: e_1_2_8_37_1
  doi: 10.1016/j.neuroimage.2005.02.018
– ident: e_1_2_8_24_1
  doi: 10.1109/TMI.2013.2295465
– ident: e_1_2_8_29_1
– ident: e_1_2_8_7_1
  doi: 10.1002/mrm.20358
– ident: e_1_2_8_42_1
– ident: e_1_2_8_28_1
  doi: 10.1002/jmri.23542
SSID ssj0009974
Score 2.5621505
Snippet Purpose A calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7...
A calibration-free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7 Tesla...
Purpose A calibration-free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7...
PurposeA calibration‐free parallel transmission method is investigated to mitigate the radiofrequency (RF) field inhomogeneity problem in brain imaging at 7...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 635
SubjectTerms Adult
Algorithms
Bioengineering
Brain - anatomy & histology
Calibration
Circular polarization
Engineering Sciences
Female
Humans
Image analysis
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Inhomogeneity
Life Sciences
Magnetic resonance
Magnetic Resonance Imaging - methods
Male
Neuroimaging
parallel transmission
Plug & play
plug and play
Radio frequency
Reproducibility of Results
RF pulse design
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Trajectory optimization
ultra‐high field
Title Universal pulses: A new concept for calibration‐free parallel transmission
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26148
https://www.ncbi.nlm.nih.gov/pubmed/26888654
https://www.proquest.com/docview/1860620946
https://www.proquest.com/docview/2509214247
https://www.proquest.com/docview/1826649932
https://www.proquest.com/docview/1868341612
https://hal.science/hal-02103499
Volume 77
WOSCitedRecordID wos000394544700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED7RsqG9jI0x1sFQNu1hL4HGiWMHniqgYlJbTWhofYts5yImlYKaluf9hP1Gfgl3SRqEYNOkvSXxJXHOd77vHPszwOfIRcxrHvuZCaQfRYi-lSrxXTc3OgstKlOSuA7UaKTH4-TbChwu18JU_BDNgBt7Rtlfs4MbW-zfk4Zezi73BNNYtmBVkN3KNqwen_XPB_ecu0lFwqwi7mqSaEks1BX7zc0PwlHrgidDPkaaD4FrGXn66_9V51fwsgacXq-ykNewgtMNWBvWv9Q34Hk5B9QVb2BQT9Ig6esFRcziwOt5hLo9Vy1t9AjfetSkXANuzttfv_MZosfs4ZMJTrw5xz2yGx6A24Tz_sn3o1O_3mzBd5Qiaj8UWaZyaZ2UhnpPS44dY4BZEGCoM2tkRp1BboSSKI1CJ3Jp8tiJiDcr58HUt9CeXk3xHS8DDwzpPEyQ0JpFYXU3FM4RErJakXF04MtS56mrmch5Q4xJWnEoi5T0lJZ66sCnRvS6ot94UogarilnwuzT3iDla5zRhpTU3QQd2Fm2a1q7aZEGmvI3QRlu_GQxwcOEKeki1YGPTTHpkX-qmCleLfgRBHHoDaH4m0ysQ84kSWarMqmmtiLWpGnJSikt58-fmQ7PhuXB-38X3YYXgnFIOc18B9rz2QI_wDN3M_9ZzHahpcZ6t3YbOvvxdXQHS0wZSA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB615dFeeJTXlgIBcegldOPYsYO4rBDVVmRXCBXRm-U4E4G03Vb76Lk_gd_IL2HGyaaqKAiJWxRPEmc8Y38ztj8DvJZeMq95FlcuUbGUiHGpdB77fu1MlZaoXSBxLfR4bI6P809r8G61F6bhh-gSbuwZob9mB-eE9P4la-jJ7OSNYB7LdbghCWjwwQ1fD8eXlLt5w8GsJfc0uVzxCvXFfvfoldFo_RuvhfwdaF7FrWHgObj7f1W-B3dawBkNGgu5D2s43Ybbo3ZKfRtuhTWgfv4AinaRBkmfLWnEnL-NBhGh7sg3WxsjwrcRNSlXgZvz58WPeoYYMXv4ZIKTaMHjHtkNJ-AewpeDD0fvh3F72ELsKUQ0cSqqSteq9Eo56j1LcuwME6ySBFNTlU5V1BnUTmiFymn0olauzryQfFg5J1Mfwcb0dIpPeBt44kjpaY6E1koUpemnwntCQqXRZBw92Fsp3fqWiZwPxJjYhkNZWNKTDXrqwatO9Kyh37hWiFquK2fC7OGgsHyPI9qUgrrzpAe7q4a1rZvObWIofhMU4WbXFhM8zJmSTuoevOyKSY88qeKmeLrkVxDEoS-k4m8ymUk5kiSZx41NdbUVmSFNK1ZKMJ0__6YdfR6Fi51_F30Bm8OjUWGLw_HHp7AlGJOEJee7sLGYLfEZ3PTni-_z2fPgO78AZS0aEw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB61W6i4FCi0bCkQEAcuoRvHjh3EZUVZFZFdVRWVerMcZ6JW2m5X-9Mzj8Az8iTMJNlUFQUhcYviSeKMZ-xv7PFngLfSS-Y1T8LCRSqUEjHMlU5D3yudKeIctatIXDM9Gpmzs_R4DT6u9sLU_BDthBt7RtVfs4PjtCgPblhDL2eX7wXzWK7DhuRDZDqwcXgyOM1uSHfTmoVZS-5rUrliFuqJg_bhW-PR-jlnQ_4ONW8j12roGTz8v0o_gq0Gcgb92kYewxpOtmFz2Cyqb8P9KgvUz59A1qRpkPR0SWPm_EPQDwh3B77e3BgQwg2oUbkK3KA_v_8oZ4gB84ePxzgOFjzykeXwFNxTOB18_vbpKGyOWwg9BYkmjEVR6FLlXilH_WdOrp1ghEUUYWyK3KmCuoPSCa1QOY1elMqViReSjyvn6dQd6EyuJviMN4JHjpQep0h4LUeRm14svCcslBtN5tGFdyulW99wkfORGGNbsygLS3qylZ668KYVndYEHHcKUcu15UyZfdTPLN_jmDamsO466sL-qmFt46hzGxmK4ATFuMmdxQQQUyalk7oLr9ti0iMvq7gJXi35FQRy6Aux-JtMYmKOJUlmt7aptrYiMaRpxUqpTOfPv2mHJ8PqYu_fRV_B5vHhwGZfRl-fwwPBoKTKOd-HzmK2xBdwz18vLuazl43z_AJA8xq8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+pulses%3A+A+new+concept+for+calibration-free+parallel+transmission&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Gras%2C+Vincent&rft.au=Vignaud%2C+Alexandre&rft.au=Amadon%2C+Alexis&rft.au=Le+Bihan%2C+Denis&rft.date=2017-02-01&rft.eissn=1522-2594&rft.volume=77&rft.issue=2&rft.spage=635&rft_id=info:doi/10.1002%2Fmrm.26148&rft_id=info%3Apmid%2F26888654&rft.externalDocID=26888654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon