Audiovisual biofeedback improves motion prediction accuracy

Purpose: The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities present in the patients’ respiratory pattern. Audiovisual (AV) biofeedback has been shown to reduce respiratory irregularities. The aim of this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) Jg. 40; H. 4; S. 041705 - n/a
Hauptverfasser: Pollock, Sean, Lee, Danny, Keall, Paul, Kim, Taeho
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Association of Physicists in Medicine 01.04.2013
Schlagworte:
ISSN:0094-2405, 2473-4209, 2473-4209, 0094-2405
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose: The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities present in the patients’ respiratory pattern. Audiovisual (AV) biofeedback has been shown to reduce respiratory irregularities. The aim of this study was to test the hypothesis that AV biofeedback improves the accuracy of motion prediction. Methods: An AV biofeedback system combined with real-time respiratory data acquisition and MR images were implemented in this project. One-dimensional respiratory data from (1) the abdominal wall (30 Hz) and (2) the thoracic diaphragm (5 Hz) were obtained from 15 healthy human subjects across 30 studies. The subjects were required to breathe with and without the guidance of AV biofeedback during each study. The obtained respiratory signals were then implemented in a kernel density estimation prediction algorithm. For each of the 30 studies, five different prediction times ranging from 50 to 1400 ms were tested (150 predictions performed). Prediction error was quantified as the root mean square error (RMSE); the RMSE was calculated from the difference between the real and predicted respiratory data. The statistical significance of the prediction results was determined by the Student'st-test. Results: Prediction accuracy was considerably improved by the implementation of AV biofeedback. Of the 150 respiratory predictions performed, prediction accuracy was improved 69% (103/150) of the time for abdominal wall data, and 78% (117/150) of the time for diaphragm data. The average reduction in RMSE due to AV biofeedback over unguided respiration was 26% (p < 0.001) and 29% (p < 0.001) for abdominal wall and diaphragm respiratory motion, respectively. Conclusions: This study was the first to demonstrate that the reduction of respiratory irregularities due to the implementation of AV biofeedback improves prediction accuracy. This would result in increased efficiency of motion management techniques affected by system latencies used in radiotherapy.
AbstractList Purpose: The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities present in the patients’ respiratory pattern. Audiovisual (AV) biofeedback has been shown to reduce respiratory irregularities. The aim of this study was to test the hypothesis that AV biofeedback improves the accuracy of motion prediction. Methods: An AV biofeedback system combined with real-time respiratory data acquisition and MR images were implemented in this project. One-dimensional respiratory data from (1) the abdominal wall (30 Hz) and (2) the thoracic diaphragm (5 Hz) were obtained from 15 healthy human subjects across 30 studies. The subjects were required to breathe with and without the guidance of AV biofeedback during each study. The obtained respiratory signals were then implemented in a kernel density estimation prediction algorithm. For each of the 30 studies, five different prediction times ranging from 50 to 1400 ms were tested (150 predictions performed). Prediction error was quantified as the root mean square error (RMSE); the RMSE was calculated from the difference between the real and predicted respiratory data. The statistical significance of the prediction results was determined by the Student's t-test. Results: Prediction accuracy was considerably improved by the implementation of AV biofeedback. Of the 150 respiratory predictions performed, prediction accuracy was improved 69% (103/150) of the time for abdominal wall data, and 78% (117/150) of the time for diaphragm data. The average reduction in RMSE due to AV biofeedback over unguided respiration was 26% (p < 0.001) and 29% (p < 0.001) for abdominal wall and diaphragm respiratory motion, respectively. Conclusions: This study was the first to demonstrate that the reduction of respiratory irregularities due to the implementation of AV biofeedback improves prediction accuracy. This would result in increased efficiency of motion management techniques affected by system latencies used in radiotherapy.
Purpose: The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities present in the patients’ respiratory pattern. Audiovisual (AV) biofeedback has been shown to reduce respiratory irregularities. The aim of this study was to test the hypothesis that AV biofeedback improves the accuracy of motion prediction. Methods: An AV biofeedback system combined with real‐time respiratory data acquisition and MR images were implemented in this project. One‐dimensional respiratory data from (1) the abdominal wall (30 Hz) and (2) the thoracic diaphragm (5 Hz) were obtained from 15 healthy human subjects across 30 studies. The subjects were required to breathe with and without the guidance of AV biofeedback during each study. The obtained respiratory signals were then implemented in a kernel density estimation prediction algorithm. For each of the 30 studies, five different prediction times ranging from 50 to 1400 ms were tested (150 predictions performed). Prediction error was quantified as the root mean square error (RMSE); the RMSE was calculated from the difference between the real and predicted respiratory data. The statistical significance of the prediction results was determined by the Student'st‐test. Results: Prediction accuracy was considerably improved by the implementation of AV biofeedback. Of the 150 respiratory predictions performed, prediction accuracy was improved 69% (103/150) of the time for abdominal wall data, and 78% (117/150) of the time for diaphragm data. The average reduction in RMSE due to AV biofeedback over unguided respiration was 26% (p < 0.001) and 29% (p < 0.001) for abdominal wall and diaphragm respiratory motion, respectively. Conclusions: This study was the first to demonstrate that the reduction of respiratory irregularities due to the implementation of AV biofeedback improves prediction accuracy. This would result in increased efficiency of motion management techniques affected by system latencies used in radiotherapy.
The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities present in the patients' respiratory pattern. Audiovisual (AV) biofeedback has been shown to reduce respiratory irregularities. The aim of this study was to test the hypothesis that AV biofeedback improves the accuracy of motion prediction. An AV biofeedback system combined with real-time respiratory data acquisition and MR images were implemented in this project. One-dimensional respiratory data from (1) the abdominal wall (30 Hz) and (2) the thoracic diaphragm (5 Hz) were obtained from 15 healthy human subjects across 30 studies. The subjects were required to breathe with and without the guidance of AV biofeedback during each study. The obtained respiratory signals were then implemented in a kernel density estimation prediction algorithm. For each of the 30 studies, five different prediction times ranging from 50 to 1400 ms were tested (150 predictions performed). Prediction error was quantified as the root mean square error (RMSE); the RMSE was calculated from the difference between the real and predicted respiratory data. The statistical significance of the prediction results was determined by the Student's t-test. Prediction accuracy was considerably improved by the implementation of AV biofeedback. Of the 150 respiratory predictions performed, prediction accuracy was improved 69% (103/150) of the time for abdominal wall data, and 78% (117/150) of the time for diaphragm data. The average reduction in RMSE due to AV biofeedback over unguided respiration was 26% (p < 0.001) and 29% (p < 0.001) for abdominal wall and diaphragm respiratory motion, respectively. This study was the first to demonstrate that the reduction of respiratory irregularities due to the implementation of AV biofeedback improves prediction accuracy. This would result in increased efficiency of motion management techniques affected by system latencies used in radiotherapy.
The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities present in the patients' respiratory pattern. Audiovisual (AV) biofeedback has been shown to reduce respiratory irregularities. The aim of this study was to test the hypothesis that AV biofeedback improves the accuracy of motion prediction.PURPOSEThe accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities present in the patients' respiratory pattern. Audiovisual (AV) biofeedback has been shown to reduce respiratory irregularities. The aim of this study was to test the hypothesis that AV biofeedback improves the accuracy of motion prediction.An AV biofeedback system combined with real-time respiratory data acquisition and MR images were implemented in this project. One-dimensional respiratory data from (1) the abdominal wall (30 Hz) and (2) the thoracic diaphragm (5 Hz) were obtained from 15 healthy human subjects across 30 studies. The subjects were required to breathe with and without the guidance of AV biofeedback during each study. The obtained respiratory signals were then implemented in a kernel density estimation prediction algorithm. For each of the 30 studies, five different prediction times ranging from 50 to 1400 ms were tested (150 predictions performed). Prediction error was quantified as the root mean square error (RMSE); the RMSE was calculated from the difference between the real and predicted respiratory data. The statistical significance of the prediction results was determined by the Student's t-test.METHODSAn AV biofeedback system combined with real-time respiratory data acquisition and MR images were implemented in this project. One-dimensional respiratory data from (1) the abdominal wall (30 Hz) and (2) the thoracic diaphragm (5 Hz) were obtained from 15 healthy human subjects across 30 studies. The subjects were required to breathe with and without the guidance of AV biofeedback during each study. The obtained respiratory signals were then implemented in a kernel density estimation prediction algorithm. For each of the 30 studies, five different prediction times ranging from 50 to 1400 ms were tested (150 predictions performed). Prediction error was quantified as the root mean square error (RMSE); the RMSE was calculated from the difference between the real and predicted respiratory data. The statistical significance of the prediction results was determined by the Student's t-test.Prediction accuracy was considerably improved by the implementation of AV biofeedback. Of the 150 respiratory predictions performed, prediction accuracy was improved 69% (103/150) of the time for abdominal wall data, and 78% (117/150) of the time for diaphragm data. The average reduction in RMSE due to AV biofeedback over unguided respiration was 26% (p < 0.001) and 29% (p < 0.001) for abdominal wall and diaphragm respiratory motion, respectively.RESULTSPrediction accuracy was considerably improved by the implementation of AV biofeedback. Of the 150 respiratory predictions performed, prediction accuracy was improved 69% (103/150) of the time for abdominal wall data, and 78% (117/150) of the time for diaphragm data. The average reduction in RMSE due to AV biofeedback over unguided respiration was 26% (p < 0.001) and 29% (p < 0.001) for abdominal wall and diaphragm respiratory motion, respectively.This study was the first to demonstrate that the reduction of respiratory irregularities due to the implementation of AV biofeedback improves prediction accuracy. This would result in increased efficiency of motion management techniques affected by system latencies used in radiotherapy.CONCLUSIONSThis study was the first to demonstrate that the reduction of respiratory irregularities due to the implementation of AV biofeedback improves prediction accuracy. This would result in increased efficiency of motion management techniques affected by system latencies used in radiotherapy.
Author Pollock, Sean
Lee, Danny
Kim, Taeho
Keall, Paul
Author_xml – sequence: 1
  givenname: Sean
  surname: Pollock
  fullname: Pollock, Sean
  organization: Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
– sequence: 2
  givenname: Danny
  surname: Lee
  fullname: Lee, Danny
  organization: Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
– sequence: 3
  givenname: Paul
  surname: Keall
  fullname: Keall, Paul
  organization: Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
– sequence: 4
  givenname: Taeho
  surname: Kim
  fullname: Kim, Taeho
  email: taeho.kim@sydney.edu.au
  organization: Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23556875$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLJDEUhYMo2j4W_gHppQ6U5llVYUBoZJwRFF24D6nklsapqtQkXS3974122_gYXSVwv3Pu4dxttN75DhDaJ_iYEFKekGNeSM5lsYZGlBcs4xTLdTTCWPKMciy20HaMDxjjnAm8ibYoEyIvCzFCPyeDdX7m4qCbceV8DWArbf6OXdsHP4M4bv3U-W7cB7DOvHy1MUPQZr6LNmrdRNhbvjvo9vzX7dmf7PL698XZ5DIzImXKKilyMGCp0aVgpBJlkUMpy4qXGFvJ00BqBkVhsRAVZ7lmtuY0N5olkrIddLqw7YeqBWugmwbdqD64Voe58tqp95PO3as7P1MsJzTVkwwOlwbB_xsgTlXrooGm0R34ISrCKGeScJ4n9ODtrtWS18IScLQATPAxBqhXCMHq-RiKqOUxEnvygTVuqp8rTDFd819FtlA8ugbmX1urq5sl_2PBx1fnlWbmwxu-t_V38OckTwSOtVA
CODEN MPHYA6
CitedBy_id crossref_primary_10_1118_1_4928488
crossref_primary_10_1186_s12885_015_1483_7
crossref_primary_10_1118_1_4868510
crossref_primary_10_1007_s11604_016_0560_4
crossref_primary_10_1155_2013_390325
crossref_primary_10_1080_0013791X_2019_1597239
crossref_primary_10_1120_jacmp_v16i4_5350
crossref_primary_10_1016_j_ijrobp_2015_06_011
crossref_primary_10_1002_mp_12731
crossref_primary_10_1002_mrm_29857
crossref_primary_10_1118_1_4861816
crossref_primary_10_1007_s11517_019_02096_6
crossref_primary_10_1016_j_bspc_2024_106923
crossref_primary_10_1118_1_4890604
crossref_primary_10_1088_1361_6560_aaeddb
Cites_doi 10.1016/j.ijrobp.2011.10.049
10.1118/1.3515457
10.1016/j.ijrobp.2010.03.011
10.1016/j.ijrobp.2009.02.012
10.1088/0031‐9155/52/17/023
10.1088/0031‐9155/52/22/007
10.1118/1.1771931
10.1118/1.3026608
10.1016/j.meddos.2008.02.005
10.1088/0031‐9155/53/13/016
10.1118/1.1558675
10.1016/j.ijrobp.2006.02.035
10.1088/0031‐9155/51/22/012
10.1088/0031‐9155/54/11/017
10.1118/1.3480504
10.1118/1.3125662
10.1016/j.ijrobp.2005.03.070
10.1016/j.ijrobp.2008.12.069
10.1118/1.2761342
10.1016/j.ijrobp.2009.06.091
10.1088/0031‐9155/55/9/N01
10.1088/0031‐9155/53/11/N01
10.1016/j.ijrobp.2010.09.004
10.1007/BF03178428
10.1118/1.3679012
10.1118/1.4761866
10.1080/02841860600902205
10.1007/BF03178368
10.1088/0031‐9155/55/5/004
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2013 American Association of Physicists in Medicine
Copyright © 2013 American Association of Physicists in Medicine 2013 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2013 American Association of Physicists in Medicine
– notice: Copyright © 2013 American Association of Physicists in Medicine 2013 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1118/1.4794497
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
0094-2405
EndPage n/a
ExternalDocumentID PMC3612118
23556875
10_1118_1_4794497
MP4497
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: R01CA93626
– fundername: NIH
  funderid: R01CA93626
– fundername: NCI NIH HHS
  grantid: R01 CA093626
– fundername: NCI NIH HHS
  grantid: R01CA93626
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c5497-b956eced2ca8531b5876e898b4800d94d2c9a3e77d055b436a3df426ca387623
IEDL.DBID DRFUL
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000317945900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
2473-4209
IngestDate Tue Nov 04 02:02:19 EST 2025
Fri Sep 05 13:34:32 EDT 2025
Mon Jul 21 06:05:29 EDT 2025
Sat Nov 29 01:32:14 EST 2025
Tue Nov 18 21:26:09 EST 2025
Wed Jan 22 16:36:36 EST 2025
Fri Jun 21 00:28:33 EDT 2024
Sun Jul 14 10:05:21 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords motion prediction
system latency
motion management
audiovisual biofeedback
Language English
License 0094-2405/2013/40(4)/041705/9/$30.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5497-b956eced2ca8531b5876e898b4800d94d2c9a3e77d055b436a3df426ca387623
Notes taeho.kim@sydney.edu.au
Author to whom correspondence should be addressed. Electronic mail
Telephone: 61 2 9351 3385; Fax: 61 2 9351 4018.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author to whom correspondence should be addressed. Electronic mail: taeho.kim@sydney.edu.au; Telephone: 61 2 9351 3385; Fax: 61 2 9351 4018.
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.4794497
PMID 23556875
PQID 1324391446
PQPubID 23479
PageCount 9
ParticipantIDs pubmed_primary_23556875
wiley_primary_10_1118_1_4794497_MP4497
scitation_primary_10_1118_1_4794497
crossref_citationtrail_10_1118_1_4794497
crossref_primary_10_1118_1_4794497
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3612118
proquest_miscellaneous_1324391446
PublicationCentury 2000
PublicationDate April 2013
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: April 2013
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2013
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Hugo, Campbell, Zhang, Yan (c12) 2009; 74
Kim, Pollock, Lee, O’Brien, Keall (c23) 2012; 39
Machtay, Bae, Movsas, Paulus, Gore, Komaki, Albain, Sause, Curran (c10) 2010; 82
Fallone, Murray, Rathee, Stanescu, Steciw, Vidakovic, Blosser, Tymofichuk (c29) 2009; 36
Keall, Kini, Vedam, Mohan (c4) 2002; 25
George, Chung, Vedam, Ramakrishnan, Mohan, Weiss, Keall (c18) 2006; 65
Kanoulas, Aslam, Sharp, Berbeco, Nishioka, Shirato, Jiang (c20) 2007; 52
Suh, Dieterich, Cho, Keall (c6) 2008; 53
Fallone, Carlone, Murray, Rathee, Stanescu, Steciw, Wachowicz, Kirkby (c28) 2007; 34
Keall, Sawant, Cho, Ruan, Wu, Poulsen, Petersen, Newell, Cattell, Korreman (c25) 2011; 79
Schlosser, Salisbury, Hristov (c27) 2012; 83
Yang, Yamamoto, Cho, Seo, Keall (c13) 2012; 39
Low, Parikh, Lu, Dempsey, Wahab, Hubenschmidt, Nystrom, Handoko, Bradley (c8) 2005; 63
Cerviño, Jiang, Sandhu, Jiang (c22) 2010; 55
Cerviño, Chao, Sandhu, Jiang (c21) 2009; 54
Ren, Nishioka, Shirato, Berbeco (c30) 2007; 52
Murphy, Dieterich (c1) 2006; 51
Ruan (c24) 2010; 55
Keall, Vedam, George, Williamson (c19) 2007; 30
Jin, Yin, Tenn, Medin, Solberg (c14) 2008; 33
Marks, Bentzen, Deasy, Kong, Bradley, Vogelius, El Naqa, Hubbs, Lebesque, Timmerman (c11) 2010; 76
Murphy, Pokhrel (c3) 2009; 36
Vedam, Kini, Keall, Ramakrishnan, Mostafavi, Mohan (c17) 2003; 30
Venkat, Sawant, Suh, George, Keall (c16) 2008; 53
Nuyttens, Prévost, Praag, Hoogeman, Van Klaveren, Levendag, Pattynama (c5) 2006; 45
Poulsen, Cho, Sawant, Ruan, Keall (c2) 2010; 37
Cho, Poulsen, Sloutsky, Sawant, Keall (c15) 2009; 74
Schlosser, Salisbury, Hristov (c26) 2010; 37
Vedam, Keall, Docef, Todor, Kini, Mohan (c7) 2004; 31
2012; 83
2010; 55
2009; 36
2002; 25
2010; 76
2004; 31
2009; 74
2010; 37
2009; 54
2006; 51
2006; 45
2006; 65
2005; 63
2008
2011; 79
2012; 39
2008; 33
2008; 53
2007; 30
2007; 52
2003; 30
2007; 34
2010; 82
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
Brady L. W. (e_1_2_7_10_1) 2008
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
20964219 - Med Phys. 2010 Sep;37(9):4998-5005
12049470 - Australas Phys Eng Sci Med. 2002 Mar;25(1):1-6
19235372 - Med Phys. 2009 Jan;36(1):40-7
20980108 - Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):425-34
19327911 - Int J Radiat Oncol Biol Phys. 2009 Jun 1;74(2):593-601
16140468 - Int J Radiat Oncol Biol Phys. 2005 Nov 1;63(3):921-9
22320815 - Med Phys. 2012 Feb;39(2):1046-57
15377094 - Med Phys. 2004 Aug;31(8):2274-83
18475007 - Phys Med Biol. 2008 Jun 7;53(11):N197-208
23127085 - Med Phys. 2012 Nov;39(11):6921-8
20371906 - Phys Med Biol. 2010 May 7;55(9):N221-9
19610297 - Med Phys. 2009 Jun;36(6):2084-8
17068372 - Phys Med Biol. 2006 Nov 21;51(22):5903-14
19480969 - Int J Radiat Oncol Biol Phys. 2009 Jul 1;74(3):859-67
12722802 - Med Phys. 2003 Apr;30(4):505-13
20134084 - Phys Med Biol. 2010 Mar 7;55(5):1311-26
17762097 - Phys Med Biol. 2007 Sep 7;52(17):5443-56
19443952 - Phys Med Biol. 2009 Jun 7;54(11):3529-41
18560046 - Phys Med Biol. 2008 Jul 7;53(13):3623-40
18044305 - Australas Phys Eng Sci Med. 2007 Sep;30(3):211-20
16751075 - Int J Radiat Oncol Biol Phys. 2006 Jul 1;65(3):924-33
18456164 - Med Dosim. 2008 Summer;33(2):124-34
20171521 - Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S70-6
16982564 - Acta Oncol. 2006;45(7):961-5
22285664 - Int J Radiat Oncol Biol Phys. 2012 Aug 1;83(5):1633-40
21302793 - Med Phys. 2010 Dec;37(12):6357-67
17975289 - Phys Med Biol. 2007 Nov 21;52(22):6651-61
20615630 - Int J Radiat Oncol Biol Phys. 2011 Jan 1;79(1):312-20
References_xml – volume: 36
  start-page: 40
  year: 2009
  ident: c3
  article-title: Optimization of an adaptive neural network to predict breathing
  publication-title: Med. Phys.
– volume: 82
  start-page: 425
  year: 2010
  ident: c10
  article-title: Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non–small cell lung carcinoma treated with chemoradiation: An analysis of the radiation therapy oncology group
  publication-title: Int. J. Radiat. Oncol., Biol. Phys.
– volume: 55
  start-page: 1311
  year: 2010
  ident: c24
  article-title: Kernel density estimation-based real-time prediction for respiratory motion
  publication-title: Phys. Med. Biol.
– volume: 52
  start-page: 5443
  year: 2007
  ident: c20
  article-title: Derivation of the tumor position from external respiratory surrogates with periodical updating of the internal/external correlation
  publication-title: Phys. Med. Biol.
– volume: 33
  start-page: 124
  year: 2008
  ident: c14
  article-title: Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy
  publication-title: Med. Dosim.
– volume: 74
  start-page: 859
  year: 2009
  ident: c15
  article-title: First demonstration of combined kV/MV image-guided real-time DMLC target tracking
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 25
  start-page: 1
  year: 2002
  ident: c4
  article-title: Potential radiotherapy improvements with respiratory gating
  publication-title: Australas. Phys. Eng. Sci. Med.
– volume: 65
  start-page: 924
  year: 2006
  ident: c18
  article-title: Audio-visual biofeedback for respiratory-gated radiotherapy: Impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 53
  start-page: N197
  year: 2008
  ident: c16
  article-title: Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform
  publication-title: Phys. Med. Biol.
– volume: 52
  start-page: 6651
  year: 2007
  ident: c30
  article-title: Adaptive prediction of respiratory motion for motion compensation radiotherapy
  publication-title: Phys. Med. Biol.
– volume: 76
  start-page: S70
  year: 2010
  ident: c11
  article-title: Radiation dose-volume effects in the lung
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 51
  start-page: 5903
  year: 2006
  ident: c1
  article-title: Comparative performance of linear and nonlinear neural networks to predict irregular breathing
  publication-title: Phys. Med. Biol.
– volume: 53
  start-page: 3623
  year: 2008
  ident: c6
  article-title: An analysis of thoracic and abdominal tumour motion for stereotactic body radiotherapy patients
  publication-title: Phys. Med. Biol.
– volume: 74
  start-page: 593
  year: 2009
  ident: c12
  article-title: Cumulative lung dose for several motion management strategies as a function of pretreatment patient parameters
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 30
  start-page: 211
  year: 2007
  ident: c19
  article-title: Respiratory regularity gated 4D CT acquisition: Concepts and proof of principle
  publication-title: Australas. Phys. Eng. Sci. Med.
– volume: 37
  start-page: 6357
  year: 2010
  ident: c26
  article-title: Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery
  publication-title: Med. Phys.
– volume: 63
  start-page: 921
  year: 2005
  ident: c8
  article-title: Novel breathing motion model for radiotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 39
  start-page: 1046
  year: 2012
  ident: c13
  article-title: The impact of audio-visual biofeedback on 4D PET images: Results of a phantom study
  publication-title: Med. Phys.
– volume: 39
  start-page: 6921
  year: 2012
  ident: c23
  article-title: Audiovisual biofeedback improves diaphragm motion reproducibility in MRI
  publication-title: Med. Phys.
– volume: 34
  start-page: 2547
  year: 2007
  ident: c28
  article-title: TU-C-M100F-01: Development of a linac-MRI system for real-time ART
  publication-title: Med. Phys.
– volume: 31
  start-page: 2274
  year: 2004
  ident: c7
  article-title: Predicting respiratory motion for four-dimensional radiotherapy
  publication-title: Med. Phys.
– volume: 45
  start-page: 961
  year: 2006
  ident: c5
  article-title: Lung tumor tracking during stereotactic radiotherapy treatment with the CyberKnife: Marker placement and early results
  publication-title: Acta Oncol.
– volume: 30
  start-page: 505
  year: 2003
  ident: c17
  article-title: Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker
  publication-title: Med. Phys.
– volume: 79
  start-page: 312
  year: 2011
  ident: c25
  article-title: Electromagnetic-guided dynamic multileaf collimator tracking enables motion management for intensity-modulated arc therapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 37
  start-page: 4998
  year: 2010
  ident: c2
  article-title: Detailed analysis of latencies in image-based dynamic MLC tracking
  publication-title: Med. Phys.
– volume: 54
  start-page: 3529
  year: 2009
  ident: c21
  article-title: The diaphragm as an anatomic surrogate for lung tumor motion
  publication-title: Phys. Med. Biol.
– volume: 55
  start-page: N221
  year: 2010
  ident: c22
  article-title: Tumor motion prediction with the diaphragm as a surrogate: A feasibility study
  publication-title: Phys. Med. Biol.
– volume: 83
  start-page: 1633
  year: 2012
  ident: c27
  article-title: Online image-based monitoring of soft-tissue displacements for radiation therapy of the prostate
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 36
  start-page: 2084
  year: 2009
  ident: c29
  article-title: First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system
  publication-title: Med. Phys.
– volume: 36
  start-page: 40
  year: 2009
  end-page: 47
  article-title: Optimization of an adaptive neural network to predict breathing
  publication-title: Med. Phys.
– volume: 74
  start-page: 593
  year: 2009
  end-page: 601
  article-title: Cumulative lung dose for several motion management strategies as a function of pretreatment patient parameters
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 52
  start-page: 5443
  year: 2007
  end-page: 5456
  article-title: Derivation of the tumor position from external respiratory surrogates with periodical updating of the internal/external correlation
  publication-title: Phys. Med. Biol.
– volume: 53
  start-page: N197
  year: 2008
  end-page: N208
  article-title: Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient‐specific guiding waveform
  publication-title: Phys. Med. Biol.
– volume: 36
  start-page: 2084
  year: 2009
  end-page: 2088
  article-title: First MR images obtained during megavoltage photon irradiation from a prototype integrated linac‐MR system
  publication-title: Med. Phys.
– volume: 79
  start-page: 312
  year: 2011
  end-page: 320
  article-title: Electromagnetic‐guided dynamic multileaf collimator tracking enables motion management for intensity‐modulated arc therapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 82
  start-page: 425
  issue: 1
  year: 2010
  end-page: 434
  article-title: Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non–small cell lung carcinoma treated with chemoradiation: An analysis of the radiation therapy oncology group
  publication-title: Int. J. Radiat. Oncol., Biol. Phys.
– volume: 76
  start-page: S70
  year: 2010
  end-page: S76
  article-title: Radiation dose‐volume effects in the lung
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 30
  start-page: 211
  year: 2007
  end-page: 220
  article-title: Respiratory regularity gated 4D CT acquisition: Concepts and proof of principle
  publication-title: Australas. Phys. Eng. Sci. Med.
– volume: 63
  start-page: 921
  year: 2005
  end-page: 929
  article-title: Novel breathing motion model for radiotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 55
  start-page: N221
  year: 2010
  article-title: Tumor motion prediction with the diaphragm as a surrogate: A feasibility study
  publication-title: Phys. Med. Biol.
– volume: 54
  start-page: 3529
  year: 2009
  article-title: The diaphragm as an anatomic surrogate for lung tumor motion
  publication-title: Phys. Med. Biol.
– volume: 37
  start-page: 6357
  year: 2010
  end-page: 6367
  article-title: Telerobotic system concept for real‐time soft‐tissue imaging during radiotherapy beam delivery
  publication-title: Med. Phys.
– volume: 52
  start-page: 6651
  year: 2007
  end-page: 6661
  article-title: Adaptive prediction of respiratory motion for motion compensation radiotherapy
  publication-title: Phys. Med. Biol.
– volume: 39
  start-page: 1046
  year: 2012
  end-page: 1057
  article-title: The impact of audio‐visual biofeedback on 4D PET images: Results of a phantom study
  publication-title: Med. Phys.
– volume: 45
  start-page: 961
  year: 2006
  end-page: 965
  article-title: Lung tumor tracking during stereotactic radiotherapy treatment with the CyberKnife: Marker placement and early results
  publication-title: Acta Oncol.
– volume: 31
  start-page: 2274
  year: 2004
  end-page: 2283
  article-title: Predicting respiratory motion for four‐dimensional radiotherapy
  publication-title: Med. Phys.
– volume: 55
  start-page: 1311
  year: 2010
  end-page: 1326
  article-title: Kernel density estimation‐based real‐time prediction for respiratory motion
  publication-title: Phys. Med. Biol.
– volume: 34
  start-page: 2547
  year: 2007
  article-title: TU‐C‐M100F‐01: Development of a linac‐MRI system for real‐time ART
  publication-title: Med. Phys.
– volume: 51
  start-page: 5903
  year: 2006
  end-page: 5914
  article-title: Comparative performance of linear and nonlinear neural networks to predict irregular breathing
  publication-title: Phys. Med. Biol.
– volume: 25
  start-page: 1
  year: 2002
  end-page: 6
  article-title: Potential radiotherapy improvements with respiratory gating
  publication-title: Australas. Phys. Eng. Sci. Med.
– year: 2008
– volume: 37
  start-page: 4998
  year: 2010
  end-page: 5005
  article-title: Detailed analysis of latencies in image‐based dynamic MLC tracking
  publication-title: Med. Phys.
– volume: 83
  start-page: 1633
  issue: 5
  year: 2012
  end-page: 1640
  article-title: Online image‐based monitoring of soft‐tissue displacements for radiation therapy of the prostate
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 33
  start-page: 124
  year: 2008
  end-page: 134
  article-title: Use of the BrainLAB ExacTrac X‐Ray 6D system in image‐guided radiotherapy
  publication-title: Med. Dosim.
– volume: 65
  start-page: 924
  year: 2006
  end-page: 933
  article-title: Audio‐visual biofeedback for respiratory‐gated radiotherapy: Impact of audio instruction and audio‐visual biofeedback on respiratory‐gated radiotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 53
  start-page: 3623
  year: 2008
  end-page: 3640
  article-title: An analysis of thoracic and abdominal tumour motion for stereotactic body radiotherapy patients
  publication-title: Phys. Med. Biol.
– volume: 30
  start-page: 505
  year: 2003
  end-page: 513
  article-title: Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker
  publication-title: Med. Phys.
– volume: 74
  start-page: 859
  year: 2009
  article-title: First demonstration of combined kV/MV image‐guided real‐time DMLC target tracking
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 39
  start-page: 6921
  year: 2012
  end-page: 6928
  article-title: Audiovisual biofeedback improves diaphragm motion reproducibility in MRI
  publication-title: Med. Phys.
– ident: e_1_2_7_28_1
  doi: 10.1016/j.ijrobp.2011.10.049
– ident: e_1_2_7_27_1
  doi: 10.1118/1.3515457
– ident: e_1_2_7_26_1
  doi: 10.1016/j.ijrobp.2010.03.011
– ident: e_1_2_7_16_1
  doi: 10.1016/j.ijrobp.2009.02.012
– ident: e_1_2_7_21_1
  doi: 10.1088/0031‐9155/52/17/023
– ident: e_1_2_7_31_1
  doi: 10.1088/0031‐9155/52/22/007
– ident: e_1_2_7_8_1
  doi: 10.1118/1.1771931
– ident: e_1_2_7_4_1
  doi: 10.1118/1.3026608
– ident: e_1_2_7_15_1
  doi: 10.1016/j.meddos.2008.02.005
– ident: e_1_2_7_7_1
  doi: 10.1088/0031‐9155/53/13/016
– ident: e_1_2_7_18_1
  doi: 10.1118/1.1558675
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ijrobp.2006.02.035
– volume-title: Technical Basis of Radiation Therapy: Practical Clinical Applications
  year: 2008
  ident: e_1_2_7_10_1
– ident: e_1_2_7_2_1
  doi: 10.1088/0031‐9155/51/22/012
– ident: e_1_2_7_22_1
  doi: 10.1088/0031‐9155/54/11/017
– ident: e_1_2_7_3_1
  doi: 10.1118/1.3480504
– ident: e_1_2_7_30_1
  doi: 10.1118/1.3125662
– ident: e_1_2_7_9_1
  doi: 10.1016/j.ijrobp.2005.03.070
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ijrobp.2008.12.069
– ident: e_1_2_7_29_1
  doi: 10.1118/1.2761342
– ident: e_1_2_7_12_1
  doi: 10.1016/j.ijrobp.2009.06.091
– ident: e_1_2_7_23_1
  doi: 10.1088/0031‐9155/55/9/N01
– ident: e_1_2_7_17_1
  doi: 10.1088/0031‐9155/53/11/N01
– ident: e_1_2_7_11_1
  doi: 10.1016/j.ijrobp.2010.09.004
– ident: e_1_2_7_20_1
  doi: 10.1007/BF03178428
– ident: e_1_2_7_14_1
  doi: 10.1118/1.3679012
– ident: e_1_2_7_24_1
  doi: 10.1118/1.4761866
– ident: e_1_2_7_6_1
  doi: 10.1080/02841860600902205
– ident: e_1_2_7_5_1
  doi: 10.1007/BF03178368
– ident: e_1_2_7_25_1
  doi: 10.1088/0031‐9155/55/5/004
– reference: 20964219 - Med Phys. 2010 Sep;37(9):4998-5005
– reference: 18456164 - Med Dosim. 2008 Summer;33(2):124-34
– reference: 22320815 - Med Phys. 2012 Feb;39(2):1046-57
– reference: 12722802 - Med Phys. 2003 Apr;30(4):505-13
– reference: 19480969 - Int J Radiat Oncol Biol Phys. 2009 Jul 1;74(3):859-67
– reference: 23127085 - Med Phys. 2012 Nov;39(11):6921-8
– reference: 21302793 - Med Phys. 2010 Dec;37(12):6357-67
– reference: 17762097 - Phys Med Biol. 2007 Sep 7;52(17):5443-56
– reference: 16140468 - Int J Radiat Oncol Biol Phys. 2005 Nov 1;63(3):921-9
– reference: 18475007 - Phys Med Biol. 2008 Jun 7;53(11):N197-208
– reference: 18560046 - Phys Med Biol. 2008 Jul 7;53(13):3623-40
– reference: 19610297 - Med Phys. 2009 Jun;36(6):2084-8
– reference: 15377094 - Med Phys. 2004 Aug;31(8):2274-83
– reference: 12049470 - Australas Phys Eng Sci Med. 2002 Mar;25(1):1-6
– reference: 17068372 - Phys Med Biol. 2006 Nov 21;51(22):5903-14
– reference: 20615630 - Int J Radiat Oncol Biol Phys. 2011 Jan 1;79(1):312-20
– reference: 20371906 - Phys Med Biol. 2010 May 7;55(9):N221-9
– reference: 19327911 - Int J Radiat Oncol Biol Phys. 2009 Jun 1;74(2):593-601
– reference: 20980108 - Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):425-34
– reference: 16982564 - Acta Oncol. 2006;45(7):961-5
– reference: 20171521 - Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S70-6
– reference: 16751075 - Int J Radiat Oncol Biol Phys. 2006 Jul 1;65(3):924-33
– reference: 19235372 - Med Phys. 2009 Jan;36(1):40-7
– reference: 19443952 - Phys Med Biol. 2009 Jun 7;54(11):3529-41
– reference: 20134084 - Phys Med Biol. 2010 Mar 7;55(5):1311-26
– reference: 18044305 - Australas Phys Eng Sci Med. 2007 Sep;30(3):211-20
– reference: 17975289 - Phys Med Biol. 2007 Nov 21;52(22):6651-61
– reference: 22285664 - Int J Radiat Oncol Biol Phys. 2012 Aug 1;83(5):1633-40
SSID ssj0006350
Score 2.1687932
Snippet Purpose: The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities...
The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities present in...
Purpose: The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 041705
SubjectTerms Acoustic Stimulation - methods
Algorithms
Analysis of motion
Approximations and expansions
audiovisual biofeedback
Biofeedback
Biofeedback, Psychology - methods
Biofeedback, Psychology - physiology
biomedical MRI
Cancer
data acquisition
Dosimetry
feedback
Feedback, Sensory - physiology
Humans
Interpolation
Involving electronic [emr] or nuclear [nmr] magnetic resonance, e.g. magnetic resonance imaging
lung
Magnetic resonance imaging
mean square error methods
Medical imaging
Medical magnetic resonance imaging
motion estimation
motion management
motion prediction
Movement - physiology
Numerical approximation and analysis
Patient Positioning - methods
Photic Stimulation - methods
Pneumodyamics, respiration
pneumodynamics
radiation therapy
Radiation Therapy Physics
Radiotherapy, Conformal - methods
Reproducibility of Results
Respiratory Mechanics - physiology
Sensitivity and Specificity
system latency
Tissues
Ultrasonography
Title Audiovisual biofeedback improves motion prediction accuracy
URI http://dx.doi.org/10.1118/1.4794497
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4794497
https://www.ncbi.nlm.nih.gov/pubmed/23556875
https://www.proquest.com/docview/1324391446
https://pubmed.ncbi.nlm.nih.gov/PMC3612118
Volume 40
WOSCitedRecordID wos000317945900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3batRA9NBu1fripWqNlxIvFF-im8ykM0Ofirr4YEuRCvsW5hYMSnZJmkL_vudMspGlVQSfEpgzQzJzrnNuAG9Rg0UhIQ8Sbj3dVmmdGKlMIpgQUlNyp7Kh2YQ4OZHzuTrdgMNVLkxfH2K8cCPKCPyaCFyboQtJSoHr6Xsqjs6V2IStDPGWT2Dr07fZ968jI0ZZ2megKE5OhHwoLITTP4yT18XRNR3zeqjkNkqm3km-rs4GeTS7_19_8gDuDWpofNTjzUPY8PUO3DkeHO07cDtEhtr2ERwedRSwWrUdwptqUaK4M9r-jKtwHeHbuG8EFC8bmh1etbVdo-3lYzibfT77-CUZOi4kFu1EkRi0lrz1LrMaxXhqcuSVXippOOqVTnEcUJp5Idw0zw1nB5q5EmW81Yy4KnsCk3pR-6cQly6deuWY8E5zi3qkRdWy1DybOsu4dRG8W-17sdpQaorxq-itElmkxbArEbweQZd9CY6bgF6tDq9AAiGvh679omsLNLcpuxjN3gh2-8Mcl8kYFWATeQRi7ZhHACq-vT5SVz9CEW5GpddSGcGbESH-9nU3QF0smt8QxdKVEewHNPnzOsXxKT2e_Svgc7ibhfYdFGn0AibnTedfwi17cV61zR5sirncG6jmCkSwFfs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8DQ62HjhY2wQPsOHEC-BpnbmWPAyAdUQbTWhTtqb5diOiJjSKlkm7d_vzkmDqg2ExFMi-Wwl9n3f-Q7gDWqwKCTS_YgbR94qraMslVkkmBCppsud0vhmE2I2S09O5NEGfFrdhWnrQ_QON6IMz6-JwMkh3VE5Za7H76k6OpfiBmxyRKNkAJtffoyPJz0nRmHaXkGRnKIISVdZCKd_6Cevy6MrSubVXMltFE1tlHxdn_UCaXz3_37lHtzpFNHwoMWc-7Dhyh3Ymnah9h245XNDTf0APh40lLJa1A3CZ8UiR4GXafMrLLxDwtVh2wooXFY0279qY5pKm4tdmI-_zj8fRl3PhcigpSiiDO0lZ5wdGY2CPM4S5JYulWnGUbO0kuOA1MwJYYdJknG2r5nNUcobzYivsj0YlIvSPYIwt_HQScuEs5ob1CQNKpe55qOhNYwbG8C71car1Y5SW4xT1dolqYpVtysBvOpBl20RjuuAXq5OTyGJUNxDl27R1AoNbrpfjIZvAA_b0-yXGTEqwSaSAMTaOfcAVH57faQsfvoy3IyKr8VpAK97jPjb110Ddb6ofkOopc0DeOvx5M_rqOkRPR7_K-AL2D6cTydq8m32_QncHvlmHpR39BQGZ1XjnsFNc35W1NXzjnguAVd0GQM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3va9Qw9DE3nX7ZdE6tOld1DL9Ur5f00jC_DOcxcTsO2WDfQpqkrCi9o10H_ve-l_Yqx6YIfmohL6FN3s-8XwB7qMGikEhHETeObqu0jrJUZpFgQqSakjul8c0mxGSSXlzI6Qp8XOTCtPUh-gs3ogzPr4nA3dzmHZVT5Hr8nqqjcynuwBpP5AjJcu3o2_j8pOfEKEzbFBTJyYuQdJWFcPqHfvKyPLqhZN6MlbyPoqn1ki_rs14gjTf_71cewkaniIaHLeY8ghVXbsH6aedq34J7PjbU1I_h4LChkNWibhA-K2Y5CrxMm-9h4S8kXB22rYDCeUWz_as2pqm0-bkNZ-PPZ5-Oo67nQmTQUhRRhvaSM84OjUZBHmcJckuXyjTjqFlayXFAauaEsIMkyTgbaWZzlPJGM-Kr7AmslrPSPYMwt_HAScuEs5ob1CQNKpe55sOBNYwbG8C7xcarxY5SW4wfqrVLUhWrblcCeNODztsiHLcBvV6cnkISIb-HLt2sqRUa3JRfjIZvAE_b0-yXGTIqwSaSAMTSOfcAVH57eaQsLn0ZbkbF1-I0gLc9Rvzt626Bup5VvyEUokQA-x5P_ryOOp3S4_m_Au7C-vRorE6-TL6-gAdD38uDwo5ewupV1bgduGuur4q6etXRzi--WBh-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Audiovisual+biofeedback+improves+motion+prediction+accuracy&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Pollock%2C+Sean&rft.au=Lee%2C+Danny&rft.au=Keall%2C+Paul&rft.au=Kim%2C+Taeho&rft.date=2013-04-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=40&rft.issue=4&rft_id=info:doi/10.1118%2F1.4794497
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon