Audiovisual biofeedback improves diaphragm motion reproducibility in MRI

Purpose: In lung radiotherapy, variations in cycle-to-cycle breathing results in four-dimensional computed tomography imaging artifacts, leading to inaccurate beam coverage and tumor targeting. In previous studies, the effect of audiovisual (AV) biofeedback on the external respiratory signal reprodu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) Jg. 39; H. 11; S. 6921 - 6928
Hauptverfasser: Kim, Taeho, Pollock, Sean, Lee, Danny, O’Brien, Ricky, Keall, Paul
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Association of Physicists in Medicine 01.11.2012
Schlagworte:
ISSN:0094-2405, 2473-4209, 0094-2405
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose: In lung radiotherapy, variations in cycle-to-cycle breathing results in four-dimensional computed tomography imaging artifacts, leading to inaccurate beam coverage and tumor targeting. In previous studies, the effect of audiovisual (AV) biofeedback on the external respiratory signal reproducibility has been investigated but the internal anatomy motion has not been fully studied. The aim of this study is to test the hypothesis that AV biofeedback improves diaphragm motion reproducibility of internal anatomy using magnetic resonance imaging (MRI). Methods: To test the hypothesis 15 healthy human subjects were enrolled in an ethics-approved AV biofeedback study consisting of two imaging sessions spaced ∼1 week apart. Within each session MR images were acquired under free breathing and AV biofeedback conditions. The respiratory signal to the AV biofeedback system utilized optical monitoring of an external marker placed on the abdomen. Synchronously, serial thoracic 2D MR images were obtained to measure the diaphragm motion using a fast gradient-recalled-echo MR pulse sequence in both coronal and sagittal planes. The improvement in the diaphragm motion reproducibility using the AV biofeedback system was quantified by comparing cycle-to-cycle variability in displacement, respiratory period, and baseline drift. Additionally, the variation in improvement between the two sessions was also quantified. Results: The average root mean square error (RMSE) of diaphragm cycle-to-cycle displacement was reduced from 2.6 mm with free breathing to 1.6 mm (38% reduction) with the implementation of AV biofeedback (p-value < 0.0001). The average RMSE of the respiratory period was reduced from 1.7 s with free breathing to 0.3 s (82% reduction) with AV biofeedback (p-value < 0.0001). Additionally, the average baseline drift obtained using a linear fit was reduced from 1.6 mm/min with free breathing to 0.9 mm/min (44% reduction) with AV biofeedback (p-value = 0.012). The diaphragm motion reproducibility improvements with AV biofeedback were consistent with the abdominal motion reproducibility that was observed from the external marker motion variation. Conclusions: This study was the first to investigate the potential of AV biofeedback to improve the motion reproducibility of internal anatomy using MRI. The study demonstrated the significant improvement in diaphragm motion reproducibility using AV biofeedback combined with MRI. This system can potentially provide clinically beneficial motion management of internal anatomy in MRI and radiotherapy.
AbstractList In lung radiotherapy, variations in cycle-to-cycle breathing results in four-dimensional computed tomography imaging artifacts, leading to inaccurate beam coverage and tumor targeting. In previous studies, the effect of audiovisual (AV) biofeedback on the external respiratory signal reproducibility has been investigated but the internal anatomy motion has not been fully studied. The aim of this study is to test the hypothesis that AV biofeedback improves diaphragm motion reproducibility of internal anatomy using magnetic resonance imaging (MRI).PURPOSEIn lung radiotherapy, variations in cycle-to-cycle breathing results in four-dimensional computed tomography imaging artifacts, leading to inaccurate beam coverage and tumor targeting. In previous studies, the effect of audiovisual (AV) biofeedback on the external respiratory signal reproducibility has been investigated but the internal anatomy motion has not been fully studied. The aim of this study is to test the hypothesis that AV biofeedback improves diaphragm motion reproducibility of internal anatomy using magnetic resonance imaging (MRI).To test the hypothesis 15 healthy human subjects were enrolled in an ethics-approved AV biofeedback study consisting of two imaging sessions spaced ∼1 week apart. Within each session MR images were acquired under free breathing and AV biofeedback conditions. The respiratory signal to the AV biofeedback system utilized optical monitoring of an external marker placed on the abdomen. Synchronously, serial thoracic 2D MR images were obtained to measure the diaphragm motion using a fast gradient-recalled-echo MR pulse sequence in both coronal and sagittal planes. The improvement in the diaphragm motion reproducibility using the AV biofeedback system was quantified by comparing cycle-to-cycle variability in displacement, respiratory period, and baseline drift. Additionally, the variation in improvement between the two sessions was also quantified.METHODSTo test the hypothesis 15 healthy human subjects were enrolled in an ethics-approved AV biofeedback study consisting of two imaging sessions spaced ∼1 week apart. Within each session MR images were acquired under free breathing and AV biofeedback conditions. The respiratory signal to the AV biofeedback system utilized optical monitoring of an external marker placed on the abdomen. Synchronously, serial thoracic 2D MR images were obtained to measure the diaphragm motion using a fast gradient-recalled-echo MR pulse sequence in both coronal and sagittal planes. The improvement in the diaphragm motion reproducibility using the AV biofeedback system was quantified by comparing cycle-to-cycle variability in displacement, respiratory period, and baseline drift. Additionally, the variation in improvement between the two sessions was also quantified.The average root mean square error (RMSE) of diaphragm cycle-to-cycle displacement was reduced from 2.6 mm with free breathing to 1.6 mm (38% reduction) with the implementation of AV biofeedback (p-value < 0.0001). The average RMSE of the respiratory period was reduced from 1.7 s with free breathing to 0.3 s (82% reduction) with AV biofeedback (p-value < 0.0001). Additionally, the average baseline drift obtained using a linear fit was reduced from 1.6 mm∕min with free breathing to 0.9 mm∕min (44% reduction) with AV biofeedback (p-value = 0.012). The diaphragm motion reproducibility improvements with AV biofeedback were consistent with the abdominal motion reproducibility that was observed from the external marker motion variation.RESULTSThe average root mean square error (RMSE) of diaphragm cycle-to-cycle displacement was reduced from 2.6 mm with free breathing to 1.6 mm (38% reduction) with the implementation of AV biofeedback (p-value < 0.0001). The average RMSE of the respiratory period was reduced from 1.7 s with free breathing to 0.3 s (82% reduction) with AV biofeedback (p-value < 0.0001). Additionally, the average baseline drift obtained using a linear fit was reduced from 1.6 mm∕min with free breathing to 0.9 mm∕min (44% reduction) with AV biofeedback (p-value = 0.012). The diaphragm motion reproducibility improvements with AV biofeedback were consistent with the abdominal motion reproducibility that was observed from the external marker motion variation.This study was the first to investigate the potential of AV biofeedback to improve the motion reproducibility of internal anatomy using MRI. The study demonstrated the significant improvement in diaphragm motion reproducibility using AV biofeedback combined with MRI. This system can potentially provide clinically beneficial motion management of internal anatomy in MRI and radiotherapy.CONCLUSIONSThis study was the first to investigate the potential of AV biofeedback to improve the motion reproducibility of internal anatomy using MRI. The study demonstrated the significant improvement in diaphragm motion reproducibility using AV biofeedback combined with MRI. This system can potentially provide clinically beneficial motion management of internal anatomy in MRI and radiotherapy.
Purpose: In lung radiotherapy, variations in cycle‐to‐cycle breathing results in four‐dimensional computed tomography imaging artifacts, leading to inaccurate beam coverage and tumor targeting. In previous studies, the effect of audiovisual (AV) biofeedback on the external respiratory signal reproducibility has been investigated but the internal anatomy motion has not been fully studied. The aim of this study is to test the hypothesis that AV biofeedback improves diaphragm motion reproducibility of internal anatomy using magnetic resonance imaging (MRI). Methods: To test the hypothesis 15 healthy human subjects were enrolled in an ethics‐approved AV biofeedback study consisting of two imaging sessions spaced ∼1 week apart. Within each session MR images were acquired under free breathing and AV biofeedback conditions. The respiratory signal to the AV biofeedback system utilized optical monitoring of an external marker placed on the abdomen. Synchronously, serial thoracic 2D MR images were obtained to measure the diaphragm motion using a fast gradient‐recalled‐echo MR pulse sequence in both coronal and sagittal planes. The improvement in the diaphragm motion reproducibility using the AV biofeedback system was quantified by comparing cycle‐to‐cycle variability in displacement, respiratory period, and baseline drift. Additionally, the variation in improvement between the two sessions was also quantified. Results: The average root mean square error (RMSE) of diaphragm cycle‐to‐cycle displacement was reduced from 2.6 mm with free breathing to 1.6 mm (38% reduction) with the implementation of AV biofeedback (p‐value < 0.0001). The average RMSE of the respiratory period was reduced from 1.7 s with free breathing to 0.3 s (82% reduction) with AV biofeedback (p‐value < 0.0001). Additionally, the average baseline drift obtained using a linear fit was reduced from 1.6 mm/min with free breathing to 0.9 mm/min (44% reduction) with AV biofeedback (p‐value = 0.012). The diaphragm motion reproducibility improvements with AV biofeedback were consistent with the abdominal motion reproducibility that was observed from the external marker motion variation. Conclusions: This study was the first to investigate the potential of AV biofeedback to improve the motion reproducibility of internal anatomy using MRI. The study demonstrated the significant improvement in diaphragm motion reproducibility using AV biofeedback combined with MRI. This system can potentially provide clinically beneficial motion management of internal anatomy in MRI and radiotherapy.
In lung radiotherapy, variations in cycle-to-cycle breathing results in four-dimensional computed tomography imaging artifacts, leading to inaccurate beam coverage and tumor targeting. In previous studies, the effect of audiovisual (AV) biofeedback on the external respiratory signal reproducibility has been investigated but the internal anatomy motion has not been fully studied. The aim of this study is to test the hypothesis that AV biofeedback improves diaphragm motion reproducibility of internal anatomy using magnetic resonance imaging (MRI). To test the hypothesis 15 healthy human subjects were enrolled in an ethics-approved AV biofeedback study consisting of two imaging sessions spaced ∼1 week apart. Within each session MR images were acquired under free breathing and AV biofeedback conditions. The respiratory signal to the AV biofeedback system utilized optical monitoring of an external marker placed on the abdomen. Synchronously, serial thoracic 2D MR images were obtained to measure the diaphragm motion using a fast gradient-recalled-echo MR pulse sequence in both coronal and sagittal planes. The improvement in the diaphragm motion reproducibility using the AV biofeedback system was quantified by comparing cycle-to-cycle variability in displacement, respiratory period, and baseline drift. Additionally, the variation in improvement between the two sessions was also quantified. The average root mean square error (RMSE) of diaphragm cycle-to-cycle displacement was reduced from 2.6 mm with free breathing to 1.6 mm (38% reduction) with the implementation of AV biofeedback (p-value < 0.0001). The average RMSE of the respiratory period was reduced from 1.7 s with free breathing to 0.3 s (82% reduction) with AV biofeedback (p-value < 0.0001). Additionally, the average baseline drift obtained using a linear fit was reduced from 1.6 mm∕min with free breathing to 0.9 mm∕min (44% reduction) with AV biofeedback (p-value = 0.012). The diaphragm motion reproducibility improvements with AV biofeedback were consistent with the abdominal motion reproducibility that was observed from the external marker motion variation. This study was the first to investigate the potential of AV biofeedback to improve the motion reproducibility of internal anatomy using MRI. The study demonstrated the significant improvement in diaphragm motion reproducibility using AV biofeedback combined with MRI. This system can potentially provide clinically beneficial motion management of internal anatomy in MRI and radiotherapy.
Purpose: In lung radiotherapy, variations in cycle-to-cycle breathing results in four-dimensional computed tomography imaging artifacts, leading to inaccurate beam coverage and tumor targeting. In previous studies, the effect of audiovisual (AV) biofeedback on the external respiratory signal reproducibility has been investigated but the internal anatomy motion has not been fully studied. The aim of this study is to test the hypothesis that AV biofeedback improves diaphragm motion reproducibility of internal anatomy using magnetic resonance imaging (MRI). Methods: To test the hypothesis 15 healthy human subjects were enrolled in an ethics-approved AV biofeedback study consisting of two imaging sessions spaced ∼1 week apart. Within each session MR images were acquired under free breathing and AV biofeedback conditions. The respiratory signal to the AV biofeedback system utilized optical monitoring of an external marker placed on the abdomen. Synchronously, serial thoracic 2D MR images were obtained to measure the diaphragm motion using a fast gradient-recalled-echo MR pulse sequence in both coronal and sagittal planes. The improvement in the diaphragm motion reproducibility using the AV biofeedback system was quantified by comparing cycle-to-cycle variability in displacement, respiratory period, and baseline drift. Additionally, the variation in improvement between the two sessions was also quantified. Results: The average root mean square error (RMSE) of diaphragm cycle-to-cycle displacement was reduced from 2.6 mm with free breathing to 1.6 mm (38% reduction) with the implementation of AV biofeedback (p-value < 0.0001). The average RMSE of the respiratory period was reduced from 1.7 s with free breathing to 0.3 s (82% reduction) with AV biofeedback (p-value < 0.0001). Additionally, the average baseline drift obtained using a linear fit was reduced from 1.6 mm/min with free breathing to 0.9 mm/min (44% reduction) with AV biofeedback (p-value = 0.012). The diaphragm motion reproducibility improvements with AV biofeedback were consistent with the abdominal motion reproducibility that was observed from the external marker motion variation. Conclusions: This study was the first to investigate the potential of AV biofeedback to improve the motion reproducibility of internal anatomy using MRI. The study demonstrated the significant improvement in diaphragm motion reproducibility using AV biofeedback combined with MRI. This system can potentially provide clinically beneficial motion management of internal anatomy in MRI and radiotherapy.
Author Pollock, Sean
Lee, Danny
Kim, Taeho
Keall, Paul
O’Brien, Ricky
Author_xml – sequence: 1
  givenname: Taeho
  surname: Kim
  fullname: Kim, Taeho
  organization: Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney 2006, Australia
– sequence: 2
  givenname: Sean
  surname: Pollock
  fullname: Pollock, Sean
  organization: Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney 2006, Australia
– sequence: 3
  givenname: Danny
  surname: Lee
  fullname: Lee, Danny
  organization: Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney 2006, Australia
– sequence: 4
  givenname: Ricky
  surname: O’Brien
  fullname: O’Brien, Ricky
  organization: Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney 2006, Australia
– sequence: 5
  givenname: Paul
  surname: Keall
  fullname: Keall, Paul
  organization: Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney 2006, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23127085$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu1DAQhi1URLcLB14A5UiR0tqx46wvSFUFtFIrEIKz5djjdiCJg50s2rfH1e5WLaKcfJhvvt8zc0QOhjAAIa8ZPWGMrU7ZiWgkW0n5jCwq0fBSVFQdkAWlSpSVoPUhOUrpB6VU8pq-IIcVZ1VDV_WCXJzNDsMa02y6osXgAVxr7M8C-zGGNaTCoRlvo7npiz5MGIYiQq642WKLHU6bAofi-uvlS_Lcmy7Bq927JN8_fvh2flFeff50eX52VdpaKFlyD6alyrVglZRAvXe2dnmI_BjDXOuZYoxaoyCPVnPgjeeVtVRBpbj0fEneb73j3PbgLAxTNJ0eI_YmbnQwqB9XBrzVN2GtuVCiyY4lebsTxPBrhjTpHpOFrjMDhDlpxkTOlVRWGX3zMOs-ZL--DJxuARtDShG8tjiZuy3laOw0o_ruQJrp3YFyx_FfHXvpv9hyy_7GDjZPg_r6y45_t-XT_hf_lT8Jr0N8IB-d538A-Ue7PQ
CODEN MPHYA6
CitedBy_id crossref_primary_10_1007_s13246_017_0548_0
crossref_primary_10_1088_1361_6560_aaa44e
crossref_primary_10_1186_s12968_016_0272_z
crossref_primary_10_1016_j_radphyschem_2022_110437
crossref_primary_10_1155_2013_390325
crossref_primary_10_1111_1754_9485_12343
crossref_primary_10_1088_0031_9155_59_21_6583
crossref_primary_10_1120_jacmp_v16i3_5359
crossref_primary_10_1097_RLI_0000000000001150
crossref_primary_10_1002_mp_12227
crossref_primary_10_1093_jrr_rrv106
crossref_primary_10_1007_s13246_018_0667_2
crossref_primary_10_1118_1_4947508
crossref_primary_10_1002_mrm_29857
crossref_primary_10_1007_s13246_014_0247_z
crossref_primary_10_1111_1754_9485_12877
crossref_primary_10_1088_0031_9155_61_17_6485
crossref_primary_10_1016_j_ijrobp_2018_05_048
crossref_primary_10_1118_1_4928488
crossref_primary_10_1186_s12885_015_1483_7
crossref_primary_10_1007_s13246_019_00727_8
crossref_primary_10_1016_j_mri_2024_04_001
crossref_primary_10_1007_s11604_016_0560_4
crossref_primary_10_1016_j_ijrobp_2015_11_017
crossref_primary_10_1002_mp_14484
crossref_primary_10_1093_ejcts_ezv276
crossref_primary_10_1002_mp_12758
crossref_primary_10_1088_1742_6596_489_1_012033
crossref_primary_10_1016_j_radonc_2016_05_016
crossref_primary_10_1002_mp_15802
crossref_primary_10_1088_2057_1976_ab0157
crossref_primary_10_1118_1_4794497
crossref_primary_10_1118_1_4861816
crossref_primary_10_1016_j_clon_2013_11_001
crossref_primary_10_1111_1754_9485_12702
crossref_primary_10_1118_1_4903936
crossref_primary_10_1007_s11042_019_08004_2
crossref_primary_10_1118_1_4883882
crossref_primary_10_1088_1361_6560_aaebcf
Cites_doi 10.1118/1.2795829
10.1016/j.ijrobp.2009.07.013
10.1118/1.3679012
10.1118/1.1558675
10.1088/0031‐9155/53/11/N01
10.1016/j.jvir.2007.03.010
10.1016/j.ijrobp.2008.12.069
10.1088/0031‐9155/51/22/012
10.1002/mrm.21424
10.1016/S0167‐8140(98)00117‐0
10.1118/1.2349696
10.1016/j.ijrobp.2006.02.035
10.1016/j.ijrobp.2009.06.091
10.1118/1.1845031
10.1021/ac50049a032
10.1016/j.ijrobp.2008.06.1937
10.1016/S0958‐3947(02)00136‐X
10.1002/mrm.1910330118
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2012 American Association of Physicists in Medicine
Copyright © 2012 American Association of Physicists in Medicine 2012 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2012 American Association of Physicists in Medicine
– notice: Copyright © 2012 American Association of Physicists in Medicine 2012 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1118/1.4761866
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
0094-2405
EndPage 6928
ExternalDocumentID PMC3494729
23127085
10_1118_1_4761866
MP1866
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: R01CA93626
– fundername: NIH
  funderid: R01CA93626
– fundername: NCI NIH HHS
  grantid: R01 CA093626
– fundername: NCI NIH HHS
  grantid: R01CA93626
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c5496-3feab09dbec966e0ffdc5d118dc5aa1dbf19110ca9e11153e37f32cc09e2936f3
IEDL.DBID DRFUL
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000310726300040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
IngestDate Tue Nov 04 01:59:44 EST 2025
Sun Nov 09 10:18:26 EST 2025
Thu Apr 03 06:56:03 EDT 2025
Sat Nov 29 01:32:12 EST 2025
Tue Nov 18 22:42:54 EST 2025
Wed Jan 22 16:22:31 EST 2025
Fri Jun 21 00:28:32 EDT 2024
Sun Jul 14 10:05:21 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords AV biofeedback
diaphragm
Language English
License 0094-2405/2012/39(11)/6921/8/$30.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5496-3feab09dbec966e0ffdc5d118dc5aa1dbf19110ca9e11153e37f32cc09e2936f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.4761866
PMID 23127085
PQID 1141536062
PQPubID 23479
PageCount 8
ParticipantIDs wiley_primary_10_1118_1_4761866_MP1866
scitation_primary_10_1118_1_4761866
pubmed_primary_23127085
proquest_miscellaneous_1141536062
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3494729
crossref_citationtrail_10_1118_1_4761866
crossref_primary_10_1118_1_4761866
PublicationCentury 2000
PublicationDate November 2012
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: November 2012
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2012
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Yamamoto, Langner, Loo, Shen, Keall (c1) 2008; 72
Hugo, Campbell, Zhang, Di Yan (c4) 2009; 74
Kini, Vedam, Keall, Patil, Chen, Mohan (c12) 2003; 28
Langner, Keall (c2) 2010; 76
Wang, Christy, Korosec, Alley, Grist, Polzin, Mistretta (c8) 1995; 33
Arnold, Mörchel, Glaser, Pracht, Jakob (c13) 2007; 58
Yang, Yamamoto, Cho, Seo, Keall (c3) 2012; 39
George, Keall, Kini, Vedam, Ramakrishnan, Mohan (c14) 2005; 32
Marks, Bentzen, Deasy, Kong, Bradley, Vogelius, El Naqa, Hubbs, Lebesque, Timmerman (c6) 2010; 76
Vedam, Kini, Keall, Ramakrishnan, Mostafavi, Mohan (c16) 2003; 30
Lim, Park, Ahn, Suh, Shin, Lee, Kim, Choi, Yi, Kwon, Kim, Jeung (c7) 2007; 34
Venkat, Sawant, Suh, George, Keall (c9) 2008; 53
Locklin, Yanof, Luk, Varro, Patriciu, Wood (c11) 2007; 18
Comisarow, Melka (c18) 1979; 51
Keall, Mageras, Balter, Emery, Forster, Jiang, Kapatoes, Low, Murphy, Murray, Ramsey, Van Herk, Vedam, Wong, Yorke (c19) 2006; 33
Murphy, Dieterich (c15) 2006; 51
Theuws, Kwa, Wagenaar, Seppenwoolde, Boersma, Damen, Muller, Baas, Lebesque (c5) 1998; 49
George, Chung, Vedam, Ramakrishnan, Mohan, Weiss, Keall (c10) 2006; 65
1998; 49
2007; 18
2010; 76
2009; 74
2006; 51
2006; 65
2006; 33
1995; 33
2005; 32
2003; 28
2012; 39
2004
2008; 53
2008; 72
2007; 34
2003; 30
2007; 58
1979; 51
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
Bernstein Matt A. (e_1_2_7_18_1) 2004
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_20_1
12722802 - Med Phys. 2003 Apr;30(4):505-13
12747612 - Med Dosim. 2003 Spring;28(1):7-11
18072517 - Med Phys. 2007 Nov;34(11):4514-8
17538137 - J Vasc Interv Radiol. 2007 Jun;18(6):749-55
19327911 - Int J Radiat Oncol Biol Phys. 2009 Jun 1;74(2):593-601
15789585 - Med Phys. 2005 Feb;32(2):396-404
10075256 - Radiother Oncol. 1998 Dec;49(3):233-43
16751075 - Int J Radiat Oncol Biol Phys. 2006 Jul 1;65(3):924-33
7891525 - Magn Reson Med. 1995 Jan;33(1):116-21
22320815 - Med Phys. 2012 Feb;39(2):1046-57
18046706 - Magn Reson Med. 2007 Dec;58(6):1092-8
18475007 - Phys Med Biol. 2008 Jun 7;53(11):N197-208
20171521 - Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S70-6
17089851 - Med Phys. 2006 Oct;33(10):3874-900
17068372 - Phys Med Biol. 2006 Nov 21;51(22):5903-14
18823717 - Int J Radiat Oncol Biol Phys. 2008 Nov 15;72(4):1250-8
19939579 - Int J Radiat Oncol Biol Phys. 2010 Mar 15;76(4):1242-50
References_xml – volume: 51
  start-page: 5903
  year: 2006
  ident: c15
  article-title: Comparative performance of linear and nonlinear neural networks to predict irregular breathing
  publication-title: Phys. Med. Biol.
– volume: 72
  start-page: 1250
  year: 2008
  ident: c1
  article-title: Retrospective analysis of artifacts in four-dimensional CT images of 50 abdominal and thoracic radiotherapy patients
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 34
  start-page: 4514
  year: 2007
  ident: c7
  article-title: Guiding curve based on the normal breathing as monitored by thermocouple for regular breathing
  publication-title: Med. Phys.
– volume: 33
  start-page: 3874
  year: 2006
  ident: c19
  article-title: The management of respiratory motion in radiation oncology report of AAPM Task Group 76
  publication-title: Med. Phys
– volume: 53
  start-page: N197
  year: 2008
  ident: c9
  article-title: Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform
  publication-title: Phys. Med. Biol.
– volume: 49
  start-page: 233
  year: 1998
  ident: c5
  article-title: Prediction of overall pulmonary function loss in relation to the 3-D dose distribution for patients with breast cancer and malignant lymphoma
  publication-title: Radiother. Oncol.
– volume: 18
  start-page: 749
  year: 2007
  ident: c11
  article-title: Respiratory biofeedback during CT-guided procedures
  publication-title: J. Vasc. Interv. Radiol.
– volume: 76
  start-page: 1242
  year: 2010
  ident: c2
  article-title: Quantification of artifact reduction with real-time cine four-dimensional computed tomography acquisition methods
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 74
  start-page: 593
  year: 2009
  ident: c4
  article-title: Cumulative lung dose for several motion management strategies as a function of pre-treatment patient parameters
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 32
  start-page: 396
  year: 2005
  ident: c14
  article-title: Is the diaphragm motion probability density function normally distributed?
  publication-title: Med. Phys.
– volume: 58
  start-page: 1092
  year: 2007
  ident: c13
  article-title: Lung MRI using an MR-compatible active breathing control (MR-ABC)
  publication-title: Magn. Reson. Med.
– volume: 28
  start-page: 7
  year: 2003
  ident: c12
  article-title: Patient training in respiratory-gated radiotherapy
  publication-title: Med. Dosim.
– volume: 65
  start-page: 924
  year: 2006
  ident: c10
  article-title: Audio-visual biofeedback for respiratory-gated radiotherapy: Impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 39
  start-page: 1046
  year: 2012
  ident: c3
  article-title: The impact of audio-visual biofeedback on 4D PET images: Results of a phantom study
  publication-title: Med. Phys.
– volume: 33
  start-page: 116
  year: 1995
  ident: c8
  article-title: Coronary MRI with a respiratory feedback monitor: The 2D imaging case
  publication-title: Magn. Reson. Med.
– volume: 30
  start-page: 505
  year: 2003
  ident: c16
  article-title: Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker
  publication-title: Med. Phys.
– volume: 51
  start-page: 2198
  year: 1979
  ident: c18
  article-title: Error estimates for finite zero-filling in Fourier transform spectrometry
  publication-title: Anal. Chem.
– volume: 76
  start-page: S70
  year: 2010
  ident: c6
  article-title: Radiation dose-volume effects in the lung
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 72
  start-page: 1250
  year: 2008
  end-page: 1258
  article-title: Retrospective analysis of artifacts in four‐dimensional CT images of 50 abdominal and thoracic radiotherapy patients
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 49
  start-page: 233
  year: 1998
  end-page: 243
  article-title: Prediction of overall pulmonary function loss in relation to the 3‐D dose distribution for patients with breast cancer and malignant lymphoma
  publication-title: Radiother. Oncol.
– volume: 34
  start-page: 4514
  year: 2007
  end-page: 4518
  article-title: Guiding curve based on the normal breathing as monitored by thermocouple for regular breathing
  publication-title: Med. Phys.
– volume: 51
  start-page: 2198
  year: 1979
  end-page: 2203
  article-title: Error estimates for finite zero‐filling in Fourier transform spectrometry
  publication-title: Anal. Chem.
– volume: 33
  start-page: 3874
  year: 2006
  end-page: 3900
  article-title: The management of respiratory motion in radiation oncology report of AAPM Task Group 76
  publication-title: Med. Phys
– volume: 33
  start-page: 116
  year: 1995
  end-page: 121
  article-title: Coronary MRI with a respiratory feedback monitor: The 2D imaging case
  publication-title: Magn. Reson. Med.
– volume: 32
  start-page: 396
  year: 2005
  end-page: 404
  article-title: Is the diaphragm motion probability density function normally distributed?
  publication-title: Med. Phys.
– volume: 28
  start-page: 7
  year: 2003
  end-page: 11
  article-title: Patient training in respiratory‐gated radiotherapy
  publication-title: Med. Dosim.
– volume: 51
  start-page: 5903
  year: 2006
  end-page: 5914
  article-title: Comparative performance of linear and nonlinear neural networks to predict irregular breathing
  publication-title: Phys. Med. Biol.
– volume: 76
  start-page: S70
  year: 2010
  end-page: S76
  article-title: Radiation dose‐volume effects in the lung
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 74
  start-page: 593
  year: 2009
  end-page: 601
  article-title: Cumulative lung dose for several motion management strategies as a function of pre‐treatment patient parameters
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 58
  start-page: 1092
  year: 2007
  end-page: 1098
  article-title: Lung MRI using an MR‐compatible active breathing control (MR‐ABC)
  publication-title: Magn. Reson. Med.
– year: 2004
– volume: 65
  start-page: 924
  year: 2006
  end-page: 933
  article-title: Audio‐visual biofeedback for respiratory‐gated radiotherapy: Impact of audio instruction and audio‐visual biofeedback on respiratory‐gated radiotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 39
  start-page: 1046
  year: 2012
  end-page: 1057
  article-title: The impact of audio‐visual biofeedback on 4D PET images: Results of a phantom study
  publication-title: Med. Phys.
– volume: 30
  start-page: 505
  year: 2003
  end-page: 513
  article-title: Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker
  publication-title: Med. Phys.
– volume: 53
  start-page: N197
  year: 2008
  article-title: Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient‐specific guiding waveform
  publication-title: Phys. Med. Biol.
– volume: 18
  start-page: 749
  year: 2007
  end-page: 755
  article-title: Respiratory biofeedback during CT‐guided procedures
  publication-title: J. Vasc. Interv. Radiol.
– volume: 76
  start-page: 1242
  year: 2010
  end-page: 1250
  article-title: Quantification of artifact reduction with real‐time cine four‐dimensional computed tomography acquisition methods
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– ident: e_1_2_7_8_1
  doi: 10.1118/1.2795829
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ijrobp.2009.07.013
– ident: e_1_2_7_4_1
  doi: 10.1118/1.3679012
– ident: e_1_2_7_17_1
  doi: 10.1118/1.1558675
– ident: e_1_2_7_10_1
  doi: 10.1088/0031‐9155/53/11/N01
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jvir.2007.03.010
– volume-title: Handbook of MRI Pulse Sequences
  year: 2004
  ident: e_1_2_7_18_1
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ijrobp.2008.12.069
– ident: e_1_2_7_16_1
  doi: 10.1088/0031‐9155/51/22/012
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.21424
– ident: e_1_2_7_6_1
  doi: 10.1016/S0167‐8140(98)00117‐0
– ident: e_1_2_7_20_1
  doi: 10.1118/1.2349696
– ident: e_1_2_7_11_1
  doi: 10.1016/j.ijrobp.2006.02.035
– ident: e_1_2_7_7_1
  doi: 10.1016/j.ijrobp.2009.06.091
– ident: e_1_2_7_15_1
  doi: 10.1118/1.1845031
– ident: e_1_2_7_19_1
  doi: 10.1021/ac50049a032
– ident: e_1_2_7_2_1
  doi: 10.1016/j.ijrobp.2008.06.1937
– ident: e_1_2_7_13_1
  doi: 10.1016/S0958‐3947(02)00136‐X
– ident: e_1_2_7_9_1
  doi: 10.1002/mrm.1910330118
– reference: 18046706 - Magn Reson Med. 2007 Dec;58(6):1092-8
– reference: 19939579 - Int J Radiat Oncol Biol Phys. 2010 Mar 15;76(4):1242-50
– reference: 18823717 - Int J Radiat Oncol Biol Phys. 2008 Nov 15;72(4):1250-8
– reference: 7891525 - Magn Reson Med. 1995 Jan;33(1):116-21
– reference: 17068372 - Phys Med Biol. 2006 Nov 21;51(22):5903-14
– reference: 12722802 - Med Phys. 2003 Apr;30(4):505-13
– reference: 22320815 - Med Phys. 2012 Feb;39(2):1046-57
– reference: 15789585 - Med Phys. 2005 Feb;32(2):396-404
– reference: 10075256 - Radiother Oncol. 1998 Dec;49(3):233-43
– reference: 19327911 - Int J Radiat Oncol Biol Phys. 2009 Jun 1;74(2):593-601
– reference: 17538137 - J Vasc Interv Radiol. 2007 Jun;18(6):749-55
– reference: 12747612 - Med Dosim. 2003 Spring;28(1):7-11
– reference: 16751075 - Int J Radiat Oncol Biol Phys. 2006 Jul 1;65(3):924-33
– reference: 20171521 - Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S70-6
– reference: 18072517 - Med Phys. 2007 Nov;34(11):4514-8
– reference: 18475007 - Phys Med Biol. 2008 Jun 7;53(11):N197-208
– reference: 17089851 - Med Phys. 2006 Oct;33(10):3874-900
SSID ssj0006350
Score 2.2621403
Snippet Purpose: In lung radiotherapy, variations in cycle-to-cycle breathing results in four-dimensional computed tomography imaging artifacts, leading to inaccurate...
Purpose: In lung radiotherapy, variations in cycle‐to‐cycle breathing results in four‐dimensional computed tomography imaging artifacts, leading to inaccurate...
In lung radiotherapy, variations in cycle-to-cycle breathing results in four-dimensional computed tomography imaging artifacts, leading to inaccurate beam...
Purpose: In lung radiotherapy, variations in cycle-to-cycle breathing results in four-dimensional computed tomography imaging artifacts, leading to inaccurate...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6921
SubjectTerms Abdomen - physiology
Anatomy
AV biofeedback
Biofeedback
Biofeedback, Psychology
biomedical MRI
Cancer
diaphragm
Diaphragm - physiology
Hearing
Humans
Involving electronic [emr] or nuclear [nmr] magnetic resonance, e.g. magnetic resonance imaging
Liver
lung
Lung Neoplasms - diagnosis
Lung Neoplasms - physiopathology
Lungs
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetic Resonance Physics
mean square error methods
Medical image artifacts
Medical imaging
Medical magnetic resonance imaging
Movement
Numerical approximation and analysis
Pneumodyamics, respiration
pneumodynamics
radiation therapy
Reproducibility of Results
Vision, Ocular
Title Audiovisual biofeedback improves diaphragm motion reproducibility in MRI
URI http://dx.doi.org/10.1118/1.4761866
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4761866
https://www.ncbi.nlm.nih.gov/pubmed/23127085
https://www.proquest.com/docview/1141536062
https://pubmed.ncbi.nlm.nih.gov/PMC3494729
Volume 39
WOSCitedRecordID wos000310726300040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_ysXZ7Wdes27yP4H0w9uLO8kdssafQLaSQlFIayJuR9bGatXaJk8D--50sxyOkHYM-6cEnIenufHfS6XcAnwiLqOLSdYKUcSdgnDo0DTyHESU8z-VCGJzZSXR2Fs_n9LwF3zZvYQw-RHPgpjWj-l9rBWdpXYWE6MR1chxEGux90Iauh3IbdqD7_WI0mzQ_YrSl5gUKDfQlQlgDC2H3r03nbXO042Pupko-RstkLsm33dnKHo0OHrSSZ_C0dkPtoZGbQ2jJvAf70_qivQd7VWYoL5_DeLjSCatZuUL6NCsUmjvc8F92Vh1HyNJGCUOJYD9vbFMSyNZAmRpH1iTe_raz3J5enB7BbPTj8mTs1OUXHI5B48DxlWSpSwVyGWMi6SoleChwytgwRkSqMNYjLmdU4kJCX_qR8j3OXSrRhxgo_wV08iKXr8BmhA-koMrFVQZR4MYSRYEoEqYBU74SFnzZcCHZbK8ukXGdmBglTkhS75EFHxrSWwPIcRfR-w0rE1QXfQfCclmsSv0IG6eKUZtnwUvD2mYYdHVRkOLQgmiL6Q2BhuLe_pJnVxUktwb5wTDFgo-NePxrdndQrYvFX4rkVigLPldCc_84yfRcN6__l_ANPEF3zzMvKd9CZ7lYyXfwiK-XWbnoQzuax_1ah_4A1ckdFA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-VFjZe-BgbCx9bBhPaSyBO3KaWeKmAqtXaqqo2aW-R448RMdKqaSvtv-ccp0FVC0LiyQ85W7bvLnfnO_8McE54xLRQvkcTLjzKBfNYQgOPEy2DwBdSWpzZQTQatW9u2LgGn9d3YSw-RHXgZjSj-F8bBTcH0qWWm8p18pFGBu299QAaFMUI5bvxddK9HlR_YjSm9goKoyaL0CyRhbD7p6rzpj3acjK3ayX30TTZLPmmP1sYpO7T_1vKM3hSOqJux0rOc6ip7AD2hmWq_QAeFbWhIn8Bvc7SlKym-RLpk3Sq0eDhlv9w0-JAQuUuyhjKBL_96dpHgVwDlWmQZG3p7b2bZu5w0j-E6-63qy89r3yAwRMYNra8UCue-EwinzEqUr7WUjQlThkbzolMNEZ7xBecKVxIM1RhpMNACJ8p9CJaOjyCejbN1DG4nIiWkkz7uEoaUb-tUBiIJs2Ech1q6cDFmg3xen_NIxl3sY1S2jGJyz1y4F1FOrOQHLuIzta8jFFhTBaEZ2q6zM01bJwqxm2BAy8tb6th0NkNInRCHYg2uF4RGDDuzS9Z-r0A5TYwPxioOPC-ko-_zW4H1Wo6_00Rz6R24EMhNX8eJx6OTfPqXwlPYb93NRzEg_7o8jU8RucvsPcq30B9MV-qt_BQrBZpPj8pVekXJEkgHA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xsjFeYCtsC-wj2xDiJSxOnKSWeEErFdXaqkJD4i1y_AERW4oairT_nnOcBlWUadKe_JCzZfvucne-888Ae4QnTAvlezTjwqNcMI9lNPA40TIIfCGlxZkdJKNR5-KCjVfgaH4XxuJDNAduRjOq_7VRcHUjda3lpnKdHNLEoL3Hz2CVmkdkWrDaPeudD5o_MRpTewWFUZNFiGpkIez-rem8aI8eOZmPayVfommyWfJFf7YySL3N_1vKK9ioHVH32ErOa1hRRRvWhnWqvQ0vqtpQUW7B6fHMlKzm5Qzps3yi0eDhll-7eXUgoUoXZQxlgl_-du2jQK6ByjRIsrb09o-bF-7wrL8N572Tn99PvfoBBk9g2Bh7oVY885lEPmNUpHytpYgkThkbzonMNEZ7xBecKVxIFKow0WEghM8UehGxDt9Aq5gU6h24nIhYSaZ9XCVNqN9RKAxEkyijXIdaOnAwZ0M631_zSMav1EYpnZSk9R458KUhvbGQHMuIPs95maLCmCwIL9RkVppr2DhVjNsCB95a3jbDoLMbJOiEOpAscL0hMGDci1-K_KoC5TYwPxioOPC1kY-_zW4J1d1k-kCRooA4sF9JzdPjpMOxaXb-lfATrI27vXTQH_3YhXX0_QJ7rfI9tG6nM_UBnou727ycfqw16R6B0x-X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Audiovisual+biofeedback+improves+diaphragm+motion+reproducibility+in+MRI&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Kim%2C+Taeho&rft.au=Pollock%2C+Sean&rft.au=Lee%2C+Danny&rft.au=O%27Brien%2C+Ricky&rft.date=2012-11-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=39&rft.issue=11&rft.spage=6921&rft.epage=6928&rft_id=info:doi/10.1118%2F1.4761866&rft.externalDBID=n%2Fa&rft.externalDocID=10_1118_1_4761866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon