Subset Analysis for Screening Drug–Drug Interaction Signal Using Pharmacovigilance Database

Many patients require multi-drug combinations, and adverse event profiles reflect not only the effects of individual drugs but also drug–drug interactions. Although there are several algorithms for detecting drug–drug interaction signals, a simple analysis model is required for early detection of ad...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pharmaceutics Ročník 12; číslo 8; s. 762
Hlavní autori: Noguchi, Yoshihiro, Tachi, Tomoya, Teramachi, Hitomi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 12.08.2020
MDPI
Predmet:
ISSN:1999-4923, 1999-4923
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Many patients require multi-drug combinations, and adverse event profiles reflect not only the effects of individual drugs but also drug–drug interactions. Although there are several algorithms for detecting drug–drug interaction signals, a simple analysis model is required for early detection of adverse events. Recently, there have been reports of detecting signals of drug–drug interactions using subset analysis, but appropriate detection criterion may not have been used. In this study, we presented and verified an appropriate criterion. The data source used was the Japanese Adverse Drug Event Report (JADER) database; “hypothetical” true data were generated through a combination of signals detected by three detection algorithms. The accuracy of the signal detection of the analytic model under investigation was verified using indicators used in machine learning. The newly proposed subset analysis confirmed that the signal detection was improved, compared with signal detection in the previous subset analysis, on the basis of the indicators of Accuracy (0.584 to 0.809), Precision (= Positive predictive value; PPV) (0.302 to 0.596), Specificity (0.583 to 0.878), Youden’s index (0.170 to 0.465), F-measure (0.399 to 0.592), and Negative predictive value (NPV) (0.821 to 0.874). The previous subset analysis detected many false drug–drug interaction signals. Although the newly proposed subset analysis provides slightly lower detection accuracy for drug–drug interaction signals compared to signals compared to the Ω shrinkage measure model, the criteria used in the newly subset analysis significantly reduced the amount of falsely detected signals found in the previous subset analysis.
AbstractList Many patients require multi-drug combinations, and adverse event profiles reflect not only the effects of individual drugs but also drug–drug interactions. Although there are several algorithms for detecting drug–drug interaction signals, a simple analysis model is required for early detection of adverse events. Recently, there have been reports of detecting signals of drug–drug interactions using subset analysis, but appropriate detection criterion may not have been used. In this study, we presented and verified an appropriate criterion. The data source used was the Japanese Adverse Drug Event Report (JADER) database; “hypothetical” true data were generated through a combination of signals detected by three detection algorithms. The accuracy of the signal detection of the analytic model under investigation was verified using indicators used in machine learning. The newly proposed subset analysis confirmed that the signal detection was improved, compared with signal detection in the previous subset analysis, on the basis of the indicators of Accuracy (0.584 to 0.809), Precision (= Positive predictive value; PPV) (0.302 to 0.596), Specificity (0.583 to 0.878), Youden’s index (0.170 to 0.465), F-measure (0.399 to 0.592), and Negative predictive value (NPV) (0.821 to 0.874). The previous subset analysis detected many false drug–drug interaction signals. Although the newly proposed subset analysis provides slightly lower detection accuracy for drug–drug interaction signals compared to signals compared to the Ω shrinkage measure model, the criteria used in the newly subset analysis significantly reduced the amount of falsely detected signals found in the previous subset analysis.
Many patients require multi-drug combinations, and adverse event profiles reflect not only the effects of individual drugs but also drug-drug interactions. Although there are several algorithms for detecting drug-drug interaction signals, a simple analysis model is required for early detection of adverse events. Recently, there have been reports of detecting signals of drug-drug interactions using subset analysis, but appropriate detection criterion may not have been used. In this study, we presented and verified an appropriate criterion. The data source used was the Japanese Adverse Drug Event Report (JADER) database; "hypothetical" true data were generated through a combination of signals detected by three detection algorithms. The accuracy of the signal detection of the analytic model under investigation was verified using indicators used in machine learning. The newly proposed subset analysis confirmed that the signal detection was improved, compared with signal detection in the previous subset analysis, on the basis of the indicators of Accuracy (0.584 to 0.809), Precision (= Positive predictive value; PPV) (0.302 to 0.596), Specificity (0.583 to 0.878), Youden's index (0.170 to 0.465), F-measure (0.399 to 0.592), and Negative predictive value (NPV) (0.821 to 0.874). The previous subset analysis detected many false drug-drug interaction signals. Although the newly proposed subset analysis provides slightly lower detection accuracy for drug-drug interaction signals compared to signals compared to the Ω shrinkage measure model, the criteria used in the newly subset analysis significantly reduced the amount of falsely detected signals found in the previous subset analysis.Many patients require multi-drug combinations, and adverse event profiles reflect not only the effects of individual drugs but also drug-drug interactions. Although there are several algorithms for detecting drug-drug interaction signals, a simple analysis model is required for early detection of adverse events. Recently, there have been reports of detecting signals of drug-drug interactions using subset analysis, but appropriate detection criterion may not have been used. In this study, we presented and verified an appropriate criterion. The data source used was the Japanese Adverse Drug Event Report (JADER) database; "hypothetical" true data were generated through a combination of signals detected by three detection algorithms. The accuracy of the signal detection of the analytic model under investigation was verified using indicators used in machine learning. The newly proposed subset analysis confirmed that the signal detection was improved, compared with signal detection in the previous subset analysis, on the basis of the indicators of Accuracy (0.584 to 0.809), Precision (= Positive predictive value; PPV) (0.302 to 0.596), Specificity (0.583 to 0.878), Youden's index (0.170 to 0.465), F-measure (0.399 to 0.592), and Negative predictive value (NPV) (0.821 to 0.874). The previous subset analysis detected many false drug-drug interaction signals. Although the newly proposed subset analysis provides slightly lower detection accuracy for drug-drug interaction signals compared to signals compared to the Ω shrinkage measure model, the criteria used in the newly subset analysis significantly reduced the amount of falsely detected signals found in the previous subset analysis.
Author Tachi, Tomoya
Teramachi, Hitomi
Noguchi, Yoshihiro
AuthorAffiliation 1 Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu-shi, Gifu 501-1196, Japan; tachi@gifu-pu.ac.jp
2 Laboratory of Community Healthcare Pharmacy, Gifu Pharmaceutical University, Daigakunishi, Gifu-shi, Gifu 501-1196, Japan
AuthorAffiliation_xml – name: 1 Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu-shi, Gifu 501-1196, Japan; tachi@gifu-pu.ac.jp
– name: 2 Laboratory of Community Healthcare Pharmacy, Gifu Pharmaceutical University, Daigakunishi, Gifu-shi, Gifu 501-1196, Japan
Author_xml – sequence: 1
  givenname: Yoshihiro
  orcidid: 0000-0002-9110-9604
  surname: Noguchi
  fullname: Noguchi, Yoshihiro
– sequence: 2
  givenname: Tomoya
  orcidid: 0000-0002-5380-0218
  surname: Tachi
  fullname: Tachi, Tomoya
– sequence: 3
  givenname: Hitomi
  surname: Teramachi
  fullname: Teramachi, Hitomi
BookMark eNp9ks1q3DAUhUVJadI0j1AwdNPNtPq1JQqFkPRnINDANMsiruVrR4PHmkp2ILu8Q9-wT1I5k0ASSoRAQvrOkXR0X5O9IQxIyFtGPwhh6MftJcQNOJxG7xLjVNOq5C_IATPGLKThYu_BfJ8cpbSmuQnBtDCvyL7gmpaK6QPyazXVCcfieID-OvlUtCEWKxcRBz90xWmcur83f-ahWA4jRnCjD0Ox8l0WFBdphs53twlXvvM9DA6LUxihhoRvyMsW-oRHd-Mhufj65efJ98XZj2_Lk-OzhVNSj4sWWC0a6SpFVd0qoSssneSqoYJxnREoNTVYubo2rqGcUY1G8FLUFLXTrTgky51vE2Btt9FvIF7bAN7eLoTYWYg5qx6tc7LiDWMS20bK1tWASjpRUhSgoNXZ6_POazvVG2wcDmOE_pHp453BX9ouXNlKliVTs8H7O4MYfk-YRrvxyWGfo8EwJculyNFXSs_ouyfoOkwxJ3tLSWVyLzP1aUe5GFKK2FrnR5j_IZ_ve8uonavC_rcqslo9Ud8_5XndP9dSw74
CitedBy_id crossref_primary_10_1016_j_eplepsyres_2025_107626
crossref_primary_10_3390_ph14040377
crossref_primary_10_1080_17512433_2024_2343875
crossref_primary_10_1177_10600280231168858
crossref_primary_10_3390_pharmaceutics13101531
crossref_primary_10_1007_s40290_022_00441_z
crossref_primary_10_3390_ph14010004
crossref_primary_10_1080_14740338_2024_2368817
crossref_primary_10_1007_s40290_023_00465_z
crossref_primary_10_1177_10600280231168860
Cites_doi 10.1080/00031305.1999.10474456
10.1007/s00228-019-02770-6
10.1038/srep26375
10.1097/CAD.0000000000000862
10.1007/s002280050466
10.1016/j.jfda.2015.11.009
10.1007/s11095-020-02801-3
10.3389/fphar.2018.00197
10.3389/fphar.2019.01319
10.1093/bib/bbx010
10.1002/sim.3247
10.1111/epi.16626
10.1002/pds.1001
10.1007/s40264-020-00911-w
10.1002/pds.677
10.1136/amiajnl-2013-001612
10.1002/pds.964
10.2105/AJPH.2007.124537
10.1111/j.1365-2125.2007.02900.x
10.3390/pharmaceutics4040607
10.1007/s00228-017-2233-3
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.3390/pharmaceutics12080762
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1999-4923
ExternalDocumentID oai_doaj_org_article_cc472d114efd44fcbae54c360e3a5af8
PMC7466158
10_3390_pharmaceutics12080762
GroupedDBID ---
53G
5VS
8G5
AADQD
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACUHS
AEAQA
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BPHCQ
CCPQU
CITATION
DIK
DWQXO
EBD
ESX
F5P
FD6
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HH5
HYE
IHR
KQ8
M2O
M48
MK0
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
TUS
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c548t-fa1b3d4c7505bf5387e6c425d03128548a6809e7cbb9cd02108e93263b0e8c8f3
IEDL.DBID DOA
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564071100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4923
IngestDate Fri Oct 03 12:42:28 EDT 2025
Tue Nov 04 01:48:27 EST 2025
Sun Nov 09 12:03:38 EST 2025
Sun Jun 29 12:09:50 EDT 2025
Sat Nov 29 07:13:41 EST 2025
Tue Nov 18 21:12:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c548t-fa1b3d4c7505bf5387e6c425d03128548a6809e7cbb9cd02108e93263b0e8c8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5380-0218
0000-0002-9110-9604
OpenAccessLink https://doaj.org/article/cc472d114efd44fcbae54c360e3a5af8
PMID 32806518
PQID 2434594596
PQPubID 2032349
ParticipantIDs doaj_primary_oai_doaj_org_article_cc472d114efd44fcbae54c360e3a5af8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7466158
proquest_miscellaneous_2435187588
proquest_journals_2434594596
crossref_citationtrail_10_3390_pharmaceutics12080762
crossref_primary_10_3390_pharmaceutics12080762
PublicationCentury 2000
PublicationDate 20200812
PublicationDateYYYYMMDD 2020-08-12
PublicationDate_xml – month: 8
  year: 2020
  text: 20200812
  day: 12
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Pharmaceutics
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Noguchi (ref_2) 2018; 9
Evans (ref_5) 2001; 10
Sundberg (ref_16) 2008; 27
Vilar (ref_9) 2018; 19
Berlin (ref_1) 2008; 98
Caster (ref_22) 2020; 43
Cheng (ref_20) 2016; 24
Iyer (ref_3) 2013; 21
ref_21
Rothman (ref_6) 2004; 13
Noguchi (ref_14) 2020; 37
Uno (ref_12) 2020; 76
Thakrar (ref_18) 2007; 64
Bate (ref_7) 1998; 54
ref_19
Suling (ref_4) 2012; 4
Susuta (ref_17) 2014; 19
Noguchi (ref_10) 2019; 10
Sanagawa (ref_13) 2020; 31
DuMouchel (ref_8) 1999; 53
Nagashima (ref_11) 2016; 6
Kubota (ref_15) 2004; 13
References_xml – volume: 53
  start-page: 177
  year: 1999
  ident: ref_8
  article-title: Bayesian Data Mining in Large Frequency Tables, with an Application to the FDA Spontaneous Reporting System
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1999.10474456
– volume: 76
  start-page: 117
  year: 2020
  ident: ref_12
  article-title: Drug interactions between tacrolimus and clotrimazole troche: A data mining approach followed by a pharmacokinetic study
  publication-title: Eur. J. Clin. Pharmacol.
  doi: 10.1007/s00228-019-02770-6
– volume: 6
  start-page: 26375
  year: 2016
  ident: ref_11
  article-title: Prevention of antipsychotic-induced hyperglycaemia by vitamin D: A data mining prediction followed by experimental exploration of the molecular mechanism
  publication-title: Sci. Rep.
  doi: 10.1038/srep26375
– volume: 31
  start-page: 183
  year: 2020
  ident: ref_13
  article-title: Tumor lysis syndrome associated with bortezomib: A post-hoc analysis after signal detection using the US Food and Drug Administration Adverse Event Reporting System
  publication-title: Anti-Cancer Drugs
  doi: 10.1097/CAD.0000000000000862
– volume: 54
  start-page: 315
  year: 1998
  ident: ref_7
  article-title: A Bayesian neural network method for adverse drug reaction signal generation
  publication-title: Eur. J. Clin. Pharmacol.
  doi: 10.1007/s002280050466
– volume: 24
  start-page: 427
  year: 2016
  ident: ref_20
  article-title: Correlation between drug-drug interaction-induced Stevens-Johnson syndrome and related deaths in Taiwan
  publication-title: J. Food Drug Anal.
  doi: 10.1016/j.jfda.2015.11.009
– volume: 37
  start-page: 86
  year: 2020
  ident: ref_14
  article-title: Comparison of signal detection algorithms based on frequency statistical model for drug-drug interaction using spontaneous reporting systems
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-020-02801-3
– volume: 9
  start-page: 197
  year: 2018
  ident: ref_2
  article-title: A New Search Method Using Association Rule Mining for Drug-Drug Interaction Based on Spontaneous Report System
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00197
– volume: 10
  start-page: 1319
  year: 2019
  ident: ref_10
  article-title: Review of Statistical Methodologies for Detecting Drug-Drug Interactions Using Spontaneous Reporting Systems
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.01319
– volume: 19
  start-page: 863
  year: 2018
  ident: ref_9
  article-title: Detection of drug-drug interactions through data mining studies using clinical sources, scientific literature and social media
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx010
– volume: 27
  start-page: 3057
  year: 2008
  ident: ref_16
  article-title: A statistical methodology for drug-drug interaction surveillance
  publication-title: Stat. Med.
  doi: 10.1002/sim.3247
– volume: 19
  start-page: 39
  year: 2014
  ident: ref_17
  article-title: Safety risk evaluation methodology in detecting the medicine concomitant use risk which might cause critical drug rash
  publication-title: Jpn. J. Pharmacoepidemiol.
– ident: ref_21
  doi: 10.1111/epi.16626
– volume: 13
  start-page: 519
  year: 2004
  ident: ref_6
  article-title: The reporting odds ratio and its advantages over the proportional reporting ratio
  publication-title: Pharmacoepidemiol. Drug Saf.
  doi: 10.1002/pds.1001
– volume: 43
  start-page: 479
  year: 2020
  ident: ref_22
  article-title: Disproportionality Analysis for Pharmacovigilance Signal Detection in Small Databases or Subsets: Recommendations for Limiting False-Positive Associations
  publication-title: Drug Saf.
  doi: 10.1007/s40264-020-00911-w
– volume: 10
  start-page: 483
  year: 2001
  ident: ref_5
  article-title: Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports
  publication-title: Pharmacoepidemiol. Drug Saf.
  doi: 10.1002/pds.677
– volume: 21
  start-page: 353
  year: 2013
  ident: ref_3
  article-title: Mining clinical text for signals of adverse drug-drug interactions
  publication-title: J. Am. Med. Inf. Assoc.
  doi: 10.1136/amiajnl-2013-001612
– volume: 13
  start-page: 387
  year: 2004
  ident: ref_15
  article-title: Comparison of data mining methodologies using Japanese spontaneous reports
  publication-title: Pharmacoepidemiol. Drug Saf.
  doi: 10.1002/pds.964
– volume: 98
  start-page: 1366
  year: 2008
  ident: ref_1
  article-title: Adverse event detection in drug development: Recommendations and obligations beyond phase 3
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.2007.124537
– volume: 64
  start-page: 489
  year: 2007
  ident: ref_18
  article-title: Detecting signals of drug-drug interactions in a spontaneous reports database
  publication-title: Br. J. Clin. Pharmacol.
  doi: 10.1111/j.1365-2125.2007.02900.x
– volume: 4
  start-page: 607
  year: 2012
  ident: ref_4
  article-title: Signal Detection and Monitoring Based on Longitudinal Healthcare Data
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics4040607
– ident: ref_19
  doi: 10.1007/s00228-017-2233-3
SSID ssj0000331839
Score 2.2489324
Snippet Many patients require multi-drug combinations, and adverse event profiles reflect not only the effects of individual drugs but also drug–drug interactions....
Many patients require multi-drug combinations, and adverse event profiles reflect not only the effects of individual drugs but also drug-drug interactions....
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 762
SubjectTerms Algorithms
Clinical trials
Datasets
Drug interactions
drug-drug interaction
Expected values
Marketing
signal detection algorithms
spontaneous reporting systems
Studies
subset analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZt0kMvfZdumhYVSk5x47VkWzqVpknooSxLk0Iuxei5MQTvZu0N5Nb_0H-YX5IZW-utobSHgsFgSdaA5i3NJ0Lea-694mocoe3EkpwsksLIKGVWJ7GQIOstzuzXfDIR5-dyGhJudThWudaJraK2c4M58oOEM55KeLKPi6sIb43C3dVwhcZ9so1IZcDn24fHk-m3PssSM-RZ2ZXuMIjvDxYXm1RxPQZyIJBPBkapxe4fOJzD45K_2Z-Tx_9L-RPyKHie9FPHKk_JPVc9I3vTjtCbfXq2qcSq9-kenW5ArW-ekx-oYVxD1yAmFJxdemrw1A4YP3q0XM1uf_7CF22TjF29BD0tZzhpezCh_-N1OSsvkdvokWoU2tEX5PvJ8dnnL1G4miEyEOI0kVdjzSw34G-k2oPSzF1mQPwt6AisyRQqE7F0udFaGotxpXDoKTIdO2GEZy_JVjWv3CtC48TaPOZ5ar3h2kitjILu0jqvZZb4EeHrtSlMwC3H6zMuC4hfcEmLPy7piHzohy064I5_DTjEhe87I-52-2G-nBVBjAtjeJ5YiCGdt5x7o5VLuWFZ7JhKlRcjsrvmgSIog7rYMMCIvOubQYxxb0ZVbr5q-6RjiB0F_CIfsNuAoGFLVV60gOA5By8rFTt_n_w1eZhgsgDxfJNdstUsV-4NeWCum7Jevg2ScwfptyuG
  priority: 102
  providerName: ProQuest
Title Subset Analysis for Screening Drug–Drug Interaction Signal Using Pharmacovigilance Database
URI https://www.proquest.com/docview/2434594596
https://www.proquest.com/docview/2435187588
https://pubmed.ncbi.nlm.nih.gov/PMC7466158
https://doaj.org/article/cc472d114efd44fcbae54c360e3a5af8
Volume 12
WOSCitedRecordID wos000564071100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1999-4923
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331839
  issn: 1999-4923
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4923
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331839
  issn: 1999-4923
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4923
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331839
  issn: 1999-4923
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4923
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331839
  issn: 1999-4923
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1999-4923
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331839
  issn: 1999-4923
  databaseCode: M2O
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZt2kMvJX3RTdNFhZJT3Hht2ZKOTZPQQrM1TQrbQzF6bgzBCbveQG75D_2H_SWdkb0PQyGXgrFBkiVZmtHMyDOfCHmvmfeKqVGEshNDcvJICiOjLLU6iYUEXg84s1_5eCwmE1lsHPWFPmEtPHA7cAfGMJ5Y0Nqdt4x5o5XLmEnz2KUqUz6E-cZcbhhTYQ1OkVZlG7KTgl1_cH2x3iKej6AbYMAnPWEUMPt7imbfTXJD7pxsk6edwkg_th19Rh64-jnZK9p2bvfp-TqAar5P92ixxqK-fUF-4cLgGrrEHqGgo9Izg842ILPo0Wwx_XP3Gx807A22YQ70rJpio8GfYFXjTTWtLpFI6JFqFIq_l-THyfH5p89Rd6JCZMAyaSKvRjq1zICakGkPax13uQGutcDaGEopVC5i6bjRWhqL5qBwqOClOnbCCJ--Ilv1Ve1eExon1vKY8cx6w7SRWhkFxaV1Xss88QPClkNbmg5uHE-9uCzB7MAZKf85IwPyYfXadYu3cd8Lhzhvq8IIlx0SgIjKjojK-4hoQHaXs152PDwvE5ayTMKVD8i7VTZwH_5SUbW7WoQy2QhMPgFV8B619DrUz6mri4DjzRkoR5nY-R9f8IY8SXAnAMF6k12y1cwW7i15bG6aaj4bkod8Iobk0eHxuPg-DKwC99PkG6QVX06Ln38B1CAisQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuvBGBAosEPdXUsdf27gEhIFSNmkaWGqRyQGafaaTKCXkU5cZ_4H_wo_gl7PiRYAnBqQckS5bs9a53_c3TOzMAzyW1VlDR8VB2YkhO7HGmuBeFWgY-447Wizyz_WQwYKenPN2CH3UsDG6rrHliwaj1RKGPfD-gIY24O-LX0y8eVo3Cv6t1CY0SFkdm9dWZbPNXva77vi-C4OD98N2hV1UV8JTTzheeFR0ZaqqcqIykdfSemFg55GoHbwwnZCJmPjeJkpIrjSYRM6jkhNI3TDEbun6vwDZFsLdgO-0dpx_XXh0_RBrhZahQGHJ_f3q2cU3PO276fhIHDSFY1ApoKLjN7Zm_ybuDm__bSt2CG5VmTd6UpHAbtkx-B3bTcmFWe2S4iTSb75Fdkm6Sdq_uwifkoGZB6iQtxCnz5EThriQn3El3thz9_PYdT6RwopbxIORkPMJBi40X6x4vxqPxOVIT6YqFQD3hHny4lKnfh1Y-yc0DIH6gdeLTJNJWUam4FEq45lwbK3kc2DbQGguZqvKyY3mQ88zZZwih7I8QasPL9WPTMjHJvx54i0BbN8a84sWFyWyUVWwqU4omgXY2srGaUqukMBFVYeybUETCsjbs1JjLKmY3zzaAa8Oz9W3HpvDfk8jNZFm0iTrONmaui6QB78YLNe_k47Mi4XlCnRYZsYd_H_wpXDscHvezfm9w9AiuB-gYwdzFwQ60FrOleQxX1cViPJ89qaiWwOfLhv8v-xKHRw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bitNAGB7Wrog3nsXqqiPoXm1sOpkkMxciai0uu5bArrBeSJxjt7C0tYeV3vkOvo2P45P4_zm0BkSv9kIIBJLJJJl8_zH_gZCnmnuvuOoGKDsxJScJpDAyiCOrWSgk0HpRZ_YwHQzEyYnMtsiPOhcGwyprnlgwajsx6CPvMB7xWMKWdHwVFpH1-i-nXwLsIIV_Wut2GiVEDtzqK5hv8xf7PfjWzxjrvz1-8y6oOgwEBjT1ReBVV0eWGxCbsfZA-6lLDKDYAtQxtVCoRITSpUZraSyaR8KhwhPp0AkjfATzXiLboJJz1iLb2f777OPawxNGSC-yTBuKIhl2pqcbN_W8C0sRpglrCMSib0BD2W2Gav4m-_rX_-dVu0GuVRo3fVWSyE2y5ca3yG5WLtJqjx5vMtDme3SXZpti3qvb5BNyVregdfEWCko-PTIYrQRCn_Zmy-HPb99xRwvnapknQo9GQ7xpEZCxnvF8NBydIZXRnloo1B_ukA8X8up3SWs8Gbt7hIbM2jTkaWy94dpIrYyC4dI6r2XCfJvwGhe5qeq1Y9uQsxzsNoRT_kc4tcnz9WXTsmDJvy54jaBbD8Z648WByWyYV-wrN4anzILt7Lzl3ButXMxNlIQuUrHyok12avzlFROc5xvwtcmT9WlgX_hPSo3dZFmMibtgMwuYIm1AvfFAzTPj0WlRCD3loF3G4v7fb_6YXAHM54f7g4MH5CpDfwmWNGY7pLWYLd1DctmcL0bz2aOKgCn5fNHo_wWfg5AH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subset+Analysis+for+Screening+Drug%E2%80%93Drug+Interaction+Signal+Using+Pharmacovigilance+Database&rft.jtitle=Pharmaceutics&rft.au=Noguchi%2C+Yoshihiro&rft.au=Tachi%2C+Tomoya&rft.au=Teramachi%2C+Hitomi&rft.date=2020-08-12&rft.issn=1999-4923&rft.eissn=1999-4923&rft.volume=12&rft.issue=8&rft.spage=762&rft_id=info:doi/10.3390%2Fpharmaceutics12080762&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pharmaceutics12080762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4923&client=summon