On Optimization over the Efficient Set in Linear Multicriteria Programming

The efficient set of a linear multicriteria programming problem can be represented\nby a reverse convex constraint of the form g(z) ≤ 0, where g is a concave\nfunction. Consequently, the problem of optimizing some real function over the efficient\nset belongs to an important problem class of global...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 134; číslo 3; s. 433 - 443
Hlavní autoři: 山本 芳嗣, Horst R., Thoai N.V., Yamamoto Yoshitsugu, Zenke D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Springer Verlag 01.09.2007
Springer
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The efficient set of a linear multicriteria programming problem can be represented\nby a reverse convex constraint of the form g(z) ≤ 0, where g is a concave\nfunction. Consequently, the problem of optimizing some real function over the efficient\nset belongs to an important problem class of global optimization called reverse\nconvex programming. Since the concave function used in the literature is only defined\non some set containing the feasible set of the underlying multicriteria programming\nproblem, most global optimization techniques for handling this kind of reverse convex\nconstraint cannot be applied. The main purpose of our article is to present a\nmethod for overcoming this disadvantage. We construct a concave function which is\nfinitely defined on the whole space and can be considered as an extension of the existing\nfunction. Different forms of the linear multicriteria programming problem are\ndiscussed, including the minimum maximal flow problem as an example. application/pdf
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-007-9219-8