On Optimization over the Efficient Set in Linear Multicriteria Programming

The efficient set of a linear multicriteria programming problem can be represented\nby a reverse convex constraint of the form g(z) ≤ 0, where g is a concave\nfunction. Consequently, the problem of optimizing some real function over the efficient\nset belongs to an important problem class of global...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications Vol. 134; no. 3; pp. 433 - 443
Main Authors: 山本 芳嗣, Horst R., Thoai N.V., Yamamoto Yoshitsugu, Zenke D.
Format: Journal Article
Language:English
Published: New York, NY Springer Verlag 01.09.2007
Springer
Springer Nature B.V
Subjects:
ISSN:0022-3239, 1573-2878
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The efficient set of a linear multicriteria programming problem can be represented\nby a reverse convex constraint of the form g(z) ≤ 0, where g is a concave\nfunction. Consequently, the problem of optimizing some real function over the efficient\nset belongs to an important problem class of global optimization called reverse\nconvex programming. Since the concave function used in the literature is only defined\non some set containing the feasible set of the underlying multicriteria programming\nproblem, most global optimization techniques for handling this kind of reverse convex\nconstraint cannot be applied. The main purpose of our article is to present a\nmethod for overcoming this disadvantage. We construct a concave function which is\nfinitely defined on the whole space and can be considered as an extension of the existing\nfunction. Different forms of the linear multicriteria programming problem are\ndiscussed, including the minimum maximal flow problem as an example. application/pdf
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-007-9219-8