Impacts of optimal energy storage deployment and network reconfiguration on renewable integration level in distribution systems

•A dynamic and multi-objective stochastic mixed integer linear programming model is developed.•A new mechanism to quantify the impacts of network flexibility and ESS deployments on RES integration is presented.•Optimal integration of ESSs dramatically increases the level and the optimal exploitation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 185; H. P1; S. 44 - 55
Hauptverfasser: Santos, Sérgio F., Fitiwi, Desta Z., Cruz, Marco R.M., Cabrita, Carlos M.P., Catalão, João P.S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United Kingdom Elsevier Ltd 01.01.2017
Elsevier
Schlagworte:
ISSN:0306-2619, 1872-9118
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A dynamic and multi-objective stochastic mixed integer linear programming model is developed.•A new mechanism to quantify the impacts of network flexibility and ESS deployments on RES integration is presented.•Optimal integration of ESSs dramatically increases the level and the optimal exploitation of renewable DGs.•As high as 90% of RES integration level may be possible in distribution network systems.•Joint DG and ESS installations along with optimal network reconfiguration greatly contribute to voltage stability. Nowadays, there is a wide consensus about integrating more renewable energy sources-RESs to solve a multitude of global concerns such as meeting an increasing demand for electricity, reducing energy security and heavy dependence on fossil fuels for energy production, and reducing the overall carbon footprint of power production. Framed in this context, the coordination of RES integration with energy storage systems (ESSs), along with the network’s switching capability and/or reinforcement, is expected to significantly improve system flexibility, thereby increasing the capability of the system in accommodating large-scale RES power. Hence, this paper presents a novel mechanism to quantify the impacts of network switching and/or reinforcement as well as deployment of ESSs on the level of renewable power integrated in the system. To carry out this analysis, a dynamic and multi-objective stochastic mixed integer linear programming (S-MILP) model is developed, which jointly takes the optimal deployment of RES-based DGs and ESSs into account in coordination with distribution network reinforcement and/or reconfiguration. The IEEE 119-bus test system is used as a case study. Numerical results clearly show the capability of ESS deployment in dramatically increasing the level of renewable DGs integrated in the system. Although case-dependent, the impact of network reconfiguration on RES power integration is not significant.
AbstractList Nowadays, there is a wide consensus about integrating more renewable energy sources-RESs to solve a multitude of global concerns such as meeting an increasing demand for electricity, reducing energy security and heavy dependence on fossil fuels for energy production, and reducing the overall carbon footprint of power production. Framed in this context, the coordination of RES integration with energy storage systems (ESSs), along with the network’s switching capability and/or reinforcement, is expected to significantly improve system flexibility, thereby increasing the capability of the system in accommodating large-scale RES power. Hence, this paper presents a novel mechanism to quantify the impacts of network switching and/or reinforcement as well as deployment of ESSs on the level of renewable power integrated in the system. To carry out this analysis, a dynamic and multi-objective stochastic mixed integer linear programming (S-MILP) model is developed, which jointly takes the optimal deployment of RES-based DGs and ESSs into account in coordination with distribution network reinforcement and/or reconfiguration. The IEEE 119-bus test system is used as a case study. Numerical results clearly show the capability of ESS deployment in dramatically increasing the level of renewable DGs integrated in the system. Although case-dependent, the impact of network reconfiguration on RES power integration is not significant.
•A dynamic and multi-objective stochastic mixed integer linear programming model is developed.•A new mechanism to quantify the impacts of network flexibility and ESS deployments on RES integration is presented.•Optimal integration of ESSs dramatically increases the level and the optimal exploitation of renewable DGs.•As high as 90% of RES integration level may be possible in distribution network systems.•Joint DG and ESS installations along with optimal network reconfiguration greatly contribute to voltage stability. Nowadays, there is a wide consensus about integrating more renewable energy sources-RESs to solve a multitude of global concerns such as meeting an increasing demand for electricity, reducing energy security and heavy dependence on fossil fuels for energy production, and reducing the overall carbon footprint of power production. Framed in this context, the coordination of RES integration with energy storage systems (ESSs), along with the network’s switching capability and/or reinforcement, is expected to significantly improve system flexibility, thereby increasing the capability of the system in accommodating large-scale RES power. Hence, this paper presents a novel mechanism to quantify the impacts of network switching and/or reinforcement as well as deployment of ESSs on the level of renewable power integrated in the system. To carry out this analysis, a dynamic and multi-objective stochastic mixed integer linear programming (S-MILP) model is developed, which jointly takes the optimal deployment of RES-based DGs and ESSs into account in coordination with distribution network reinforcement and/or reconfiguration. The IEEE 119-bus test system is used as a case study. Numerical results clearly show the capability of ESS deployment in dramatically increasing the level of renewable DGs integrated in the system. Although case-dependent, the impact of network reconfiguration on RES power integration is not significant.
Author Catalão, João P.S.
Santos, Sérgio F.
Fitiwi, Desta Z.
Cruz, Marco R.M.
Cabrita, Carlos M.P.
Author_xml – sequence: 1
  givenname: Sérgio F.
  surname: Santos
  fullname: Santos, Sérgio F.
  organization: C-MAST, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilhã, Portugal
– sequence: 2
  givenname: Desta Z.
  surname: Fitiwi
  fullname: Fitiwi, Desta Z.
  organization: C-MAST, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilhã, Portugal
– sequence: 3
  givenname: Marco R.M.
  surname: Cruz
  fullname: Cruz, Marco R.M.
  organization: INESC TEC and Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
– sequence: 4
  givenname: Carlos M.P.
  surname: Cabrita
  fullname: Cabrita, Carlos M.P.
  organization: CISE, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilhã, Portugal
– sequence: 5
  givenname: João P.S.
  surname: Catalão
  fullname: Catalão, João P.S.
  email: catalao@ubi.pt
  organization: C-MAST, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilhã, Portugal
BackLink https://www.osti.gov/biblio/1706173$$D View this record in Osti.gov
BookMark eNqFUU2L2zAUFGUXmuz2LxTRUy_OSrZjy9BDS-h-wEIvuYtn-TlVKkuupGzIqX995Xj30ktAIDSaGd6bWZIr6ywS8pmzFWe8utuvYESLfnda5emdwBVbFx_Igos6zxrOxRVZsIJVWV7x5iNZhrBnjOU8Zwvy72kYQcVAXU_dGPUAhs5mNETnYYe0w9G404A2UrAdtRiPzv-hHpWzvd4dPETtLE3HJ-URWoNU24i7tw-DL2gSQjsdotft4YyGU4g4hFty3YMJ-OntviHb-5_bzWP2_OvhafPjOVPrUsSsq5tSlPm6qVsFnK9F2_ZN3-dYlX1Zio4p0RasrjuG0FYAhRAKSlaoFiqoVXFDvsy2LkQtg9IR1e80v0UVJa9Zxesikb7OpNG7vwcMUQ46KDQGLLpDkHlKLRmnORL120xV3oXgsZfJ8rxu9KCN5ExO3ci9fO9GTt1MeOomyav_5KNP0fvTZeH3WYgpqxeNftoFrcJO-2mVzulLFq_eXLPo
CitedBy_id crossref_primary_10_1016_j_energy_2024_133841
crossref_primary_10_1016_j_epsr_2024_110324
crossref_primary_10_1016_j_jclepro_2020_122777
crossref_primary_10_1016_j_ijepes_2025_111094
crossref_primary_10_1016_j_suscom_2021_100559
crossref_primary_10_1109_TIA_2019_2930433
crossref_primary_10_1515_ijeeps_2021_0184
crossref_primary_10_1016_j_est_2025_115478
crossref_primary_10_1016_j_apenergy_2017_07_004
crossref_primary_10_3390_en16062780
crossref_primary_10_1109_ACCESS_2022_3195053
crossref_primary_10_1109_ACCESS_2019_2960297
crossref_primary_10_32604_ee_2022_018693
crossref_primary_10_1016_j_energy_2021_121451
crossref_primary_10_1016_j_apenergy_2017_08_008
crossref_primary_10_1049_iet_gtd_2018_6749
crossref_primary_10_1002_2050_7038_12099
crossref_primary_10_1049_iet_rpg_2017_0223
crossref_primary_10_1016_j_ijepes_2020_106022
crossref_primary_10_1016_j_apenergy_2019_01_192
crossref_primary_10_1002_2050_7038_13116
crossref_primary_10_1109_TSTE_2018_2883515
crossref_primary_10_1016_j_ijepes_2022_108600
crossref_primary_10_3390_electricity5040051
crossref_primary_10_1109_ACCESS_2024_3424890
crossref_primary_10_1016_j_renene_2020_03_110
crossref_primary_10_1016_j_apenergy_2019_05_054
crossref_primary_10_1109_TIA_2022_3143479
crossref_primary_10_1016_j_jestch_2020_08_002
crossref_primary_10_3390_en11041018
crossref_primary_10_1016_j_scs_2018_05_027
crossref_primary_10_1016_j_est_2024_111394
crossref_primary_10_1049_stg2_12029
crossref_primary_10_1109_TIA_2022_3223339
crossref_primary_10_1016_j_ijepes_2022_108047
crossref_primary_10_1016_j_solmat_2023_112593
crossref_primary_10_1016_j_apenergy_2017_10_127
crossref_primary_10_1016_j_apenergy_2022_119253
crossref_primary_10_1080_00051144_2022_2130257
crossref_primary_10_3390_en10081097
crossref_primary_10_1016_j_egypro_2017_12_247
crossref_primary_10_1016_j_rser_2020_109777
crossref_primary_10_1016_j_apenergy_2020_116022
crossref_primary_10_1016_j_epsr_2022_109036
crossref_primary_10_1016_j_apenergy_2020_114650
crossref_primary_10_1016_j_ijepes_2018_01_044
crossref_primary_10_26634_jee_15_3_18567
crossref_primary_10_1109_JSYST_2021_3135716
crossref_primary_10_1016_j_apenergy_2018_07_100
crossref_primary_10_1016_j_solmat_2024_112749
crossref_primary_10_1016_j_apenergy_2022_119909
crossref_primary_10_1109_JSYST_2020_2965633
crossref_primary_10_1016_j_apenergy_2018_12_050
crossref_primary_10_3390_en11123399
crossref_primary_10_1016_j_energy_2021_123011
crossref_primary_10_1109_JSEN_2020_3027791
crossref_primary_10_1007_s00500_023_08913_3
crossref_primary_10_3390_en12040686
crossref_primary_10_1088_1757_899X_1228_1_012026
crossref_primary_10_1016_j_rser_2018_03_068
crossref_primary_10_1109_JSYST_2019_2918185
crossref_primary_10_1016_j_apenergy_2018_02_170
crossref_primary_10_1016_j_enpol_2021_112185
crossref_primary_10_1016_j_apenergy_2019_113468
crossref_primary_10_1016_j_apenergy_2017_06_059
crossref_primary_10_1016_j_egyr_2023_04_367
crossref_primary_10_1016_j_apenergy_2018_09_142
crossref_primary_10_3390_su14010005
crossref_primary_10_1016_j_solmat_2024_113092
crossref_primary_10_1016_j_pecs_2024_101194
crossref_primary_10_3390_su10061989
crossref_primary_10_1016_j_egypro_2019_01_183
crossref_primary_10_1016_j_enbuild_2021_110856
crossref_primary_10_3233_JIFS_190420
crossref_primary_10_1016_j_est_2020_101814
crossref_primary_10_1088_2753_3751_adafab
crossref_primary_10_1109_ACCESS_2020_3030705
crossref_primary_10_3390_en16155701
crossref_primary_10_1109_ACCESS_2019_2944917
crossref_primary_10_14710_ijred_2022_45662
crossref_primary_10_3390_en11123362
Cites_doi 10.1109/TPWRS.2015.2457954
10.1080/01430750.2013.829784
10.1109/JSYST.2011.2163013
10.1016/j.epsr.2009.10.016
10.1016/j.energy.2016.02.015
10.1016/j.apenergy.2013.11.010
10.1016/j.apenergy.2014.03.005
10.1109/TPWRD.2010.2046339
10.1109/TPWRS.2014.2320895
10.1016/j.apenergy.2016.03.094
10.1109/TPWRS.2012.2237043
10.1109/TPWRS.2014.2364960
10.1016/j.rser.2015.07.105
10.1016/j.enpol.2009.01.030
10.1109/TPWRS.2010.2076839
10.1016/j.apenergy.2015.10.104
10.1109/TPWRS.2011.2161349
10.1016/j.rser.2014.07.027
10.1016/j.epsr.2006.06.005
10.1016/j.ijepes.2015.07.029
10.1109/TPWRS.2013.2245925
10.1109/TSG.2014.2307919
10.1016/j.apenergy.2013.08.015
10.1016/j.apenergy.2016.01.095
10.1016/j.rser.2014.05.079
10.1109/TPEL.2011.2116808
10.1109/TPWRD.2011.2158246
10.1016/j.renene.2014.12.039
10.1016/j.apenergy.2014.06.046
10.1016/j.rser.2016.01.023
10.1016/j.apenergy.2016.06.097
10.1016/j.enpol.2012.05.023
10.1109/TSG.2012.2233770
10.1016/j.apenergy.2016.06.005
10.1109/TSTE.2015.2453368
10.1016/j.energy.2015.10.125
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
OTOTI
DOI 10.1016/j.apenergy.2016.10.053
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 55
ExternalDocumentID 1706173
10_1016_j_apenergy_2016_10_053
S0306261916314970
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c548t-d794842597bca1158bbf9ff2e64f448d0c8b3077d0eab6aa388ca403cba6a7c3
ISICitedReferencesCount 93
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000390494600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Thu May 18 22:33:18 EDT 2023
Sat Sep 27 20:50:40 EDT 2025
Sat Nov 29 07:21:39 EST 2025
Tue Nov 18 22:34:35 EST 2025
Fri Feb 23 02:32:48 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue P1
Keywords Renewable energy sources
Network reinforcement
Distributed generation
Network switching
Energy storage
Stochastic mixed integer linear programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c548t-d794842597bca1158bbf9ff2e64f448d0c8b3077d0eab6aa388ca403cba6a7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Nuclear Energy (NE), Nuclear Fuel Cycle and Supply Chain
OpenAccessLink https://www.osti.gov/biblio/1706173
PQID 2000388842
PQPubID 24069
PageCount 12
ParticipantIDs osti_scitechconnect_1706173
proquest_miscellaneous_2000388842
crossref_citationtrail_10_1016_j_apenergy_2016_10_053
crossref_primary_10_1016_j_apenergy_2016_10_053
elsevier_sciencedirect_doi_10_1016_j_apenergy_2016_10_053
PublicationCentury 2000
PublicationDate 2017-01-01
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle Applied energy
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chauhan, Saini (b0060) 2014; 38
Arefifar, Mohamed (b0165) 2014; 5
Georgilakis, Hatziargyriou (b0055) 2013; 28
Levron, Guerrero, Beck (b0140) 2013; 28
Saboori, Hemmati, Jirdehi (b0125) 2015; 93
Muñoz-Delgado, Montoya-Bueno, Asensio, Contreras, Muñoz, Arroyo (b0215) 2015
Crespo Del Granado, Pang, Wallace (b0145) 2016; 170
Wu, Lee, Liu, Tsai (b0090) 2010; 25
Fossati, Galarza, Martín-Villate, Fontán (b0130) 2015; 77
Rao, Narasimham, Raju, Rao (b0205) 2011; 26
Lueken, Carvalho, Apt (b0115) 2012; 48
Williams (b0185) 1999
Krakowski, Assoumou, Mazauric, Maïzi (b0025) 2016; 171
Fais, Blesl, Fahl, Voß (b0050) 2014; 131
Capitanescu, Ochoa, Margossian, Hatziargyriou (b0105) 2015; 30
Phonrattanasak (b0175) 2010
Chen, Duan, Cai, Liu, Hu (b0135) 2011; 26
Yan, Shamim, Chou, Desideri, Li (b0005) 2017; 185
Fitiwi, Olmos, Rivier, de Cuadra, Pérez-Arriaga (b0180) Apr. 2016; 101
Hedenus, Azar, Johansson (b0040) 2010; 38
Fitiwi (b0170) 2016
Lavorato, Franco, Rider, Romero (b0195) 2012; 27
Fitiwi, Bizuayehu, Shafie-khah, Catalão, Asenso, Contreras (b0210) 2015
Abu-Mouti, El-Hawary (b0095) 2011; 26
Aslani, Helo, Naaranoja (b0015) 2014; 113
Esmaeilian, Fadaeinedjad (b0120) 2014; PP
Srivastava, Kumar, Schulz (b0155) 2012; 6
Hung, Mithulananthan, Bansal (b0100) 2014; 124
Wang, Zhou, Huo (b0020) 2014; 39
Farrokhifar (b0150) 2016; 74
Bhattacharya, Paramati, Ozturk, Bhattacharya (b0030) 2016; 162
Hung, Mithulananthan, Bansal (b0085) 2015; 36
de Quevedo, Contreras, Rider, Allahdadian (b0160) 2015; 6
Renewables 2015 – Global Status Report. Renewable energy policy network for the 21st century.
Gutiérrez-Alcaraz, Galván, González-Cabrera, Javadi (b0035) 2015; 52
Munoz-Delgado, Contreras, Arroyo (b0110) 2015; 30
Aneke, Wang (b0065) 2016; 179
Song, Jung, Kim, Yun, Choi, Ahn (b0080) 2013; 4
Colmenar-Santos, Reino-Rio, Borge-Diez, Collado-Fernández (b0045) 2016; 59
Hung, Mithulananthan (b0070) 2014; 115
Dorostkar-Ghamsari, Fotuhi-Firuzabad, Lehtonen, Safdarian (b0075) 2016; 31
Romero-Ramos, Riquelme-Santos, Reyes (b0190) 2010; 80
Zhang, Fu, Zhang (b0200) 2007; 77
Crespo Del Granado (10.1016/j.apenergy.2016.10.053_b0145) 2016; 170
Fitiwi (10.1016/j.apenergy.2016.10.053_b0170) 2016
Dorostkar-Ghamsari (10.1016/j.apenergy.2016.10.053_b0075) 2016; 31
Munoz-Delgado (10.1016/j.apenergy.2016.10.053_b0110) 2015; 30
Lueken (10.1016/j.apenergy.2016.10.053_b0115) 2012; 48
Aslani (10.1016/j.apenergy.2016.10.053_b0015) 2014; 113
Chen (10.1016/j.apenergy.2016.10.053_b0135) 2011; 26
Farrokhifar (10.1016/j.apenergy.2016.10.053_b0150) 2016; 74
Colmenar-Santos (10.1016/j.apenergy.2016.10.053_b0045) 2016; 59
Fais (10.1016/j.apenergy.2016.10.053_b0050) 2014; 131
Romero-Ramos (10.1016/j.apenergy.2016.10.053_b0190) 2010; 80
Wang (10.1016/j.apenergy.2016.10.053_b0020) 2014; 39
Song (10.1016/j.apenergy.2016.10.053_b0080) 2013; 4
Levron (10.1016/j.apenergy.2016.10.053_b0140) 2013; 28
Georgilakis (10.1016/j.apenergy.2016.10.053_b0055) 2013; 28
Fossati (10.1016/j.apenergy.2016.10.053_b0130) 2015; 77
Bhattacharya (10.1016/j.apenergy.2016.10.053_b0030) 2016; 162
Saboori (10.1016/j.apenergy.2016.10.053_b0125) 2015; 93
Aneke (10.1016/j.apenergy.2016.10.053_b0065) 2016; 179
Hung (10.1016/j.apenergy.2016.10.053_b0070) 2014; 115
Fitiwi (10.1016/j.apenergy.2016.10.053_b0180) 2016; 101
10.1016/j.apenergy.2016.10.053_b0010
Hung (10.1016/j.apenergy.2016.10.053_b0100) 2014; 124
Wu (10.1016/j.apenergy.2016.10.053_b0090) 2010; 25
de Quevedo (10.1016/j.apenergy.2016.10.053_b0160) 2015; 6
Capitanescu (10.1016/j.apenergy.2016.10.053_b0105) 2015; 30
Williams (10.1016/j.apenergy.2016.10.053_b0185) 1999
Muñoz-Delgado (10.1016/j.apenergy.2016.10.053_b0215) 2015
Abu-Mouti (10.1016/j.apenergy.2016.10.053_b0095) 2011; 26
Yan (10.1016/j.apenergy.2016.10.053_b0005) 2017; 185
Esmaeilian (10.1016/j.apenergy.2016.10.053_b0120) 2014; PP
Lavorato (10.1016/j.apenergy.2016.10.053_b0195) 2012; 27
Hung (10.1016/j.apenergy.2016.10.053_b0085) 2015; 36
Rao (10.1016/j.apenergy.2016.10.053_b0205) 2011; 26
Krakowski (10.1016/j.apenergy.2016.10.053_b0025) 2016; 171
Gutiérrez-Alcaraz (10.1016/j.apenergy.2016.10.053_b0035) 2015; 52
Phonrattanasak (10.1016/j.apenergy.2016.10.053_b0175) 2010
Fitiwi (10.1016/j.apenergy.2016.10.053_b0210) 2015
Hedenus (10.1016/j.apenergy.2016.10.053_b0040) 2010; 38
Chauhan (10.1016/j.apenergy.2016.10.053_b0060) 2014; 38
Srivastava (10.1016/j.apenergy.2016.10.053_b0155) 2012; 6
Arefifar (10.1016/j.apenergy.2016.10.053_b0165) 2014; 5
Zhang (10.1016/j.apenergy.2016.10.053_b0200) 2007; 77
References_xml – volume: 28
  start-page: 3226
  year: 2013
  end-page: 3234
  ident: b0140
  article-title: Optimal power flow in microgrids with energy storage
  publication-title: IEEE Trans Power Syst
– volume: 170
  start-page: 476
  year: 2016
  end-page: 488
  ident: b0145
  article-title: Synergy of smart grids and hybrid distributed generation on the value of energy storage
  publication-title: Appl Energy
– volume: 185
  start-page: 953
  year: 2017
  end-page: 962
  ident: b0005
  article-title: Clean, efficient and affordable energy for a sustainable future
  publication-title: Appl Energy
– volume: 4
  start-page: 367
  year: 2013
  end-page: 374
  ident: b0080
  article-title: Operation schemes of smart distribution networks with distributed energy resources for loss reduction and service restoration
  publication-title: IEEE Trans Smart Grid
– volume: 26
  start-page: 1080
  year: 2011
  end-page: 1088
  ident: b0205
  article-title: Optimal network reconfiguration of large-scale distribution system using harmony search algorithm
  publication-title: IEEE Trans Power Syst
– volume: 31
  start-page: 1879
  year: 2016
  end-page: 1888
  ident: b0075
  article-title: Value of distribution network reconfiguration in presence of renewable energy resources
  publication-title: IEEE Trans Power Syst
– volume: 6
  start-page: 110
  year: 2012
  end-page: 117
  ident: b0155
  article-title: Impact of distributed generations with energy storage devices on the electric grid
  publication-title: IEEE Syst J
– year: 2016
  ident: b0170
  article-title: Strategy, methods and tools for solving long-term transmission expansion planning in large-scale power systems
– volume: 77
  start-page: 539
  year: 2015
  end-page: 549
  ident: b0130
  article-title: A method for optimal sizing energy storage systems for microgrids
  publication-title: Renew Energy
– volume: 36
  start-page: 123
  year: 2015
  end-page: 131
  ident: b0085
  article-title: A combined practical approach for distribution system loss reduction
  publication-title: Int J Ambient Energy
– volume: 26
  start-page: 2090
  year: 2011
  end-page: 2101
  ident: b0095
  article-title: Optimal Distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm
  publication-title: IEEE Trans Power Deliv
– volume: 93
  start-page: 2299
  year: 2015
  end-page: 2312
  ident: b0125
  article-title: Reliability improvement in radial electrical distribution network by optimal planning of energy storage systems
  publication-title: Energy
– volume: 59
  start-page: 1130
  year: 2016
  end-page: 1148
  ident: b0045
  article-title: Distributed generation: a review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks
  publication-title: Renew Sustain Energy Rev
– volume: 27
  start-page: 172
  year: 2012
  end-page: 180
  ident: b0195
  article-title: Imposing radiality constraints in distribution system optimization problems
  publication-title: IEEE Trans Power Syst
– volume: 124
  start-page: 62
  year: 2014
  end-page: 72
  ident: b0100
  article-title: An optimal investment planning framework for multiple distributed generation units in industrial distribution systems
  publication-title: Appl Energy
– volume: 28
  start-page: 3420
  year: 2013
  end-page: 3428
  ident: b0055
  article-title: Optimal distributed generation placement in power distribution networks: models, methods, and future research
  publication-title: IEEE Trans Power Syst
– volume: 80
  start-page: 562
  year: 2010
  end-page: 571
  ident: b0190
  article-title: A simpler and exact mathematical model for the computation of the minimal power losses tree
  publication-title: Electr Power Syst Res
– volume: 74
  start-page: 153
  year: 2016
  end-page: 161
  ident: b0150
  article-title: Optimal operation of energy storage devices with RESs to improve efficiency of distribution grids; technical and economical assessment
  publication-title: Int J Electr Power Energy Syst
– volume: 171
  start-page: 501
  year: 2016
  end-page: 522
  ident: b0025
  article-title: Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: a prospective analysis
  publication-title: Appl Energy
– volume: 26
  start-page: 2762
  year: 2011
  end-page: 2773
  ident: b0135
  article-title: Optimal allocation and economic analysis of energy storage system in microgrids
  publication-title: IEEE Trans Power Electron
– volume: 115
  start-page: 233
  year: 2014
  end-page: 241
  ident: b0070
  article-title: Loss reduction and loadability enhancement with DG: a dual-index analytical approach
  publication-title: Appl Energy
– volume: 6
  start-page: 1524
  year: 2015
  end-page: 1533
  ident: b0160
  article-title: Contingency assessment and network reconfiguration in distribution grids including wind power and energy storage
  publication-title: IEEE Trans Sustain Energy
– volume: 52
  start-page: 256
  year: 2015
  end-page: 264
  ident: b0035
  article-title: Renewable energy resources short-term scheduling and dynamic network reconfiguration for sustainable energy consumption
  publication-title: Renew Sustain Energy Rev
– year: 2010
  ident: b0175
  article-title: Optimal placement of DG using multiobjective particle swarm optimization
  publication-title: 2010 2nd international conference on mechanical and electrical technology (ICMET)
– reference: Renewables 2015 – Global Status Report. Renewable energy policy network for the 21st century.
– volume: 113
  start-page: 758
  year: 2014
  end-page: 765
  ident: b0015
  article-title: Role of renewable energy policies in energy dependency in Finland: system dynamics approach
  publication-title: Appl Energy
– volume: 77
  start-page: 685
  year: 2007
  end-page: 694
  ident: b0200
  article-title: An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems
  publication-title: Electr Power Syst Res
– volume: 38
  start-page: 1241
  year: 2010
  end-page: 1250
  ident: b0040
  article-title: Energy security policies in EU-25-The expected cost of oil supply disruptions
  publication-title: Energy Policy
– volume: 38
  start-page: 99
  year: 2014
  end-page: 120
  ident: b0060
  article-title: A review on integrated renewable energy system based power generation for stand-alone applications: configurations, storage options, sizing methodologies and control
  publication-title: Renew Sustain Energy Rev
– volume: PP
  start-page: 1
  year: 2014
  end-page: 10
  ident: b0120
  article-title: Energy loss minimization in distribution systems utilizing an enhanced reconfiguration method integrating distributed generation
  publication-title: IEEE Syst J
– volume: 30
  start-page: 346
  year: 2015
  end-page: 356
  ident: b0105
  article-title: Assessing the potential of network reconfiguration to improve distributed generation hosting capacity in active distribution systems
  publication-title: IEEE Trans Power Syst
– volume: 162
  start-page: 733
  year: 2016
  end-page: 741
  ident: b0030
  article-title: The effect of renewable energy consumption on economic growth: evidence from top 38 countries
  publication-title: Appl Energy
– volume: 5
  start-page: 1835
  year: 2014
  end-page: 1844
  ident: b0165
  article-title: DG mix, reactive sources and energy storage units for optimizing microgrid reliability and supply security
  publication-title: IEEE Trans Smart Grid
– volume: 131
  start-page: 479
  year: 2014
  end-page: 489
  ident: b0050
  article-title: Comparing different support schemes for renewable electricity in the scope of an energy systems analysis
  publication-title: Appl Energy
– year: 1999
  ident: b0185
  article-title: Model building in mathematical programming
– volume: 39
  start-page: 370
  year: 2014
  end-page: 380
  ident: b0020
  article-title: Cost and CO
  publication-title: Renew Sustain Energy Rev
– volume: 30
  start-page: 2579
  year: 2015
  end-page: 2590
  ident: b0110
  article-title: Joint expansion planning of distributed generation and distribution networks
  publication-title: IEEE Trans Power Syst
– year: 2015
  ident: b0210
  article-title: DG investment planning analysis with renewable integration and considering emission costs
  publication-title: The 16th int. conf. on computer as a tool, EuroCon2015, Salamanca
– volume: 25
  start-page: 1678
  year: 2010
  end-page: 1685
  ident: b0090
  article-title: Study of reconfiguration for the distribution system with distributed generators
  publication-title: IEEE Trans Power Deliv
– volume: 179
  start-page: 350
  year: 2016
  end-page: 377
  ident: b0065
  article-title: Energy storage technologies and real life applications – a state of the art review
  publication-title: Appl Energy
– volume: 101
  start-page: 343
  year: Apr. 2016
  end-page: 358
  ident: b0180
  article-title: Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources
  publication-title: Energy
– start-page: 345
  year: 2015
  end-page: 404
  ident: b0215
  article-title: Renewable generation and distribution grid expansion planning
  publication-title: Smart and sustainable power systems
– volume: 48
  start-page: 260
  year: 2012
  end-page: 273
  ident: b0115
  article-title: Distribution grid reconfiguration reduces power losses and helps integrate renewables
  publication-title: Energy Policy
– volume: 31
  start-page: 1879
  issue: 3
  year: 2016
  ident: 10.1016/j.apenergy.2016.10.053_b0075
  article-title: Value of distribution network reconfiguration in presence of renewable energy resources
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2457954
– volume: 36
  start-page: 123
  issue: 3
  year: 2015
  ident: 10.1016/j.apenergy.2016.10.053_b0085
  article-title: A combined practical approach for distribution system loss reduction
  publication-title: Int J Ambient Energy
  doi: 10.1080/01430750.2013.829784
– volume: 6
  start-page: 110
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2016.10.053_b0155
  article-title: Impact of distributed generations with energy storage devices on the electric grid
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2011.2163013
– volume: 80
  start-page: 562
  issue: 5
  year: 2010
  ident: 10.1016/j.apenergy.2016.10.053_b0190
  article-title: A simpler and exact mathematical model for the computation of the minimal power losses tree
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2009.10.016
– volume: 101
  start-page: 343
  year: 2016
  ident: 10.1016/j.apenergy.2016.10.053_b0180
  article-title: Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.015
– volume: 115
  start-page: 233
  issue: Feb.
  year: 2014
  ident: 10.1016/j.apenergy.2016.10.053_b0070
  article-title: Loss reduction and loadability enhancement with DG: a dual-index analytical approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.11.010
– volume: 124
  start-page: 62
  year: 2014
  ident: 10.1016/j.apenergy.2016.10.053_b0100
  article-title: An optimal investment planning framework for multiple distributed generation units in industrial distribution systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.03.005
– volume: 25
  start-page: 1678
  issue: 3
  year: 2010
  ident: 10.1016/j.apenergy.2016.10.053_b0090
  article-title: Study of reconfiguration for the distribution system with distributed generators
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/TPWRD.2010.2046339
– volume: 30
  start-page: 346
  issue: 1
  year: 2015
  ident: 10.1016/j.apenergy.2016.10.053_b0105
  article-title: Assessing the potential of network reconfiguration to improve distributed generation hosting capacity in active distribution systems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2014.2320895
– volume: 171
  start-page: 501
  issue: Jun.
  year: 2016
  ident: 10.1016/j.apenergy.2016.10.053_b0025
  article-title: Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: a prospective analysis
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.094
– volume: 28
  start-page: 3420
  issue: 3
  year: 2013
  ident: 10.1016/j.apenergy.2016.10.053_b0055
  article-title: Optimal distributed generation placement in power distribution networks: models, methods, and future research
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2012.2237043
– ident: 10.1016/j.apenergy.2016.10.053_b0010
– volume: 30
  start-page: 2579
  issue: 5
  year: 2015
  ident: 10.1016/j.apenergy.2016.10.053_b0110
  article-title: Joint expansion planning of distributed generation and distribution networks
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2014.2364960
– volume: 52
  start-page: 256
  issue: Dec.
  year: 2015
  ident: 10.1016/j.apenergy.2016.10.053_b0035
  article-title: Renewable energy resources short-term scheduling and dynamic network reconfiguration for sustainable energy consumption
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.07.105
– volume: 38
  start-page: 1241
  issue: 3
  year: 2010
  ident: 10.1016/j.apenergy.2016.10.053_b0040
  article-title: Energy security policies in EU-25-The expected cost of oil supply disruptions
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.01.030
– volume: 26
  start-page: 1080
  issue: 3
  year: 2011
  ident: 10.1016/j.apenergy.2016.10.053_b0205
  article-title: Optimal network reconfiguration of large-scale distribution system using harmony search algorithm
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2010.2076839
– volume: 162
  start-page: 733
  issue: Jan.
  year: 2016
  ident: 10.1016/j.apenergy.2016.10.053_b0030
  article-title: The effect of renewable energy consumption on economic growth: evidence from top 38 countries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.104
– volume: 27
  start-page: 172
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2016.10.053_b0195
  article-title: Imposing radiality constraints in distribution system optimization problems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2011.2161349
– volume: 39
  start-page: 370
  issue: Nov.
  year: 2014
  ident: 10.1016/j.apenergy.2016.10.053_b0020
  article-title: Cost and CO2 reductions of solar photovoltaic power generation in China: perspectives for 2020
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.07.027
– year: 2010
  ident: 10.1016/j.apenergy.2016.10.053_b0175
  article-title: Optimal placement of DG using multiobjective particle swarm optimization
– volume: 77
  start-page: 685
  issue: 5–6
  year: 2007
  ident: 10.1016/j.apenergy.2016.10.053_b0200
  article-title: An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2006.06.005
– volume: 74
  start-page: 153
  issue: Jan.
  year: 2016
  ident: 10.1016/j.apenergy.2016.10.053_b0150
  article-title: Optimal operation of energy storage devices with RESs to improve efficiency of distribution grids; technical and economical assessment
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2015.07.029
– volume: 28
  start-page: 3226
  issue: 3
  year: 2013
  ident: 10.1016/j.apenergy.2016.10.053_b0140
  article-title: Optimal power flow in microgrids with energy storage
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2245925
– volume: 5
  start-page: 1835
  issue: 4
  year: 2014
  ident: 10.1016/j.apenergy.2016.10.053_b0165
  article-title: DG mix, reactive sources and energy storage units for optimizing microgrid reliability and supply security
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2014.2307919
– volume: 113
  start-page: 758
  issue: Jan.
  year: 2014
  ident: 10.1016/j.apenergy.2016.10.053_b0015
  article-title: Role of renewable energy policies in energy dependency in Finland: system dynamics approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.08.015
– volume: 170
  start-page: 476
  issue: May
  year: 2016
  ident: 10.1016/j.apenergy.2016.10.053_b0145
  article-title: Synergy of smart grids and hybrid distributed generation on the value of energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.01.095
– year: 2016
  ident: 10.1016/j.apenergy.2016.10.053_b0170
– volume: 38
  start-page: 99
  issue: Oct.
  year: 2014
  ident: 10.1016/j.apenergy.2016.10.053_b0060
  article-title: A review on integrated renewable energy system based power generation for stand-alone applications: configurations, storage options, sizing methodologies and control
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.05.079
– volume: 26
  start-page: 2762
  issue: 10
  year: 2011
  ident: 10.1016/j.apenergy.2016.10.053_b0135
  article-title: Optimal allocation and economic analysis of energy storage system in microgrids
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2011.2116808
– volume: PP
  start-page: 1
  issue: 99
  year: 2014
  ident: 10.1016/j.apenergy.2016.10.053_b0120
  article-title: Energy loss minimization in distribution systems utilizing an enhanced reconfiguration method integrating distributed generation
  publication-title: IEEE Syst J
– volume: 26
  start-page: 2090
  issue: 4
  year: 2011
  ident: 10.1016/j.apenergy.2016.10.053_b0095
  article-title: Optimal Distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/TPWRD.2011.2158246
– volume: 77
  start-page: 539
  issue: May
  year: 2015
  ident: 10.1016/j.apenergy.2016.10.053_b0130
  article-title: A method for optimal sizing energy storage systems for microgrids
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.12.039
– volume: 131
  start-page: 479
  issue: Oct.
  year: 2014
  ident: 10.1016/j.apenergy.2016.10.053_b0050
  article-title: Comparing different support schemes for renewable electricity in the scope of an energy systems analysis
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.06.046
– volume: 59
  start-page: 1130
  issue: Jun.
  year: 2016
  ident: 10.1016/j.apenergy.2016.10.053_b0045
  article-title: Distributed generation: a review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.01.023
– volume: 179
  start-page: 350
  issue: Oct.
  year: 2016
  ident: 10.1016/j.apenergy.2016.10.053_b0065
  article-title: Energy storage technologies and real life applications – a state of the art review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.097
– volume: 48
  start-page: 260
  issue: Sep.
  year: 2012
  ident: 10.1016/j.apenergy.2016.10.053_b0115
  article-title: Distribution grid reconfiguration reduces power losses and helps integrate renewables
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2012.05.023
– year: 1999
  ident: 10.1016/j.apenergy.2016.10.053_b0185
– volume: 4
  start-page: 367
  issue: 1
  year: 2013
  ident: 10.1016/j.apenergy.2016.10.053_b0080
  article-title: Operation schemes of smart distribution networks with distributed energy resources for loss reduction and service restoration
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2012.2233770
– year: 2015
  ident: 10.1016/j.apenergy.2016.10.053_b0210
  article-title: DG investment planning analysis with renewable integration and considering emission costs
– volume: 185
  start-page: 953
  year: 2017
  ident: 10.1016/j.apenergy.2016.10.053_b0005
  article-title: Clean, efficient and affordable energy for a sustainable future
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.005
– volume: 6
  start-page: 1524
  issue: 4
  year: 2015
  ident: 10.1016/j.apenergy.2016.10.053_b0160
  article-title: Contingency assessment and network reconfiguration in distribution grids including wind power and energy storage
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2015.2453368
– volume: 93
  start-page: 2299
  issue: Dec.
  year: 2015
  ident: 10.1016/j.apenergy.2016.10.053_b0125
  article-title: Reliability improvement in radial electrical distribution network by optimal planning of energy storage systems
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.125
– start-page: 345
  year: 2015
  ident: 10.1016/j.apenergy.2016.10.053_b0215
  article-title: Renewable generation and distribution grid expansion planning
SSID ssj0002120
Score 2.5240853
Snippet •A dynamic and multi-objective stochastic mixed integer linear programming model is developed.•A new mechanism to quantify the impacts of network flexibility...
Nowadays, there is a wide consensus about integrating more renewable energy sources-RESs to solve a multitude of global concerns such as meeting an increasing...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 44
SubjectTerms carbon footprint
case studies
Distributed generation
electricity
energy
Energy storage
fossil fuels
linear programming
Network reinforcement
Network switching
Renewable energy sources
Stochastic mixed integer linear programming
Title Impacts of optimal energy storage deployment and network reconfiguration on renewable integration level in distribution systems
URI https://dx.doi.org/10.1016/j.apenergy.2016.10.053
https://www.proquest.com/docview/2000388842
https://www.osti.gov/biblio/1706173
Volume 185
WOSCitedRecordID wos000390494600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOCAYTY4CMxC1KSJpPH6epE0PaNEEPFZfIduypU5dUTTsmLvxb_Hm8FztptgFjB6TKquza-Xi_-j3b7_0eIe8DzSQXkXAjpqFIfeUKwQMXdAloHKUxGLRJNpGenGTTKTsdDH62sTCX87Qss6srtvivooY6EDaGzt5D3N2gUAHfQehQgtih_CfBHzVxj42HRgXzwQXIQJkAP3SERBedQmGW3867vDSe4E6zNtazs7UFRYWRLmB1N8FVLa0ENszR0ahxo0XWXZswy3JC131rtzVxzfW7zRzMW9zA54s5pl-ezSrn0OugNFvNvpn4d1BZ3PnatRws199tgJGsnM_e8aaFC9zlsC4s86p2jr1Tr7-lEaS9LQ0byuUnLi7trk_TcW-iNaSRVmUbot9bysDsS5x7fGEeEx35Eg99-Qw_8XX27RtasfNVbN3gzvN2nBzHgcocxnlAtkZpzGA-3do_Gk8_dVbAyFKCto_Si07__R39yTAaVjDX37IUGvNn8pQ8sesWum_w9owMVLlNHvfYLLfJzngTNAk_tVqjfk5-WEjSSlMLSWrujFpI0g0kKUCSWkjSG5Ck8OkgSXuQpA0koYb2IUktJF-QyeF4cvDRtYk_XAkL6JVbgJLA42GWCslhyZIJoZnWI5VEOoqywpeZAN2UFr7iIuE8zDLJIz-Ugic8leEOGZZVqV4SGopEySyV0o-LiBUhi_koEyrUidZBFrFdErcvPZeWFB9zs8zzv4t9l3zo-i0MLcydPVgr09wat8ZozQGud_bdQxBgP2R2lugCBx2R-SpIofVdi40cdAMe-PFSVesaU8wi2RO8ylf3vt898mjz13xNhqvlWr0hD-XlalYv31q0_wKS6ufM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impacts+of+optimal+energy+storage+deployment+and+network+reconfiguration+on+renewable+integration+level+in+distribution+systems&rft.jtitle=Applied+energy&rft.au=Santos%2C+S%C3%A9rgio+F.&rft.au=Fitiwi%2C+Desta+Z.&rft.au=Cruz%2C+Marco+R.M.&rft.au=Cabrita%2C+Carlos+M.P.&rft.date=2017-01-01&rft.issn=0306-2619&rft.volume=185&rft.spage=44&rft.epage=55&rft_id=info:doi/10.1016%2Fj.apenergy.2016.10.053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2016_10_053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon