Feasibility study of an online toxicological sensor based on the optical waveguide technique

Morphological properties of the cells often change as an early response to the presence of a pharmacologically acting toxic substance [Etcheverry, S.B., Crans, D.C., Keramidas, A.D., Cortizo, A.M., Arch. Biochem. Biophys. 338 (1997) 7–14]. Recently it has been shown that living animal cell adhesion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics Jg. 15; H. 9; S. 423 - 429
Hauptverfasser: Vörös, J., Graf, R., Kenausis, G.L., Bruinink, A., Mayer, J., Textor, M., Wintermantel, E., Spencer, N.D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Lausanne Elsevier B.V 01.11.2000
Elsevier Science
Schlagworte:
ISSN:0956-5663, 1873-4235
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Morphological properties of the cells often change as an early response to the presence of a pharmacologically acting toxic substance [Etcheverry, S.B., Crans, D.C., Keramidas, A.D., Cortizo, A.M., Arch. Biochem. Biophys. 338 (1997) 7–14]. Recently it has been shown that living animal cell adhesion and spreading can be monitored online and quantitatively via the interaction of the cells with the evanescent electromagnetic field present at the surface of an optical waveguide [Ramsden, J.J., Li, S.Y., Heinzle, E., Prinosil, J.E. Cytometry 19 (1995) 97–102]. In the present study, optical waveguide lightmode spectroscopy (OWLS) and confocal laser scanning microscopy (CLSM), which provides information about the shape of the cells at the surface, were compared under identical experimental conditions. This allowed for the correlation between the cell-shape information from CLSM and the cell-surface interaction measurements from OWLS. The proposed design of the microsystem sensor involves the establishment of a cell layer on the surface of the waveguide and the subsequent online measurement of the morphological response of the cells to various toxic substances. In the present study, the setup was evaluated using cells from an osteoblastic MC 3T3-E1 cell line, and sodium hypochlorite was used as model toxic substance. Comparing the OWLS signal to the morphological response measured by CLSM reveals that OWLS is effective in monitoring not only cell attachment and spreading but also the cellular response to toxic compounds (i.e. by means of change in cell morphology). For the model toxin, the OWLS measurements indicate that, at concentrations above 0.01%, the cells exhibit a clearly discernable morphological effect (i.e. a decrease in average cell contact area). Thus, the potential of an on-line sensor based on OWLS to applications in toxicology, pharmacy and biocompatibility was demonstrated.
AbstractList Morphological properties of the cells often change as an early response to the presence of a pharmacologically acting toxic substance. Recently it has been shown that living animal cell adhesion and spreading can be monitored online and quantitatively via the interaction of the cells with the evanescent electromagnetic field present at the surface of an optical waveguide. In the present study, optical waveguide lightmode spectroscopy (OWLS) and confocal laser scanning microscopy (CLSM), which provides information about the shape of the cells at the surface, were compared under identical experimental conditions. This allowed for the correlation between the cell-shape information from CLSM and the cell-surface interaction measurements from OWLS. The proposed design of the microsystem sensor involves the establishment of a cell layer on the surface of the waveguide and the subsequent online measurement of the morphological response of the cells to various toxic substances. In the present study, the setup was evaluated using cells from an osteoblastic MC 3T3-E1 cell line, and sodium hypochlorite was used as model toxic substance. Comparing the OWLS signal to the morphological response measured by CLSM reveals that OWLS is effective in monitoring not only cell attachment and spreading but also the cellular response to toxic compounds (i.e. by means of change in cell morphology). For the model toxin, the OWLS measurements indicate that, at concentrations above 0.01%, the cells exhibit a clearly discernable morphological effect (i.e. a decrease in average cell contact area). Thus, the potential of an on-line sensor based on OWLS to applications in toxicology, pharmacy and biocompatibility was demonstrated.
Morphological properties of the cells often change as an early response to the presence of a pharmacologically acting toxic substance [Etcheverry, S.B., Crans, D.C., Keramidas, A.D., Cortizo, A.M., Arch. Biochem. Biophys. 338 (1997) 7-14]. Recently it has been shown that living animal cell adhesion and spreading can be monitored online and quantitatively via the interaction of the cells with the evanescent electromagnetic field present at the surface of an optical waveguide [Ramsden, J.J., Li, S.Y., Heinzle, E., Prinosil, J.E. Cytometry 19 (1995) 97-102]. In the present study, optical waveguide lightmode spectroscopy (OWLS) and confocal laser scanning microscopy (CLSM), which provides information about the shape of the cells at the surface, were compared under identical experimental conditions. This allowed for the correlation between the cell-shape information from CLSM and the cell-surface interaction measurements from OWLS. The proposed design of the microsystem sensor involves the establishment of a cell layer on the surface of the waveguide and the subsequent online measurement of the morphological response of the cells to various toxic substances. In the present study, the setup was evaluated using cells from an osteoblastic MC 3T3-E1 cell line, and sodium hypochlorite was used as model toxic substance. Comparing the OWLS signal to the morphological response measured by CLSM reveals that OWLS is effective in monitoring not only cell attachment and spreading but also the cellular response to toxic compounds (i.e. by means of change in cell morphology). For the model toxin, the OWLS measurements indicate that, at concentrations above 0.01%, the cells exhibit a clearly discernable morphological effect (i.e. a decrease in average cell contact area). Thus, the potential of an on-line sensor based on OWLS to applications in toxicology, pharmacy and biocompatibility was demonstrated.
Morphological properties of the cells often change as an early response to the presence of a pharmacologically acting toxic substance [Etcheverry, S.B., Crans, D.C., Keramidas, A.D., Cortizo, A.M., Arch. Biochem. Biophys. 338 (1997) 7-14]. Recently it has been shown that living animal cell adhesion and spreading can be monitored online and quantitatively via the interaction of the cells with the evanescent electromagnetic field present at the surface of an optical waveguide [Ramsden, J.J., Li, S.Y., Heinzle, E., Prinosil, J.E. Cytometry 19 (1995) 97-102]. In the present study, optical waveguide lightmode spectroscopy (OWLS) and confocal laser scanning microscopy (CLSM), which provides information about the shape of the cells at the surface, were compared under identical experimental conditions. This allowed for the correlation between the cell-shape information from CLSM and the cell-surface interaction measurements from OWLS. The proposed design of the microsystem sensor involves the establishment of a cell layer on the surface of the waveguide and the subsequent online measurement of the morphological response of the cells to various toxic substances. In the present study, the setup was evaluated using cells from an osteoblastic MC 3T3-E1 cell line, and sodium hypochlorite was used as model toxic substance. Comparing the OWLS signal to the morphological response measured by CLSM reveals that OWLS is effective in monitoring not only cell attachment and spreading but also the cellular response to toxic compounds (i.e. by means of change in cell morphology). For the model toxin, the OWLS measurements indicate that, at concentrations above 0.01%, the cells exhibit a clearly discernable morphological effect (i.e. a decrease in average cell contact area). Thus, the potential of an on-line sensor based on OWLS to applications in toxicology, pharmacy and biocompatibility was demonstrated.Morphological properties of the cells often change as an early response to the presence of a pharmacologically acting toxic substance [Etcheverry, S.B., Crans, D.C., Keramidas, A.D., Cortizo, A.M., Arch. Biochem. Biophys. 338 (1997) 7-14]. Recently it has been shown that living animal cell adhesion and spreading can be monitored online and quantitatively via the interaction of the cells with the evanescent electromagnetic field present at the surface of an optical waveguide [Ramsden, J.J., Li, S.Y., Heinzle, E., Prinosil, J.E. Cytometry 19 (1995) 97-102]. In the present study, optical waveguide lightmode spectroscopy (OWLS) and confocal laser scanning microscopy (CLSM), which provides information about the shape of the cells at the surface, were compared under identical experimental conditions. This allowed for the correlation between the cell-shape information from CLSM and the cell-surface interaction measurements from OWLS. The proposed design of the microsystem sensor involves the establishment of a cell layer on the surface of the waveguide and the subsequent online measurement of the morphological response of the cells to various toxic substances. In the present study, the setup was evaluated using cells from an osteoblastic MC 3T3-E1 cell line, and sodium hypochlorite was used as model toxic substance. Comparing the OWLS signal to the morphological response measured by CLSM reveals that OWLS is effective in monitoring not only cell attachment and spreading but also the cellular response to toxic compounds (i.e. by means of change in cell morphology). For the model toxin, the OWLS measurements indicate that, at concentrations above 0.01%, the cells exhibit a clearly discernable morphological effect (i.e. a decrease in average cell contact area). Thus, the potential of an on-line sensor based on OWLS to applications in toxicology, pharmacy and biocompatibility was demonstrated.
Author Vörös, J.
Graf, R.
Wintermantel, E.
Spencer, N.D.
Mayer, J.
Textor, M.
Kenausis, G.L.
Bruinink, A.
Author_xml – sequence: 1
  givenname: J.
  surname: Vörös
  fullname: Vörös, J.
  organization: Department of Materials, Laboratory for Surface Science and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
– sequence: 2
  givenname: R.
  surname: Graf
  fullname: Graf, R.
  organization: Department of Materials, Institute for Biocompatible Materials Science and Engineering, ETH-Zurich, CH-8952 Zurich, Switzerland
– sequence: 3
  givenname: G.L.
  surname: Kenausis
  fullname: Kenausis, G.L.
  organization: Department of Materials, Laboratory for Surface Science and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
– sequence: 4
  givenname: A.
  surname: Bruinink
  fullname: Bruinink, A.
  organization: Department of Materials, Institute for Biocompatible Materials Science and Engineering, ETH-Zurich, CH-8952 Zurich, Switzerland
– sequence: 5
  givenname: J.
  surname: Mayer
  fullname: Mayer, J.
  organization: Department of Materials, Institute for Biocompatible Materials Science and Engineering, ETH-Zurich, CH-8952 Zurich, Switzerland
– sequence: 6
  givenname: M.
  surname: Textor
  fullname: Textor, M.
  email: textor@surface.mat.ethz.ch
  organization: Department of Materials, Laboratory for Surface Science and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
– sequence: 7
  givenname: E.
  surname: Wintermantel
  fullname: Wintermantel, E.
  organization: Department of Materials, Institute for Biocompatible Materials Science and Engineering, ETH-Zurich, CH-8952 Zurich, Switzerland
– sequence: 8
  givenname: N.D.
  surname: Spencer
  fullname: Spencer, N.D.
  organization: Department of Materials, Laboratory for Surface Science and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=856642$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/11419636$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9rFTEUxYNU7OvTj6AMCFIXozeTmUxCFyLFqlBwoe6EkMnctJF5yTPJq33f3rw_VnAzq7vI75zLzTln5MQHj4Q8p_CGAuVvv4LseN1xzs4BXgNQaGp4RBZU9KxuG9adkMUDckrOUvoJAD2V8IScUtpSyRlfkB9XqJMb3OTytkp5M26rYCvtq-An57HK4d6ZMIUbZ_RUJfQpxGrQCcdCVPkWq7DO-7ff-g5vNm4sGjS33v3a4FPy2Oop4bPjXJLvVx--XX6qr798_Hz5_ro2XStyPXJjtZRgmDXlDjo0THDKGtZSaCWOOEgUg-io1b1hUmuhuW3F2FtjG9SSLcmrg-86hrI2ZbVyyeA0aY9hk1TfcOhaBrNg03eMccrnQdpykC2dB4EyLhpRwBdHcDOscFTr6FY6btXfKArw8gjoVP7TRu2NSw-cKDmWWJekO1AmhpQi2n9GoHbFUPtiqF3qCkDti6F2l1_8pzMu6-yCz1G7aVb97qDGkuKdw6iScegNji6iyWoMbsbhD0Ee0VI
CitedBy_id crossref_primary_10_1080_10799890903064119
crossref_primary_10_1016_j_biomaterials_2010_07_092
crossref_primary_10_1088_0022_3727_40_23_S07
crossref_primary_10_1089_154065803322163795
crossref_primary_10_1016_j_bios_2006_05_025
crossref_primary_10_1016_j_jhazmat_2018_02_045
crossref_primary_10_1529_biophysj_105_077818
crossref_primary_10_1002_biot_200800020
crossref_primary_10_1371_journal_pone_0107978
crossref_primary_10_1016_j_trac_2013_08_012
crossref_primary_10_1002_ls_50
crossref_primary_10_1089_adt_2006_4_583
crossref_primary_10_1002_bit_10363
crossref_primary_10_1016_j_rbmret_2007_11_019
crossref_primary_10_1117_1_3446672
crossref_primary_10_3390_s7102316
crossref_primary_10_1016_j_micron_2006_11_009
crossref_primary_10_3390_bios5020187
crossref_primary_10_1002_adma_200700758
crossref_primary_10_1021_ma049076w
crossref_primary_10_1016_j_mee_2011_05_022
crossref_primary_10_1016_j_semcdb_2009_01_013
crossref_primary_10_1517_17460441_2010_533652
crossref_primary_10_1016_j_snb_2010_11_054
crossref_primary_10_1063_1_1862756
crossref_primary_10_1016_j_ab_2013_07_017
crossref_primary_10_3390_photonics2010124
crossref_primary_10_1039_C0AN00560F
Cites_doi 10.1002/(SICI)1097-4636(199804)40:1<124::AID-JBM14>3.0.CO;2-O
10.1016/0887-2333(88)90030-6
10.1007/BF00270034
10.1016/S0142-9612(97)00107-5
10.1063/1.1148069
10.1016/S0956-5663(97)00045-6
10.1002/cyto.990190202
10.1007/BF01052813
10.2330/joralbiosci1965.23.899
10.1126/science.1329199
10.1126/science.619467
10.1242/jcs.109.6.1597
10.1016/0956-5663(96)89087-7
10.1083/jcb.103.1.171
10.1016/0003-2697(80)90165-7
10.1002/(SICI)1097-4636(199802)39:2<331::AID-JBM22>3.0.CO;2-E
10.1083/jcb.96.1.191
10.1021/ac00226a030
10.1016/8756-3282(96)00068-3
10.1006/abbi.1996.9778
10.1038/366591a0
10.1016/S0142-9612(97)00113-0
10.1021/ac9805201
10.1039/a703137h
10.1016/0142-9612(96)88681-9
10.1016/S0142-9612(97)00109-9
10.1021/la971005l
ContentType Journal Article
Copyright 2000 Elsevier Science S.A.
2001 INIST-CNRS
Copyright_xml – notice: 2000 Elsevier Science S.A.
– notice: 2001 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7U5
L7M
7X8
DOI 10.1016/S0956-5663(00)00102-0
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
Engineering Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1873-4235
EndPage 429
ExternalDocumentID 519473
11419636
856642
10_1016_S0956_5663_00_00102_0
S0956566300001020
Genre Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.HR
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HMU
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX3
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SST
SSU
SSZ
T5K
TN5
WUQ
XFK
XPP
Y6R
YK3
ZMT
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7U5
L7M
7X8
ID FETCH-LOGICAL-c548t-d6cfa990c3fc0101b2386132341049edeb9e8b851fa7c39aa8a6f48d7fcf2ea93
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000165760700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-5663
IngestDate Sat Sep 27 18:07:24 EDT 2025
Thu Oct 02 11:50:57 EDT 2025
Sun Sep 28 06:36:39 EDT 2025
Thu Oct 02 06:46:57 EDT 2025
Wed Feb 19 01:25:37 EST 2025
Mon Jul 21 09:15:37 EDT 2025
Sat Nov 29 04:42:54 EST 2025
Tue Nov 18 22:29:13 EST 2025
Fri Feb 23 02:18:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Online
Cells
Surface
Cell culture
Optical spectrometry
Toxicity
Optical sensor
Confocal microscopy
In vitro
Scanning microscope
Investigation method
Biosensor
Morphology
Laser
Hypochlorites
Osteoblast
Optical waveguide
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c548t-d6cfa990c3fc0101b2386132341049edeb9e8b851fa7c39aa8a6f48d7fcf2ea93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 11419636
PQID 20136828
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_72605430
proquest_miscellaneous_27533616
proquest_miscellaneous_21460941
proquest_miscellaneous_20136828
pubmed_primary_11419636
pascalfrancis_primary_856642
crossref_primary_10_1016_S0956_5663_00_00102_0
crossref_citationtrail_10_1016_S0956_5663_00_00102_0
elsevier_sciencedirect_doi_10_1016_S0956_5663_00_00102_0
PublicationCentury 2000
PublicationDate 2000-11-01
PublicationDateYYYYMMDD 2000-11-01
PublicationDate_xml – month: 11
  year: 2000
  text: 2000-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
– name: England
PublicationTitle Biosensors & bioelectronics
PublicationTitleAlternate Biosens Bioelectron
PublicationYear 2000
Publisher Elsevier B.V
Elsevier Science
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science
References McKay, Macnair, MacDonald, Grant (BIB21) 1996; 17
Fredriksson, Kihlman, Rodahl, Kasemo (BIB10) 1998; 14
Ehret, Baumann, Brischwein, Schwinde, Stegbauer, Wolf (BIB8) 1997; 12
Nellen, P.M. Ph.D. dissertation ETH No. 9871; ETH Zurich: 1992, 75–80.
Ramsden (BIB27) 1993; 73
Kurrat (BIB14) 1998
Macholan, Schanel (BIB18) 1984; 39
Rechnitz, Riechel, Kobos, Meyerhoff (BIB29) 1977; 199
Chittur (BIB6) 1998; 19
Kodama, Amagai, Sudo, Kasai, Yamamoto (BIB13) 1981; 23
Sastry (BIB31) 1995
Borenfreund, Babich, Martin-Algaucil (BIB3) 1998; 2
McConnell, Owicki, Parce, Miller, Baxter, Wada, Pitchford (BIB20) 1992; 257
Moreau, Chappard, Lesourd, Motheard, Basle (BIB22) 1998; 40
Burmiester, Olivier, Reichert, Truskey (BIB5) 1998; 19
Honig, Hume (BIB12) 1986; 103
Mulchandini, Mulchandini, Kaneva, Chen (BIB23) 1998; 70
Arnold, Rechnitz (BIB2) 1981; 53
Mackie, Ramsey (BIB19) 1996; 109
Wintermantel, Ha (BIB34) 1996
Labarca, Paigen (BIB16) 1980; 102
Steinem, Janshoff, Wegener, Ulrich, Willenbrink, Sieber, Galla (BIB32) 1997; 12
Sudo, Kodama, Kasai (BIB33) 1983; 96
Plowman, Saavedra, Reichert (BIB25) 1998; 19
Yamamoto (BIB35) 1998; 39
Luegmayr, Varga, Frank, Roschger, Klaushofer (BIB17) 1996; 18
Ragnarson, Bengtsson, Haegerstrand (BIB26) 1992; 97
Rodahl, M., Hook, F., Fredriksson, C., Keller, C., Krozer, A., Brzezinski, P., Vionova, M., Kasemo, B. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Diss. 1997, 107, 229–246.
Ramsden, Li, Heinzle, Prinosil (BIB28) 1995; 19
Boyan, Hummert, Kieswetter, Schraub, Dean, Schwatrz (BIB4) 1995; 5
Divies (BIB7) 1975; 126
Aizawa (BIB1) 1998
Kurrat, Textor, Ramsden, Boni, Spencer (BIB15) 1997; 68
Giaever, Keese (BIB11) 1993; 366
Etcheverry, Crans, Keramidas, Cortizo (BIB9) 1997; 338
Sastry (10.1016/S0956-5663(00)00102-0_BIB31) 1995
Macholan (10.1016/S0956-5663(00)00102-0_BIB18) 1984; 39
Rechnitz (10.1016/S0956-5663(00)00102-0_BIB29) 1977; 199
Ragnarson (10.1016/S0956-5663(00)00102-0_BIB26) 1992; 97
Kodama (10.1016/S0956-5663(00)00102-0_BIB13) 1981; 23
Kurrat (10.1016/S0956-5663(00)00102-0_BIB14) 1998
Mulchandini (10.1016/S0956-5663(00)00102-0_BIB23) 1998; 70
Ramsden (10.1016/S0956-5663(00)00102-0_BIB27) 1993; 73
Boyan (10.1016/S0956-5663(00)00102-0_BIB4) 1995; 5
Aizawa (10.1016/S0956-5663(00)00102-0_BIB1) 1998
Giaever (10.1016/S0956-5663(00)00102-0_BIB11) 1993; 366
Yamamoto (10.1016/S0956-5663(00)00102-0_BIB35) 1998; 39
Ehret (10.1016/S0956-5663(00)00102-0_BIB8) 1997; 12
Fredriksson (10.1016/S0956-5663(00)00102-0_BIB10) 1998; 14
Ramsden (10.1016/S0956-5663(00)00102-0_BIB28) 1995; 19
10.1016/S0956-5663(00)00102-0_BIB30
McConnell (10.1016/S0956-5663(00)00102-0_BIB20) 1992; 257
Sudo (10.1016/S0956-5663(00)00102-0_BIB33) 1983; 96
McKay (10.1016/S0956-5663(00)00102-0_BIB21) 1996; 17
Kurrat (10.1016/S0956-5663(00)00102-0_BIB15) 1997; 68
Etcheverry (10.1016/S0956-5663(00)00102-0_BIB9) 1997; 338
Luegmayr (10.1016/S0956-5663(00)00102-0_BIB17) 1996; 18
Steinem (10.1016/S0956-5663(00)00102-0_BIB32) 1997; 12
Wintermantel (10.1016/S0956-5663(00)00102-0_BIB34) 1996
Chittur (10.1016/S0956-5663(00)00102-0_BIB6) 1998; 19
Mackie (10.1016/S0956-5663(00)00102-0_BIB19) 1996; 109
Arnold (10.1016/S0956-5663(00)00102-0_BIB2) 1981; 53
Divies (10.1016/S0956-5663(00)00102-0_BIB7) 1975; 126
Plowman (10.1016/S0956-5663(00)00102-0_BIB25) 1998; 19
10.1016/S0956-5663(00)00102-0_BIB24
Burmiester (10.1016/S0956-5663(00)00102-0_BIB5) 1998; 19
Honig (10.1016/S0956-5663(00)00102-0_BIB12) 1986; 103
Labarca (10.1016/S0956-5663(00)00102-0_BIB16) 1980; 102
Borenfreund (10.1016/S0956-5663(00)00102-0_BIB3) 1998; 2
Moreau (10.1016/S0956-5663(00)00102-0_BIB22) 1998; 40
References_xml – volume: 257
  start-page: 1906
  year: 1992
  end-page: 1912
  ident: BIB20
  publication-title: Science
– volume: 68
  start-page: 2172
  year: 1997
  end-page: 2176
  ident: BIB15
  publication-title: Rev. Sci. Instrum.
– year: 1998
  ident: BIB14
  publication-title: Adsorption of Biomolecules on Titanium Oxide Layers in Biological Model Solutions
– start-page: 315
  year: 1995
  end-page: 337
  ident: BIB31
  publication-title: Recent Advances in Biological Treatment and Environmental Monitoring
– volume: 19
  start-page: 301
  year: 1998
  end-page: 305
  ident: BIB6
  publication-title: Biomaterials
– volume: 53
  start-page: 515
  year: 1981
  end-page: 518
  ident: BIB2
  publication-title: Anal. Chem.
– volume: 338
  start-page: 7
  year: 1997
  end-page: 14
  ident: BIB9
  publication-title: Arch. Biochem. Biophys.
– volume: 5
  start-page: 323
  year: 1995
  end-page: 335
  ident: BIB4
  publication-title: Cell. Mater.
– volume: 126
  start-page: 175
  year: 1975
  end-page: 186
  ident: BIB7
  publication-title: Ann. Microbiol.
– start-page: 339
  year: 1998
  end-page: 356
  ident: BIB1
  publication-title: New Trends in Bioelectrochemistry
– volume: 12
  start-page: 787
  year: 1997
  end-page: 808
  ident: BIB32
  article-title: Impedance and shear wave resonance analysis of ligand-receptor interactions at functionalized surfaces and of cell monolayers
  publication-title: Biosci. Bioelectron.
– volume: 73
  start-page: 853
  year: 1993
  end-page: 877
  ident: BIB27
  publication-title: J. Stat. Phys.
– volume: 12
  start-page: 29
  year: 1997
  end-page: 41
  ident: BIB8
  publication-title: Biosens. Bioelectron.
– volume: 2
  start-page: 1
  year: 1998
  end-page: 6
  ident: BIB3
  publication-title: Toxicol. In Vitro
– reference: Rodahl, M., Hook, F., Fredriksson, C., Keller, C., Krozer, A., Brzezinski, P., Vionova, M., Kasemo, B. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Diss. 1997, 107, 229–246.
– volume: 23
  start-page: 899
  year: 1981
  end-page: 901
  ident: BIB13
  publication-title: Jpn. J. Oral Biol.
– reference: Nellen, P.M. Ph.D. dissertation ETH No. 9871; ETH Zurich: 1992, 75–80.
– volume: 40
  start-page: 124
  year: 1998
  end-page: 131
  ident: BIB22
  publication-title: Biomed. Mater. Res.
– volume: 39
  start-page: 1191
  year: 1984
  end-page: 1197
  ident: BIB18
  publication-title: Biologia
– volume: 102
  start-page: 344
  year: 1980
  end-page: 352
  ident: BIB16
  publication-title: Anal. Biochem.
– volume: 18
  start-page: 591
  year: 1996
  end-page: 599
  ident: BIB17
  publication-title: Bone
– volume: 17
  start-page: 1339
  year: 1996
  end-page: 1344
  ident: BIB21
  publication-title: Biomaterials
– volume: 199
  start-page: 440
  year: 1977
  end-page: 441
  ident: BIB29
  publication-title: Science
– year: 1996
  ident: BIB34
  publication-title: Biokompatible Werkstoffe und Bauweisen
– volume: 97
  start-page: 329
  year: 1992
  end-page: 333
  ident: BIB26
  publication-title: Hystochemistry
– volume: 19
  start-page: 307
  year: 1998
  end-page: 325
  ident: BIB5
  publication-title: Biomaterials
– volume: 109
  start-page: 1597
  year: 1996
  end-page: 1604
  ident: BIB19
  publication-title: Cell Sci.
– volume: 103
  start-page: 171
  year: 1986
  end-page: 187
  ident: BIB12
  publication-title: Cell Biol.
– volume: 19
  start-page: 97
  year: 1995
  end-page: 102
  ident: BIB28
  publication-title: Cytometry
– volume: 96
  start-page: 191
  year: 1983
  end-page: 198
  ident: BIB33
  publication-title: Cell Biol.
– volume: 14
  start-page: 248
  year: 1998
  end-page: 251
  ident: BIB10
  publication-title: Langmuir
– volume: 366
  start-page: 591
  year: 1993
  end-page: 592
  ident: BIB11
  publication-title: Nature
– volume: 19
  start-page: 341
  year: 1998
  end-page: 355
  ident: BIB25
  publication-title: Biomaterials
– volume: 70
  start-page: 4140
  year: 1998
  end-page: 4145
  ident: BIB23
  publication-title: Anal. Chem.
– volume: 39
  start-page: 331
  year: 1998
  end-page: 340
  ident: BIB35
  publication-title: Biomed. Mater. Res.
– volume: 39
  start-page: 1191
  year: 1984
  ident: 10.1016/S0956-5663(00)00102-0_BIB18
  publication-title: Biologia
– volume: 40
  start-page: 124
  year: 1998
  ident: 10.1016/S0956-5663(00)00102-0_BIB22
  publication-title: Biomed. Mater. Res.
  doi: 10.1002/(SICI)1097-4636(199804)40:1<124::AID-JBM14>3.0.CO;2-O
– volume: 2
  start-page: 1
  year: 1998
  ident: 10.1016/S0956-5663(00)00102-0_BIB3
  publication-title: Toxicol. In Vitro
  doi: 10.1016/0887-2333(88)90030-6
– volume: 97
  start-page: 329
  year: 1992
  ident: 10.1016/S0956-5663(00)00102-0_BIB26
  publication-title: Hystochemistry
  doi: 10.1007/BF00270034
– volume: 19
  start-page: 301
  year: 1998
  ident: 10.1016/S0956-5663(00)00102-0_BIB6
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(97)00107-5
– start-page: 315
  year: 1995
  ident: 10.1016/S0956-5663(00)00102-0_BIB31
– volume: 68
  start-page: 2172
  year: 1997
  ident: 10.1016/S0956-5663(00)00102-0_BIB15
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1148069
– volume: 12
  start-page: 787
  year: 1997
  ident: 10.1016/S0956-5663(00)00102-0_BIB32
  article-title: Impedance and shear wave resonance analysis of ligand-receptor interactions at functionalized surfaces and of cell monolayers
  publication-title: Biosci. Bioelectron.
  doi: 10.1016/S0956-5663(97)00045-6
– year: 1998
  ident: 10.1016/S0956-5663(00)00102-0_BIB14
– volume: 19
  start-page: 97
  year: 1995
  ident: 10.1016/S0956-5663(00)00102-0_BIB28
  publication-title: Cytometry
  doi: 10.1002/cyto.990190202
– volume: 73
  start-page: 853
  year: 1993
  ident: 10.1016/S0956-5663(00)00102-0_BIB27
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01052813
– volume: 126
  start-page: 175
  year: 1975
  ident: 10.1016/S0956-5663(00)00102-0_BIB7
  publication-title: Ann. Microbiol.
– volume: 23
  start-page: 899
  year: 1981
  ident: 10.1016/S0956-5663(00)00102-0_BIB13
  publication-title: Jpn. J. Oral Biol.
  doi: 10.2330/joralbiosci1965.23.899
– year: 1996
  ident: 10.1016/S0956-5663(00)00102-0_BIB34
– volume: 257
  start-page: 1906
  year: 1992
  ident: 10.1016/S0956-5663(00)00102-0_BIB20
  publication-title: Science
  doi: 10.1126/science.1329199
– volume: 199
  start-page: 440
  year: 1977
  ident: 10.1016/S0956-5663(00)00102-0_BIB29
  publication-title: Science
  doi: 10.1126/science.619467
– volume: 109
  start-page: 1597
  year: 1996
  ident: 10.1016/S0956-5663(00)00102-0_BIB19
  publication-title: Cell Sci.
  doi: 10.1242/jcs.109.6.1597
– volume: 12
  start-page: 29
  year: 1997
  ident: 10.1016/S0956-5663(00)00102-0_BIB8
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/0956-5663(96)89087-7
– volume: 103
  start-page: 171
  year: 1986
  ident: 10.1016/S0956-5663(00)00102-0_BIB12
  publication-title: Cell Biol.
  doi: 10.1083/jcb.103.1.171
– start-page: 339
  year: 1998
  ident: 10.1016/S0956-5663(00)00102-0_BIB1
– volume: 102
  start-page: 344
  year: 1980
  ident: 10.1016/S0956-5663(00)00102-0_BIB16
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(80)90165-7
– ident: 10.1016/S0956-5663(00)00102-0_BIB24
– volume: 39
  start-page: 331
  year: 1998
  ident: 10.1016/S0956-5663(00)00102-0_BIB35
  publication-title: Biomed. Mater. Res.
  doi: 10.1002/(SICI)1097-4636(199802)39:2<331::AID-JBM22>3.0.CO;2-E
– volume: 96
  start-page: 191
  year: 1983
  ident: 10.1016/S0956-5663(00)00102-0_BIB33
  publication-title: Cell Biol.
  doi: 10.1083/jcb.96.1.191
– volume: 53
  start-page: 515
  year: 1981
  ident: 10.1016/S0956-5663(00)00102-0_BIB2
  publication-title: Anal. Chem.
  doi: 10.1021/ac00226a030
– volume: 18
  start-page: 591
  year: 1996
  ident: 10.1016/S0956-5663(00)00102-0_BIB17
  publication-title: Bone
  doi: 10.1016/8756-3282(96)00068-3
– volume: 338
  start-page: 7
  year: 1997
  ident: 10.1016/S0956-5663(00)00102-0_BIB9
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1996.9778
– volume: 5
  start-page: 323
  year: 1995
  ident: 10.1016/S0956-5663(00)00102-0_BIB4
  publication-title: Cell. Mater.
– volume: 366
  start-page: 591
  year: 1993
  ident: 10.1016/S0956-5663(00)00102-0_BIB11
  publication-title: Nature
  doi: 10.1038/366591a0
– volume: 19
  start-page: 341
  year: 1998
  ident: 10.1016/S0956-5663(00)00102-0_BIB25
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(97)00113-0
– volume: 70
  start-page: 4140
  year: 1998
  ident: 10.1016/S0956-5663(00)00102-0_BIB23
  publication-title: Anal. Chem.
  doi: 10.1021/ac9805201
– ident: 10.1016/S0956-5663(00)00102-0_BIB30
  doi: 10.1039/a703137h
– volume: 17
  start-page: 1339
  year: 1996
  ident: 10.1016/S0956-5663(00)00102-0_BIB21
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(96)88681-9
– volume: 19
  start-page: 307
  year: 1998
  ident: 10.1016/S0956-5663(00)00102-0_BIB5
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(97)00109-9
– volume: 14
  start-page: 248
  year: 1998
  ident: 10.1016/S0956-5663(00)00102-0_BIB10
  publication-title: Langmuir
  doi: 10.1021/la971005l
SSID ssj0007190
Score 1.8402889
Snippet Morphological properties of the cells often change as an early response to the presence of a pharmacologically acting toxic substance [Etcheverry, S.B., Crans,...
Morphological properties of the cells often change as an early response to the presence of a pharmacologically acting toxic substance. Recently it has been...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 423
SubjectTerms 3T3 Cells
Animal cell culture
Animals
Biological and medical sciences
Biosensing Techniques - instrumentation
Cell Adhesion - drug effects
Cell Movement - drug effects
Cells
General aspects. Methods
Medical sciences
Mice
Microscopy, Confocal
Online
Online Systems
Optical microscopy
Optical waveguides
Optics and Photonics - instrumentation
Osteoblasts - cytology
Osteoblasts - drug effects
Sodium Hypochlorite - toxicity
Surface
Toxic materials
Toxicology
Toxicology - instrumentation
Title Feasibility study of an online toxicological sensor based on the optical waveguide technique
URI https://dx.doi.org/10.1016/S0956-5663(00)00102-0
https://www.ncbi.nlm.nih.gov/pubmed/11419636
https://www.proquest.com/docview/20136828
https://www.proquest.com/docview/21460941
https://www.proquest.com/docview/27533616
https://www.proquest.com/docview/72605430
Volume 15
WOSCitedRecordID wos000165760700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4235
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007190
  issn: 0956-5663
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DSQQQjC-CmP4gUmgKZCvJvbjBO0ATQWJDvUByXISG0VMSWna0j3yn3OOHacV6goPvERR5I8o98vd7872HULPgdW6CXhWjscz6YRgVJwk9RKHCiFUfZEoSHhdbCIeDsl4TD91Or-aszCLi7goyHJJJ_9V1PAMhK2Ozv6DuO2g8ADuQehwBbHD9a8ED6TObHm91Mlj66V-YIV1Tgzgmss8tRqvAi9W7dcEW5aZdYPjcqLj2z_5Qnyb5xn0aRK9ri0B56XuXdXwSfKyLaljifqXcqr38dlw9OmUy7WNiqDq-bzSqQ5Oj20sGkCnald8b-OtTWzCNYf0VoOMkQOEMVjTt70VXFHH7GrV-jPUh4-NKQ51MOQPLa8DDp_t6MDFVUlrWifIc9zWtDXL-cOPbHB-dsZG_fHoKBhMfjiq7Jhanj8K3moI7KA9P-5R0O17J-_74w_WnMeeDtQ1k7XHwF63b_DCdV-a2TcRnFsTXoHwpK6XstmhqYnN6A66bTwSfKKRdBd1RLGPrusapZf76OZKxsp76OsKunCNLlxKzAus0YXX0IU1PnCNLmiBAV3YoAtbdGGLrvvofNAfvXnnmAIdTgqO7szJolRyoDNpIFOVqzAB_gf00AdmBI6nyERCBUmA00sepwHlnPBIhiSLZSp9wWnwAO0WZSEeIQxmg4oeB7IrwcUPY-5RCdQ2kSQJiMuDLgqbr8pSk71eFVG5YO02RRAGU8Jgrkp5C8Jgbhe9st0mOn3Ltg6kERkzHFRzSwbg29b1YE3EdkICDUO_i541EmegwtW6HC9EOa-Yr_ImEp9c0QL4jEtD74oWMfhtkRdtbhGryEUYwGs-1HBrP4gXKjscPd46-hN0o_3ND9DubDoXT9G1dDHLq-kh2onH5ND8P78BWnbipw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+study+of+an+online+toxicological+sensor+based+on+the+optical+waveguide+technique&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Voros%2C+J&rft.au=Graf%2C+R&rft.au=Kenausis%2C+G+L&rft.au=Bruinink%2C+A&rft.date=2000-11-01&rft.issn=0956-5663&rft.volume=15&rft.issue=9-10&rft.spage=423&rft.epage=429&rft_id=info:doi/10.1016%2FS0956-5663%2800%2900102-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon