Wide-angle deep ultraviolet antireflective multilayers via discrete-to-continuous optimization

To date, various optimization algorithms have been used to design non-intuitive photonic structures with unconventional optical performance. Good training datasets facilitate the optimization process, particularly when an objective function has a non-convex shape containing multiple local optima in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nanophotonics (Berlin, Germany) Ročník 12; číslo 10; s. 1913 - 1921
Hlavní autoři: Kim, Jae-Hyun, Kim, Dong In, Lee, Sun Sook, An, Ki-Seok, Yim, Soonmin, Lee, Eungkyu, Kim, Sun-Kyung
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany De Gruyter 01.05.2023
Walter de Gruyter GmbH
Témata:
ISSN:2192-8614, 2192-8606, 2192-8614
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To date, various optimization algorithms have been used to design non-intuitive photonic structures with unconventional optical performance. Good training datasets facilitate the optimization process, particularly when an objective function has a non-convex shape containing multiple local optima in a continuous parametric space. Herein, we developed a discrete-to-continuous optimization algorithm and confirmed its validity by designing and fabricating deep-ultraviolet antireflective MgF /LaF multilayers. For discrete optimization, a multilayer was encoded into a binary vector with multiple bits; a 10 nm thick MgF or LaF layer was assigned a binary digit of 0 or 1, respectively. Using the binary-based training datasets, a factorization machine formulated a surrogate function, which discovered the ground binary vector representing a near-optimal figure of merit. Then, the figure of merit was refined through continuous optimization (e.g., using an interior-point method) of the ground binary vector. MgF /LaF multilayers with a variety of bit levels were created to attain a minimum average angular (0°–45°) reflectance at 193 nm. A MgF /LaF multilayer optimized at ten bits (i.e., a total thickness of approximately 100 nm) yielded an average reflectance of 0.2%, which agreed well with the experimental results. Moreover, an integrated ray-wave optics simulation predicted that a single CaF plano-convex lens coated with the optimized multilayer could exhibit a transmittance of 99.7%. The developed optimization approach will be widely applicable to any photonic structures that can represent a binary vector with multiple bits, such as microwave metasurfaces, in addition to being useful for producing ideal optical multilayers.
AbstractList To date, various optimization algorithms have been used to design non-intuitive photonic structures with unconventional optical performance. Good training datasets facilitate the optimization process, particularly when an objective function has a non-convex shape containing multiple local optima in a continuous parametric space. Herein, we developed a discrete-to-continuous optimization algorithm and confirmed its validity by designing and fabricating deep-ultraviolet antireflective MgF /LaF multilayers. For discrete optimization, a multilayer was encoded into a binary vector with multiple bits; a 10 nm thick MgF or LaF layer was assigned a binary digit of 0 or 1, respectively. Using the binary-based training datasets, a factorization machine formulated a surrogate function, which discovered the ground binary vector representing a near-optimal figure of merit. Then, the figure of merit was refined through continuous optimization (e.g., using an interior-point method) of the ground binary vector. MgF /LaF multilayers with a variety of bit levels were created to attain a minimum average angular (0°-45°) reflectance at 193 nm. A MgF /LaF multilayer optimized at ten bits (i.e., a total thickness of approximately 100 nm) yielded an average reflectance of 0.2%, which agreed well with the experimental results. Moreover, an integrated ray-wave optics simulation predicted that a single CaF plano-convex lens coated with the optimized multilayer could exhibit a transmittance of 99.7%. The developed optimization approach will be widely applicable to any photonic structures that can represent a binary vector with multiple bits, such as microwave metasurfaces, in addition to being useful for producing ideal optical multilayers.
To date, various optimization algorithms have been used to design non-intuitive photonic structures with unconventional optical performance. Good training datasets facilitate the optimization process, particularly when an objective function has a non-convex shape containing multiple local optima in a continuous parametric space. Herein, we developed a discrete-to-continuous optimization algorithm and confirmed its validity by designing and fabricating deep-ultraviolet antireflective MgF2/LaF3 multilayers. For discrete optimization, a multilayer was encoded into a binary vector with multiple bits; a 10 nm thick MgF2 or LaF3 layer was assigned a binary digit of 0 or 1, respectively. Using the binary-based training datasets, a factorization machine formulated a surrogate function, which discovered the ground binary vector representing a near-optimal figure of merit. Then, the figure of merit was refined through continuous optimization (e.g., using an interior-point method) of the ground binary vector. MgF2/LaF3 multilayers with a variety of bit levels were created to attain a minimum average angular (0°–45°) reflectance at 193 nm. A MgF2/LaF3 multilayer optimized at ten bits (i.e., a total thickness of approximately 100 nm) yielded an average reflectance of 0.2%, which agreed well with the experimental results. Moreover, an integrated ray-wave optics simulation predicted that a single CaF2 plano-convex lens coated with the optimized multilayer could exhibit a transmittance of 99.7%. The developed optimization approach will be widely applicable to any photonic structures that can represent a binary vector with multiple bits, such as microwave metasurfaces, in addition to being useful for producing ideal optical multilayers.
To date, various optimization algorithms have been used to design non-intuitive photonic structures with unconventional optical performance. Good training datasets facilitate the optimization process, particularly when an objective function has a non-convex shape containing multiple local optima in a continuous parametric space. Herein, we developed a discrete-to-continuous optimization algorithm and confirmed its validity by designing and fabricating deep-ultraviolet antireflective MgF 2 /LaF 3 multilayers. For discrete optimization, a multilayer was encoded into a binary vector with multiple bits; a 10 nm thick MgF 2 or LaF 3 layer was assigned a binary digit of 0 or 1, respectively. Using the binary-based training datasets, a factorization machine formulated a surrogate function, which discovered the ground binary vector representing a near-optimal figure of merit. Then, the figure of merit was refined through continuous optimization (e.g., using an interior-point method) of the ground binary vector. MgF 2 /LaF 3 multilayers with a variety of bit levels were created to attain a minimum average angular (0°–45°) reflectance at 193 nm. A MgF 2 /LaF 3 multilayer optimized at ten bits (i.e., a total thickness of approximately 100 nm) yielded an average reflectance of 0.2%, which agreed well with the experimental results. Moreover, an integrated ray-wave optics simulation predicted that a single CaF 2 plano-convex lens coated with the optimized multilayer could exhibit a transmittance of 99.7%. The developed optimization approach will be widely applicable to any photonic structures that can represent a binary vector with multiple bits, such as microwave metasurfaces, in addition to being useful for producing ideal optical multilayers.
To date, various optimization algorithms have been used to design non-intuitive photonic structures with unconventional optical performance. Good training datasets facilitate the optimization process, particularly when an objective function has a non-convex shape containing multiple local optima in a continuous parametric space. Herein, we developed a discrete-to-continuous optimization algorithm and confirmed its validity by designing and fabricating deep-ultraviolet antireflective MgF2/LaF3 multilayers. For discrete optimization, a multilayer was encoded into a binary vector with multiple bits; a 10 nm thick MgF2 or LaF3 layer was assigned a binary digit of 0 or 1, respectively. Using the binary-based training datasets, a factorization machine formulated a surrogate function, which discovered the ground binary vector representing a near-optimal figure of merit. Then, the figure of merit was refined through continuous optimization (e.g., using an interior-point method) of the ground binary vector. MgF2/LaF3 multilayers with a variety of bit levels were created to attain a minimum average angular (0°–45°) reflectance at 193 nm. A MgF2/LaF3 multilayer optimized at ten bits (i.e., a total thickness of approximately 100 nm) yielded an average reflectance of 0.2%, which agreed well with the experimental results. Moreover, an integrated ray-wave optics simulation predicted that a single CaF2 plano-convex lens coated with the optimized multilayer could exhibit a transmittance of 99.7%. The developed optimization approach will be widely applicable to any photonic structures that can represent a binary vector with multiple bits, such as microwave metasurfaces, in addition to being useful for producing ideal optical multilayers.
To date, various optimization algorithms have been used to design non-intuitive photonic structures with unconventional optical performance. Good training datasets facilitate the optimization process, particularly when an objective function has a non-convex shape containing multiple local optima in a continuous parametric space. Herein, we developed a discrete-to-continuous optimization algorithm and confirmed its validity by designing and fabricating deep-ultraviolet antireflective MgF2/LaF3 multilayers. For discrete optimization, a multilayer was encoded into a binary vector with multiple bits; a 10 nm thick MgF2 or LaF3 layer was assigned a binary digit of 0 or 1, respectively. Using the binary-based training datasets, a factorization machine formulated a surrogate function, which discovered the ground binary vector representing a near-optimal figure of merit. Then, the figure of merit was refined through continuous optimization (e.g., using an interior-point method) of the ground binary vector. MgF2/LaF3 multilayers with a variety of bit levels were created to attain a minimum average angular (0°-45°) reflectance at 193 nm. A MgF2/LaF3 multilayer optimized at ten bits (i.e., a total thickness of approximately 100 nm) yielded an average reflectance of 0.2%, which agreed well with the experimental results. Moreover, an integrated ray-wave optics simulation predicted that a single CaF2 plano-convex lens coated with the optimized multilayer could exhibit a transmittance of 99.7%. The developed optimization approach will be widely applicable to any photonic structures that can represent a binary vector with multiple bits, such as microwave metasurfaces, in addition to being useful for producing ideal optical multilayers.To date, various optimization algorithms have been used to design non-intuitive photonic structures with unconventional optical performance. Good training datasets facilitate the optimization process, particularly when an objective function has a non-convex shape containing multiple local optima in a continuous parametric space. Herein, we developed a discrete-to-continuous optimization algorithm and confirmed its validity by designing and fabricating deep-ultraviolet antireflective MgF2/LaF3 multilayers. For discrete optimization, a multilayer was encoded into a binary vector with multiple bits; a 10 nm thick MgF2 or LaF3 layer was assigned a binary digit of 0 or 1, respectively. Using the binary-based training datasets, a factorization machine formulated a surrogate function, which discovered the ground binary vector representing a near-optimal figure of merit. Then, the figure of merit was refined through continuous optimization (e.g., using an interior-point method) of the ground binary vector. MgF2/LaF3 multilayers with a variety of bit levels were created to attain a minimum average angular (0°-45°) reflectance at 193 nm. A MgF2/LaF3 multilayer optimized at ten bits (i.e., a total thickness of approximately 100 nm) yielded an average reflectance of 0.2%, which agreed well with the experimental results. Moreover, an integrated ray-wave optics simulation predicted that a single CaF2 plano-convex lens coated with the optimized multilayer could exhibit a transmittance of 99.7%. The developed optimization approach will be widely applicable to any photonic structures that can represent a binary vector with multiple bits, such as microwave metasurfaces, in addition to being useful for producing ideal optical multilayers.
Author Lee, Sun Sook
Lee, Eungkyu
An, Ki-Seok
Kim, Jae-Hyun
Yim, Soonmin
Kim, Dong In
Kim, Sun-Kyung
Author_xml – sequence: 1
  givenname: Jae-Hyun
  surname: Kim
  fullname: Kim, Jae-Hyun
  organization: Department of Applied Physics, Kyung Hee University, Gyeonggi-do 17104, Yongin, Republic of Korea
– sequence: 2
  givenname: Dong In
  surname: Kim
  fullname: Kim, Dong In
  organization: Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
– sequence: 3
  givenname: Sun Sook
  surname: Lee
  fullname: Lee, Sun Sook
  organization: Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
– sequence: 4
  givenname: Ki-Seok
  surname: An
  fullname: An, Ki-Seok
  organization: Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
– sequence: 5
  givenname: Soonmin
  surname: Yim
  fullname: Yim, Soonmin
  email: s.yim@krict.re.kr
  organization: Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
– sequence: 6
  givenname: Eungkyu
  orcidid: 0000-0002-0211-0727
  surname: Lee
  fullname: Lee, Eungkyu
  email: eleest@khu.ac.kr
  organization: Department of Electronic Engineering, Kyung Hee University, Gyeonggi-do 17104, Yongin, Republic of Korea
– sequence: 7
  givenname: Sun-Kyung
  orcidid: 0000-0002-0715-0066
  surname: Kim
  fullname: Kim, Sun-Kyung
  email: sunkim@khu.ac.kr
  organization: Department of Applied Physics, Kyung Hee University, Gyeonggi-do 17104, Yongin, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39635137$$D View this record in MEDLINE/PubMed
BookMark eNp9Ul1vFCEUnZgaW2vffTKT-OLLKBcGBp60afxo0sQXjW8SFu5s2bCwMsya-utlu7W2TZSQcAPnnBzOvU-bg5giNs1zIK-BA38TTUyby44SyjoChD5qjigo2kkB_cGd-rA5maYVqUspBko8aQ6ZEowDG46a79-8w87EZcDWIW7aOZRstj4FLK2JxWccA9rit9iu65sP5grz1G69aZ2fbMaCXUmdTRUb5zRPbdoUv_a_TPEpPmsejyZMeHJzHjdfP7z_cvapu_j88fzs9KKzvJelG-gIvVFAcKRqQTiTkjOF6MAMQlrmCOlxIXrimLWUSuxHJxccnJSj44yx4-Z8r-uSWelN9muTr3QyXl9fpLzUJhdvA2oH0qLorRBW9VYSRbnoJcXBSGvRkqr1dq-1mRdrdBZjTSTcE73_Ev2lXqatBuCkblUVXt0o5PRjxqnodY0KQzARa0KaQS84pTBAhb58AF2lOcealabVW8_JIGhFvbhr6dbLnz5WANkDbE7TVHt2CwGid9Oi99Oid9Oid9NSKeIBxfpy3bT6KR_-R3y3J_40oWB2uMzzVS3-Ov8XFSgQUMDYb7iN3BY
CitedBy_id crossref_primary_10_1038_s41598_025_99570_z
crossref_primary_10_1002_mgea_73
crossref_primary_10_1002_adom_202401040
crossref_primary_10_1515_nanoph_2024_0619
crossref_primary_10_1515_nanoph_2024_0628
crossref_primary_10_3390_chemistry7050147
crossref_primary_10_1088_2632_2153_adf68d
crossref_primary_10_1186_s40580_024_00425_6
crossref_primary_10_1515_nanoph_2024_0360
Cites_doi 10.1364/OL.28.002381
10.1364/OSAC.434849
10.1364/OE.378424
10.1515/nanoph-2021-0436
10.1016/j.mattod.2020.11.013
10.1038/nature13883
10.1117/12.2218454
10.1063/1.1738931
10.1364/OE.26.019524
10.1016/j.optlastec.2014.12.022
10.1364/AO.35.005493
10.1038/nnano.2015.309
10.1021/acsphotonics.9b00894
10.1063/5.0076765
10.1088/0256-307X/27/4/044201
10.1364/OL.36.000253
10.1364/OE.476007
10.1021/acscentsci.8b00802
10.1038/nmat3443
10.1002/admt.202100821
10.1038/s41563-021-01094-0
10.1186/s11671-015-0757-y
10.1002/smll.201000079
10.1063/5.0060481
10.1021/acsanm.9b01097
10.1038/s41565-020-00841-9
10.1364/AO.47.00C219
10.1063/5.0062064
10.1038/s41467-018-06535-0
10.1016/j.swevo.2011.11.003
10.1088/2632-2153/abc327
10.1021/acsenergylett.2c01969
10.1002/adom.201600616
10.1364/OE.25.014746
10.1364/AO.20.000074
10.1364/AO.46.000704
10.1021/acsphotonics.7b01136
10.1515/nanoph-2019-0485
10.1364/AO.45.001375
10.1109/ACCESS.2021.3059019
10.1063/1.1497384
10.1002/adom.201770014
ContentType Journal Article
Copyright 2023 the author(s), published by De Gruyter, Berlin/Boston.
2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 the author(s), published by De Gruyter, Berlin/Boston 2023 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
Copyright_xml – notice: 2023 the author(s), published by De Gruyter, Berlin/Boston.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 the author(s), published by De Gruyter, Berlin/Boston 2023 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
DBID AAYXX
CITATION
NPM
7SP
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1515/nanoph-2023-0102
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2192-8614
EndPage 1921
ExternalDocumentID oai_doaj_org_article_d18ce64c66c94c809256482e7a8ccec0
PMC11501509
39635137
10_1515_nanoph_2023_0102
10_1515_nanoph_2023_010212101913
Genre Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: RS-2023-00207966; 2021M3H4A3A01055854; 2021R1C1C1006251
GroupedDBID 0R~
0~D
5VS
8FE
8FG
AAFWJ
ABFKT
ACGFS
ADBBV
ADMLS
AEJTT
AENEX
AFBDD
AFFHD
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
HZ~
M48
O9-
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
QD8
RPM
SA.
SLJYH
AAYXX
CITATION
9-L
AIKXB
F-.
IPNFZ
NPM
RIG
~Z8
7SP
7U5
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c548t-72f14a910ef29b05388539eed1a768c3d004eb640d3cc228e4fd8b51d88fd5333
IEDL.DBID DOA
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000959419000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2192-8614
2192-8606
IngestDate Tue Oct 14 19:05:15 EDT 2025
Tue Nov 04 02:04:08 EST 2025
Fri Sep 05 13:59:57 EDT 2025
Fri Jul 25 23:35:18 EDT 2025
Wed Feb 19 02:03:18 EST 2025
Sat Nov 29 01:46:28 EST 2025
Tue Nov 18 21:55:37 EST 2025
Sat Nov 29 01:24:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords deep ultraviolet spectrum
factorization machine
calcium fluoride lens
discrete binary optimization
antireflective multilayer
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
2023 the author(s), published by De Gruyter, Berlin/Boston.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c548t-72f14a910ef29b05388539eed1a768c3d004eb640d3cc228e4fd8b51d88fd5333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Jae-Hyun Kim and Dong In Kim contributed equally to this work.
ORCID 0000-0002-0211-0727
0000-0002-0715-0066
OpenAccessLink https://doaj.org/article/d18ce64c66c94c809256482e7a8ccec0
PMID 39635137
PQID 2809450762
PQPubID 2038884
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_d18ce64c66c94c809256482e7a8ccec0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11501509
proquest_miscellaneous_3146522171
proquest_journals_2809450762
pubmed_primary_39635137
crossref_primary_10_1515_nanoph_2023_0102
crossref_citationtrail_10_1515_nanoph_2023_0102
walterdegruyter_journals_10_1515_nanoph_2023_010212101913
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Nanophotonics (Berlin, Germany)
PublicationTitleAlternate Nanophotonics
PublicationYear 2023
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References (j_nanoph-2023-0102_ref_006) 2011; 36
(j_nanoph-2023-0102_ref_041) 2022; 30
(j_nanoph-2023-0102_ref_032) 2016; 9776
(j_nanoph-2023-0102_ref_002) 1981; 20
(j_nanoph-2023-0102_ref_016) 2014; 515
(j_nanoph-2023-0102_ref_036) 2016; 11
(j_nanoph-2023-0102_ref_011) 2020; 28
(j_nanoph-2023-0102_ref_001) 2019; 5
(j_nanoph-2023-0102_ref_008) 2021; 45
(j_nanoph-2023-0102_ref_012) 2022; 7
(j_nanoph-2023-0102_ref_034) 2001
(j_nanoph-2023-0102_ref_023) 2004; 84
(j_nanoph-2023-0102_ref_025) 2019; 2
(j_nanoph-2023-0102_ref_035) 2017; 25
(j_nanoph-2023-0102_ref_005) 2010; 6
(j_nanoph-2023-0102_ref_030) 2006; 45
(j_nanoph-2023-0102_ref_003) 2013; 12
(j_nanoph-2023-0102_ref_018) 2018; 9
(j_nanoph-2023-0102_ref_022) 2003; 28
(j_nanoph-2023-0102_ref_028) 2018; 26
(j_nanoph-2023-0102_ref_024) 2022; 11
(j_nanoph-2023-0102_ref_042) 2021; 9
(j_nanoph-2023-0102_ref_007) 2020; 9
(j_nanoph-2023-0102_ref_039) 2015; 10
(j_nanoph-2023-0102_ref_014) 2007; 46
(j_nanoph-2023-0102_ref_027) 2021; 16
(j_nanoph-2023-0102_ref_019) 2012; 2
(j_nanoph-2023-0102_ref_037) 2021; 20
(j_nanoph-2023-0102_ref_013) 1996; 35
(j_nanoph-2023-0102_ref_031) 2010; 27
(j_nanoph-2023-0102_ref_038) 2021; 8
(j_nanoph-2023-0102_ref_015) 2008; 47
(j_nanoph-2023-0102_ref_026) 2021; 4
(j_nanoph-2023-0102_ref_021) 2015; 70
(j_nanoph-2023-0102_ref_029) 2002; 31
(j_nanoph-2023-0102_ref_043) 2021; 119
(j_nanoph-2023-0102_ref_033) 2013
(j_nanoph-2023-0102_ref_010) 2022; 120
(j_nanoph-2023-0102_ref_040) 2019; 6
(j_nanoph-2023-0102_ref_017) 2018; 5
(j_nanoph-2023-0102_ref_020) 2021; 2
(j_nanoph-2023-0102_ref_004) 2017; 5
(j_nanoph-2023-0102_ref_009) 2022; 7
2024112410595659561_j_nanoph-2023-0102_ref_009
2024112410595659561_j_nanoph-2023-0102_ref_006
2024112410595659561_j_nanoph-2023-0102_ref_028
2024112410595659561_j_nanoph-2023-0102_ref_005
2024112410595659561_j_nanoph-2023-0102_ref_027
2024112410595659561_j_nanoph-2023-0102_ref_008
2024112410595659561_j_nanoph-2023-0102_ref_007
2024112410595659561_j_nanoph-2023-0102_ref_029
2024112410595659561_j_nanoph-2023-0102_ref_002
2024112410595659561_j_nanoph-2023-0102_ref_024
2024112410595659561_j_nanoph-2023-0102_ref_001
2024112410595659561_j_nanoph-2023-0102_ref_023
2024112410595659561_j_nanoph-2023-0102_ref_004
2024112410595659561_j_nanoph-2023-0102_ref_026
2024112410595659561_j_nanoph-2023-0102_ref_003
2024112410595659561_j_nanoph-2023-0102_ref_025
2024112410595659561_j_nanoph-2023-0102_ref_020
2024112410595659561_j_nanoph-2023-0102_ref_042
2024112410595659561_j_nanoph-2023-0102_ref_041
2024112410595659561_j_nanoph-2023-0102_ref_022
2024112410595659561_j_nanoph-2023-0102_ref_021
2024112410595659561_j_nanoph-2023-0102_ref_043
2024112410595659561_j_nanoph-2023-0102_ref_040
2024112410595659561_j_nanoph-2023-0102_ref_017
2024112410595659561_j_nanoph-2023-0102_ref_039
2024112410595659561_j_nanoph-2023-0102_ref_016
2024112410595659561_j_nanoph-2023-0102_ref_038
2024112410595659561_j_nanoph-2023-0102_ref_019
2024112410595659561_j_nanoph-2023-0102_ref_018
2024112410595659561_j_nanoph-2023-0102_ref_013
2024112410595659561_j_nanoph-2023-0102_ref_035
2024112410595659561_j_nanoph-2023-0102_ref_012
2024112410595659561_j_nanoph-2023-0102_ref_034
2024112410595659561_j_nanoph-2023-0102_ref_015
2024112410595659561_j_nanoph-2023-0102_ref_037
2024112410595659561_j_nanoph-2023-0102_ref_014
2024112410595659561_j_nanoph-2023-0102_ref_036
2024112410595659561_j_nanoph-2023-0102_ref_031
2024112410595659561_j_nanoph-2023-0102_ref_030
2024112410595659561_j_nanoph-2023-0102_ref_011
2024112410595659561_j_nanoph-2023-0102_ref_033
2024112410595659561_j_nanoph-2023-0102_ref_010
2024112410595659561_j_nanoph-2023-0102_ref_032
References_xml – volume: 28
  start-page: 2381
  issue: 23
  year: 2003
  end-page: 2383
  ident: j_nanoph-2023-0102_ref_022
  article-title: Parallel microgenetic algorithm design for photonic crystal and waveguide structures
  publication-title: Opt. Lett.
  doi: 10.1364/OL.28.002381
– volume: 4
  start-page: 3254
  issue: 12
  year: 2021
  end-page: 3261
  ident: j_nanoph-2023-0102_ref_026
  article-title: Inverse design and realization of an optimized photonic multilayer for thermophotovoltaics
  publication-title: OSA Continuum
  doi: 10.1364/OSAC.434849
– volume: 28
  start-page: 875
  issue: 2
  year: 2020
  end-page: 885
  ident: j_nanoph-2023-0102_ref_011
  article-title: Radiative metasurface for thermal camouflage, illusion and messaging
  publication-title: Opt. Express
  doi: 10.1364/OE.378424
– volume: 11
  start-page: 2107
  year: 2022
  end-page: 2115
  ident: j_nanoph-2023-0102_ref_024
  article-title: Highly suppressed solar absorption in a daytime radiative cooler designed by genetic algorithm
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2021-0436
– volume: 45
  start-page: 120
  year: 2021
  end-page: 141
  ident: j_nanoph-2023-0102_ref_008
  article-title: Thermal camouflaging metamaterials
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.11.013
– volume: 515
  start-page: 540
  year: 2014
  end-page: 544
  ident: j_nanoph-2023-0102_ref_016
  article-title: Passive radiative cooling below ambient air temperature under direct sunlight
  publication-title: Nature
  doi: 10.1038/nature13883
– volume: 9776
  start-page: 418
  year: 2016
  end-page: 424
  ident: j_nanoph-2023-0102_ref_032
  article-title: Through-pellicle defect inspection of EUV masks using an ArF-based inspection tool
  publication-title: Proc. of SPIE
  doi: 10.1117/12.2218454
– volume: 84
  start-page: 4460
  year: 2004
  end-page: 4462
  ident: j_nanoph-2023-0102_ref_023
  article-title: Integrated optical devices design by genetic algorithm
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1738931
– volume: 26
  start-page: 19524
  issue: 15
  year: 2018
  end-page: 19533
  ident: j_nanoph-2023-0102_ref_028
  article-title: Performance optimization of 193 Nm antireflective coatings with wide incident angle ranges on strongly curved spherical substrates
  publication-title: Opt. Express
  doi: 10.1364/OE.26.019524
– volume: 70
  start-page: 94
  year: 2015
  end-page: 99
  ident: j_nanoph-2023-0102_ref_021
  article-title: Optimization of the genetic operators and algorithm parameters for the design of a multilayer anti-reflection coating using the genetic algorithm
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2014.12.022
– volume: 35
  start-page: 5493
  issue: 28
  year: 1996
  end-page: 5508
  ident: j_nanoph-2023-0102_ref_013
  article-title: Application of the needle optimization technique to the design of optical coatings
  publication-title: Appl. Opt.
  doi: 10.1364/AO.35.005493
– volume: 11
  start-page: 320
  year: 2016
  end-page: 324
  ident: j_nanoph-2023-0102_ref_036
  article-title: Tailoring high-temperature radiation and the resurrection of the incandescent source
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.309
– volume: 6
  start-page: 2342
  issue: 9
  year: 2019
  end-page: 2349
  ident: j_nanoph-2023-0102_ref_040
  article-title: Generation of reflection colors from metal-insulator-metal cavity structure enabled by thickness-dependent refractive indices of metal thin film
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.9b00894
– volume: 120
  start-page: 053902
  issue: 5
  year: 2022
  end-page: 053908
  ident: j_nanoph-2023-0102_ref_010
  article-title: Near-field thermophotonic system for power generation and electroluminescent refrigeration
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0076765
– volume: 27
  start-page: 044201
  issue: 4
  year: 2010
  end-page: 044205
  ident: j_nanoph-2023-0102_ref_031
  article-title: Antireflective fluoride coatings for widely tunable deep-ultraviolet diode-pumped solid-state laser applications
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/27/4/044201
– volume: 36
  start-page: 253
  issue: 2
  year: 2011
  end-page: 255
  ident: j_nanoph-2023-0102_ref_006
  article-title: Antireflective properties of porous Si nanocolumnar structures with graded refractive index layers
  publication-title: Opt. Lett.
  doi: 10.1364/OL.36.000253
– volume: 30
  start-page: 42406
  issue: 23
  year: 2022
  end-page: 42414
  ident: j_nanoph-2023-0102_ref_041
  article-title: Synergistically designed antireflective cover for improving wide-angle photovoltaic efficiencies
  publication-title: Opt. Express
  doi: 10.1364/OE.476007
– volume: 5
  start-page: 319
  issue: 2
  year: 2019
  end-page: 326
  ident: j_nanoph-2023-0102_ref_001
  article-title: Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by bayesian optimization
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00802
– volume: 12
  start-page: 20
  year: 2013
  end-page: 24
  ident: j_nanoph-2023-0102_ref_003
  article-title: Nanometre optical coatings based on strong interference effects in highly absorbing media
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3443
– volume: 7
  start-page: 2100821
  issue: 3
  year: 2022
  end-page: 2100828
  ident: j_nanoph-2023-0102_ref_009
  article-title: Flexible janus functional film for adaptive thermal camouflage
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202100821
– volume: 20
  start-page: 1663
  year: 2021
  end-page: 1669
  ident: j_nanoph-2023-0102_ref_037
  article-title: Deterministic inverse design of tamm plasmon thermal emitters with multi-resonant control
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01094-0
– volume: 10
  start-page: 46
  year: 2015
  end-page: 51
  ident: j_nanoph-2023-0102_ref_039
  article-title: The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-015-0757-y
– volume: 6
  start-page: 984
  issue: 9
  year: 2010
  end-page: 987
  ident: j_nanoph-2023-0102_ref_005
  article-title: Bioinspired parabola subwavelength structures for improved broadband antireflection
  publication-title: Small
  doi: 10.1002/smll.201000079
– volume: 8
  start-page: 041418
  issue: 4
  year: 2021
  end-page: 041431
  ident: j_nanoph-2023-0102_ref_038
  article-title: Machine learning framework for quantum sampling of highly constrained, continuous optimization problems
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0060481
– volume: 2
  start-page: 5512
  issue: 9
  year: 2019
  end-page: 5519
  ident: j_nanoph-2023-0102_ref_025
  article-title: Near-perfect selective photonic crystal emitter with nanoscale layers for daytime radiative cooling
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b01097
– volume: 16
  start-page: 440
  year: 2021
  end-page: 446
  ident: j_nanoph-2023-0102_ref_027
  article-title: Fano-resonant ultrathin film optical coatings
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00841-9
– year: 2013
  ident: j_nanoph-2023-0102_ref_033
  article-title: Silica-modified-fluoride broad angle antireflection coatings
  publication-title: .
– year: 2001
  ident: j_nanoph-2023-0102_ref_034
  article-title: Antireflection coating for ultraviolet light at large angles of incidence
  publication-title: .
– volume: 47
  start-page: C219
  issue: 13
  year: 2008
  end-page: C230
  ident: j_nanoph-2023-0102_ref_015
  article-title: OpenFilters: open-source software for the design, optimization, and synthesis of optical filters
  publication-title: Appl. Opt.
  doi: 10.1364/AO.47.00C219
– volume: 119
  start-page: 174101
  issue: 17
  year: 2021
  end-page: 174109
  ident: j_nanoph-2023-0102_ref_043
  article-title: Design of dual-band single-layer metasurfaces for millimeter-wave 5G communication systems
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0062064
– volume: 9
  start-page: 4240
  year: 2018
  end-page: 4247
  ident: j_nanoph-2023-0102_ref_018
  article-title: Photonic thermal management of coloured objects
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06535-0
– volume: 2
  start-page: 1
  year: 2012
  end-page: 14
  ident: j_nanoph-2023-0102_ref_019
  article-title: Memetic algorithms and memetic computing optimization: a literature review
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.11.003
– volume: 2
  start-page: 025013
  year: 2021
  end-page: 025024
  ident: j_nanoph-2023-0102_ref_020
  article-title: Automated multi-layer optical design via deep reinforcement learning
  publication-title: Mach. Learn.: Sci. Technol.
  doi: 10.1088/2632-2153/abc327
– volume: 7
  start-page: 4134
  issue: 12
  year: 2022
  end-page: 4141
  ident: j_nanoph-2023-0102_ref_012
  article-title: High-performance transparent radiative cooler designed by quantum computing
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c01969
– volume: 5
  start-page: 1600616
  issue: 3
  year: 2017
  end-page: 1611621
  ident: j_nanoph-2023-0102_ref_004
  article-title: Super-antireflective structure films with precisely controlled refractive index profile
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600616
– volume: 25
  start-page: 14746
  issue: 13
  year: 2017
  end-page: 14759
  ident: j_nanoph-2023-0102_ref_035
  article-title: Overcoming limits to near-field radiative heat transfer in uniform planar media through multilayer optimization
  publication-title: Opt. Express
  doi: 10.1364/OE.25.014746
– volume: 20
  start-page: 74
  issue: 1
  year: 1981
  end-page: 81
  ident: j_nanoph-2023-0102_ref_002
  article-title: Versatile computer program for absorbing optical thin film systems
  publication-title: Appl. Opt.
  doi: 10.1364/AO.20.000074
– volume: 46
  start-page: 704
  issue: 5
  year: 2007
  end-page: 710
  ident: j_nanoph-2023-0102_ref_014
  article-title: Optical coating design approaches based on the needle optimization technique
  publication-title: Appl. Opt.
  doi: 10.1364/AO.46.000704
– volume: 5
  start-page: 684
  issue: 3
  year: 2018
  end-page: 691
  ident: j_nanoph-2023-0102_ref_017
  article-title: Optimization of multilayer optical films with a memetic algorithm and mixed integer programming
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01136
– volume: 9
  start-page: 855
  issue: 4
  year: 2020
  end-page: 863
  ident: j_nanoph-2023-0102_ref_007
  article-title: Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0485
– volume: 45
  start-page: 1375
  issue: 7
  year: 2006
  end-page: 1379
  ident: j_nanoph-2023-0102_ref_030
  article-title: Fluoride antireflection coatings for deep ultraviolet optics deposited by ion-beam sputtering
  publication-title: Appl. Opt.
  doi: 10.1364/AO.45.001375
– volume: 9
  start-page: 29764
  year: 2021
  end-page: 29774
  ident: j_nanoph-2023-0102_ref_042
  article-title: Design of single-layer metasurface filter by conformational space annealing algorithm for 5G mm-wave communications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3059019
– volume: 31
  start-page: 931
  issue: 4
  year: 2002
  end-page: 970
  ident: j_nanoph-2023-0102_ref_029
  article-title: Refractive index and dispersion of fluorides and oxides
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.1497384
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_029
  doi: 10.1063/1.1497384
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_035
  doi: 10.1364/OE.25.014746
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_011
  doi: 10.1364/OE.378424
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_021
  doi: 10.1016/j.optlastec.2014.12.022
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_022
  doi: 10.1364/OL.28.002381
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_027
  doi: 10.1038/s41565-020-00841-9
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_040
  doi: 10.1021/acsphotonics.9b00894
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_015
  doi: 10.1364/AO.47.00C219
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_028
  doi: 10.1364/OE.26.019524
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_014
  doi: 10.1364/AO.46.000704
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_007
  doi: 10.1515/nanoph-2019-0485
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_033
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_031
  doi: 10.1088/0256-307X/27/4/044201
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_023
  doi: 10.1063/1.1738931
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_036
  doi: 10.1038/nnano.2015.309
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_043
  doi: 10.1063/5.0062064
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_010
  doi: 10.1063/5.0076765
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_026
  doi: 10.1364/OSAC.434849
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_018
  doi: 10.1038/s41467-018-06535-0
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_013
  doi: 10.1364/AO.35.005493
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_030
  doi: 10.1364/AO.45.001375
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_025
  doi: 10.1021/acsanm.9b01097
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_003
  doi: 10.1038/nmat3443
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_020
  doi: 10.1088/2632-2153/abc327
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_041
  doi: 10.1364/OE.476007
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_002
  doi: 10.1364/AO.20.000074
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_009
  doi: 10.1002/admt.202100821
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_037
  doi: 10.1038/s41563-021-01094-0
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_004
  doi: 10.1002/adom.201770014
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_017
  doi: 10.1021/acsphotonics.7b01136
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_024
  doi: 10.1515/nanoph-2021-0436
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_039
  doi: 10.1186/s11671-015-0757-y
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_034
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_005
  doi: 10.1002/smll.201000079
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_008
  doi: 10.1016/j.mattod.2020.11.013
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_019
  doi: 10.1016/j.swevo.2011.11.003
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_001
  doi: 10.1021/acscentsci.8b00802
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_016
  doi: 10.1038/nature13883
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_012
  doi: 10.1021/acsenergylett.2c01969
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_042
  doi: 10.1109/ACCESS.2021.3059019
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_006
  doi: 10.1364/OL.36.000253
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_032
  doi: 10.1117/12.2218454
– ident: 2024112410595659561_j_nanoph-2023-0102_ref_038
  doi: 10.1063/5.0060481
SSID ssj0000993196
Score 2.3113744
Snippet To date, various optimization algorithms have been used to design non-intuitive photonic structures with unconventional optical performance. Good training...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
walterdegruyter
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1913
SubjectTerms Algorithms
antireflective multilayer
Binary digits
calcium fluoride lens
Datasets
deep ultraviolet spectrum
discrete binary optimization
factorization machine
Figure of merit
Lanthanum fluorides
Magnesium fluorides
Multilayers
Optimization
Photonics
Reflectance
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5ByoFLyxtDQUbiwmGV2F7b6xOiqBUHFFUIRE9Y632kllw7xHZR_31n7I2r8OgFKafYltae1zc7s98AvJU2TXWUZGhIljPOU8kyYWJmrEJ0q7S0wXBQ-HO6XIqzs-zUbbi1rq1y6xMHR60bRXvk81BgIoLgJQnfr38ymhpF1VU3QuMu7BFTGZ_B3tHx8vTLtMuC-Id0jCbMIZRhAuG6q1ViHJ_Xsm7W54wmiDPiVtuJTQOF_99w55_tk_u_htK2NqtNf9VtS6lDhDo5-N93ewD7Dpv6H0Zlegh3TP0IDhxO9Z0XaB_Dj--lNkzWq8r42pi131e4wqHE3_koKfSithodqT80LFaSgL1_WUqfTgFvEKizrmHUJl_WfdO3foOe68IdCX0C306Ov378xNycBqYw3-lYGtqAS8QdxoZZgVYtEANkGHwDicmMijQaoikSvtCRUmEoDLdaFHGghbAa4Wb0FGZ1U5vn4FsZpppnGjXH8sJYkalFHBPlPDEwqcKD-VZCuXIk5jRLo8opmUGZ5qNMc5JpTjL14N30xHok8Ljl3iMS-nQfUW8PfzSbVe4sOdeBUCbhKklUxhVKDkEjF6FJpVDKqIUHh1sh584ftPmNhD14M11GS6byjKwNfuk8wqCFaDhIAw-ejRo2rSRCPxkHUeqB2NG9naXuXqnL84EtnCA__jIPst_U9GZ5__ogxC6HCX304vZ3egn3RxuiPtBDmHWb3ryCe-qyK9vNa2eT165rQ08
  priority: 102
  providerName: ProQuest
Title Wide-angle deep ultraviolet antireflective multilayers via discrete-to-continuous optimization
URI https://www.degruyter.com/doi/10.1515/nanoph-2023-0102
https://www.ncbi.nlm.nih.gov/pubmed/39635137
https://www.proquest.com/docview/2809450762
https://www.proquest.com/docview/3146522171
https://pubmed.ncbi.nlm.nih.gov/PMC11501509
https://doaj.org/article/d18ce64c66c94c809256482e7a8ccec0
Volume 12
WOSCitedRecordID wos000959419000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2192-8614
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993196
  issn: 2192-8614
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2192-8614
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993196
  issn: 2192-8614
  databaseCode: P5Z
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2192-8614
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993196
  issn: 2192-8614
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2192-8614
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993196
  issn: 2192-8614
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcODS8ialrIzEhYO1m8SJ7SNFrUCCVYRALBywHD_aoJCsdpMi_j1jJ7t0eV6QohwSR7Hm4flGM_6M0BPlGDNpLsCRHCWUMkUEtxmxTgO61Ua5OGwUfsXmc75YiOLSUV--J2ygBx4ENzUx1zanOs-1oJrPBMRoyhPLFNfa6pCtA-q5lEx9HnCPt62xLgkxe9qopl2eE39aOPE8ajtxKND1_w5j_toquf81lLGNPVv137pN2TREo9ObaH-EkfjZMP1b6IptbqODEVLi0WHXd9Cn95WxRDVntcXG2iXua_hBqMZ3GIQKC56rhzUPh97CWnkMji8qhf2G3RVgatK1xHe0V03f9mvcwiLzZdy9eRe9Oz15-_wFGY9UIBpSk46wxMVUAUSwLhElOCCHcC0gTsYK8g6dGvAZW-Z0ZlKtk4Rb6gwvs9hw7gwgw_Qe2mvaxj5A2KmEGSoMKNnR0jou9CzLPDu8J0vSZYSmGwFLPfKN-2MvaunzDlCJHFQivUqkV0mEnm6_WA5cG38Ze-x1th3nWbLDA7AdOdqO_JftROhoo3E5uu5aJjCOAkrO4R-Pt6_B6XwlRTUWJC1TiC8AXGMWR-j-YCDbmaSwpGVxyiLEd0xnZ6q7b5rqPBB7e3QOl4iQ-MnKfkzvTwLxRHCQe6eH_0MwD9GNwVF8Y-cR2utWvX2EruuLrlqvJugqW_AJunZ8Mi_eTILjwb3IPsKz4uXr4sN3_gI3bg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuLW8MBYwEBw6rxPbG3j2gqjyqRk2jHIooF8xmH2mkYIfEadU_xW9kxo9U4dFbD0g5-RGt19_MfON5AbxSLklMFEsUJMcZ54liUtgus04ju9VGuaAsFO4ng4E4OZHDDfjZ1MJQWmWjE0tFbXJN38jboUBHBMlLHO7OfjCaGkXR1WaERgWLQ3txji7b4m3vA77f12G4__H4_QGrpwowjey8YEnoAq7QSloXyhFiUKDFkmgqAoXUW0cGYWNHMe-YSOswFJY7I0bdwAjhDJKjCP_3BmxyBLtoweawdzT8svqqg3yLME0T7ZA6MYHuQR0bRd7QzlSWz04ZTSxn1MttzRaWIwP-xnP_TNfcOi9D6caO58uLogndlhZxf_t_28s7sFVzb3-vEpa7sGGze7Bd83C_1nKL-_D188RYprLx1PrG2pm_nOKOlCkMhY9IRCvhppWh8MuEzKkix8U_myifqpzn6IiwImdUBjDJlvly4eeomb_XJa8P4NO1POVDaGV5Zh-D71SYGC4NSobjI-uE1J1ul1rqU4cpPfKg3SAi1XWTdpoVMk3JWUMMpRWGUsJQShjy4M3qjlnVoOSKa98RyFbXUWvx8kA-H6e1pkpNILSNuY5jLblGpCAp5iK0iRJaW93xYKcBVVrru0V6iSgPXq5Oo6ai8JPKLO50GqFRRrYfJIEHjypEr1YSoR3oBlHigVjD-tpS189kk9OyGzq5NPiTHsjfxOJyef_aEOqeF8ggenL1M72AWwfHR_203xscPoXblfxSzusOtIr50j6Dm_qsmCzmz2t94MO36xabX9AGn6k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wide-angle+deep+ultraviolet+antireflective+multilayers+via+discrete-to-continuous+optimization&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Kim%2C+Jae-Hyun&rft.au=Kim%2C+Dong+In&rft.au=Lee%2C+Sun+Sook&rft.au=An%2C+Ki-Seok&rft.date=2023-05-01&rft.issn=2192-8614&rft.eissn=2192-8614&rft.volume=12&rft.issue=10&rft.spage=1913&rft.epage=1921&rft_id=info:doi/10.1515%2Fnanoph-2023-0102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_nanoph_2023_0102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon