Optimal tuning of thermodynamic-based decentralized PI control loops: Application to the Tennessee Eastman Process

The need of designing decentralized control loops emerges to ensure the global stability of a given process plant. To that purpose, it has been proposed in recent works a systematic approach to derive robust decentralized controllers, which is based on the link between thermodynamics and passivity t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal Jg. 54; H. 11; S. 2904 - 2924
Hauptverfasser: Antelo, Luis T, Exler, Oliver, Banga, Julio R, Alonso, Antonio A
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.11.2008
Wiley Subscription Services
American Institute of Chemical Engineers
Schlagworte:
ISSN:0001-1541, 1547-5905
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The need of designing decentralized control loops emerges to ensure the global stability of a given process plant. To that purpose, it has been proposed in recent works a systematic approach to derive robust decentralized controllers, which is based on the link between thermodynamics and passivity theory, as well as on the fundamentals of process networks. This thermodynamic-based control (TBC) methodology has several steps: (1) Decomposition of the considered process system into abstract mass and energy inventory networks; (2) design of conceptual mass and energy inventory control loops to guarantee the convergence of the states of the plant to a compact convex region defined by constant inventories, where input-output stability follows; (3) definition of intensive variable control loops (if needed) to achieve global stability, and (4) realization of the conceptual inventory and intensive variable control loops over the available degrees of freedom in the system by using, for instance, PI controllers. A tool to tune these PI control loops is developed, based on the solution of a nonlinear programming optimization problem (NLP), in order to complete the proposed hierarchical and systematic TBC design. The aim is to minimize a given cost function, subject to both the system dynamics, as well as the linear and nonlinear constraints (no disturbances affecting the system are considered), where the vector of decision variables will be formed by the parameters of the PI controllers used in the defined decentralized control loops. We will test this tuning procedure in several control designs developed for the challenging benchmark of the Tennessee Eastman Process (TEP) by Ricker and Larsson et al., as well as in two TBC candidates, concluding that the best candidate among the proposed ones (in terms of final cost function) will be one of these TBC designs. For solving the NLP problem, two local (FMINCON and NOMADm) solvers, and a new global (MITS) one are used, comparing their performances. Finally, the dynamic analysis of the optimal tuned closed loop systems is carried out, finding that the presented TBC control candidates will be stable, while the other control structures considered exhibit complex dynamic behaviors or even instability when disturbances affecting the process are considered. © 2008 American Institute of Chemical Engineers AIChE J, 2008
AbstractList The need of designing decentralized control loops emerges to ensure the global stability of a given process plant. To that purpose, it has been proposed in recent works a systematic approach to derive robust decentralized controllers, which is based on the link between thermodynamics and passivity theory, as well as on the fundamentals of process networks. This thermodynamic-based control (TBC) methodology has several steps: (1) Decomposition of the considered process system into abstract mass and energy inventory networks; (2) design of conceptual mass and energy inventory control loops to guarantee the convergence of the states of the plant to a compact convex region defined by constant inventories, where input-output stability follows; (3) definition of intensive variable control loops (if needed) to achieve global stability, and (4) realization of the conceptual inventory and intensive variable control loops over the available degrees of freedom in the system by using, for instance, PI controllers. A tool to tune these PI control loops is developed, based on the solution of a nonlinear programming optimization problem (NLP), in order to complete the proposed hierarchical and systematic TBC design. The aim is to minimize a given cost function, subject to both the system dynamics, as well as the linear and nonlinear constraints (no disturbances affecting the system are considered), where the vector of decision variables will be formed by the parameters of the PI controllers used in the defined decentralized control loops. We will test this tuning procedure in several control designs developed for the challenging benchmark of the Tennessee Eastman Process (TEP) by Ricker and Larsson et al., as well as in two TBC candidates, concluding that the best candidate among the proposed ones (in terms of final cost function) will be one of these TBC designs. For solving the NLP problem, two local (FMINCON and NOMADm) solvers, and a new global (MITS) one are used, comparing their performances. Finally, the dynamic analysis of the optimal tuned closed loop systems is carried out, finding that the presented TBC control candidates will be stable, while the other control structures considered exhibit complex dynamic behaviors or even instability when disturbances affecting the process are considered. [PUBLICATION ABSTRACT]
The need of designing decentralized control loops emerges to ensure the global stability of a given process plant. To that purpose, it has been proposed in recent works a systematic approach to derive robust decentralized controllers, which is based on the link between thermodynamics and passivity theory, as well as on the fundamentals of process networks. This thermodynamic-based control (TBC) methodology has several steps: (1) Decomposition of the considered process system into abstract mass and energy inventory networks; (2) design of conceptual mass and energy inventory control loops to guarantee the convergence of the states of the plant to a compact convex region defined by constant inventories, where input-output stability follows; (3) definition of intensive variable control loops (if needed) to achieve global stability, and (4) realization of the conceptual inventory and intensive variable control loops over the available degrees of freedom in the system by using, for instance, PI controllers. A tool to tune these PI control loops is developed, based on the solution of a nonlinear programming optimization problem (NLP), in order to complete the proposed hierarchical and systematic TBC design. The aim is to minimize a given cost function, subject to both the system dynamics, as well as the linear and nonlinear constraints (no disturbances affecting the system are considered), where the vector of decision variables will be formed by the parameters of the PI controllers used in the defined decentralized control loops. We will test this tuning procedure in several control designs developed for the challenging benchmark of the Tennessee Eastman Process (TEP) by Ricker and Larsson et al., as well as in two TBC candidates, concluding that the best candidate among the proposed ones (in terms of final cost function) will be one of these TBC designs. For solving the NLP problem, two local (FMINCON and NOMADm) solvers, and a new global (MITS) one are used, comparing their performances. Finally, the dynamic analysis of the optimal tuned closed loop systems is carried out, finding that the presented TBC control candidates will be stable, while the other control structures considered exhibit complex dynamic behaviors or even instability when disturbances affecting the process are considered. © 2008 American Institute of Chemical Engineers AIChE J, 2008
The need of designing decentralized control loops emerges to ensure the global stability of a given process plant. To that purpose, it has been proposed in recent works a systematic approach to derive robust decentralized controllers, which is based on the link between thermodynamics and passivity theory, as well as on the fundamentals of process networks. This thermodynamic‐based control (TBC) methodology has several steps: (1) Decomposition of the considered process system into mass and energy inventory networks; (2) design of conceptual mass and energy inventory control loops to guarantee the convergence of the states of the plant to a compact convex region defined by constant inventories, where input‐output stability follows; (3) definition of intensive variable control loops (if needed) to achieve global stability, and (4) realization of the conceptual inventory and intensive variable control loops over the available degrees of freedom in the system by using, for instance, PI controllers. A tool to tune these PI control loops is developed, based on the solution of a nonlinear programming optimization problem (NLP), in order to complete the proposed hierarchical and systematic TBC design. The aim is to minimize a given cost function, subject to both the system dynamics, as well as the linear and nonlinear constraints (no disturbances affecting the system are considered), where the vector of decision variables will be formed by the parameters of the PI controllers used in the defined decentralized control loops. We will test this tuning procedure in several control designs developed for the challenging benchmark of the Tennessee Eastman Process (TEP) by Ricker and Larsson et al., as well as in two TBC candidates, concluding that the best candidate among the proposed ones (in terms of final cost function) will be one of these TBC designs. For solving the NLP problem, two local (FMINCON and NOMADm) solvers, and a new global (MITS) one are used, comparing their performances. Finally, the dynamic analysis of the optimal tuned closed loop systems is carried out, finding that the presented TBC control candidates will be stable, while the other control structures considered exhibit complex dynamic behaviors or even instability when disturbances affecting the process are considered. © 2008 American Institute of Chemical Engineers AIChE J, 2008
The need of designing decentralized control loops emerges to ensure the global stability of a given process plant. To that purpose, it has been proposed in recent works a systematic approach to derive robust decentralized controllers, which is based on the link between thermodynamics and passivity theory, as well as on the fundamentals of process networks. This thermodynamic-based control (TBC) methodology has several steps: (1) Decomposition of the considered process system into abstract mass and energy inventory networks; (2) design of conceptual mass and energy inventory control loops to guarantee the convergence of the states of the plant to a compact convex region defined by constant inventories, where input-output stability follows; (3) definition of intensive variable control loops (if needed) to achieve global stability, and (4) realization of the conceptual inventory and intensive variable control loops over the available degrees of freedom in the system by using, for instance, PI controllers. A tool to tune these PI control loops is developed, based on the solution of a nonlinear programming optimization problem (NLP), in order to complete the proposed hierarchical and systematic TBC design. The aim is to minimize a given cost function, subject to both the system dynamics, as well as the linear and nonlinear constraints (no disturbances affecting the system are considered), where the vector of decision variables will be formed by the parameters of the PI controllers used in the defined decentralized control loops. We will test this tuning procedure in several control designs developed for the challenging benchmark of the Tennessee Eastman Process (TEP) by Ricker and Larsson et al., as well as in two TBC candidates, concluding that the best candidate among the proposed ones (in terms of final cost function) will be one of these TBC designs. For solving the NLP problem, two local (FMINCON and NOMADm) solvers, and a new global (MITS) one are used, comparing their performances. Finally, the dynamic analysis of the optimal tuned closed loop systems is carried out, finding that the presented TBC control candidates will be stable, while the other control structures considered exhibit complex dynamic behaviors or even instability when disturbances affecting the process are considered.
Author Antelo, Luis T.
Exler, Oliver
Banga, Julio R.
Alonso, Antonio A.
Author_xml – sequence: 1
  fullname: Antelo, Luis T
– sequence: 2
  fullname: Exler, Oliver
– sequence: 3
  fullname: Banga, Julio R
– sequence: 4
  fullname: Alonso, Antonio A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20806536$$DView record in Pascal Francis
BookMark eNqF0lFrFDEQAOBFKnitPvgLXAQVH7bNJJts0rfzqO3JYYu2CH0JuWy2pmaTNdlDz19vrlf7ULB9ChO-mZCZ2S12fPCmKF4C2geE8IGyeh-Acv6kmACtm4oKRHeKCUIIqnwBz4rdlK5zhBuOJ0U8HUbbK1eOK2_9VRm6cvxuYh_atVe91dVSJdOWrdHGj1E5-ydHZ_NShxwGV7oQhnRYTofBWa1GG3w5hk2J8tx4b1IypjxSaeyVL89i0PnmefG0Uy6ZF7fnXnHx8eh8dlItTo_ns-mi0rTmvKId7vBSNKxV0JK2YQTahlDBqWjBsGzqRrVsiRgoXMOSq0Z1gmkgpOt4uyR7xbtt3SGGnyuTRtnbpI1zypuwSrKpSY04pTjLtw_KmgPCSLBHIaEUBOKPQwyYcsCQ4et78Dqsos99kSBEzRAQkdGbW6SSVq6Lymub5BDz5OJaYsQRo2Tz6vut0zGkFE13RwDJzXrIvB7yZj2yPbhntR1vBpjHbN1DGb-sM-v_l5bT-exfRrXNsGk0v-8yVPwhWUMaKr99PpYnl5dfPixqLj9l_2rrOxWkuor5jxdfcW4BAkqJYIj8BdX05OM
CODEN AICEAC
CitedBy_id crossref_primary_10_3390_pr11061747
crossref_primary_10_1016_j_conengprac_2018_11_007
Cites_doi 10.1016/0959-1524(96)00031-5
10.1016/S0098-1354(02)00011-X
10.1021/ie00029a016
10.1016/0098-1354(94)00057-U
10.1002/aic.690431205
10.1016/j.compchemeng.2006.11.004
10.1002/aic.690440814
10.1016/0098-1354(93)80018-I
10.1016/0098-1354(94)00105-W
10.1021/ie980620x
10.1016/S0098-1354(03)00113-3
10.1016/j.compchemeng.2007.10.021
10.1016/S0005-1098(01)00140-6
10.1021/ie000586y
10.1007/BF02125453
10.1016/S0167-6911(97)00023-6
10.1016/j.compchemeng.2007.10.008
ContentType Journal Article
Copyright Copyright © 2008 American Institute of Chemical Engineers (AIChE)
2008 INIST-CNRS
Copyright American Institute of Chemical Engineers Nov 2008
Copyright_xml – notice: Copyright © 2008 American Institute of Chemical Engineers (AIChE)
– notice: 2008 INIST-CNRS
– notice: Copyright American Institute of Chemical Engineers Nov 2008
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7ST
7U5
8FD
C1K
L7M
SOI
7S9
L.6
DOI 10.1002/aic.11588
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Technology Research Database


Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
AGRICOLA
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1547-5905
EndPage 2924
ExternalDocumentID 1588696131
20806536
10_1002_aic_11588
AIC11588
ark_67375_WNG_HZZRBL48_J
US201301553960
Genre article
Feature
GeographicLocations United States--US
Tennessee
USA, Tennessee
GeographicLocations_xml – name: Tennessee
– name: United States--US
– name: USA, Tennessee
GrantInformation_xml – fundername: Spanish Government
– fundername: MCyT Projects
  funderid: PPQ2001‐3643
– fundername: “PRIMS” Marie Curie Action
  funderid: MRTN‐CT‐2004‐512233
– fundername: Xunta de Galicia
  funderid: PGIDIT02‐PXIC40209PN
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAIHA
AAIKC
AAJUZ
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABDEX
ABDMP
ABEML
ABHUG
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FBQ
FEDTE
G-S
G.N
G8K
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABDPE
ABJIA
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEUYN
AEYWJ
AFFHD
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
ALVPJ
BSCLL
HGLYW
OIG
PHGZM
PHGZT
PQGLB
AAYXX
CITATION
O8X
IQODW
7ST
7U5
8FD
C1K
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c5488-5f2f2b976da1d3d7631d7359859d1e654847ad6b061a241b8a7af96c133ff8db3
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000260859600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-1541
IngestDate Sun Nov 09 09:57:18 EST 2025
Sun Aug 24 03:53:25 EDT 2025
Sun Nov 09 12:58:51 EST 2025
Tue Oct 07 08:36:42 EDT 2025
Mon Nov 10 03:03:58 EST 2025
Mon Jul 21 09:15:55 EDT 2025
Sat Nov 29 07:21:40 EST 2025
Tue Nov 18 21:59:32 EST 2025
Wed Jan 22 16:24:26 EST 2025
Tue Nov 11 03:33:16 EST 2025
Wed Dec 27 19:16:50 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Closed loop
Integral proportional control
Stability
nonlinear programming (NLP)
tuning
Benchmarks
Non linear programming
controller parameters
PI controller
Optimization
Design
Tennessee Eastman Process
Decentralized control
Cost function
Inventory control
Instability
Mathematical programming
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5488-5f2f2b976da1d3d7631d7359859d1e654847ad6b061a241b8a7af96c133ff8db3
Notes http://dx.doi.org/10.1002/aic.11588
"PRIMS" Marie Curie Action - No. MRTN-CT-2004-512233
MCyT Projects - No. PPQ2001-3643
ArticleID:AIC11588
Xunta de Galicia - No. PGIDIT02-PXIC40209PN
istex:5FE7E0112189061F19E13C3CE0BEE6F3CD7256AE
Spanish Government
ark:/67375/WNG-HZZRBL48-J
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://hdl.handle.net/10261/49593
PQID 199460139
PQPubID 23500
PageCount 21
ParticipantIDs proquest_miscellaneous_743408552
proquest_miscellaneous_48102096
proquest_miscellaneous_35519086
proquest_miscellaneous_21258121
proquest_journals_199460139
pascalfrancis_primary_20806536
crossref_primary_10_1002_aic_11588
crossref_citationtrail_10_1002_aic_11588
wiley_primary_10_1002_aic_11588_AIC11588
istex_primary_ark_67375_WNG_HZZRBL48_J
fao_agris_US201301553960
PublicationCentury 2000
PublicationDate November 2008
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: November 2008
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services
American Institute of Chemical Engineers
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services
– name: American Institute of Chemical Engineers
References Downs JJ,Vogel EF. A plant-wide industrial process control problem. Comput Chem Eng. 1993; 17: 245-255.
Antelo LT,Otero-Muras I,Banga JR,Alonso AA. A systematic approach to plant-wide control based on thermodynamics. Comput Chem Eng. 2007a; 31(7): 677-691.
Ricker NL,Lee JH. Nonlinear model predictive control of the Tennessee Eastman challenge process. Comput Chem Eng. 1995; 19(9): 961-981.
Pedret C,Vilanova R,Moreno R,Serra I. A refinement procedure for PID control tuning. Comput Chem Eng. 2002; 26: 903-908.
Battiti R,Tecchiolli G. The continuous tabu search: Blending combinatorial optimization and stochastic search for global optimization. Annals of Operations Res. 1996; 63: 153-188.
Ogunnaike BA,Ray WH. Process Dynamics, Modeling and Control. New York: Oxford University Press; 1994.
Alonso AA,Ydstie BE. Stabilization of distributed systems using irreversible thermodynamics. Automatica. 2001; 37: 1739-1755.
Luyben ML,Tyreus BD,Luyben W. Plantwide control design procedure. AIChE J. 1997; 43: 3163-3174.
Antelo L,Banga JR,Alonso AA. Hierarchical design of decentralized control structures for the Tennessee Eastman Process. Submitted to Comput Chem Eng. 2007b; 32: 1995-2015.
Ricker NL. Decentralized control of de Tennessee Eastman Challenge Process. J Proc Contr. 1996; 6: 205-221.
Tyreus BD. Dominant variables for partial control. 2. Application to the Tennessee Eastman Challenge Process. Ind Eng Chem Res. 1998; 38(4): 1444-1455.
Price RM,Lyman PR,Georgakis C. Throughput manipulation in plantwide control structures. Ind Eng Chem Res. 1994; 33(5): 1197-1207.
Ydstie BE,Alonso AA. Process systems and passivity via the Clausius-Planck inequality. Syst Contr Letts. 1997; 30: 253-264.
Morari M,Zafirou E. Robust process control. Prentice-Hall International; 1989.
Exler O,Antelo LT,Alonso AA,Banga JR. A Tabu Search-based algorithm for integrated process and control system design. Comput Chem Eng. 2006; 32: 1877-1891.
Larsson T,Skogestad S. Self-Optimizing control of a large-scale plant: the Tennessee Eastman process. Ind Chem Eng Res. 2001; 40: 4889-4901.
Jockenhövel T,Biegler LT,Wächter A. Dynamic optimization of the Tennessee Eastman process using the OptControlCentre. Comput Chem Eng. 2003; 27(11); 1513-1531.
Lyman PR,Georgakis C. Plant-wide control of de Tennessee Eastman Problem. Comput Chem Eng. 1995; 19: 321-331.
Abramson, M. A. Pattern Search Algorithms for Mixed Variable General Constrained Optimization Problems. Rice University: Houston, TX; 2002.
Exler O,Schittkowski K. A trust region SQP algorithm for mixed-integer nonlinear programming. Optimization Letts. 2006; DOI 10.1007/s11590-006-0026-1.
McAvoy TJ,Ye N. Base control for The Tennessee Eastman Problem. Comput Chem Eng. 1994; 35(8): 130-137.
Farschman C,Viswanath K,Ydstie B. Process systems and inventory control. AIChE J. 1998; 44(8): 1841-1857.
Baughman DR,Liu YA. Neural Networks in Bioprocessing and Chemical Engineering. San Diego: Academic Press; 1995.
1998; 38
2002; 26
1993; 17
1997; 43
2006; 32
1997; 30
1994; 33
2007a; 31
1996
1996; 63
1994; 35
2003; 27
1995
2006
2001; 37
1994
1995; 19
2002
2001; 40
2007b; 32
1998; 44
1989
1996; 6
McAvoy TJ (e_1_2_9_10_2) 1994; 35
e_1_2_9_21_2
e_1_2_9_12_2
Abramson M. A. (e_1_2_9_22_2) 2002
e_1_2_9_11_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
Morari M (e_1_2_9_8_2) 1989
e_1_2_9_9_2
Exler O (e_1_2_9_23_2) 2006
e_1_2_9_14_2
e_1_2_9_25_2
Ogunnaike BA (e_1_2_9_6_2) 1994
e_1_2_9_13_2
e_1_2_9_24_2
e_1_2_9_16_2
Baughman DR (e_1_2_9_20_2) 1995
e_1_2_9_15_2
Skogestad S (e_1_2_9_7_2) 1996
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_19_2
References_xml – reference: Luyben ML,Tyreus BD,Luyben W. Plantwide control design procedure. AIChE J. 1997; 43: 3163-3174.
– reference: Farschman C,Viswanath K,Ydstie B. Process systems and inventory control. AIChE J. 1998; 44(8): 1841-1857.
– reference: Price RM,Lyman PR,Georgakis C. Throughput manipulation in plantwide control structures. Ind Eng Chem Res. 1994; 33(5): 1197-1207.
– reference: Alonso AA,Ydstie BE. Stabilization of distributed systems using irreversible thermodynamics. Automatica. 2001; 37: 1739-1755.
– reference: Pedret C,Vilanova R,Moreno R,Serra I. A refinement procedure for PID control tuning. Comput Chem Eng. 2002; 26: 903-908.
– reference: Exler O,Schittkowski K. A trust region SQP algorithm for mixed-integer nonlinear programming. Optimization Letts. 2006; DOI 10.1007/s11590-006-0026-1.
– reference: Antelo L,Banga JR,Alonso AA. Hierarchical design of decentralized control structures for the Tennessee Eastman Process. Submitted to Comput Chem Eng. 2007b; 32: 1995-2015.
– reference: Ydstie BE,Alonso AA. Process systems and passivity via the Clausius-Planck inequality. Syst Contr Letts. 1997; 30: 253-264.
– reference: Morari M,Zafirou E. Robust process control. Prentice-Hall International; 1989.
– reference: McAvoy TJ,Ye N. Base control for The Tennessee Eastman Problem. Comput Chem Eng. 1994; 35(8): 130-137.
– reference: Lyman PR,Georgakis C. Plant-wide control of de Tennessee Eastman Problem. Comput Chem Eng. 1995; 19: 321-331.
– reference: Ricker NL. Decentralized control of de Tennessee Eastman Challenge Process. J Proc Contr. 1996; 6: 205-221.
– reference: Baughman DR,Liu YA. Neural Networks in Bioprocessing and Chemical Engineering. San Diego: Academic Press; 1995.
– reference: Battiti R,Tecchiolli G. The continuous tabu search: Blending combinatorial optimization and stochastic search for global optimization. Annals of Operations Res. 1996; 63: 153-188.
– reference: Downs JJ,Vogel EF. A plant-wide industrial process control problem. Comput Chem Eng. 1993; 17: 245-255.
– reference: Antelo LT,Otero-Muras I,Banga JR,Alonso AA. A systematic approach to plant-wide control based on thermodynamics. Comput Chem Eng. 2007a; 31(7): 677-691.
– reference: Ricker NL,Lee JH. Nonlinear model predictive control of the Tennessee Eastman challenge process. Comput Chem Eng. 1995; 19(9): 961-981.
– reference: Ogunnaike BA,Ray WH. Process Dynamics, Modeling and Control. New York: Oxford University Press; 1994.
– reference: Exler O,Antelo LT,Alonso AA,Banga JR. A Tabu Search-based algorithm for integrated process and control system design. Comput Chem Eng. 2006; 32: 1877-1891.
– reference: Tyreus BD. Dominant variables for partial control. 2. Application to the Tennessee Eastman Challenge Process. Ind Eng Chem Res. 1998; 38(4): 1444-1455.
– reference: Abramson, M. A. Pattern Search Algorithms for Mixed Variable General Constrained Optimization Problems. Rice University: Houston, TX; 2002.
– reference: Larsson T,Skogestad S. Self-Optimizing control of a large-scale plant: the Tennessee Eastman process. Ind Chem Eng Res. 2001; 40: 4889-4901.
– reference: Jockenhövel T,Biegler LT,Wächter A. Dynamic optimization of the Tennessee Eastman process using the OptControlCentre. Comput Chem Eng. 2003; 27(11); 1513-1531.
– volume: 38
  start-page: 1444
  issue: 4
  year: 1998
  end-page: 1455
  article-title: Dominant variables for partial control. 2. Application to the Tennessee Eastman Challenge Process
  publication-title: Ind Eng Chem Res.
– volume: 37
  start-page: 1739
  year: 2001
  end-page: 1755
  article-title: Stabilization of distributed systems using irreversible thermodynamics
  publication-title: Automatica.
– volume: 43
  start-page: 3163
  year: 1997
  end-page: 3174
  article-title: Plantwide control design procedure
  publication-title: AIChE J.
– year: 2006
  article-title: A trust region SQP algorithm for mixed‐integer nonlinear programming
  publication-title: Optimization Letts.
– volume: 27
  start-page: 1513
  issue: 11
  year: 2003
  end-page: 1531
  article-title: Dynamic optimization of the Tennessee Eastman process using the OptControlCentre
  publication-title: Comput Chem Eng.
– volume: 33
  start-page: 1197
  issue: 5
  year: 1994
  end-page: 1207
  article-title: Throughput manipulation in plantwide control structures
  publication-title: Ind Eng Chem Res.
– volume: 17
  start-page: 245
  year: 1993
  end-page: 255
  article-title: A plant‐wide industrial process control problem
  publication-title: Comput Chem Eng.
– volume: 63
  start-page: 153
  year: 1996
  end-page: 188
  article-title: The continuous tabu search: Blending combinatorial optimization and stochastic search for global optimization
  publication-title: Annals of Operations Res.
– volume: 31
  start-page: 677
  issue: 7
  year: 2007a
  end-page: 691
  article-title: A systematic approach to plant‐wide control based on thermodynamics
  publication-title: Comput Chem Eng.
– volume: 40
  start-page: 4889
  year: 2001
  end-page: 4901
  article-title: Self‐Optimizing control of a large‐scale plant: the Tennessee Eastman process
  publication-title: Ind Chem Eng Res.
– year: 2002
– year: 1989
– volume: 19
  start-page: 961
  issue: 9
  year: 1995
  end-page: 981
  article-title: Nonlinear model predictive control of the Tennessee Eastman challenge process
  publication-title: Comput Chem Eng.
– volume: 19
  start-page: 321
  year: 1995
  end-page: 331
  article-title: Plant‐wide control of de Tennessee Eastman Problem
  publication-title: Comput Chem Eng.
– year: 1996
– volume: 35
  start-page: 130
  issue: 8
  year: 1994
  end-page: 137
  article-title: Base control for The Tennessee Eastman Problem
  publication-title: Comput Chem Eng.
– year: 1995
– volume: 44
  start-page: 1841
  issue: 8
  year: 1998
  end-page: 1857
  article-title: Process systems and inventory control
  publication-title: AIChE J.
– volume: 32
  start-page: 1877
  year: 2006
  end-page: 1891
  article-title: A Tabu Search‐based algorithm for integrated process and control system design
  publication-title: Comput Chem Eng.
– volume: 6
  start-page: 205
  year: 1996
  end-page: 221
  article-title: Decentralized control of de Tennessee Eastman Challenge Process
  publication-title: J Proc Contr.
– volume: 32
  start-page: 1995
  year: 2007b
  end-page: 2015
  article-title: Hierarchical design of decentralized control structures for the Tennessee Eastman Process
  publication-title: Submitted to Comput Chem Eng.
– volume: 30
  start-page: 253
  year: 1997
  end-page: 264
  article-title: Process systems and passivity via the Clausius‐Planck inequality
  publication-title: Syst Contr Letts.
– year: 1994
– volume: 26
  start-page: 903
  year: 2002
  end-page: 908
  article-title: A refinement procedure for PID control tuning
  publication-title: Comput Chem Eng.
– ident: e_1_2_9_12_2
  doi: 10.1016/0959-1524(96)00031-5
– volume-title: Neural Networks in Bioprocessing and Chemical Engineering
  year: 1995
  ident: e_1_2_9_20_2
– ident: e_1_2_9_9_2
  doi: 10.1016/S0098-1354(02)00011-X
– ident: e_1_2_9_14_2
  doi: 10.1021/ie00029a016
– ident: e_1_2_9_11_2
  doi: 10.1016/0098-1354(94)00057-U
– ident: e_1_2_9_16_2
  doi: 10.1002/aic.690431205
– volume-title: Pattern Search Algorithms for Mixed Variable General Constrained Optimization Problems
  year: 2002
  ident: e_1_2_9_22_2
– ident: e_1_2_9_2_2
  doi: 10.1016/j.compchemeng.2006.11.004
– ident: e_1_2_9_21_2
  doi: 10.1002/aic.690440814
– ident: e_1_2_9_15_2
  doi: 10.1016/0098-1354(93)80018-I
– ident: e_1_2_9_19_2
  doi: 10.1016/0098-1354(94)00105-W
– volume-title: Process Dynamics, Modeling and Control
  year: 1994
  ident: e_1_2_9_6_2
– ident: e_1_2_9_17_2
  doi: 10.1021/ie980620x
– volume: 35
  start-page: 130
  issue: 8
  year: 1994
  ident: e_1_2_9_10_2
  article-title: Base control for The Tennessee Eastman Problem
  publication-title: Comput Chem Eng.
– ident: e_1_2_9_18_2
  doi: 10.1016/S0098-1354(03)00113-3
– ident: e_1_2_9_5_2
  doi: 10.1016/j.compchemeng.2007.10.021
– volume-title: Analysis and design
  year: 1996
  ident: e_1_2_9_7_2
– ident: e_1_2_9_4_2
  doi: 10.1016/S0005-1098(01)00140-6
– year: 2006
  ident: e_1_2_9_23_2
  article-title: A trust region SQP algorithm for mixed‐integer nonlinear programming
  publication-title: Optimization Letts.
– volume-title: Robust process control
  year: 1989
  ident: e_1_2_9_8_2
– ident: e_1_2_9_13_2
  doi: 10.1021/ie000586y
– ident: e_1_2_9_24_2
  doi: 10.1007/BF02125453
– ident: e_1_2_9_3_2
  doi: 10.1016/S0167-6911(97)00023-6
– ident: e_1_2_9_25_2
  doi: 10.1016/j.compchemeng.2007.10.008
SSID ssj0012782
Score 1.8850336
Snippet The need of designing decentralized control loops emerges to ensure the global stability of a given process plant. To that purpose, it has been proposed in...
SourceID proquest
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2904
SubjectTerms Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization
Applied sciences
Chemical engineering
Closed loop systems
controller parameters
Controllers
decentralized control
Design
Exact sciences and technology
Nonlinear programming
nonlinear programming (NLP)
PI controller
Problem solving
Tennessee Eastman Process
Thermodynamics
tuning
Title Optimal tuning of thermodynamic-based decentralized PI control loops: Application to the Tennessee Eastman Process
URI https://api.istex.fr/ark:/67375/WNG-HZZRBL48-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.11588
https://www.proquest.com/docview/199460139
https://www.proquest.com/docview/21258121
https://www.proquest.com/docview/35519086
https://www.proquest.com/docview/48102096
https://www.proquest.com/docview/743408552
Volume 54
WOSCitedRecordID wos000260859600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB61KQc48F_VFMoKIcTFaux47Y04hdLQoihUpYGql9Wud40iGhvFDkKceASekSdhZu24jUQkJG6JMhslszOz33hmvwF4Hikb8QgdSXTTmEi1rS9irvxYKWu15pq7csHHUTIei_Pz_skGvFrehan5IdoHbuQZLl6Tgytd7l-Rhqppiv7OhdiErRDtNurA1pvT4WTUFhHCRNRk4ZgxI1IIlsRC3XC_XbxyHG1mqkCQSvr9Tk2SqkQ9ZfWAixUEeh3HuoNoeOe__sJduN3gTzaoDeYebNj8Pty6xkr4AKr3GEZmKFQt6KEJKzJGKHFWmHp6_e-fv-jsM8zYprVz-gPfnRyzpu-dXRYF_kY2uCqOs6qgL2FnFNfL0lp2qMpqpnLW3FR4CJPh4dnBkd8MZ_BTTHKEz7MwCzWCGaMC0zMYpgKTEB0g75vA0jT6KFEm1ogXFKIELVSisn6cYk6cZcLo3jZ08iK3O8Ay1ROxRSBp-qmbiGZVkCSaaqRCJzbx4OVyj2TaMJfTAI1LWXMuhxIVKZ0iPXjWin6t6Tr-JrSDGy3VZwyjcvIhpOItjU_CZM6DF27328Vq_oVa3xIuP43fyqOLi9PXo0jIdx7srZhHuyDsUqm6F3uwu7QX2YSFUhIRc0yg24On7afoz1SkUbktFqVEKMERdAXrJRAhIooT8XqJSCBsxNzUA7ZGAnEjUdvxEHXrLHS9tuTg-MC9ePTvortw0_XVuDubj6FTzRf2CdxIv1XTcr7X-Okfzak_6w
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9tHRLwwH-0MNgshBAv0Zo0TlyJlzJWWghlGu2Y9mI5sTNVWxPUpAjxxEfgM_JJuEvSbJWohMRbq56j9Ow7_853_h3AC08Zj3toSKId-0SqbWzhc2X7ShkTRTziZbrgJAxGI3F62j3agNfLuzAVP0Rz4EaWUfprMnA6kN6_Yg1V0xgNnguxCVseLiPegq23x_1J2GQR3EBUbOEYMiNUcJbMQm13vxm8sh9tJipDlEoK_k5VkipHRSVVh4sVCHodyJY7Uf_u__2He3CnRqCsVy2Z-7Bh0gdw-xov4UMoPqEjmaFQsaBjE5YljHDiLNNV__rfP3_R7qeZNnVx5_QHfjsasrrynV1mGb4k612lx1mR0UPYmDx7nhvDDlVezFTK6rsKj2DSPxwfDOy6PYMdY5gjbJ64iRshnNHK0R2NjsrRAREC8q52DPWj9wKl_QgRg0KcEAkVqKTrxxgVJ4nQUecxtNIsNdvAEtURvkEoqbtx2RPNKCcIIsqSiigwgQWvlpMk45q7nFpoXMqKddmVqEhZKtKC543o14qw429C2zjTUp2jI5WTzy6lb6mBEoZzFrwsp78ZrOYXVPwWcPll9E4Ozs6O34SekO8t2F1ZH80At03J6o5vwc5ywcjaMeSSqJh9gt0W7DW_okVTmkalJlvkEsEER9jlrJdAjIg4TvjrJTyBwBGjUwvYGglEjkRux13UbblE12tL9oYH5Ycn_y66BzcH44-hDIejDztwq6yyKW9wPoVWMV-YZ3Aj_lZM8_lubbR_AN58Q9s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_tD0LwwH-0MNgshBAv1Zo0ThyJl7KtrFCVaqww7cVyYnuqtiZTkyLEEx-Bz8gn4S5Js1WiEhJvqXKu2rPv_Dvf-XcAr3xlfO6jIYl2EhCptmmJgKtWoJQxccxjXqYLvgzC4VCcnkajNXi7uAtT8UM0B25kGaW_JgM3V9ruXbOGqkmCBs-FWIdNn0cBmuXmwXFvPGiyCF4oKrZwDJkRKrgLZqG2t9cMXtqP1q3KEKWSgr9TlaTKUVG26nCxBEFvAtlyJ-rd_7__8ADu1QiUdasl8xDWTPoI7t7gJXwMxSd0JFMUKuZ0bMIyywgnTjNd9a___fMX7X6aaVMXd05-4KdRn9WV7-wyy_BHsu51epwVGX0JOyHPnufGsEOVF1OVsvquwhMY9w5P9o9adXuGVoJhjmhx61kvRjijlas7Gh2Vq0MiBOSRdg31o_dDpYMYEYNCnBALFSobBQlGxdYKHXeewkaapWYLmFUdERiEkjpKyp5oRrlhGFOWVMShCR14s5gkmdTc5dRC41JWrMueREXKUpEOvGxEryrCjr8JbeFMS3WOjlSOP3uUvqUGShjOOfC6nP5msJpdUPFbyOXX4Xt5dHZ2_G7gC_nBgZ2l9dEM8NqUrO4EDmwvFoysHUMuiYo5INjtwG7zFi2a0jQqNdk8lwgmOMIud7UEYkTEcSJYLeELBI4YnTrAVkggciRyO-6hbsslulpbstvfLx-e_bvoLtweHfTkoD_8uA13yiKb8gLnc9goZnPzAm4l34pJPtupbfYPBtVDVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+tuning+of+thermodynamic-based+decentralized+PI+control+loops%3A+Application+to+the+Tennessee+Eastman+Process&rft.jtitle=AIChE+journal&rft.au=Antelo%2C+Luis+T&rft.au=Exler%2C+Oliver&rft.au=Banga%2C+Julio+R&rft.au=Alonso%2C+Antonio+A&rft.date=2008-11-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=54&rft.issue=11&rft.spage=2904&rft.epage=2924&rft_id=info:doi/10.1002%2Faic.11588&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon