Topoisomerase I poisoning results in PARP-mediated replication fork reversal
Topoisomerase 1 (Top1) inhibition is believed to mediate cellular toxicity by trapping Top1 on nicked DNA, leading to double-strand break formation during replication. New studies show that clinically relevant doses of Top1 poisons lead instead to extensive replication-fork reversal that is mediated...
Uložené v:
| Vydané v: | Nature structural & molecular biology Ročník 19; číslo 4; s. 417 - 423 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Nature Publishing Group US
01.04.2012
Nature Publishing Group |
| Predmet: | |
| ISSN: | 1545-9993, 1545-9985, 1545-9985 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Topoisomerase 1 (Top1) inhibition is believed to mediate cellular toxicity by trapping Top1 on nicked DNA, leading to double-strand break formation during replication. New studies show that clinically relevant doses of Top1 poisons lead instead to extensive replication-fork reversal that is mediated by Poly(ADP-ribose) polymerases, limiting double-strand break formation.
Topoisomerase I (Top1) releases torsional stress during DNA replication and transcription and is inhibited by camptothecin and camptothecin-derived cancer chemotherapeutics. Top1 inhibitor cytotoxicity is frequently linked to double-strand break (DSB) formation as a result of Top1 being trapped on a nicked DNA intermediate in replicating cells. Here we use yeast, mammalian cell lines and
Xenopus laevis
egg extracts to show that Top1 poisons rapidly induce replication-fork slowing and reversal, which can be uncoupled from DSB formation at sublethal inhibitor doses. Poly(ADP-ribose) polymerase activity, but not single-stranded break repair in general, is required for effective fork reversal and limits DSB formation. These data identify fork reversal as a means to prevent chromosome breakage upon exogenous replication stress and implicate proteins involved in fork reversal or restart as factors modulating the cytotoxicity of replication stress–inducing chemotherapeutics. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1545-9993 1545-9985 1545-9985 |
| DOI: | 10.1038/nsmb.2258 |