MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools
Metabolomics has started to embrace computational approaches for chemical interpretation of large data sets. Yet, metabolite annotation remains a key challenge. Recently, molecular networking and MS2LDA emerged as molecular mining tools that find molecular families and substructures in mass spectrom...
Gespeichert in:
| Veröffentlicht in: | Metabolites Jg. 9; H. 7; S. 144 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
16.07.2019
MDPI |
| Schlagworte: | |
| ISSN: | 2218-1989, 2218-1989 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Metabolomics has started to embrace computational approaches for chemical interpretation of large data sets. Yet, metabolite annotation remains a key challenge. Recently, molecular networking and MS2LDA emerged as molecular mining tools that find molecular families and substructures in mass spectrometry fragmentation data. Moreover, in silico annotation tools obtain and rank candidate molecules for fragmentation spectra. Ideally, all structural information obtained and inferred from these computational tools could be combined to increase the resulting chemical insight one can obtain from a data set. However, integration is currently hampered as each tool has its own output format and efficient matching of data across these tools is lacking. Here, we introduce MolNetEnhancer, a workflow that combines the outputs from molecular networking, MS2LDA, in silico annotation tools (such as Network Annotation Propagation or DEREPLICATOR), and the automated chemical classification through ClassyFire to provide a more comprehensive chemical overview of metabolomics data whilst at the same time illuminating structural details for each fragmentation spectrum. We present examples from four plant and bacterial case studies and show how MolNetEnhancer enables the chemical annotation, visualization, and discovery of the subtle substructural diversity within molecular families. We conclude that MolNetEnhancer is a useful tool that greatly assists the metabolomics researcher in deciphering the metabolome through combination of multiple independent in silico pipelines. |
|---|---|
| AbstractList | Metabolomics has started to embrace computational approaches for chemical interpretation of large data sets. Yet, metabolite annotation remains a key challenge. Recently, molecular networking and MS2LDA emerged as molecular mining tools that find molecular families and substructures in mass spectrometry fragmentation data. Moreover, in silico annotation tools obtain and rank candidate molecules for fragmentation spectra. Ideally, all structural information obtained and inferred from these computational tools could be combined to increase the resulting chemical insight one can obtain from a data set. However, integration is currently hampered as each tool has its own output format and efficient matching of data across these tools is lacking. Here, we introduce MolNetEnhancer, a workflow that combines the outputs from molecular networking, MS2LDA, in silico annotation tools (such as Network Annotation Propagation or DEREPLICATOR), and the automated chemical classification through ClassyFire to provide a more comprehensive chemical overview of metabolomics data whilst at the same time illuminating structural details for each fragmentation spectrum. We present examples from four plant and bacterial case studies and show how MolNetEnhancer enables the chemical annotation, visualization, and discovery of the subtle substructural diversity within molecular families. We conclude that MolNetEnhancer is a useful tool that greatly assists the metabolomics researcher in deciphering the metabolome through combination of multiple independent in silico pipelines. Metabolomics has started to embrace computational approaches for chemical interpretation of large data sets. Yet, metabolite annotation remains a key challenge. Recently, molecular networking and MS2LDA emerged as molecular mining tools that find molecular families and substructures in mass spectrometry fragmentation data. Moreover, in silico annotation tools obtain and rank candidate molecules for fragmentation spectra. Ideally, all structural information obtained and inferred from these computational tools could be combined to increase the resulting chemical insight one can obtain from a data set. However, integration is currently hampered as each tool has its own output format and efficient matching of data across these tools is lacking. Here, we introduce MolNetEnhancer, a workflow that combines the outputs from molecular networking, MS2LDA, in silico annotation tools (such as Network Annotation Propagation or DEREPLICATOR), and the automated chemical classification through ClassyFire to provide a more comprehensive chemical overview of metabolomics data whilst at the same time illuminating structural details for each fragmentation spectrum. We present examples from four plant and bacterial case studies and show how MolNetEnhancer enables the chemical annotation, visualization, and discovery of the subtle substructural diversity within molecular families. We conclude that MolNetEnhancer is a useful tool that greatly assists the metabolomics researcher in deciphering the metabolome through combination of multiple independent in silico pipelines.Metabolomics has started to embrace computational approaches for chemical interpretation of large data sets. Yet, metabolite annotation remains a key challenge. Recently, molecular networking and MS2LDA emerged as molecular mining tools that find molecular families and substructures in mass spectrometry fragmentation data. Moreover, in silico annotation tools obtain and rank candidate molecules for fragmentation spectra. Ideally, all structural information obtained and inferred from these computational tools could be combined to increase the resulting chemical insight one can obtain from a data set. However, integration is currently hampered as each tool has its own output format and efficient matching of data across these tools is lacking. Here, we introduce MolNetEnhancer, a workflow that combines the outputs from molecular networking, MS2LDA, in silico annotation tools (such as Network Annotation Propagation or DEREPLICATOR), and the automated chemical classification through ClassyFire to provide a more comprehensive chemical overview of metabolomics data whilst at the same time illuminating structural details for each fragmentation spectrum. We present examples from four plant and bacterial case studies and show how MolNetEnhancer enables the chemical annotation, visualization, and discovery of the subtle substructural diversity within molecular families. We conclude that MolNetEnhancer is a useful tool that greatly assists the metabolomics researcher in deciphering the metabolome through combination of multiple independent in silico pipelines. |
| Author | Kang, Kyo Bin van der Hooft, Justin J.J. Medema, Marnix H. Caraballo-Rodríguez, Andrés Mauricio Chen, Christopher Ernst, Madeleine Dorrestein, Pieter C. Wandy, Joe Wang, Mingxun Rogers, Simon Nothias, Louis-Felix |
| AuthorAffiliation | 4 Glasgow Polyomics, University of Glasgow, Glasgow G12 8QQ, UK 7 Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA 1 Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA 5 School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK 6 Bioinformatics Group, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands 8 Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA 2 Department of Congenital Disorders, Center for Newborn Screening, Statens Serum Institut, 2300 Copenhagen, Denmark 3 Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea |
| AuthorAffiliation_xml | – name: 3 Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea – name: 2 Department of Congenital Disorders, Center for Newborn Screening, Statens Serum Institut, 2300 Copenhagen, Denmark – name: 4 Glasgow Polyomics, University of Glasgow, Glasgow G12 8QQ, UK – name: 8 Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA – name: 7 Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA – name: 6 Bioinformatics Group, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands – name: 5 School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK – name: 1 Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA |
| Author_xml | – sequence: 1 givenname: Madeleine orcidid: 0000-0001-9530-3837 surname: Ernst fullname: Ernst, Madeleine – sequence: 2 givenname: Kyo Bin orcidid: 0000-0003-3290-1017 surname: Kang fullname: Kang, Kyo Bin – sequence: 3 givenname: Andrés Mauricio surname: Caraballo-Rodríguez fullname: Caraballo-Rodríguez, Andrés Mauricio – sequence: 4 givenname: Louis-Felix orcidid: 0000-0001-6711-6719 surname: Nothias fullname: Nothias, Louis-Felix – sequence: 5 givenname: Joe orcidid: 0000-0002-3068-4664 surname: Wandy fullname: Wandy, Joe – sequence: 6 givenname: Christopher surname: Chen fullname: Chen, Christopher – sequence: 7 givenname: Mingxun surname: Wang fullname: Wang, Mingxun – sequence: 8 givenname: Simon orcidid: 0000-0003-3578-4477 surname: Rogers fullname: Rogers, Simon – sequence: 9 givenname: Marnix H. orcidid: 0000-0002-2191-2821 surname: Medema fullname: Medema, Marnix H. – sequence: 10 givenname: Pieter C. surname: Dorrestein fullname: Dorrestein, Pieter C. – sequence: 11 givenname: Justin J.J. orcidid: 0000-0002-9340-5511 surname: van der Hooft fullname: van der Hooft, Justin J.J. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31315242$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kk1v1DAQhi1UREvpkSuKxIVLwB9xYnNAqqoCK3XhUs7WxJ5sszh2sbOg_nu83aXqVsIXj-Z9_HrsmZfkKMSAhLxm9L0Qmn6YcIY-atpR1jTPyAnnTNVMK330KD4mZzmvaVktlYV8QY4FE0zyhp8QWEb_DefLcAPBYvpY7SNXFQHtxkOqiv4npp-56u-qRZhxlWAew6pa3t_u44TVcgzbDARXnYcQ5wLEUF3H6PMr8nwAn_Fsv5-SH58vry--1lffvywuzq9qK5turq1zgE71WncaBtv2Vg1KiK5xTAgnOKIdtG1ZpyxtOzVYiwhWMutAyA4GcUoWO18XYW1u0zhBujMRRnOfiGllIM2j9WisVG3HVd87FA2TFkBC3yiFyLkuYvH6tPO63fQTOothTuAPTA-VMN6YVfxt2lZRSUUxeLc3SPHXBvNspjFb9B4Cxk02nEu9bVsjC_r2CbqOmxTKVxkuG6VF27Xbit48ruihlH-dLEC9A2yKOSccHhBGzXZYzMGwFF484e24a1t50Oj_c-ovLMzF-w |
| CitedBy_id | crossref_primary_10_1002_jssc_202100399 crossref_primary_10_1007_s43450_023_00507_2 crossref_primary_10_1038_s41579_020_0379_y crossref_primary_10_7717_peerj_13579 crossref_primary_10_1186_s40694_023_00170_1 crossref_primary_10_1007_s11306_025_02257_9 crossref_primary_10_1128_msystems_00710_22 crossref_primary_10_1515_bot_2024_0032 crossref_primary_10_1128_msystems_00601_21 crossref_primary_10_1039_D5NP00013K crossref_primary_10_1128_spectrum_02743_23 crossref_primary_10_1002_rcm_10145 crossref_primary_10_1016_j_bioorg_2024_107329 crossref_primary_10_1016_j_prenap_2025_100216 crossref_primary_10_1007_s00049_020_00315_3 crossref_primary_10_1016_j_fct_2023_113738 crossref_primary_10_1155_2022_8260379 crossref_primary_10_1016_j_micres_2021_126826 crossref_primary_10_1080_14789450_2020_1766975 crossref_primary_10_1007_s00216_021_03500_7 crossref_primary_10_1073_pnas_2110283119 crossref_primary_10_1039_D2CC03598G crossref_primary_10_1016_j_phymed_2025_156518 crossref_primary_10_1111_pce_70004 crossref_primary_10_3389_fmolb_2022_841373 crossref_primary_10_1016_j_marenvres_2021_105503 crossref_primary_10_1016_j_sajb_2025_08_041 crossref_primary_10_1002_vjch_202100215 crossref_primary_10_1038_s41598_022_16300_5 crossref_primary_10_1016_j_talanta_2025_127602 crossref_primary_10_3389_fcimb_2022_805473 crossref_primary_10_1111_tpj_15448 crossref_primary_10_3389_fchem_2024_1477492 crossref_primary_10_1371_journal_pcbi_1008724 crossref_primary_10_1038_s41579_021_00621_9 crossref_primary_10_1016_j_phytol_2020_01_021 crossref_primary_10_1007_s13131_024_2302_2 crossref_primary_10_1016_S1875_5364_22_60235_8 crossref_primary_10_1039_D3RA03141A crossref_primary_10_1016_j_micres_2021_126836 crossref_primary_10_1038_s41396_021_01152_0 crossref_primary_10_1007_s00253_025_13427_z crossref_primary_10_1073_pnas_2400711121 crossref_primary_10_1016_j_jpba_2025_116741 crossref_primary_10_1016_j_jpba_2025_117158 crossref_primary_10_1007_s42770_024_01588_4 crossref_primary_10_1038_s41570_021_00313_1 crossref_primary_10_1016_j_cclet_2023_109030 crossref_primary_10_1038_s41592_021_01303_3 crossref_primary_10_1007_s11306_022_01874_y crossref_primary_10_1007_s43450_022_00293_3 crossref_primary_10_1016_j_foodchem_2023_136343 crossref_primary_10_1146_annurev_arplant_071720_114836 crossref_primary_10_1183_13993003_02406_2021 crossref_primary_10_1007_s00216_021_03201_1 crossref_primary_10_1016_j_aquaculture_2024_741913 crossref_primary_10_1002_pca_3235 crossref_primary_10_1007_s10787_023_01158_4 crossref_primary_10_1186_s12916_024_03516_7 crossref_primary_10_1038_s41467_023_42247_w crossref_primary_10_1055_a_2515_9491 crossref_primary_10_1128_msystems_00353_22 crossref_primary_10_1186_s13321_025_01051_y crossref_primary_10_1128_msystems_00726_21 crossref_primary_10_1039_D4RA03767G crossref_primary_10_1021_acsagscitech_5c00226 crossref_primary_10_1055_a_1769_8480 crossref_primary_10_1002_edn3_513 crossref_primary_10_1016_j_chom_2021_11_001 crossref_primary_10_1016_j_jad_2024_02_017 crossref_primary_10_1128_msystems_01225_23 crossref_primary_10_1016_j_trac_2022_116903 crossref_primary_10_1038_s41592_020_0933_6 crossref_primary_10_1042_EBC20230019 crossref_primary_10_3389_fmars_2021_627724 crossref_primary_10_1016_j_foodchem_2023_135940 crossref_primary_10_1016_j_arabjc_2024_105974 crossref_primary_10_1186_s43897_022_00038_9 crossref_primary_10_3389_fntpr_2025_1562501 crossref_primary_10_1016_j_csbj_2021_05_027 crossref_primary_10_1128_msystems_00922_22 crossref_primary_10_1039_D4NP00039K crossref_primary_10_1186_s40168_021_01221_8 crossref_primary_10_3897_mycokeys_95_98125 crossref_primary_10_1038_s41598_021_01093_w crossref_primary_10_3389_fmolb_2022_967012 crossref_primary_10_1016_j_bioorg_2022_106208 crossref_primary_10_1016_j_sajb_2023_10_030 crossref_primary_10_1111_plb_13704 crossref_primary_10_1080_07388551_2025_2478094 crossref_primary_10_1007_s10811_023_02906_3 crossref_primary_10_1111_1365_2745_13826 crossref_primary_10_1016_j_plantsci_2020_110789 crossref_primary_10_1021_jacs_9b13786 crossref_primary_10_1016_j_phytochem_2020_112292 crossref_primary_10_1002_cbdv_202501582 crossref_primary_10_1038_s42003_024_07433_6 crossref_primary_10_1021_acs_jproteome_3c00634 crossref_primary_10_1007_s11306_024_02125_y crossref_primary_10_1016_j_phytochem_2023_113820 crossref_primary_10_1016_j_fitote_2024_105832 crossref_primary_10_1016_j_fitote_2024_105955 crossref_primary_10_1016_j_aquatox_2023_106689 crossref_primary_10_4014_jmb_2301_01036 crossref_primary_10_1021_acs_analchem_5c00314 crossref_primary_10_1038_s41467_022_35734_z crossref_primary_10_1126_sciadv_adw4693 crossref_primary_10_1007_s11306_022_01963_y crossref_primary_10_1038_s41592_023_01850_x crossref_primary_10_1007_s13205_023_03547_6 crossref_primary_10_1016_j_jmr_2023_107381 crossref_primary_10_1016_j_tips_2023_06_004 crossref_primary_10_1146_annurev_biochem_032620_104731 crossref_primary_10_1007_s00203_023_03691_w crossref_primary_10_3389_fmicb_2025_1582103 crossref_primary_10_1016_j_foodchem_2024_139199 crossref_primary_10_1016_j_jip_2021_107541 crossref_primary_10_1016_j_csbj_2020_11_050 crossref_primary_10_1080_14786419_2024_2302326 crossref_primary_10_1007_s00203_024_03911_x crossref_primary_10_15212_AMM_2023_0007 crossref_primary_10_1002_biof_2156 crossref_primary_10_1038_s41587_020_0740_8 crossref_primary_10_1038_s41592_019_0694_2 crossref_primary_10_3389_fmars_2020_00718 crossref_primary_10_1002_jsfa_11298 crossref_primary_10_3389_fpls_2022_920963 crossref_primary_10_1128_msystems_01043_23 crossref_primary_10_1016_j_phytochem_2024_114095 crossref_primary_10_1002_pca_3156 crossref_primary_10_3389_fpls_2023_1114398 crossref_primary_10_1038_s41597_022_01662_2 crossref_primary_10_1093_pnasnexus_pgad221 crossref_primary_10_1016_j_heliyon_2024_e28937 crossref_primary_10_1038_s41564_022_01134_8 crossref_primary_10_1038_s42004_024_01153_y crossref_primary_10_1111_all_15554 crossref_primary_10_1093_pnasnexus_pgac257 crossref_primary_10_1155_2022_2896049 crossref_primary_10_1016_j_foodchem_2021_131176 crossref_primary_10_1007_s00284_025_04165_6 crossref_primary_10_1093_bib_bbab073 crossref_primary_10_1016_j_trac_2024_117711 crossref_primary_10_1016_j_phytochem_2022_113523 crossref_primary_10_1139_cjm_2022_0205 crossref_primary_10_1186_s12864_022_08981_z crossref_primary_10_1007_s11306_020_01657_3 crossref_primary_10_1128_mSystems_00824_20 crossref_primary_10_1016_j_aca_2022_340469 crossref_primary_10_1016_j_aquaculture_2025_742135 crossref_primary_10_1016_j_jfca_2023_105264 crossref_primary_10_1038_s41467_025_63536_6 crossref_primary_10_1038_s41589_021_00949_6 crossref_primary_10_1016_j_phytochem_2023_113725 crossref_primary_10_1038_s41573_022_00414_6 crossref_primary_10_1007_s12031_020_01787_2 crossref_primary_10_1016_j_fbio_2024_104774 crossref_primary_10_1016_j_heliyon_2023_e20747 crossref_primary_10_1002_jssc_70230 crossref_primary_10_1016_j_bcab_2024_103028 crossref_primary_10_1038_s41390_020_01149_z crossref_primary_10_1002_pca_3163 crossref_primary_10_1007_s10845_022_02017_9 crossref_primary_10_1186_s40168_022_01444_3 crossref_primary_10_1038_s41467_022_34537_6 crossref_primary_10_1038_s41597_024_03833_9 crossref_primary_10_1021_jasms_2c00358 crossref_primary_10_1016_j_foodchem_2019_126071 crossref_primary_10_1038_s41598_023_38904_1 crossref_primary_10_1099_mgen_0_001253 crossref_primary_10_1007_s40626_025_00380_5 crossref_primary_10_1002_pca_3446 crossref_primary_10_1038_s41592_020_0916_7 crossref_primary_10_1111_1462_2920_70160 crossref_primary_10_1016_j_foodres_2023_113114 crossref_primary_10_1007_s11306_023_01981_4 crossref_primary_10_1016_j_chroma_2025_466170 crossref_primary_10_1016_j_phytochem_2021_113078 crossref_primary_10_15252_embr_202256033 crossref_primary_10_1016_j_jpba_2021_114523 crossref_primary_10_1016_j_foodchem_2024_138360 crossref_primary_10_1371_journal_pcbi_1010462 crossref_primary_10_1038_s41564_019_0593_4 crossref_primary_10_1016_j_crmicr_2025_100402 crossref_primary_10_4102_jomped_v8i1_266 |
| Cites_doi | 10.1073/pnas.1509788112 10.1093/bioinformatics/bty864 10.1093/bioinformatics/bty080 10.1021/acs.jnatprod.7b00113 10.1007/s11306-016-1064-z 10.1021/ac102546x 10.1101/535781 10.1186/s13321-016-0174-y 10.1021/acs.analchem.6b02394 10.1038/s41564-017-0094-2 10.1186/s13321-016-0115-9 10.1073/pnas.1608041113 10.1002/chem.201302481 10.1073/pnas.1516878112 10.1016/j.ijms.2005.09.011 10.1021/acs.orglett.8b01975 10.3945/ajcn.112.044040 10.1186/1471-2105-11-395 10.1021/ac403875b 10.1007/978-3-319-33172-0_1 10.1039/c1ob05097d 10.3390/metabo9010003 10.1039/c3ra45661g 10.1038/s41467-017-01318-5 10.1021/acs.analchem.7b01391 10.1093/bioinformatics/btx159 10.1101/491506 10.1021/acs.jnatprod.6b00722 10.1021/ac202450g 10.1093/nar/gku436 10.1021/cr400541j 10.1093/bioinformatics/btx582 10.1038/455698a 10.1039/C9NP00006B 10.1073/pnas.1607504113 10.1038/s41592-019-0344-8 10.1101/gr.1239303 10.1007/s11306-011-0363-7 10.1021/np300279g 10.1021/acs.analchem.8b03099 10.1111/evo.12605 10.1021/pr070361e 10.1021/ac502818e 10.3389/fpls.2019.00846 10.3390/metabo9040072 10.1038/nchembio.2219 10.1039/C7NP00054E 10.1038/nbt.3597 10.1073/pnas.1203689109 10.1371/journal.pcbi.1006089 10.1002/jms.3123 10.1016/j.chroma.2015.09.092 10.1021/acs.jnatprod.5b01055 10.1101/463620 10.1021/cr078350s 10.1021/acs.analchem.7b01563 10.1007/s11306-007-0082-2 10.2147/CCID.S28905 10.1021/acs.analchem.7b04424 10.1016/j.ympev.2011.12.022 10.1021/acs.analchem.6b01569 10.1038/s41564-017-0039-9 10.1016/j.eja.2016.06.015 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
| DBID | AAYXX CITATION NPM 7QR 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/metabo9070144 |
| DatabaseName | CrossRef PubMed Chemoreception Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2218-1989 |
| ExternalDocumentID | oai_doaj_org_article_c586728bbde3415caa5ab488ee229c58 PMC6680503 31315242 10_3390_metabo9070144 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Netherlands eScience Center grantid: ASDI.2017.030 – fundername: Engineering and Physical Sciences Research Council grantid: EP/R018634/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/R022054/1 – fundername: US National Science Foundation grantid: IOS-1656481 |
| GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU CITATION DIK GROUPED_DOAJ HCIFZ HYE KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM 7QR 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c547t-cddaed8b9979afc6bc8f83374d133d32eecf9c6178c0678fcceeac51cda357af3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 298 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481505900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2218-1989 |
| IngestDate | Fri Oct 03 12:50:35 EDT 2025 Tue Nov 04 02:01:22 EST 2025 Thu Oct 02 05:02:45 EDT 2025 Fri Jul 25 12:19:29 EDT 2025 Thu Jan 02 23:03:46 EST 2025 Sat Nov 29 07:16:13 EST 2025 Tue Nov 18 22:17:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | metabolite annotation substructures molecular families in silico workflows metabolome mining chemical classification networking metabolite identification |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c547t-cddaed8b9979afc6bc8f83374d133d32eecf9c6178c0678fcceeac51cda357af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9530-3837 0000-0002-2191-2821 0000-0003-3290-1017 0000-0002-3068-4664 0000-0002-9340-5511 0000-0001-6711-6719 0000-0003-3578-4477 |
| OpenAccessLink | https://www.proquest.com/docview/2548936768?pq-origsite=%requestingapplication% |
| PMID | 31315242 |
| PQID | 2548936768 |
| PQPubID | 2032362 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c586728bbde3415caa5ab488ee229c58 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6680503 proquest_miscellaneous_2259907045 proquest_journals_2548936768 pubmed_primary_31315242 crossref_primary_10_3390_metabo9070144 crossref_citationtrail_10_3390_metabo9070144 |
| PublicationCentury | 2000 |
| PublicationDate | 20190716 |
| PublicationDateYYYYMMDD | 2019-07-16 |
| PublicationDate_xml | – month: 7 year: 2019 text: 20190716 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Metabolites |
| PublicationTitleAlternate | Metabolites |
| PublicationYear | 2019 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Mohimani (ref_1) 2017; 13 Ridder (ref_9) 2014; 86 Frank (ref_29) 2008; 7 Edmands (ref_20) 2017; 89 Zhou (ref_54) 2012; 75 Crupi (ref_59) 2016; 80 ref_57 Vervoort (ref_46) 2012; 8 ref_52 Shi (ref_51) 2018; 35 Zhou (ref_56) 2013; 19 Renucci (ref_41) 2015; 1422 Olivon (ref_63) 2017; 89 Shen (ref_4) 2015; 112 Shannon (ref_31) 2003; 13 Horn (ref_35) 2012; 63 ref_61 Berman (ref_38) 2012; 5 ref_25 Luo (ref_39) 2016; 113 Pan (ref_60) 2012; 96 Olivon (ref_17) 2018; 90 ref_64 Watrous (ref_10) 2012; 109 Beauxis (ref_23) 2019; 35 Guijas (ref_24) 2018; 90 ref_28 Vervoort (ref_47) 2011; 83 Gerlich (ref_11) 2013; 48 Wandy (ref_15) 2018; 34 Wang (ref_7) 2016; 34 Shi (ref_37) 2008; 108 Ernst (ref_27) 2019; 10 Dorrestein (ref_26) 2015; 112 Feunang (ref_16) 2016; 8 Gurevich (ref_2) 2018; 3 ref_34 Newman (ref_58) 2016; 79 Onstein (ref_44) 2015; 69 Zhao (ref_53) 2018; 20 ref_30 Ma (ref_18) 2014; 86 Fuchs (ref_55) 2011; 9 Treutler (ref_12) 2016; 88 Ruttkies (ref_21) 2016; 8 Wandy (ref_14) 2016; 113 Nothias (ref_42) 2017; 80 March (ref_45) 2006; 248 Padmanabhan (ref_13) 2016; 12 Larson (ref_48) 2017; 80 Tobias (ref_50) 2017; 2 Naake (ref_22) 2017; 33 Vasas (ref_36) 2014; 114 Laponogov (ref_19) 2018; 34 Scheubert (ref_62) 2017; 8 Fleischauer (ref_3) 2019; 16 ref_40 Sumner (ref_43) 2007; 3 ref_8 Wandy (ref_32) 2017; 89 Kuhl (ref_33) 2012; 84 Allen (ref_5) 2014; 42 ref_6 Semsary (ref_49) 2014; 4 |
| References_xml | – volume: 112 start-page: 12580 year: 2015 ident: ref_4 article-title: Searching molecular structure databases with tandem mass spectra using CSI:FingerID publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1509788112 – volume: 35 start-page: 1795 year: 2019 ident: ref_23 article-title: MetWork: A web server for natural products anticipation publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty864 – volume: 34 start-page: 2096 year: 2018 ident: ref_19 article-title: ChemDistiller: an engine for metabolite annotation in mass spectrometry publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty080 – volume: 80 start-page: 2620 year: 2017 ident: ref_42 article-title: Environmentally Friendly Procedure Based on Supercritical Fluid Chromatography and Tandem Mass Spectrometry Molecular Networking for the Discovery of Potent Antiviral Compounds from Euphorbia semiperfoliata publication-title: J. Nat. Prod. doi: 10.1021/acs.jnatprod.7b00113 – volume: 12 start-page: 125 year: 2016 ident: ref_13 article-title: Urinary antihypertensive drug metabolite screening using molecular networking coupled to high-resolution mass spectrometry fragmentation publication-title: Metabolomics doi: 10.1007/s11306-016-1064-z – volume: 83 start-page: 409 year: 2011 ident: ref_47 article-title: Polyphenol identification based on systematic and robust high-resolution accurate mass spectrometry fragmentation publication-title: Anal. Chem. doi: 10.1021/ac102546x – ident: ref_52 doi: 10.1101/535781 – volume: 8 start-page: 61 year: 2016 ident: ref_16 article-title: ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy publication-title: J. Cheminform. doi: 10.1186/s13321-016-0174-y – volume: 89 start-page: 3919 year: 2017 ident: ref_20 article-title: compMS2Miner: An Automatable Metabolite Identification, Visualization, and Data-Sharing R Package for High-Resolution LC–MS Data Sets publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b02394 – volume: 3 start-page: 319 year: 2018 ident: ref_2 article-title: Increased diversity of peptidic natural products revealed by modification-tolerant database search of mass spectra publication-title: Nat. Microbiol. doi: 10.1038/s41564-017-0094-2 – volume: 8 start-page: 3 year: 2016 ident: ref_21 article-title: MetFrag relaunched: incorporating strategies beyond in silico fragmentation publication-title: J. Cheminform. doi: 10.1186/s13321-016-0115-9 – volume: 113 start-page: 13738 year: 2016 ident: ref_14 article-title: Topic modeling for untargeted substructure exploration in metabolomics publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1608041113 – volume: 19 start-page: 16772 year: 2013 ident: ref_56 article-title: Structure and biosynthesis of xenoamicins from entomopathogenic Xenorhabdus publication-title: Chemistry doi: 10.1002/chem.201302481 – volume: 112 start-page: 12549 year: 2015 ident: ref_26 article-title: Illuminating the dark matter in metabolomics publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1516878112 – volume: 248 start-page: 61 year: 2006 ident: ref_45 article-title: A comparison of flavonoid glycosides by electrospray tandem mass spectrometry publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2005.09.011 – volume: 20 start-page: 5116 year: 2018 ident: ref_53 article-title: Rhabdopeptide/Xenortide-like Peptides from Xenorhabdus innexi with Terminal Amines Showing Potent Antiprotozoal Activity publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b01975 – volume: 96 start-page: 1262 year: 2012 ident: ref_60 article-title: α-Linolenic acid and risk of cardiovascular disease: A systematic review and meta-analysis publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.112.044040 – ident: ref_30 doi: 10.1186/1471-2105-11-395 – volume: 86 start-page: 4767 year: 2014 ident: ref_9 article-title: In silico prediction and automatic LC-MS(n) annotation of green tea metabolites in urine publication-title: Anal. Chem. doi: 10.1021/ac403875b – ident: ref_40 doi: 10.1007/978-3-319-33172-0_1 – volume: 9 start-page: 3130 year: 2011 ident: ref_55 article-title: Structure elucidation and biosynthesis of lysine-rich cyclic peptides in Xenorhabdus nematophila publication-title: Org. Biomol. Chem. doi: 10.1039/c1ob05097d – ident: ref_61 doi: 10.3390/metabo9010003 – volume: 4 start-page: 5065 year: 2014 ident: ref_49 article-title: Biosynthetic rivalry of o-aminophenol-carboxylic acids initiates production of hemi-actinomycins in Streptomyces antibioticus publication-title: RSC Adv. doi: 10.1039/c3ra45661g – volume: 8 start-page: 1494 year: 2017 ident: ref_62 article-title: Significance estimation for large scale metabolomics annotations by spectral matching publication-title: Nat. Commun. doi: 10.1038/s41467-017-01318-5 – volume: 89 start-page: 7569 year: 2017 ident: ref_32 article-title: Unsupervised Discovery and Comparison of Structural Families Across Multiple Samples in Untargeted Metabolomics publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b01391 – volume: 33 start-page: 2419 year: 2017 ident: ref_22 article-title: MetCirc: Navigating mass spectral similarity in high-resolution MS/MS metabolomics data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx159 – ident: ref_64 doi: 10.1101/491506 – volume: 80 start-page: 588 year: 2017 ident: ref_48 article-title: Prioritizing Natural Product Diversity in a Collection of 146 Bacterial Strains Based on Growth and Extraction Protocols publication-title: J. Nat. Prod. doi: 10.1021/acs.jnatprod.6b00722 – volume: 84 start-page: 283 year: 2012 ident: ref_33 article-title: CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets publication-title: Anal. Chem. doi: 10.1021/ac202450g – volume: 42 start-page: W94 year: 2014 ident: ref_5 article-title: CFM-ID: A web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku436 – volume: 114 start-page: 8579 year: 2014 ident: ref_36 article-title: Euphorbia Diterpenes: Isolation, Structure, Biological Activity, and Synthesis (2008–2012) publication-title: Chem. Rev. doi: 10.1021/cr400541j – volume: 34 start-page: 317 year: 2018 ident: ref_15 article-title: Ms2lda.org: web-based topic modelling for substructure discovery in mass spectrometry publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx582 – ident: ref_34 – ident: ref_57 doi: 10.1038/455698a – ident: ref_25 doi: 10.1039/C9NP00006B – volume: 113 start-page: E5082 year: 2016 ident: ref_39 article-title: Oxidation and cyclization of casbene in the biosynthesis of Euphorbia factors from mature seeds of Euphorbia lathyris L. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1607504113 – volume: 16 start-page: 299 year: 2019 ident: ref_3 article-title: SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information publication-title: Nat. Methods doi: 10.1038/s41592-019-0344-8 – volume: 13 start-page: 2498 year: 2003 ident: ref_31 article-title: Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 8 start-page: 691 year: 2012 ident: ref_46 article-title: Spectral trees as a robust annotation tool in LC–MS based metabolomics publication-title: Metabolomics doi: 10.1007/s11306-011-0363-7 – volume: 75 start-page: 1717 year: 2012 ident: ref_54 article-title: Xentrivalpeptides A–Q: Depsipeptide Diversification in Xenorhabdus publication-title: J. Nat. Prod. doi: 10.1021/np300279g – volume: 90 start-page: 13900 year: 2018 ident: ref_17 article-title: MetGem Software for the Generation of Molecular Networks Based on the t-SNE Algorithm publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b03099 – volume: 69 start-page: 756 year: 2015 ident: ref_44 article-title: Do Mediterranean-type ecosystems have a common history?--insights from the Buckthorn family (Rhamnaceae) publication-title: Evolution doi: 10.1111/evo.12605 – volume: 7 start-page: 113 year: 2008 ident: ref_29 article-title: Clustering millions of tandem mass spectra publication-title: J. Proteome Res. doi: 10.1021/pr070361e – volume: 86 start-page: 10724 year: 2014 ident: ref_18 article-title: MS2Analyzer: A software for small molecule substructure annotations from accurate tandem mass spectra publication-title: Anal. Chem. doi: 10.1021/ac502818e – volume: 10 start-page: 846 year: 2019 ident: ref_27 article-title: Assessing Specialized Metabolite Diversity in the Cosmopolitan Plant Genus Euphorbia L. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00846 – ident: ref_6 doi: 10.3390/metabo9040072 – volume: 13 start-page: 30 year: 2017 ident: ref_1 article-title: Dereplication of peptidic natural products through database search of mass spectra publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2219 – volume: 35 start-page: 309 year: 2018 ident: ref_51 article-title: Chemical language and warfare of bacterial natural products in bacteria–nematode–insect interactions publication-title: Nat. Product Rep. doi: 10.1039/C7NP00054E – volume: 34 start-page: 828 year: 2016 ident: ref_7 article-title: Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3597 – volume: 109 start-page: E1743 year: 2012 ident: ref_10 article-title: Mass spectral molecular networking of living microbial colonies publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1203689109 – ident: ref_8 doi: 10.1371/journal.pcbi.1006089 – volume: 48 start-page: 291 year: 2013 ident: ref_11 article-title: MetFusion: Integration of compound identification strategies publication-title: J. Mass Spectrom. doi: 10.1002/jms.3123 – volume: 1422 start-page: 128 year: 2015 ident: ref_41 article-title: Insights on profiling of phorbol, deoxyphorbol, ingenol and jatrophane diterpene esters by high performance liquid chromatography coupled to multiple stage mass spectrometry publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2015.09.092 – volume: 79 start-page: 629 year: 2016 ident: ref_58 article-title: Natural Products as Sources of New Drugs from 1981 to 2014 publication-title: J. Nat. Prod. doi: 10.1021/acs.jnatprod.5b01055 – ident: ref_28 doi: 10.1101/463620 – volume: 108 start-page: 4295 year: 2008 ident: ref_37 article-title: Chemical and pharmacological research of the plants in genus Euphorbia publication-title: Chem. Rev. doi: 10.1021/cr078350s – volume: 89 start-page: 7836 year: 2017 ident: ref_63 article-title: MZmine 2 Data-Preprocessing To Enhance Molecular Networking Reliability publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b01563 – volume: 3 start-page: 211 year: 2007 ident: ref_43 article-title: Proposed minimum reporting standards for chemical analysis publication-title: Metabolomics doi: 10.1007/s11306-007-0082-2 – volume: 5 start-page: 111 year: 2012 ident: ref_38 article-title: New developments in the treatment of actinic keratosis: Focus on ingenol mebutate gel publication-title: Clin. Cosmet. Investig. Dermatol. doi: 10.2147/CCID.S28905 – volume: 90 start-page: 3156 year: 2018 ident: ref_24 article-title: METLIN: A Technology Platform for Identifying Knowns and Unknowns publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b04424 – volume: 63 start-page: 305 year: 2012 ident: ref_35 article-title: Phylogenetics and the evolution of major structural characters in the giant genus Euphorbia L. (Euphorbiaceae) publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2011.12.022 – volume: 88 start-page: 8082 year: 2016 ident: ref_12 article-title: Discovering Regulated Metabolite Families in Untargeted Metabolomics Studies publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b01569 – volume: 2 start-page: 1676 year: 2017 ident: ref_50 article-title: Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus publication-title: Nat. Microbiol. doi: 10.1038/s41564-017-0039-9 – volume: 80 start-page: 21 year: 2016 ident: ref_59 article-title: Girdling and gibberellic acid effects on yield and quality of a seedless red table grape for saving irrigation water supply publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2016.06.015 |
| SSID | ssj0000605701 |
| Score | 2.5795906 |
| Snippet | Metabolomics has started to embrace computational approaches for chemical interpretation of large data sets. Yet, metabolite annotation remains a key... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 144 |
| SubjectTerms | Annotations chemical classification Computer applications in silico workflows Libraries Mass spectrometry Mass spectroscopy metabolite annotation metabolite identification metabolome mining Metabolomics molecular families Natural products networking Propagation Scientific imaging Software packages substructures |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxYELAspHoCAjoZ6Iuom_uS2oFRx2xaFIvUWOPVEr7TrVborUf8_Yzq42CMSFWxT7MPGMPe8lkzeEfHC1QRgPqgTFoeRGdqXmwpfOOAnMdpLbNjWbUMulvroy3w9afcWasCwPnBfuzAktVa3b1gMeuMJZK2yLUQdQ1wYH4-k7U-aATOUzGHHIrMqimgx5_dkaBlxVpIKRQkySUNLq_xPA_L1O8iDxXDwhj0fESOfZ0qfkAYRn5HgekC2v7-kpTTWc6eX4MbGLfrWE4TxcR2duPtHxytPFrg0uXebC7y1t7-m3USwC8xddJNNX_RroInWNoDZ4Og-hz1_r6WXfr7bPyY-L88svX8uxiULpBFdD6by34HVrjDK2c7J1utOMKe6RnXpWA7gO_VIp7WLi6hxmTetE5bxlQtmOvSBHoQ_wilDB25m3NessYgLuEFtAKzSzUhomJNiCfNytauNGhfHY6GLVINOITmgmTijI6X76bZbW-NvEz9FF-0lRETvdwDhpxjhp_hUnBTnZObgZt-m2QXaMeE0i5SrI-_0wbrD41cQG6O9wDhLEaAgXBXmZ42FvCasY4h9eF0RNImVi6nQk3FwnEW8pdZTief0_nu0NeYQ4Lv6MVlbyhBwNmzt4Sx66n8PNdvMu7YxfzEoYxQ priority: 102 providerName: Directory of Open Access Journals |
| Title | MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31315242 https://www.proquest.com/docview/2548936768 https://www.proquest.com/docview/2259907045 https://pubmed.ncbi.nlm.nih.gov/PMC6680503 https://doaj.org/article/c586728bbde3415caa5ab488ee229c58 |
| Volume | 9 |
| WOSCitedRecordID | wos000481505900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2218-1989 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605701 issn: 2218-1989 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2218-1989 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605701 issn: 2218-1989 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2218-1989 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605701 issn: 2218-1989 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2218-1989 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605701 issn: 2218-1989 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2218-1989 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605701 issn: 2218-1989 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RlgMXXuVhKNEioZ6wGnuf5oJSlIoebEWoSOFkrXfXtFJilzhF6r9ndu0EgoALN2t3DmPPzM5jx98AvDFphmG8k7GTzMUsE3WsGLexyYxwVNeC6SoMm5BFoebzbDYU3LqhrXJzJoaD2rbG18hPMJFB1yowOn5__S32U6P87eowQmMPDjxKQhpa92bbGssYY3U5TnpoTYrZ_cnSrfHbYkLoE4kdVxQQ-_8UZv7eLfmL-zl78L-MP4T7Q-BJJr2mPII7rnkMh5MGk-7lLTkmoRU01NgPQeftonDraXPpdWL1jgxPluSbabqk6PvHO1LdkvMBcwLdIMnDuy_apSN5GD5BdGPJpGna_tKfXLTtonsCn8-mFx8-xsMshthwJtexsVY7q6osk5mujaiMqhWlkllMci1NnTM1ijeRynj_Vxt0vtrwxFhNudQ1fQr7Tdu450A4q8ZWp7TWGFowgyGKq7iiWoiMcuF0BG83YinNAFTu52UsSkxYvBTLHSlGcLwlv-4ROv5GeOplvCXywNphoV19LQc7LQ1XQqaqqqxD_86N1lxXeMg5l6YZbkZwtJFyOVh7V_4UcQSvt9top_7yRTeuvUEazDM9I4xH8KxXqC0nNKGovCyNQO6o2g6ruzvN1WXAAhdCeUSfF_9m6yXcw0DP_60WJ-II9terG_cK7prv66tuNYI9OVcjODidFrNPo1CVGAVDwrXZeT778gMUpyuo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceBVooICRoCeibuJXgoTQAq26arPawyKVU3Bsp620m5TdFLR_it_IOI-FRcCtB25RbEUT-_PMN_Z4BuCFDmOk8Vb6VjLrs1jkfsS48XWshaUqF0xldbEJORpFJyfxeAO-d3dhXFhlpxNrRW1K7fbI99CRQdMqkB2_vfjiu6pR7nS1K6HRwOLILr-hy7Z4M_yA8_syDA_2J-8P_baqgK85k5WvjVHWRFkcy1jlWmQ6yiNKJTPorhkaWqtzFDSQkXaaPNdoRpTmgTaKcqlyit-9BpvMgb0Hm-NhMv602tXpo3cg-0GTzJPSuL83sxXOJrqgznVZM351jYA_Edvf4zN_MXgHt_-3oboDt1pqTQbNWrgLG7a4B1uDQlXlbEl2SR3sWp8ibIFKyunIVvvFmUP9_DVpnwxJunrBZNREyC9ItiTDNqsGGnqS1GM9LWeWJHV5DaIKQwZFUTZhDWRSltPFffh4JT_7AHpFWdhtIJxlfaNCmiskT0wjCbMZj6gSIqZcWOXBqw4GqW5TsbuKINMUXTKHmnQNNR7srrpfNDlI_tbxncPUqpNLHV6_KOenaauJUs0jIcMoy4xFBsO1UlxlqMatDcMYGz3Y6VCVtvpskf6ElAfPV82oidzxkipseYl90JN2gjDuwcMGwCtJaECRKLLQA7kG7TVR11uK87M627kQkctZ9OjfYj2DG4eT5Dg9Ho6OHsNNpLXubp4fiB3oVfNL-wSu66_V-WL-tF2yBD5fNfR_AFrhif4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJceJVHoICRoCei3Y1fCRJCC-2KVdnVHopUTqljO7TSblJ2U9D-NX4d47wgCLj1wC2KR9HE_jz-xh7PADzXQYQ03krfSmZ9FonUDxk3vo60sFSlgqmkLDYhZ7Pw-Diab8H35i6MC6tsbGJpqE2u3R55Hx0ZXFoFsuN-WodFzPfHb86_-K6ClDtpbcppVBA5tJtv6L6tX0_2caxfBMH44Ojde7-uMOBrzmTha2OUNWESRTJSqRaJDtOQUskMum6GBtbqFJUeylA7q55qXFKU5kNtFOVSpRS_ewW2kZKzoAfb88l0_qnd4RmgpyAHwyqxJ6XRoL-0BY4suqPOjekshGW9gD-R3N9jNX9Z_MY3_-duuwU3aspNRtUcuQ1bNrsDO6NMFflyQ_ZIGQRbni7sgJrmi5ktDrJTNxtWr0j9ZMi0qSNMZlXk_JokGzKps20gASDTst8X-dKSaVl2g6jMkFGW5VW4AznK88X6Lny8lJ-9B70sz-wDIJwlA6MCmiokVUwjObMJD6kSIqJcWOXBywYSsa5TtLtKIYsYXTWHoLiDIA_2WvHzKjfJ3wTfOny1Qi6lePkiX32OawsVax4KGYRJYiwyG66V4ipB825tEETY6MFug7C4tnPr-Ce8PHjWNqOFcsdOKrP5Bcqgh-0UYdyD-xWYW03okCKBZIEHsgPzjqrdluzstMyCLkTochk9_LdaT-Ea4j3-MJkdPoLryHbdlT1_KHahV6wu7GO4qr8WZ-vVk3r2Eji5bOT_AP3jkr4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MolNetEnhancer%3A+Enhanced+Molecular+Networks+by+Integrating+Metabolome+Mining+and+Annotation+Tools&rft.jtitle=Metabolites&rft.au=Ernst%2C+Madeleine&rft.au=Kang%2C+Kyo+Bin&rft.au=Caraballo-Rodr%C3%ADguez%2C+Andr%C3%A9s+Mauricio&rft.au=Nothias%2C+Louis-Felix&rft.date=2019-07-16&rft.issn=2218-1989&rft.eissn=2218-1989&rft.volume=9&rft.issue=7&rft_id=info:doi/10.3390%2Fmetabo9070144&rft_id=info%3Apmid%2F31315242&rft.externalDocID=31315242 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1989&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1989&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1989&client=summon |