Image-Compression Techniques: Classical and “Region-of-Interest-Based” Approaches Presented in Recent Papers
Image compression is a vital component for domains in which the computational resources are usually scarce such as automotive or telemedicine fields. Also, when discussing real-time systems, the large amount of data that must flow through the system can represent a bottleneck. Therefore, the storage...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 24; číslo 3; s. 791 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
25.01.2024
|
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Image compression is a vital component for domains in which the computational resources are usually scarce such as automotive or telemedicine fields. Also, when discussing real-time systems, the large amount of data that must flow through the system can represent a bottleneck. Therefore, the storage of images, alongside the compression, transmission, and decompression procedures, becomes vital. In recent years, many compression techniques that only preserve the quality of the region of interest of an image have been developed, the other parts being either discarded or compressed with major quality loss. This paper proposes a study of relevant papers from the last decade which are focused on the selection of a region of interest of an image and on the compression techniques that can be applied to that area. To better highlight the novelty of the hybrid methods, classical state-of-the-art approaches are also analyzed. The current work will provide an overview of classical and hybrid compression methods alongside a categorization based on compression ratio and other quality factors such as mean-square error and peak signal-to-noise ratio, structural similarity index measure, and so on. This overview can help researchers to develop a better idea of what compression algorithms are used in certain domains and to find out if the presented performance parameters are of interest for the intended purpose. |
|---|---|
| AbstractList | Image compression is a vital component for domains in which the computational resources are usually scarce such as automotive or telemedicine fields. Also, when discussing real-time systems, the large amount of data that must flow through the system can represent a bottleneck. Therefore, the storage of images, alongside the compression, transmission, and decompression procedures, becomes vital. In recent years, many compression techniques that only preserve the quality of the region of interest of an image have been developed, the other parts being either discarded or compressed with major quality loss. This paper proposes a study of relevant papers from the last decade which are focused on the selection of a region of interest of an image and on the compression techniques that can be applied to that area. To better highlight the novelty of the hybrid methods, classical state-of-the-art approaches are also analyzed. The current work will provide an overview of classical and hybrid compression methods alongside a categorization based on compression ratio and other quality factors such as mean-square error and peak signal-to-noise ratio, structural similarity index measure, and so on. This overview can help researchers to develop a better idea of what compression algorithms are used in certain domains and to find out if the presented performance parameters are of interest for the intended purpose.Image compression is a vital component for domains in which the computational resources are usually scarce such as automotive or telemedicine fields. Also, when discussing real-time systems, the large amount of data that must flow through the system can represent a bottleneck. Therefore, the storage of images, alongside the compression, transmission, and decompression procedures, becomes vital. In recent years, many compression techniques that only preserve the quality of the region of interest of an image have been developed, the other parts being either discarded or compressed with major quality loss. This paper proposes a study of relevant papers from the last decade which are focused on the selection of a region of interest of an image and on the compression techniques that can be applied to that area. To better highlight the novelty of the hybrid methods, classical state-of-the-art approaches are also analyzed. The current work will provide an overview of classical and hybrid compression methods alongside a categorization based on compression ratio and other quality factors such as mean-square error and peak signal-to-noise ratio, structural similarity index measure, and so on. This overview can help researchers to develop a better idea of what compression algorithms are used in certain domains and to find out if the presented performance parameters are of interest for the intended purpose. Image compression is a vital component for domains in which the computational resources are usually scarce such as automotive or telemedicine fields. Also, when discussing real-time systems, the large amount of data that must flow through the system can represent a bottleneck. Therefore, the storage of images, alongside the compression, transmission, and decompression procedures, becomes vital. In recent years, many compression techniques that only preserve the quality of the region of interest of an image have been developed, the other parts being either discarded or compressed with major quality loss. This paper proposes a study of relevant papers from the last decade which are focused on the selection of a region of interest of an image and on the compression techniques that can be applied to that area. To better highlight the novelty of the hybrid methods, classical state-of-the-art approaches are also analyzed. The current work will provide an overview of classical and hybrid compression methods alongside a categorization based on compression ratio and other quality factors such as mean-square error and peak signal-to-noise ratio, structural similarity index measure, and so on. This overview can help researchers to develop a better idea of what compression algorithms are used in certain domains and to find out if the presented performance parameters are of interest for the intended purpose. |
| Audience | Academic |
| Author | Korodi, Adrian Negirla, Paul Ungureanu, Vlad-Ilie |
| Author_xml | – sequence: 1 givenname: Vlad-Ilie orcidid: 0000-0001-7276-0883 surname: Ungureanu fullname: Ungureanu, Vlad-Ilie – sequence: 2 givenname: Paul surname: Negirla fullname: Negirla, Paul – sequence: 3 givenname: Adrian orcidid: 0000-0003-2519-7578 surname: Korodi fullname: Korodi, Adrian |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38339507$$D View this record in MEDLINE/PubMed |
| BookMark | eNptks1u1DAQxy1URNuFAy-AInGBQ1p_JU64LSs-VqpEVZVz5NjjrVdJHOzsgVsfBF6uT8KELQtUlQ-2Zn7_Gc_HKTkawgCEvGT0TIianicuqaCqZk_ICZNc5hXn9Oif9zE5TWlLKRdCVM_IsahQV1B1QsZ1rzeQr0I_RkjJhyG7BnMz-G87SO-yVafRaHSX6cFmd7c_rmCDTB5cvh4mQMmUv9cJ7N3tz2w5jjFocwMpu0QPIGAzP2RXYPCdXeoRYnpOnjrdJXhxfy_I148frlef84svn9ar5UVuCqmmXDOo26KorHOOAuNSK0pbaSU6nFFcWa5KURhWV0aUkpetBMZcWVmLSkvFgqz3cW3Q22aMvtfxexO0b34bQtw0Ok7edNAooVjpsB-VK2RtTW2YkJoWddsqXmOrFuTNPhbWN_dlanqfDHSdHiDsUsNrXlBaSlkg-voBug27OGClMyUpRpX8L7XRmN8PLkxRmzlos1QVp_VcHFJnj1B4LPTe4Ao4j_b_BK_uk-_aHuyh6j_jRuDtHjAxpBTBHRBGm3mVmsMqIXv-gDV-0hNOH3_hu0cUvwB3CchA |
| CitedBy_id | crossref_primary_10_1007_s42514_025_00229_y crossref_primary_10_3390_s24206503 crossref_primary_10_3390_technologies13030123 crossref_primary_10_1049_ipr2_70109 crossref_primary_10_3390_app15062964 crossref_primary_10_3390_s25051403 crossref_primary_10_2478_cait_2024_0038 crossref_primary_10_1088_1742_6596_2906_1_012018 crossref_primary_10_1149_1945_7111_adcc59 crossref_primary_10_1371_journal_pone_0301174 crossref_primary_10_3103_S1060992X25700055 crossref_primary_10_3390_s24134213 |
| Cites_doi | 10.1109/IVS.2019.8813813 10.1016/j.imu.2019.100183 10.1016/j.eswa.2006.09.017 10.1016/j.irbm.2017.06.007 10.1109/ICDS.2010.51 10.3390/info8040131 10.1109/TUFFC.2012.2342 10.3390/e24060784 10.1016/j.compbiomed.2012.04.006 10.1109/IV47402.2020.9304779 10.3390/jcdd9050137 10.1007/s10278-012-9484-4 10.1109/TIP.2014.2346028 10.1109/ICCIC.2014.7238321 10.17485/ijst/2016/v9i39/91500 10.1016/j.procs.2015.06.098 10.1109/ICMOCE.2015.7489711 10.1007/s10586-018-1801-3 10.1109/76.499834 10.12785/ijcds/140106 10.1016/j.ultras.2020.106229 10.1109/ULTSYM.2010.5935587 10.20944/preprints201808.0309.v1 10.1007/s11554-014-0400-7 10.1007/s10278-016-9930-9 10.1109/83.855427 10.1109/CENICS.2010.14 10.1109/ARTCom.2009.88 10.3390/s17051160 10.3390/rs15020522 10.1007/s11042-021-10712-7 10.1109/MECO55406.2022.9797114 10.1007/978-3-642-22203-0 10.1016/j.procs.2015.10.037 10.3390/sym13122338 10.1109/ICETETS.2016.7603060 10.3390/s23177600 10.1007/s10278-015-9822-4 10.1080/03772063.2017.1309998 10.3390/s20216322 10.1016/j.compeleceng.2018.11.010 10.1109/ICSCCC.2018.8703337 10.1109/INDCON.2008.4768796 10.1007/s10462-020-09854-1 10.1016/j.procs.2020.03.349 10.1016/j.advengsoft.2008.08.004 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 DOA |
| DOI | 10.3390/s24030791 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_73716f9508f549dc9c134a059bb72983 A782092763 38339507 10_3390_s24030791 |
| Genre | Journal Article Review |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO |
| ID | FETCH-LOGICAL-c547t-a1e9b558dfff0e124a700b4d4a1efc727d27635c198c36426b4e11f68dd1e9d03 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001160271800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:06:45 EDT 2025 Fri Sep 05 06:33:45 EDT 2025 Tue Oct 07 07:21:04 EDT 2025 Tue Nov 11 11:13:39 EST 2025 Tue Nov 04 18:27:38 EST 2025 Mon Jul 21 05:59:48 EDT 2025 Tue Nov 18 21:39:49 EST 2025 Sat Nov 29 07:16:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | lossy and lossless compression algorithms region-of-interest detection image-compression techniques |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c547t-a1e9b558dfff0e124a700b4d4a1efc727d27635c198c36426b4e11f68dd1e9d03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-7276-0883 0000-0003-2519-7578 |
| OpenAccessLink | https://www.proquest.com/docview/2924005942?pq-origsite=%requestingapplication% |
| PMID | 38339507 |
| PQID | 2924005942 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_73716f9508f549dc9c134a059bb72983 proquest_miscellaneous_2925006445 proquest_journals_2924005942 gale_infotracmisc_A782092763 gale_infotracacademiconefile_A782092763 pubmed_primary_38339507 crossref_primary_10_3390_s24030791 crossref_citationtrail_10_3390_s24030791 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Jan-25 |
| PublicationDateYYYYMMDD | 2024-01-25 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-Jan-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kumar (ref_17) 2020; 167 ref_50 Friedman (ref_24) 2021; 110 Kouadria (ref_61) 2019; 73 ref_58 ref_13 ref_57 ref_56 Zhang (ref_18) 2014; 23 ref_55 Liew (ref_51) 2013; 26 Ansari (ref_38) 2009; 40 ref_52 Sumalatha (ref_39) 2015; 54 ref_15 ref_59 Hashim (ref_12) 2018; 7 Viswanthan (ref_21) 2023; 14 Taghanaki (ref_44) 2021; 54 Weinberger (ref_49) 2000; 9 Kumar (ref_19) 2012; 2 ref_60 Kaur (ref_41) 2015; 70 Hosseini (ref_36) 2012; 42 ref_22 Badshah (ref_46) 2016; 29 ref_62 ref_29 ref_28 ref_27 ref_26 Ammah (ref_25) 2019; 15 Devadoss (ref_40) 2019; 22 Khobragade (ref_4) 2014; 5 ref_35 Haddad (ref_47) 2017; 38 ref_34 ref_33 ref_32 ref_31 Nadarajan (ref_16) 2017; 13 Kaur (ref_3) 2016; 142 Karthikeyan (ref_10) 2016; 9 Cheng (ref_30) 2012; 59 ref_37 Gharieb (ref_11) 2015; 6 Jangbari (ref_8) 2016; 134 Badshah (ref_45) 2015; 4 Anitha (ref_14) 2017; 63 Said (ref_23) 1996; 6 Dokur (ref_20) 2008; 34 ref_43 ref_42 ref_1 Zermi (ref_54) 2021; 80 ref_2 ref_48 ref_9 Khor (ref_53) 2017; 30 ref_5 ref_7 ref_6 |
| References_xml | – ident: ref_33 doi: 10.1109/IVS.2019.8813813 – ident: ref_55 – volume: 2 start-page: 137 year: 2012 ident: ref_19 article-title: Analysis of Various Quality Metrics for Medical Image Processing publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng. – volume: 15 start-page: 100183 year: 2019 ident: ref_25 article-title: Robust medical image compression based on wavelet transform and vector quantization publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2019.100183 – volume: 34 start-page: 611 year: 2008 ident: ref_20 article-title: A unified framework for image compression and segmentation by using an incremental neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.09.017 – volume: 38 start-page: 198 year: 2017 ident: ref_47 article-title: Joint Watermarking and Lossless JPEG-LS Compression for Medical Image Security publication-title: IRBM doi: 10.1016/j.irbm.2017.06.007 – ident: ref_43 doi: 10.1109/ICDS.2010.51 – ident: ref_1 doi: 10.3390/info8040131 – volume: 59 start-page: 1413 year: 2012 ident: ref_30 article-title: MPEG compression of ultrasound RF channel data for a real-time software-based imaging system publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2012.2342 – ident: ref_34 doi: 10.3390/e24060784 – volume: 42 start-page: 743 year: 2012 ident: ref_36 article-title: Medical ultrasound image compression using contextual vector quantization publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2012.04.006 – volume: 4 start-page: 75 year: 2015 ident: ref_45 article-title: Importance of Watermark Lossless Compression in Digital Medical Image Watermarking publication-title: Res. J. Recent Sci. – ident: ref_56 doi: 10.1109/IV47402.2020.9304779 – ident: ref_42 doi: 10.3390/jcdd9050137 – ident: ref_27 – ident: ref_52 – ident: ref_48 – volume: 26 start-page: 316 year: 2013 ident: ref_51 article-title: Tamper Localization and Lossless Recovery Watermarking Scheme with ROI Segmentation and Multilevel Authentication publication-title: J. Digit. Imaging doi: 10.1007/s10278-012-9484-4 – volume: 23 start-page: 4270 year: 2014 ident: ref_18 article-title: VSI: A Visual Saliency-Induced Index for Perceptual Image Quality Assessment publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2346028 – ident: ref_9 doi: 10.1109/ICCIC.2014.7238321 – volume: 9 start-page: 1 year: 2016 ident: ref_10 article-title: A hybrid medical image compression techniques for lung cancer publication-title: Indian J. Sci. Technol. doi: 10.17485/ijst/2016/v9i39/91500 – volume: 54 start-page: 838 year: 2015 ident: ref_39 article-title: Hierarchical Lossless Image Compression for Telemedicine Applications publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.06.098 – ident: ref_62 – ident: ref_22 doi: 10.1109/ICMOCE.2015.7489711 – volume: 22 start-page: 12929 year: 2019 ident: ref_40 article-title: Near lossless medical image compression using block BWT–MTF and hybrid fractal compression techniques publication-title: Clust. Comput. doi: 10.1007/s10586-018-1801-3 – ident: ref_59 – volume: 6 start-page: 243 year: 1996 ident: ref_23 article-title: A new, fast, and efficient image codec based on set partitioning in hierarchical trees publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/76.499834 – ident: ref_7 – volume: 14 start-page: 63 year: 2023 ident: ref_21 article-title: Subband Thresholding for Near-Lossless Medical Image Compression publication-title: Int. J. Comput. Digit. Syst. doi: 10.12785/ijcds/140106 – volume: 110 start-page: 106229 year: 2021 ident: ref_24 article-title: Simultaneous compression and speckle reduction of clinical breast and fetal ultrasound images using rate-fidelity optimized coding publication-title: Ultrasonics doi: 10.1016/j.ultras.2020.106229 – ident: ref_31 doi: 10.1109/ULTSYM.2010.5935587 – ident: ref_29 doi: 10.20944/preprints201808.0309.v1 – volume: 5 start-page: 272 year: 2014 ident: ref_4 article-title: Image compression techniques—A review publication-title: Int. J. Comput. Sci. Inf. Technol. – volume: 13 start-page: 261 year: 2017 ident: ref_16 article-title: CT and MRI image compression using wavelet-based contourlet transform and binary array technique publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-014-0400-7 – volume: 30 start-page: 328 year: 2017 ident: ref_53 article-title: Region of Interest-Based Tamper Detection and Lossless Recovery Watermarking Scheme (ROI-DR) on Ultrasound Medical Images publication-title: J. Digit. Imaging doi: 10.1007/s10278-016-9930-9 – volume: 7 start-page: 3505 year: 2018 ident: ref_12 article-title: Performance evaluation measurement of image steganography techniques with analysis of LSB based on variation image formats publication-title: Int. J. Eng. Technol. – volume: 9 start-page: 1309 year: 2000 ident: ref_49 article-title: The LOCOI lossless image compression algorithm: Principles and standardization into JPEG-LS publication-title: IEEE Trans. Image Process. doi: 10.1109/83.855427 – ident: ref_26 doi: 10.1109/CENICS.2010.14 – ident: ref_2 doi: 10.1109/ARTCom.2009.88 – ident: ref_58 doi: 10.3390/s17051160 – volume: 142 start-page: 8 year: 2016 ident: ref_3 article-title: A Review of Image Compression Techniques publication-title: Int. J. Comput. Appl. – ident: ref_60 doi: 10.3390/rs15020522 – volume: 80 start-page: 24823 year: 2021 ident: ref_54 article-title: A lossless DWT-SVD domain watermarking for medical information security publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-10712-7 – ident: ref_28 doi: 10.1109/MECO55406.2022.9797114 – ident: ref_50 doi: 10.1007/978-3-642-22203-0 – volume: 70 start-page: 579 year: 2015 ident: ref_41 article-title: ROI Based Medical Image Compression for Telemedicine Application publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.10.037 – ident: ref_6 – ident: ref_35 doi: 10.3390/sym13122338 – volume: 134 start-page: 1 year: 2016 ident: ref_8 article-title: Review on region of interest coding techniques for medical image compression publication-title: Int. J. Comput. Appl. – ident: ref_13 doi: 10.1109/ICETETS.2016.7603060 – ident: ref_32 doi: 10.3390/s23177600 – volume: 29 start-page: 216 year: 2016 ident: ref_46 article-title: Watermark Compression in Medical Image Watermarking Using Lempel-Ziv-Welch (LZW) Lossless Compression Technique publication-title: J. Digit. Imaging doi: 10.1007/s10278-015-9822-4 – volume: 63 start-page: 671 year: 2017 ident: ref_14 article-title: Contextual Medical Image Compression using Normalized Wavelet-Transform Coefficients and Prediction publication-title: IETE J. Res. doi: 10.1080/03772063.2017.1309998 – ident: ref_57 doi: 10.3390/s20216322 – volume: 73 start-page: 2019 year: 2019 ident: ref_61 article-title: Region-of-interest based image compression using the discrete Tchebichef transform in wireless visual sensor networks publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2018.11.010 – ident: ref_5 doi: 10.1109/ICSCCC.2018.8703337 – ident: ref_15 – ident: ref_37 doi: 10.1109/INDCON.2008.4768796 – volume: 54 start-page: 137 year: 2021 ident: ref_44 article-title: Deep semantic segmentation of natural and medical images: A review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09854-1 – volume: 6 start-page: 123 year: 2015 ident: ref_11 article-title: Huffman image compression incorporating DPCM and DWT publication-title: J. Signal Inf. Process. – volume: 167 start-page: 1380 year: 2020 ident: ref_17 article-title: Versatile Approaches for Medical Image Compression: A Review publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.349 – volume: 40 start-page: 487 year: 2009 ident: ref_38 article-title: Context based medical image compression for ultrasound images with contextual set partitioning in hierarchical trees algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2008.08.004 |
| SSID | ssj0023338 |
| Score | 2.526307 |
| SecondaryResourceType | review_article |
| Snippet | Image compression is a vital component for domains in which the computational resources are usually scarce such as automotive or telemedicine fields. Also,... |
| SourceID | doaj proquest gale pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source |
| StartPage | 791 |
| SubjectTerms | Algorithms Bandwidths Cost control Data compression Data integrity Data transmission Energy consumption image-compression techniques lossy and lossless compression algorithms Magnetic resonance imaging Medical imaging equipment Methods region-of-interest detection Streaming media Telemedicine Tomography Ultrasonic imaging |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMcEG8CBRmEBBerTuxsbG5bRAUSqlaoSL1Z8UuqRLOrZttzf0j5c_0lzDjZaAtIXLgl8eTh8Uzmm2jyDcBbhf4vXDvjBMa5MlFzrXTiHpPnqtYxmphX-mtzeKiPj81iq9UX1YQN9MCD4vYaiRdJ1Ks0YSoTvPGlVC2CAucQF-rM8ykas0mmxlRLYuY18AhJTOr3emKdE5mIcyv6ZJL-P1_FvwHMHGgO7sO9ESGy-fBkD-BW7B7C3S3ewEew-nKKrwFOvjyUsXbsaMPF2n9gudElKZ-1XWDXl1ffIlUd82Xi-QMg3p3vY_QK15c_2XwkFY89Wwy_IsXATjqGeBK32aJdIUB8DN8PPh19_MzH1gnc16pZ87aMxtW1DiklETGGt40QTgWFA8kjZgkVMdH50mgvMQWZORXLMs10CHhmEPIJ7HTLLj4DJhzGdKlcq6VXGMqMN1V0wniBC4m7BbzfqNT6kVec2lv8sJhfkPbtpP0C3kyiq4FM429C-7QukwDxX-cDaBV2tAr7L6so4B2tqiUvxYfx7fizAU6J-K7snGgCDemggN0bkuhd_ubwxi7s6N29rQxV3tZGVQW8nobpTKpY6-LyPMvUhPdUXcDTwZ6mKUmNU0Yg_vx_TPUF3KkQaNFnoarehZ312Xl8Cbf9xfqkP3uV3eIX0rgP5w priority: 102 providerName: Directory of Open Access Journals |
| Title | Image-Compression Techniques: Classical and “Region-of-Interest-Based” Approaches Presented in Recent Papers |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38339507 https://www.proquest.com/docview/2924005942 https://www.proquest.com/docview/2925006445 https://doaj.org/article/73716f9508f549dc9c134a059bb72983 |
| Volume | 24 |
| WOSCitedRecordID | wos001160271800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOvB-BsjIICS5W83A2Nhe0i7aiEl1FVZGWU5TYDqoEybLZckT9IfDn-kuYcbxpC4gLlyiJncjeefibWecbgBcC7T-syjEnMM6FspJLIWuuMXiOU2mtsk7S77P5XC4WKvcJt85vq9z4ROeoTaspR74bK9rtmCoRv1l-5VQ1iv5d9SU0rsI2lc0mPc8W5wFXgvFXzyaUYGi_2xH3XOjoOC-sQY6q_0-H_BvMdMvN3q3_HehtuOmBJpv0mnEHrtjmLty4QD94D5b7X9CbcHIJ_W7Yhh1tKF2718zVyyQZsrIx7Oz0x6Glzcu8rbnLI-KQ-BQXQXN2-pNNPDe57Vjef9FkDTtuGMJSPGd5uUSceR8-7M2O3r7jvgID16nI1ryMrKrSVJq6rkOLUKDMwrASRmBDrRH6mJgI7XSkpE4wkhlXwkZRPZbG4JMmTB7AVtM29hGwsEJokIiqlIkWuCIqrWJbhUqHqA94GcCrjUwK7enJqUrG5wLDFBJfMYgvgOdD12XPyfG3TlMS7NCBaLTdjXb1qfBWWWQJamhNhXBrjJONVjpKRInCqyoMOmQSwEtSi4KMHQejS__NAk6JaLOKCbENKvoNAti51BONVF9u3ihL4Z1EV5xrSgDPhmZ6kja-NbY9cX1Sgo0iDeBhr5DDlBKJU0Y8__jfL38C12NEYpQ3itMd2FqvTuxTuKa_rY-71chZjDvKEWxPZ_P8cOQSE3g8-D7De_n-Qf7xF_6jJW0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VgkQ58F8wFFgQCC6rOt51vIuEUApUjRqiCKVSbsbeXaNKYIc4BXHrg8Ar8FB9Emb81xYQtx64Jdmx5V1_87eZ_QbgsUT999OkzykY51I7xZVUGTeYPAehck676k2PovFYzWZ6sgI_27MwVFbZ2sTKUNvC0B75ZqCp2jHUMng5_8ypaxT9u9q20Khhseu-fcWUrXwxfI3v90kQbL-ZvtrhTVcBbkIZLXnSczoNQ2WzLPMdurck8v1UWokDmUF3bgMiaTOYjRuB0Xk_la7Xy_rKWrzS-gLvew7Oox2PKNmLZscJnsB8r2YvEkL7myVx3fkV_ecJn1e1BvjTAfwW1lbubfvK_7YwV-FyE0izQY38a7Di8utw6QS94g2YDz-hteRk8upq35xNW8ra8jmr-oESRlmSW3Z0-P2do-JsXmS82ifFJeBb6OTt0eEPNmi4113JJvWJLWfZfs4w7MbPbJLMMY6-CXtnMuV1WM2L3N0G5qcY-giZJkoYiR5fGx241NfGR7zjVw-etRiITUO_Tl1APsaYhhFc4g4uHjzqROc158jfhLYISJ0A0YRXPxSLD3FjdeJIoAZm1Og3C6W2RpuekAmCJU0xqVLCg6cEw5iMGT6MSZozGTglogWLB8SmqGkNPNg4JYlGyJwebsEZN0awjI-R6cHDbpiupMK-3BUHlUxIYbEMPbhVK0A3JaFwypiv3Pn3zR_AxZ3p21E8Go5378JagFEn7ZEF4QasLhcH7h5cMF-W--XifqWtDN6ftRb8AhmHfEI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFKFy4L9gKLAgEFxWcbzrZBcJoZQSEbVEFipSORl7d40qgR3iFMStDwIvwuP0SZjxHy0gbj1wS7Jjy7uen282s98APJBo_36aDDmBcS61U1xJlXGDyXMQKue0q970zmg2U3t7OlqBH-1ZGCqrbH1i5ahtYWiPvB9oqnYMtQz6WVMWEW1Nns0_ceogRf-0tu00ahXZdl-_YPpWPp1u4bt-GASTF7vPX_KmwwA3oRwteTJwOg1DZbMs8x2GumTk-6m0Egcyg6HdBkTYZjAzNwKR-jCVbjDIhspavNL6Au97BlYRksugB6vR9FX0tkv3BGZ_NZeRENrvl8R851dkoMciYNUo4M9w8BvIrYLd5OL_vEyX4EIDsdm4tonLsOLyK3D-GPHiVZhPP6If5eQM6zrgnO22ZLblE1Z1CiXtZUlu2dHht9eOyrZ5kfFqBxWXg29i-LdHh9_ZuGFldyWL6rNczrL9nCEgx88sSuaIsK_Bm1OZ8jr08iJ3N4D5KYIiIdNECSMRC2ijA5f62vhoCfjVg8etPsSmIWan_iAfYkzQSHXiTnU8uN-Jzms2kr8JbZJSdQJEIF79UCzex40_ikcCbTOjFsBZKLU12gyETFBx0hTTLSU8eEQqGZObw4cxSXNaA6dEhGHxmHgWNa2BBxsnJNE9mZPDraLGjXss419a6sG9bpiupJK_3BUHlUxIgFmGHlyvjaGbklA4Zcxkbv775nfhHCp_vDOdbd-CtQDhKG2eBeEG9JaLA3cbzprPy_1ycacxXQbvTtsMfgJDj4aR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image-Compression+Techniques%3A+Classical+and+%E2%80%9CRegion-of-Interest-Based%E2%80%9D+Approaches+Presented+in+Recent+Papers&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ungureanu%2C+Vlad-Ilie&rft.au=Negirla%2C+Paul&rft.au=Korodi%2C+Adrian&rft.date=2024-01-25&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=3&rft_id=info:doi/10.3390%2Fs24030791&rft.externalDocID=A782092763 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |