Image-Compression Techniques: Classical and “Region-of-Interest-Based” Approaches Presented in Recent Papers

Image compression is a vital component for domains in which the computational resources are usually scarce such as automotive or telemedicine fields. Also, when discussing real-time systems, the large amount of data that must flow through the system can represent a bottleneck. Therefore, the storage...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 24; číslo 3; s. 791
Hlavní autori: Ungureanu, Vlad-Ilie, Negirla, Paul, Korodi, Adrian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 25.01.2024
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Image compression is a vital component for domains in which the computational resources are usually scarce such as automotive or telemedicine fields. Also, when discussing real-time systems, the large amount of data that must flow through the system can represent a bottleneck. Therefore, the storage of images, alongside the compression, transmission, and decompression procedures, becomes vital. In recent years, many compression techniques that only preserve the quality of the region of interest of an image have been developed, the other parts being either discarded or compressed with major quality loss. This paper proposes a study of relevant papers from the last decade which are focused on the selection of a region of interest of an image and on the compression techniques that can be applied to that area. To better highlight the novelty of the hybrid methods, classical state-of-the-art approaches are also analyzed. The current work will provide an overview of classical and hybrid compression methods alongside a categorization based on compression ratio and other quality factors such as mean-square error and peak signal-to-noise ratio, structural similarity index measure, and so on. This overview can help researchers to develop a better idea of what compression algorithms are used in certain domains and to find out if the presented performance parameters are of interest for the intended purpose.
AbstractList Image compression is a vital component for domains in which the computational resources are usually scarce such as automotive or telemedicine fields. Also, when discussing real-time systems, the large amount of data that must flow through the system can represent a bottleneck. Therefore, the storage of images, alongside the compression, transmission, and decompression procedures, becomes vital. In recent years, many compression techniques that only preserve the quality of the region of interest of an image have been developed, the other parts being either discarded or compressed with major quality loss. This paper proposes a study of relevant papers from the last decade which are focused on the selection of a region of interest of an image and on the compression techniques that can be applied to that area. To better highlight the novelty of the hybrid methods, classical state-of-the-art approaches are also analyzed. The current work will provide an overview of classical and hybrid compression methods alongside a categorization based on compression ratio and other quality factors such as mean-square error and peak signal-to-noise ratio, structural similarity index measure, and so on. This overview can help researchers to develop a better idea of what compression algorithms are used in certain domains and to find out if the presented performance parameters are of interest for the intended purpose.
Image compression is a vital component for domains in which the computational resources are usually scarce such as automotive or telemedicine fields. Also, when discussing real-time systems, the large amount of data that must flow through the system can represent a bottleneck. Therefore, the storage of images, alongside the compression, transmission, and decompression procedures, becomes vital. In recent years, many compression techniques that only preserve the quality of the region of interest of an image have been developed, the other parts being either discarded or compressed with major quality loss. This paper proposes a study of relevant papers from the last decade which are focused on the selection of a region of interest of an image and on the compression techniques that can be applied to that area. To better highlight the novelty of the hybrid methods, classical state-of-the-art approaches are also analyzed. The current work will provide an overview of classical and hybrid compression methods alongside a categorization based on compression ratio and other quality factors such as mean-square error and peak signal-to-noise ratio, structural similarity index measure, and so on. This overview can help researchers to develop a better idea of what compression algorithms are used in certain domains and to find out if the presented performance parameters are of interest for the intended purpose.Image compression is a vital component for domains in which the computational resources are usually scarce such as automotive or telemedicine fields. Also, when discussing real-time systems, the large amount of data that must flow through the system can represent a bottleneck. Therefore, the storage of images, alongside the compression, transmission, and decompression procedures, becomes vital. In recent years, many compression techniques that only preserve the quality of the region of interest of an image have been developed, the other parts being either discarded or compressed with major quality loss. This paper proposes a study of relevant papers from the last decade which are focused on the selection of a region of interest of an image and on the compression techniques that can be applied to that area. To better highlight the novelty of the hybrid methods, classical state-of-the-art approaches are also analyzed. The current work will provide an overview of classical and hybrid compression methods alongside a categorization based on compression ratio and other quality factors such as mean-square error and peak signal-to-noise ratio, structural similarity index measure, and so on. This overview can help researchers to develop a better idea of what compression algorithms are used in certain domains and to find out if the presented performance parameters are of interest for the intended purpose.
Audience Academic
Author Korodi, Adrian
Negirla, Paul
Ungureanu, Vlad-Ilie
Author_xml – sequence: 1
  givenname: Vlad-Ilie
  orcidid: 0000-0001-7276-0883
  surname: Ungureanu
  fullname: Ungureanu, Vlad-Ilie
– sequence: 2
  givenname: Paul
  surname: Negirla
  fullname: Negirla, Paul
– sequence: 3
  givenname: Adrian
  orcidid: 0000-0003-2519-7578
  surname: Korodi
  fullname: Korodi, Adrian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38339507$$D View this record in MEDLINE/PubMed
BookMark eNptks1u1DAQxy1URNuFAy-AInGBQ1p_JU64LSs-VqpEVZVz5NjjrVdJHOzsgVsfBF6uT8KELQtUlQ-2Zn7_Gc_HKTkawgCEvGT0TIianicuqaCqZk_ICZNc5hXn9Oif9zE5TWlLKRdCVM_IsahQV1B1QsZ1rzeQr0I_RkjJhyG7BnMz-G87SO-yVafRaHSX6cFmd7c_rmCDTB5cvh4mQMmUv9cJ7N3tz2w5jjFocwMpu0QPIGAzP2RXYPCdXeoRYnpOnjrdJXhxfy_I148frlef84svn9ar5UVuCqmmXDOo26KorHOOAuNSK0pbaSU6nFFcWa5KURhWV0aUkpetBMZcWVmLSkvFgqz3cW3Q22aMvtfxexO0b34bQtw0Ok7edNAooVjpsB-VK2RtTW2YkJoWddsqXmOrFuTNPhbWN_dlanqfDHSdHiDsUsNrXlBaSlkg-voBug27OGClMyUpRpX8L7XRmN8PLkxRmzlos1QVp_VcHFJnj1B4LPTe4Ao4j_b_BK_uk-_aHuyh6j_jRuDtHjAxpBTBHRBGm3mVmsMqIXv-gDV-0hNOH3_hu0cUvwB3CchA
CitedBy_id crossref_primary_10_1007_s42514_025_00229_y
crossref_primary_10_3390_s24206503
crossref_primary_10_3390_technologies13030123
crossref_primary_10_1049_ipr2_70109
crossref_primary_10_3390_app15062964
crossref_primary_10_3390_s25051403
crossref_primary_10_2478_cait_2024_0038
crossref_primary_10_1088_1742_6596_2906_1_012018
crossref_primary_10_1149_1945_7111_adcc59
crossref_primary_10_1371_journal_pone_0301174
crossref_primary_10_3103_S1060992X25700055
crossref_primary_10_3390_s24134213
Cites_doi 10.1109/IVS.2019.8813813
10.1016/j.imu.2019.100183
10.1016/j.eswa.2006.09.017
10.1016/j.irbm.2017.06.007
10.1109/ICDS.2010.51
10.3390/info8040131
10.1109/TUFFC.2012.2342
10.3390/e24060784
10.1016/j.compbiomed.2012.04.006
10.1109/IV47402.2020.9304779
10.3390/jcdd9050137
10.1007/s10278-012-9484-4
10.1109/TIP.2014.2346028
10.1109/ICCIC.2014.7238321
10.17485/ijst/2016/v9i39/91500
10.1016/j.procs.2015.06.098
10.1109/ICMOCE.2015.7489711
10.1007/s10586-018-1801-3
10.1109/76.499834
10.12785/ijcds/140106
10.1016/j.ultras.2020.106229
10.1109/ULTSYM.2010.5935587
10.20944/preprints201808.0309.v1
10.1007/s11554-014-0400-7
10.1007/s10278-016-9930-9
10.1109/83.855427
10.1109/CENICS.2010.14
10.1109/ARTCom.2009.88
10.3390/s17051160
10.3390/rs15020522
10.1007/s11042-021-10712-7
10.1109/MECO55406.2022.9797114
10.1007/978-3-642-22203-0
10.1016/j.procs.2015.10.037
10.3390/sym13122338
10.1109/ICETETS.2016.7603060
10.3390/s23177600
10.1007/s10278-015-9822-4
10.1080/03772063.2017.1309998
10.3390/s20216322
10.1016/j.compeleceng.2018.11.010
10.1109/ICSCCC.2018.8703337
10.1109/INDCON.2008.4768796
10.1007/s10462-020-09854-1
10.1016/j.procs.2020.03.349
10.1016/j.advengsoft.2008.08.004
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
DOA
DOI 10.3390/s24030791
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_73716f9508f549dc9c134a059bb72983
A782092763
38339507
10_3390_s24030791
Genre Journal Article
Review
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
ID FETCH-LOGICAL-c547t-a1e9b558dfff0e124a700b4d4a1efc727d27635c198c36426b4e11f68dd1e9d03
IEDL.DBID 7X7
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001160271800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:06:45 EDT 2025
Fri Sep 05 06:33:45 EDT 2025
Tue Oct 07 07:21:04 EDT 2025
Tue Nov 11 11:13:39 EST 2025
Tue Nov 04 18:27:38 EST 2025
Mon Jul 21 05:59:48 EDT 2025
Tue Nov 18 21:39:49 EST 2025
Sat Nov 29 07:16:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords lossy and lossless compression algorithms
region-of-interest detection
image-compression techniques
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c547t-a1e9b558dfff0e124a700b4d4a1efc727d27635c198c36426b4e11f68dd1e9d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7276-0883
0000-0003-2519-7578
OpenAccessLink https://www.proquest.com/docview/2924005942?pq-origsite=%requestingapplication%
PMID 38339507
PQID 2924005942
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_73716f9508f549dc9c134a059bb72983
proquest_miscellaneous_2925006445
proquest_journals_2924005942
gale_infotracmisc_A782092763
gale_infotracacademiconefile_A782092763
pubmed_primary_38339507
crossref_primary_10_3390_s24030791
crossref_citationtrail_10_3390_s24030791
PublicationCentury 2000
PublicationDate 2024-Jan-25
PublicationDateYYYYMMDD 2024-01-25
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan-25
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kumar (ref_17) 2020; 167
ref_50
Friedman (ref_24) 2021; 110
Kouadria (ref_61) 2019; 73
ref_58
ref_13
ref_57
ref_56
Zhang (ref_18) 2014; 23
ref_55
Liew (ref_51) 2013; 26
Ansari (ref_38) 2009; 40
ref_52
Sumalatha (ref_39) 2015; 54
ref_15
ref_59
Hashim (ref_12) 2018; 7
Viswanthan (ref_21) 2023; 14
Taghanaki (ref_44) 2021; 54
Weinberger (ref_49) 2000; 9
Kumar (ref_19) 2012; 2
ref_60
Kaur (ref_41) 2015; 70
Hosseini (ref_36) 2012; 42
ref_22
Badshah (ref_46) 2016; 29
ref_62
ref_29
ref_28
ref_27
ref_26
Ammah (ref_25) 2019; 15
Devadoss (ref_40) 2019; 22
Khobragade (ref_4) 2014; 5
ref_35
Haddad (ref_47) 2017; 38
ref_34
ref_33
ref_32
ref_31
Nadarajan (ref_16) 2017; 13
Kaur (ref_3) 2016; 142
Karthikeyan (ref_10) 2016; 9
Cheng (ref_30) 2012; 59
ref_37
Gharieb (ref_11) 2015; 6
Jangbari (ref_8) 2016; 134
Badshah (ref_45) 2015; 4
Anitha (ref_14) 2017; 63
Said (ref_23) 1996; 6
Dokur (ref_20) 2008; 34
ref_43
ref_42
ref_1
Zermi (ref_54) 2021; 80
ref_2
ref_48
ref_9
Khor (ref_53) 2017; 30
ref_5
ref_7
ref_6
References_xml – ident: ref_33
  doi: 10.1109/IVS.2019.8813813
– ident: ref_55
– volume: 2
  start-page: 137
  year: 2012
  ident: ref_19
  article-title: Analysis of Various Quality Metrics for Medical Image Processing
  publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng.
– volume: 15
  start-page: 100183
  year: 2019
  ident: ref_25
  article-title: Robust medical image compression based on wavelet transform and vector quantization
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2019.100183
– volume: 34
  start-page: 611
  year: 2008
  ident: ref_20
  article-title: A unified framework for image compression and segmentation by using an incremental neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.09.017
– volume: 38
  start-page: 198
  year: 2017
  ident: ref_47
  article-title: Joint Watermarking and Lossless JPEG-LS Compression for Medical Image Security
  publication-title: IRBM
  doi: 10.1016/j.irbm.2017.06.007
– ident: ref_43
  doi: 10.1109/ICDS.2010.51
– ident: ref_1
  doi: 10.3390/info8040131
– volume: 59
  start-page: 1413
  year: 2012
  ident: ref_30
  article-title: MPEG compression of ultrasound RF channel data for a real-time software-based imaging system
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2012.2342
– ident: ref_34
  doi: 10.3390/e24060784
– volume: 42
  start-page: 743
  year: 2012
  ident: ref_36
  article-title: Medical ultrasound image compression using contextual vector quantization
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2012.04.006
– volume: 4
  start-page: 75
  year: 2015
  ident: ref_45
  article-title: Importance of Watermark Lossless Compression in Digital Medical Image Watermarking
  publication-title: Res. J. Recent Sci.
– ident: ref_56
  doi: 10.1109/IV47402.2020.9304779
– ident: ref_42
  doi: 10.3390/jcdd9050137
– ident: ref_27
– ident: ref_52
– ident: ref_48
– volume: 26
  start-page: 316
  year: 2013
  ident: ref_51
  article-title: Tamper Localization and Lossless Recovery Watermarking Scheme with ROI Segmentation and Multilevel Authentication
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-012-9484-4
– volume: 23
  start-page: 4270
  year: 2014
  ident: ref_18
  article-title: VSI: A Visual Saliency-Induced Index for Perceptual Image Quality Assessment
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2346028
– ident: ref_9
  doi: 10.1109/ICCIC.2014.7238321
– volume: 9
  start-page: 1
  year: 2016
  ident: ref_10
  article-title: A hybrid medical image compression techniques for lung cancer
  publication-title: Indian J. Sci. Technol.
  doi: 10.17485/ijst/2016/v9i39/91500
– volume: 54
  start-page: 838
  year: 2015
  ident: ref_39
  article-title: Hierarchical Lossless Image Compression for Telemedicine Applications
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.06.098
– ident: ref_62
– ident: ref_22
  doi: 10.1109/ICMOCE.2015.7489711
– volume: 22
  start-page: 12929
  year: 2019
  ident: ref_40
  article-title: Near lossless medical image compression using block BWT–MTF and hybrid fractal compression techniques
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-018-1801-3
– ident: ref_59
– volume: 6
  start-page: 243
  year: 1996
  ident: ref_23
  article-title: A new, fast, and efficient image codec based on set partitioning in hierarchical trees
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/76.499834
– ident: ref_7
– volume: 14
  start-page: 63
  year: 2023
  ident: ref_21
  article-title: Subband Thresholding for Near-Lossless Medical Image Compression
  publication-title: Int. J. Comput. Digit. Syst.
  doi: 10.12785/ijcds/140106
– volume: 110
  start-page: 106229
  year: 2021
  ident: ref_24
  article-title: Simultaneous compression and speckle reduction of clinical breast and fetal ultrasound images using rate-fidelity optimized coding
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2020.106229
– ident: ref_31
  doi: 10.1109/ULTSYM.2010.5935587
– ident: ref_29
  doi: 10.20944/preprints201808.0309.v1
– volume: 5
  start-page: 272
  year: 2014
  ident: ref_4
  article-title: Image compression techniques—A review
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– volume: 13
  start-page: 261
  year: 2017
  ident: ref_16
  article-title: CT and MRI image compression using wavelet-based contourlet transform and binary array technique
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-014-0400-7
– volume: 30
  start-page: 328
  year: 2017
  ident: ref_53
  article-title: Region of Interest-Based Tamper Detection and Lossless Recovery Watermarking Scheme (ROI-DR) on Ultrasound Medical Images
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-016-9930-9
– volume: 7
  start-page: 3505
  year: 2018
  ident: ref_12
  article-title: Performance evaluation measurement of image steganography techniques with analysis of LSB based on variation image formats
  publication-title: Int. J. Eng. Technol.
– volume: 9
  start-page: 1309
  year: 2000
  ident: ref_49
  article-title: The LOCOI lossless image compression algorithm: Principles and standardization into JPEG-LS
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.855427
– ident: ref_26
  doi: 10.1109/CENICS.2010.14
– ident: ref_2
  doi: 10.1109/ARTCom.2009.88
– ident: ref_58
  doi: 10.3390/s17051160
– volume: 142
  start-page: 8
  year: 2016
  ident: ref_3
  article-title: A Review of Image Compression Techniques
  publication-title: Int. J. Comput. Appl.
– ident: ref_60
  doi: 10.3390/rs15020522
– volume: 80
  start-page: 24823
  year: 2021
  ident: ref_54
  article-title: A lossless DWT-SVD domain watermarking for medical information security
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-10712-7
– ident: ref_28
  doi: 10.1109/MECO55406.2022.9797114
– ident: ref_50
  doi: 10.1007/978-3-642-22203-0
– volume: 70
  start-page: 579
  year: 2015
  ident: ref_41
  article-title: ROI Based Medical Image Compression for Telemedicine Application
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.10.037
– ident: ref_6
– ident: ref_35
  doi: 10.3390/sym13122338
– volume: 134
  start-page: 1
  year: 2016
  ident: ref_8
  article-title: Review on region of interest coding techniques for medical image compression
  publication-title: Int. J. Comput. Appl.
– ident: ref_13
  doi: 10.1109/ICETETS.2016.7603060
– ident: ref_32
  doi: 10.3390/s23177600
– volume: 29
  start-page: 216
  year: 2016
  ident: ref_46
  article-title: Watermark Compression in Medical Image Watermarking Using Lempel-Ziv-Welch (LZW) Lossless Compression Technique
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-015-9822-4
– volume: 63
  start-page: 671
  year: 2017
  ident: ref_14
  article-title: Contextual Medical Image Compression using Normalized Wavelet-Transform Coefficients and Prediction
  publication-title: IETE J. Res.
  doi: 10.1080/03772063.2017.1309998
– ident: ref_57
  doi: 10.3390/s20216322
– volume: 73
  start-page: 2019
  year: 2019
  ident: ref_61
  article-title: Region-of-interest based image compression using the discrete Tchebichef transform in wireless visual sensor networks
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2018.11.010
– ident: ref_5
  doi: 10.1109/ICSCCC.2018.8703337
– ident: ref_15
– ident: ref_37
  doi: 10.1109/INDCON.2008.4768796
– volume: 54
  start-page: 137
  year: 2021
  ident: ref_44
  article-title: Deep semantic segmentation of natural and medical images: A review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09854-1
– volume: 6
  start-page: 123
  year: 2015
  ident: ref_11
  article-title: Huffman image compression incorporating DPCM and DWT
  publication-title: J. Signal Inf. Process.
– volume: 167
  start-page: 1380
  year: 2020
  ident: ref_17
  article-title: Versatile Approaches for Medical Image Compression: A Review
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.349
– volume: 40
  start-page: 487
  year: 2009
  ident: ref_38
  article-title: Context based medical image compression for ultrasound images with contextual set partitioning in hierarchical trees algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2008.08.004
SSID ssj0023338
Score 2.526238
SecondaryResourceType review_article
Snippet Image compression is a vital component for domains in which the computational resources are usually scarce such as automotive or telemedicine fields. Also,...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 791
SubjectTerms Algorithms
Bandwidths
Cost control
Data compression
Data integrity
Data transmission
Energy consumption
image-compression techniques
lossy and lossless compression algorithms
Magnetic resonance imaging
Medical imaging equipment
Methods
region-of-interest detection
Streaming media
Telemedicine
Tomography
Ultrasonic imaging
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pa9VAEB-k9KAHqf9Tq6wi6GVpkt0ku729SouClIdU6W3Z7B8oaN6jefXcD6Jfrp_EmU1eeNWCF28hO0uyk5md3yyT3wC8cWXdxMZF7luRcyldjS5Vaa6dUxiwtbWpmvDrp-bkRJ2d6flGqy-qCRvogQfF7TcCEX2kXqURUxnvtCuEtAgK2hZxoUo8n3mj18nUmGoJzLwGHiGBSf1-T6xzeSLi3Ig-iaT_7634D4CZAs3xDtwfESKbDW_2AO6E7iHc2-ANfATLj99xG-Dky0MZa8dO11ys_QFLjS5J-cx2nl1f_fwcqOqYLyJPB4D4dH6I0ctfX_1is5FUPPRsPvyKFDw77xjiSbxmc7tEgPgYvhwfnb7_wMfWCdxVsllxWwTdVpXyMcY8YAy3TZ630ksciA4xiy-Jic4VWjmBKUjdylAUsVbe40yfiyew1S268AyYtiqEiCpXOWIVXWuqDK11WRYitC7KDN6tVWrcyCtO7S2-GcwvSPtm0n4GryfR5UCmcZvQIX2XSYD4r9MNtAozWoX5l1Vk8Ja-qiEvxZdxdvzZAJdEfFdmRjSBmnSQwd4NSfQud3N4bRdm9O7elJoqbystywxeTcM0kyrWurC4TDIV4T1ZZfB0sKdpSULhkhGI7_6PpT6HuyUCLToWKqs92FpdXIYXsO1-rM77i5fJLX4DAwIP2g
  priority: 102
  providerName: Directory of Open Access Journals
Title Image-Compression Techniques: Classical and “Region-of-Interest-Based” Approaches Presented in Recent Papers
URI https://www.ncbi.nlm.nih.gov/pubmed/38339507
https://www.proquest.com/docview/2924005942
https://www.proquest.com/docview/2925006445
https://doaj.org/article/73716f9508f549dc9c134a059bb72983
Volume 24
WOSCitedRecordID wos001160271800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3oXQsjIICS5Wk9h5uBe0i7aiEl1FVUHLKUr8QJUgWTZbjqg_BP5cfwkzjjdtAXHhEq3iycreGY-_mZ18Q8gLFaeZzZRluuYhE0KlsKUSyaRSORzYsqpcNeGHd9lsls_nsvAJt86XVa59onPUulWYI9-NJVY7JlLErxdfGXaNwn9XfQuN62QT22ajnWfzi4CLQ_zVswlxCO13O-SeCx0d56UzyFH1_-mQf4OZ7rjZv_O_E71LbnugSce9Zdwj10xzn9y6RD_4gCwOvoA3YegS-mrYhh6vKV27Per6ZaIOadVoen7248hg8TJrLXN5RJgSm8AhqM_PftKx5yY3HS36N5qMpicNBVgKn2lRLQBnPiTv96fHb94y34GBqURkK1ZFRtZJkmtrbWgAClRZGNZCCxiwCqCPjpHQTkUyVxwimbQWJopsmmsNT-qQb5GNpm3MY0JllRtjRQUIFSCPTCUWmKYyjiNuamVFQF6tdVIqT0-OXTI-lxCmoPrKQX0BeT6ILnpOjr8JTVCxgwDSaLsb7fJT6XdlmXEIFy02wrUQJ2slVcRhiomsawg6ch6Ql2gWJW52mIyq_DsLsCSkzSrHyDYo8TcIyM4VSdik6urw2lhK7yS68sJSAvJsGMYnsfCtMe2pk0kQNookII96gxyWxHNYMuD5J__-8m1yMwYkhnmjONkhG6vlqXlKbqhvq5NuOXI7xl3zEdmcTGfF0cglJuB6-H0K94qDw-LjLziPJWA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQ58C4EChgEgovVJHYeRkJoC1RddVmt0IL2FhI_UCXILpstiFt_CPwFflR_CTN5bFtA3HrgFsXjKHY-z8MZfwPwUIdx4hLtuCmEz6XUMS6pSHGldYoGW-V5nU34bpAMh-lkokYr8LM7C0NplZ1OrBW1mWraI98MFWU7RkqGz2efOVWNor-rXQmNBha79ttXDNmqZ_2X-H0fheH2q_GLHd5WFeA6ksmC54FVRRSlxjnnWzRveeL7hTQSG5xGc25CImnTGI1rgd55XEgbBC5OjcGexhf43DNwFvV4QsFeMjkK8ATGew17kRDK36yI686v6T-P2by6NMCfBuA3t7Y2b9uX_reJuQwXW0ea9RrkX4EVW16FC8foFa_BrP8JtSUnlddk-5Zs3FHWVk9ZXQ-UMMry0rDDg-9vLCVn86nj9T4pTgHfQiNvDg9-sF7LvW4rNmpObFnD9kqGbjdes1E-Qz_6Orw9lSGvw2o5Le1NYCpPrXUyRw8cXToVK0qgjVUYBsIW2kkPnnQYyHRLv05VQD5mGIYRXLIlXDx4sBSdNZwjfxPaIiAtBYgmvL4xnX_IWq2TJQLDYUeFfl0kldFKBwJfMVJFgUFVKjx4TDDMSJnhy-i8PZOBQyJasKxHbIqK5sCDjROSqIT0yeYOnFmrBKvsCJke3F82U09K7CvtdL-WicgtlpEHN5oFsBySSHHIGK_c-vfD78H5nfHrQTboD3dvw1qIXiftkYXRBqwu5vv2DpzTXxZ71fxuvVoZvD_tVfALbTt8NQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FCUJwYF8MARoEgos1dru9NBJCE8KIUcLIQgkKJ2P3giKBZxhPQNzyIfAjfE6-hCpvJIC45cDNcpctd08tr3qqXwE8UDyKbaysq4vAc4VQEZpUKF2pVIIBW-Z5XU34ZiueTpPdXZmuwI_uLAyVVXY-sXbUeqZoj3zIJVU7hlLwoW3LItKN8bP5J5c6SNE_rV07jUZFNs3XL5i-VU8nG_hbP-R8_GL7-Uu37TDgqlDESzf3jSzCMNHWWs9gqMtjzyuEFjhgFYZ2zYmwTWFmrgJE6lEhjO_bKNEan9RegO89BasIyQUfwGo6eZW-7dO9ALO_hssoCKQ3rIj5zqvJQI9EwLpRwJ_h4DeQWwe78YX_eZkuwvkWYrNRYxOXYMWUl-HcEeLFKzCffEQ_6pIzbOqAS7bdkdlWT1jdKZS0l-WlZocH314bKtt2Z9atd1BxOdx1DP_68OA7G7Ws7KZiaXOWy2i2VzIE5HjN0nyOCPsq7JzIlK_BoJyV5gYwmSfGWJEjNkewJyNJpbWR5NwPTKGscOBxpw-ZaonZqT_IhwwTNFKdrFcdB-73ovOGjeRvQuukVL0AEYjXN2aL91nrj7I4wETZUgtgGwqplVR-gJ8YyqLAdCsJHHhEKpmRm8OPUXl7WgOnRIRh2Yh4FiWtgQNrxyTRPanjw52iZq17rLJfWurAvX6YnqSSv9LM9muZkACzCB243hhDP6UgwSljJnPz3y-_C2dQ-bOtyXTzFpzlCEdp84yHazBYLvbNbTitPi_3qsWd1nQZvDtpM_gJmqqGhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image-Compression+Techniques%3A+Classical+and+%E2%80%9CRegion-of-Interest-Based%E2%80%9D+Approaches+Presented+in+Recent+Papers&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ungureanu%2C+Vlad-Ilie&rft.au=Negirla%2C+Paul&rft.au=Korodi%2C+Adrian&rft.date=2024-01-25&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=3&rft.spage=791&rft_id=info:doi/10.3390%2Fs24030791&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24030791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon