Accelerometry-based recognition of the placement sites of a wearable sensor

This work describes an automatic method to recognize the position of an accelerometer worn on five different parts of the body–ankle, thigh, hip, arm and wrist–from raw accelerometer data. Automatic detection of body position of a wearable sensor would enable systems that allow users to wear sensors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pervasive and mobile computing Jg. 21; S. 62 - 74
Hauptverfasser: Mannini, Andrea, Sabatini, Angelo M., Intille, Stephen S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.08.2015
Schlagworte:
ISSN:1574-1192, 1873-1589
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This work describes an automatic method to recognize the position of an accelerometer worn on five different parts of the body–ankle, thigh, hip, arm and wrist–from raw accelerometer data. Automatic detection of body position of a wearable sensor would enable systems that allow users to wear sensors flexibly on different body parts or permit systems that need to automatically verify sensor placement. The two-stage location detection algorithm works by first detecting time periods during which candidates are walking (regardless of where the sensor is positioned). Then, assuming that the data refer to walking, the algorithm detects the position of the sensor. Algorithms were validated on a dataset that is substantially larger than in prior work, using a leave-one-subject-out cross-validation approach. Correct walking and placement recognition were obtained for 97.4% and 91.2% of classified data windows, respectively.
AbstractList This work describes an automatic method to recognize the position of an accelerometer worn on five different parts of the body–ankle, thigh, hip, arm and wrist–from raw accelerometer data. Automatic detection of body position of a wearable sensor would enable systems that allow users to wear sensors flexibly on different body parts or permit systems that need to automatically verify sensor placement. The two-stage location detection algorithm works by first detecting time periods during which candidates are walking (regardless of where the sensor is positioned). Then, assuming that the data refer to walking, the algorithm detects the position of the sensor. Algorithms were validated on a dataset that is substantially larger than in prior work, using a leave-one-subject-out cross-validation approach. Correct walking and placement recognition were obtained for 97.4% and 91.2% of classified data windows, respectively.
This work describes an automatic method to recognize the position of an accelerometer worn on five different parts of the body: ankle, thigh, hip, arm and wrist from raw accelerometer data. Automatic detection of body position of a wearable sensor would enable systems that allow users to wear sensors flexibly on different body parts or permit systems that need to automatically verify sensor placement. The two-stage location detection algorithm works by first detecting time periods during which candidates are walking (regardless of where the sensor is positioned). Then, assuming that the data refer to walking, the algorithm detects the position of the sensor. Algorithms were validated on a dataset that is substantially larger than in prior work, using a leave-one-subject-out cross-validation approach. Correct walking and placement recognition were obtained for 97.4% and 91.2% of classified data windows, respectively.This work describes an automatic method to recognize the position of an accelerometer worn on five different parts of the body: ankle, thigh, hip, arm and wrist from raw accelerometer data. Automatic detection of body position of a wearable sensor would enable systems that allow users to wear sensors flexibly on different body parts or permit systems that need to automatically verify sensor placement. The two-stage location detection algorithm works by first detecting time periods during which candidates are walking (regardless of where the sensor is positioned). Then, assuming that the data refer to walking, the algorithm detects the position of the sensor. Algorithms were validated on a dataset that is substantially larger than in prior work, using a leave-one-subject-out cross-validation approach. Correct walking and placement recognition were obtained for 97.4% and 91.2% of classified data windows, respectively.
Author Mannini, Andrea
Intille, Stephen S.
Sabatini, Angelo M.
AuthorAffiliation a The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
b College of Computer and Information Science and Bouvé College of Health Sciences, Northeastern University, Boston, MA
AuthorAffiliation_xml – name: b College of Computer and Information Science and Bouvé College of Health Sciences, Northeastern University, Boston, MA
– name: a The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
Author_xml – sequence: 1
  givenname: Andrea
  surname: Mannini
  fullname: Mannini, Andrea
  email: a.mannini@sssup.it
  organization: The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
– sequence: 2
  givenname: Angelo M.
  surname: Sabatini
  fullname: Sabatini, Angelo M.
  organization: The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
– sequence: 3
  givenname: Stephen S.
  surname: Intille
  fullname: Intille, Stephen S.
  organization: College of Computer and Information Science and Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26213528$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctq3TAQFSWhebQ_0EXxshu7eliSDaUQQvMggW7atdBjnOhiS7eSbkL-vjI3DW0XWY1mdM6Z4ZwTdBBiAIQ-ENwRTMTnTbdd7KajmPAOiw5j9gYdk0GylvBhPKhvLvuWkJEeoZOcNxj3pJf4LTqighLG6XCMbs6shRlSXKCkp9boDK5JYONd8MXH0MSpKffQbGdtYYFQmuwL5HWsm0fQSZsZmgwhx_QOHU56zvD-uZ6inxfffpxftbffL6_Pz25by3tZ2pFPwhgxUkYlA2mG2mvQPdaS9wYLp6XB0uHBGKCGOmd6GEc6OUbYKCiwU_R1r7vdmQWcrVclPatt8otOTypqr_79Cf5e3cUH1XOCqwFV4NOzQIq_dpCLWnyuNsw6QNxlRQYqBJOckAr9-PeulyV_HKwAugfYFHNOML1ACFZrTGqj1pjUGpPCQtWYKmn4j2R90avf9V4_v079sqdCdfjBQ1LZeggWnK-xFeWif43-G0AhrzI
CitedBy_id crossref_primary_10_1016_j_patrec_2017_10_005
crossref_primary_10_2196_23391
crossref_primary_10_1016_j_eswa_2024_124949
crossref_primary_10_1109_ACCESS_2021_3134262
crossref_primary_10_1109_TMM_2016_2597007
crossref_primary_10_3390_mca29050080
crossref_primary_10_3390_s18010302
crossref_primary_10_3390_s22010371
crossref_primary_10_1016_j_jsams_2016_04_013
crossref_primary_10_1177_15691861231155994
crossref_primary_10_3390_s23073587
crossref_primary_10_1016_j_gaitpost_2022_07_205
crossref_primary_10_1109_ACCESS_2017_2702066
crossref_primary_10_3390_s21154949
crossref_primary_10_1016_j_gaitpost_2017_09_030
crossref_primary_10_1016_j_maturitas_2017_03_317
crossref_primary_10_21307_ijssis_2017_963
crossref_primary_10_1249_MSS_0000000000001144
crossref_primary_10_1016_j_pcad_2016_02_007
crossref_primary_10_1016_j_gaitpost_2017_07_059
crossref_primary_10_3390_info7020021
crossref_primary_10_3390_s151025474
crossref_primary_10_3390_s18113612
crossref_primary_10_3390_s20174791
crossref_primary_10_3390_s16010134
Cites_doi 10.1145/2030112.2030212
10.1109/IEMBS.2011.6090611
10.1145/1864349.1864396
10.1152/japplphysiol.00465.2009
10.1097/00005768-200009001-00003
10.1109/IEMBS.2003.1280534
10.1109/ICOSP.2010.5656840
10.1145/2638728.2641313
10.1249/MSS.0b013e31829736d6
10.1016/j.medengphy.2007.12.003
10.1109/MPRV.2014.73
10.1109/34.824819
10.1249/MSS.0b013e31823bf95c
10.1186/1743-0003-10-31
10.1152/jappl.1997.83.6.2112
10.1145/1961189.1961199
10.1145/2470654.2481296
10.1109/10.554760
10.1016/j.pmcj.2011.09.002
10.1016/j.neuroimage.2009.10.092
10.1016/S0966-6362(01)00199-0
10.1016/j.medengphy.2010.03.007
10.1145/1964897.1964918
10.1145/2493432.2493449
10.3389/fpubh.2014.00012
10.1007/s00421-010-1672-7
10.1109/TITB.2005.856864
10.1109/IEMBS.2007.4352552
ContentType Journal Article
Copyright 2015 Elsevier B.V.
2015 Published by Elsevier B.V. 2015
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: 2015 Published by Elsevier B.V. 2015
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.pmcj.2015.06.003
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-1589
EndPage 74
ExternalDocumentID PMC4510470
26213528
10_1016_j_pmcj_2015_06_003
S1574119215001108
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: U01 HL091737
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
SSH
7X8
5PM
ID FETCH-LOGICAL-c547t-95f6bb6923273e7b85f6aea40a754b06da7b07d08bbe2b2ddb4e992fd313962e3
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359026500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1574-1192
IngestDate Tue Sep 30 15:24:55 EDT 2025
Sun Nov 09 13:48:16 EST 2025
Thu Apr 03 06:54:04 EDT 2025
Tue Nov 18 21:54:01 EST 2025
Sat Nov 29 07:50:40 EST 2025
Fri Feb 23 02:28:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Accelerometer
Activity recognition
Body location
Wearable sensors
Walking detection
body location
walking detection
accelerometer
activity recognition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c547t-95f6bb6923273e7b85f6aea40a754b06da7b07d08bbe2b2ddb4e992fd313962e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26213528
PQID 1826637511
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4510470
proquest_miscellaneous_1826637511
pubmed_primary_26213528
crossref_primary_10_1016_j_pmcj_2015_06_003
crossref_citationtrail_10_1016_j_pmcj_2015_06_003
elsevier_sciencedirect_doi_10_1016_j_pmcj_2015_06_003
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Pervasive and mobile computing
PublicationTitleAlternate Pervasive Mob Comput
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mannini, Intille, Rosenberger, Sabatini, Haskell (br000115) 2013; 45
Bourke, O’Donovan, Olaighin (br000080) 2008; 30
J. Wiese, T.S. Saponas, A.B. Brush, Phoneprioception: enabling mobile phones to infer where they are kept, in: Proc. of the SIGCHI Conference on Human Factors in Computing Systems, 2013, pp. 2157–2166.
R. Saeedi, B. Schimert, H. Ghasemzadeh, Cost-sensitive feature selection for on-body sensor localization, in: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014, pp. 833–842.
Mayagoitia, Lotters, Veltink, Hermens (br000070) 2002; 16
Spierer, Hagins, Rundle, Pappas (br000035) 2011; 111
K. Fujinami, C. Jin, S. Kouchi, Tracking on-body location of a mobile phone, in: Proc. of the Int’l Symposium on Wearable Computing, ISWC, 2010, pp. 190–197.
Staudenmayer, Pober, Crouter, Bassett, Freedson (br000030) 2009; 107
S.S. Intille, F. Albinali, S. Mota, B. Kuris, P. Botana, W.L. Haskell, Design of a wearable physical activity monitoring system using mobile phones and accelerometers, in: Proc. of the IEEE Engineering in Medicine and Biology Society Meeting, EMBC, Boston, Massachusetts USA, 2011.
Kwapisz, Weiss, Moore (br000025) 2011; 12
Amini, Sarrafzadeh, Vahdatpour, Xu (br000120) 2011; 7
M. Kangas, A. Konttila, I. Winblad, T. Jamsa, Determination of simple thresholds for accelerometry-based parameters for fall detection, in: Proc. of the IEEE Engineering in Medicine and Biology Society Meeting, EMBC, 2007, pp. 1367–1370.
Kunze, Lukowicz (br000090) 2014; 13
Vapnik (br000160) 2000
Chen, Sun (br000045) 1997; 83
Chang, Lin (br000165) 2011; 2
F. Albinali, S.S. Intille, W. Haskell, M. Rosenberger, Using wearable activity type detection to improve physical activity energy expenditure estimation, in: Proc. of the Int’l Conf. on Ubiquitous Computing, UbiComp, Copenhagen, Denmark, 2010, pp. 311–320.
Karantonis, Narayanan, Mathie, Lovell, Celler (br000010) 2006; 10
A. Brajdic, R. Harle, Walk detection and step counting on unconstrained smartphones, in: Proc. of the Int’l Conf. on Ubiquitous Computing, UbiComp, 2013.
S. Shan, T. Yuan, A wearable pre-impact fall detector using feature selection and support vector machine, in: Proc. of the Int’l Conf. on Signal Processing, ICSP, 2010, pp. 1686–1689.
UK Biobank Coordinating Centre, Category 2 enhanced phenotyping at baseline assessment visit in last 100–150,000 participants, Addendum to main study protocol, Stockport Cheshire, 2009.
Weenk, van Beijnum, Baten, Hermens, Veltink (br000125) 2013; 10
Zhang, Rowlands, Murray, Hurst (br000155) 2012; 44
Kunze, Lukowicz, Junker, Tröster (br000145) 2005
S.H. Lee, H.D. Park, S.Y. Hong, K.J. Lee, Y.H. Kim, A study on the activity classification using a triaxial accelerometer, in: Proc. of the IEEE Engineering in Medicine and Biology Society Meeting, EMBC, 2003, pp. 2941–2943.
Dunton, Dzubur, Kawabata, Yanez, Bo, Intille (br000110) 2014; 2
R. Troiano, J. Mc Clain, Objective measures of physical activity, sleep, and strength in US National Health and Nutrition Examination Survey (NHANES) 2011–2014, in: 8th Internat Conf on Diet and Activity Methods, Roma, Italy, 2012.
Esterman, Tamber-Rosenau, Chiu, Yantis (br000175) 2010; 50
Bouten, Koekkoek, Verduin, Kodde, Janssen (br000050) 1997; 44
Rueterbories, Spaich, Larsen, Andersen (br000060) 2010; 32
Swartz, Strath, Bassett, O’Brien, King, Ainsworth (br000040) 2000; 32
Y. Shi, Y. Shi, J. Liu, A rotation based method for detecting on-body positions of mobile devices, in: Proc. of the Int’l Conf. on Ubiquitous Computing, UbiComp, 2011, pp. 559–560.
Jain, Duin, Mao (br000170) 2000; 22
Bao, Intille (br000005) 2004; 301
Anguita, Ghio, Oneto, Parra, Reyes-Ortiz (br000020) 2012
Alanezi, Mishra (br000105) 2013
Kunze (10.1016/j.pmcj.2015.06.003_br000090) 2014; 13
Karantonis (10.1016/j.pmcj.2015.06.003_br000010) 2006; 10
10.1016/j.pmcj.2015.06.003_br000095
10.1016/j.pmcj.2015.06.003_br000150
Anguita (10.1016/j.pmcj.2015.06.003_br000020) 2012
Bouten (10.1016/j.pmcj.2015.06.003_br000050) 1997; 44
Vapnik (10.1016/j.pmcj.2015.06.003_br000160) 2000
Bourke (10.1016/j.pmcj.2015.06.003_br000080) 2008; 30
Esterman (10.1016/j.pmcj.2015.06.003_br000175) 2010; 50
Swartz (10.1016/j.pmcj.2015.06.003_br000040) 2000; 32
10.1016/j.pmcj.2015.06.003_br000065
10.1016/j.pmcj.2015.06.003_br000100
Alanezi (10.1016/j.pmcj.2015.06.003_br000105) 2013
Staudenmayer (10.1016/j.pmcj.2015.06.003_br000030) 2009; 107
10.1016/j.pmcj.2015.06.003_br000180
Chang (10.1016/j.pmcj.2015.06.003_br000165) 2011; 2
Bao (10.1016/j.pmcj.2015.06.003_br000005) 2004; 301
Rueterbories (10.1016/j.pmcj.2015.06.003_br000060) 2010; 32
Mayagoitia (10.1016/j.pmcj.2015.06.003_br000070) 2002; 16
Dunton (10.1016/j.pmcj.2015.06.003_br000110) 2014; 2
10.1016/j.pmcj.2015.06.003_br000085
10.1016/j.pmcj.2015.06.003_br000140
Kunze (10.1016/j.pmcj.2015.06.003_br000145) 2005
Chen (10.1016/j.pmcj.2015.06.003_br000045) 1997; 83
Spierer (10.1016/j.pmcj.2015.06.003_br000035) 2011; 111
Amini (10.1016/j.pmcj.2015.06.003_br000120) 2011; 7
Jain (10.1016/j.pmcj.2015.06.003_br000170) 2000; 22
Zhang (10.1016/j.pmcj.2015.06.003_br000155) 2012; 44
Mannini (10.1016/j.pmcj.2015.06.003_br000115) 2013; 45
10.1016/j.pmcj.2015.06.003_br000075
10.1016/j.pmcj.2015.06.003_br000130
10.1016/j.pmcj.2015.06.003_br000055
Weenk (10.1016/j.pmcj.2015.06.003_br000125) 2013; 10
10.1016/j.pmcj.2015.06.003_br000135
10.1016/j.pmcj.2015.06.003_br000015
Kwapisz (10.1016/j.pmcj.2015.06.003_br000025) 2011; 12
References_xml – reference: R. Troiano, J. Mc Clain, Objective measures of physical activity, sleep, and strength in US National Health and Nutrition Examination Survey (NHANES) 2011–2014, in: 8th Internat Conf on Diet and Activity Methods, Roma, Italy, 2012.
– year: 2013
  ident: br000105
  article-title: Impact of Smartphone Position on Sensor Values and Context Discovery, Technical Report
– volume: 22
  start-page: 4
  year: 2000
  end-page: 37
  ident: br000170
  article-title: Statistical pattern recognition: A review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: UK Biobank Coordinating Centre, Category 2 enhanced phenotyping at baseline assessment visit in last 100–150,000 participants, Addendum to main study protocol, Stockport Cheshire, 2009.
– volume: 32
  start-page: 545
  year: 2010
  end-page: 552
  ident: br000060
  article-title: Methods for gait event detection and analysis in ambulatory systems
  publication-title: Med. Eng. Phys.
– reference: J. Wiese, T.S. Saponas, A.B. Brush, Phoneprioception: enabling mobile phones to infer where they are kept, in: Proc. of the SIGCHI Conference on Human Factors in Computing Systems, 2013, pp. 2157–2166.
– start-page: 216
  year: 2012
  end-page: 223
  ident: br000020
  article-title: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine
  publication-title: Ambient Assisted Living and Home Care
– reference: S.S. Intille, F. Albinali, S. Mota, B. Kuris, P. Botana, W.L. Haskell, Design of a wearable physical activity monitoring system using mobile phones and accelerometers, in: Proc. of the IEEE Engineering in Medicine and Biology Society Meeting, EMBC, Boston, Massachusetts USA, 2011.
– volume: 2
  start-page: 12
  year: 2014
  ident: br000110
  article-title: Development of a smartphone application to measure physical activity using sensor-assisted self-report
  publication-title: Front. Public Health
– volume: 12
  start-page: 74
  year: 2011
  end-page: 82
  ident: br000025
  article-title: Activity recognition using cell phone accelerometers
  publication-title: ACM SIGKDD Explor. Newslett.
– volume: 44
  start-page: 136
  year: 1997
  end-page: 147
  ident: br000050
  article-title: A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 7
  start-page: 746
  year: 2011
  end-page: 760
  ident: br000120
  article-title: Accelerometer-based on-body sensor localization for health and medical monitoring applications
  publication-title: Pervasive Mob. Comput.
– reference: S. Shan, T. Yuan, A wearable pre-impact fall detector using feature selection and support vector machine, in: Proc. of the Int’l Conf. on Signal Processing, ICSP, 2010, pp. 1686–1689.
– volume: 50
  start-page: 572
  year: 2010
  end-page: 576
  ident: br000175
  article-title: Avoiding non-independence in fMRI data analysis: Leave one subject out
  publication-title: NeuroImage
– reference: K. Fujinami, C. Jin, S. Kouchi, Tracking on-body location of a mobile phone, in: Proc. of the Int’l Symposium on Wearable Computing, ISWC, 2010, pp. 190–197.
– reference: S.H. Lee, H.D. Park, S.Y. Hong, K.J. Lee, Y.H. Kim, A study on the activity classification using a triaxial accelerometer, in: Proc. of the IEEE Engineering in Medicine and Biology Society Meeting, EMBC, 2003, pp. 2941–2943.
– volume: 111
  start-page: 659
  year: 2011
  end-page: 667
  ident: br000035
  article-title: A comparison of energy expenditure estimates from the actiheart and actical physical activity monitors during low intensity activities, walking, and jogging
  publication-title: Eur. J. Appl. Physiol.
– volume: 16
  start-page: 55
  year: 2002
  end-page: 59
  ident: br000070
  article-title: Standing balance evaluation using a triaxial accelerometer
  publication-title: Gait Posture
– reference: Y. Shi, Y. Shi, J. Liu, A rotation based method for detecting on-body positions of mobile devices, in: Proc. of the Int’l Conf. on Ubiquitous Computing, UbiComp, 2011, pp. 559–560.
– volume: 301
  start-page: 1
  year: 2004
  end-page: 17
  ident: br000005
  article-title: Activity recognition from user-annotated acceleration data
  publication-title: Pervasive
– volume: 10
  start-page: 31
  year: 2013
  ident: br000125
  article-title: Automatic identification of inertial sensor placement on human body segments during walking
  publication-title: J. Neuroeng. Rehabil.
– volume: 32
  start-page: S450
  year: 2000
  end-page: S456
  ident: br000040
  article-title: Estimation of energy expenditure using CSA accelerometers at hip and wrist sites
  publication-title: Med. Sci. Sports Exerc.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: br000165
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 13
  start-page: 32
  year: 2014
  end-page: 41
  ident: br000090
  article-title: Sensor placement variations in wearable activity recognition
  publication-title: IEEE Pervasive Comput.
– volume: 44
  start-page: 742
  year: 2012
  end-page: 748
  ident: br000155
  article-title: Physical activity classification using the GENEA wrist-worn accelerometer
  publication-title: Med. Sci. Sports Exerc.
– start-page: 264
  year: 2005
  end-page: 275
  ident: br000145
  article-title: Where am I: Recognizing on-body positions of wearable sensors
  publication-title: Location-and Context-Awareness
– reference: F. Albinali, S.S. Intille, W. Haskell, M. Rosenberger, Using wearable activity type detection to improve physical activity energy expenditure estimation, in: Proc. of the Int’l Conf. on Ubiquitous Computing, UbiComp, Copenhagen, Denmark, 2010, pp. 311–320.
– reference: A. Brajdic, R. Harle, Walk detection and step counting on unconstrained smartphones, in: Proc. of the Int’l Conf. on Ubiquitous Computing, UbiComp, 2013.
– volume: 30
  start-page: 937
  year: 2008
  end-page: 946
  ident: br000080
  article-title: The identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of falls
  publication-title: Med. Eng. Phys.
– year: 2000
  ident: br000160
  article-title: The Nature of Statistical Learning Theory
– volume: 10
  start-page: 156
  year: 2006
  end-page: 167
  ident: br000010
  article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 83
  start-page: 2112
  year: 1997
  end-page: 2122
  ident: br000045
  article-title: Improving energy expenditure estimation by using a triaxial accelerometer
  publication-title: J. Appl. Physiol.
– volume: 45
  start-page: 2193
  year: 2013
  end-page: 2203
  ident: br000115
  article-title: Activity recognition using a single accelerometer placed at the wrist or ankle
  publication-title: Med. Sci. Sports Exerc.
– reference: R. Saeedi, B. Schimert, H. Ghasemzadeh, Cost-sensitive feature selection for on-body sensor localization, in: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014, pp. 833–842.
– volume: 107
  start-page: 1300
  year: 2009
  end-page: 1307
  ident: br000030
  article-title: An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer
  publication-title: J. Appl. Physiol.
– reference: M. Kangas, A. Konttila, I. Winblad, T. Jamsa, Determination of simple thresholds for accelerometry-based parameters for fall detection, in: Proc. of the IEEE Engineering in Medicine and Biology Society Meeting, EMBC, 2007, pp. 1367–1370.
– ident: 10.1016/j.pmcj.2015.06.003_br000135
  doi: 10.1145/2030112.2030212
– ident: 10.1016/j.pmcj.2015.06.003_br000150
  doi: 10.1109/IEMBS.2011.6090611
– ident: 10.1016/j.pmcj.2015.06.003_br000055
  doi: 10.1145/1864349.1864396
– ident: 10.1016/j.pmcj.2015.06.003_br000100
– volume: 107
  start-page: 1300
  year: 2009
  ident: 10.1016/j.pmcj.2015.06.003_br000030
  article-title: An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00465.2009
– volume: 32
  start-page: S450
  year: 2000
  ident: 10.1016/j.pmcj.2015.06.003_br000040
  article-title: Estimation of energy expenditure using CSA accelerometers at hip and wrist sites
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1097/00005768-200009001-00003
– start-page: 216
  year: 2012
  ident: 10.1016/j.pmcj.2015.06.003_br000020
  article-title: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine
– year: 2000
  ident: 10.1016/j.pmcj.2015.06.003_br000160
– ident: 10.1016/j.pmcj.2015.06.003_br000130
– ident: 10.1016/j.pmcj.2015.06.003_br000015
  doi: 10.1109/IEMBS.2003.1280534
– ident: 10.1016/j.pmcj.2015.06.003_br000085
  doi: 10.1109/ICOSP.2010.5656840
– ident: 10.1016/j.pmcj.2015.06.003_br000180
  doi: 10.1145/2638728.2641313
– year: 2013
  ident: 10.1016/j.pmcj.2015.06.003_br000105
– volume: 45
  start-page: 2193
  year: 2013
  ident: 10.1016/j.pmcj.2015.06.003_br000115
  article-title: Activity recognition using a single accelerometer placed at the wrist or ankle
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0b013e31829736d6
– start-page: 264
  year: 2005
  ident: 10.1016/j.pmcj.2015.06.003_br000145
  article-title: Where am I: Recognizing on-body positions of wearable sensors
– volume: 30
  start-page: 937
  year: 2008
  ident: 10.1016/j.pmcj.2015.06.003_br000080
  article-title: The identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of falls
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2007.12.003
– volume: 13
  start-page: 32
  year: 2014
  ident: 10.1016/j.pmcj.2015.06.003_br000090
  article-title: Sensor placement variations in wearable activity recognition
  publication-title: IEEE Pervasive Comput.
  doi: 10.1109/MPRV.2014.73
– volume: 22
  start-page: 4
  year: 2000
  ident: 10.1016/j.pmcj.2015.06.003_br000170
  article-title: Statistical pattern recognition: A review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.824819
– volume: 44
  start-page: 742
  year: 2012
  ident: 10.1016/j.pmcj.2015.06.003_br000155
  article-title: Physical activity classification using the GENEA wrist-worn accelerometer
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0b013e31823bf95c
– volume: 10
  start-page: 31
  year: 2013
  ident: 10.1016/j.pmcj.2015.06.003_br000125
  article-title: Automatic identification of inertial sensor placement on human body segments during walking
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-10-31
– volume: 83
  start-page: 2112
  year: 1997
  ident: 10.1016/j.pmcj.2015.06.003_br000045
  article-title: Improving energy expenditure estimation by using a triaxial accelerometer
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1997.83.6.2112
– volume: 2
  start-page: 1
  year: 2011
  ident: 10.1016/j.pmcj.2015.06.003_br000165
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– ident: 10.1016/j.pmcj.2015.06.003_br000140
  doi: 10.1145/2470654.2481296
– volume: 44
  start-page: 136
  year: 1997
  ident: 10.1016/j.pmcj.2015.06.003_br000050
  article-title: A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.554760
– volume: 7
  start-page: 746
  year: 2011
  ident: 10.1016/j.pmcj.2015.06.003_br000120
  article-title: Accelerometer-based on-body sensor localization for health and medical monitoring applications
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2011.09.002
– volume: 50
  start-page: 572
  year: 2010
  ident: 10.1016/j.pmcj.2015.06.003_br000175
  article-title: Avoiding non-independence in fMRI data analysis: Leave one subject out
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.092
– volume: 16
  start-page: 55
  year: 2002
  ident: 10.1016/j.pmcj.2015.06.003_br000070
  article-title: Standing balance evaluation using a triaxial accelerometer
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(01)00199-0
– volume: 301
  start-page: 1
  year: 2004
  ident: 10.1016/j.pmcj.2015.06.003_br000005
  article-title: Activity recognition from user-annotated acceleration data
  publication-title: Pervasive
– volume: 32
  start-page: 545
  year: 2010
  ident: 10.1016/j.pmcj.2015.06.003_br000060
  article-title: Methods for gait event detection and analysis in ambulatory systems
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.03.007
– ident: 10.1016/j.pmcj.2015.06.003_br000095
– volume: 12
  start-page: 74
  year: 2011
  ident: 10.1016/j.pmcj.2015.06.003_br000025
  article-title: Activity recognition using cell phone accelerometers
  publication-title: ACM SIGKDD Explor. Newslett.
  doi: 10.1145/1964897.1964918
– ident: 10.1016/j.pmcj.2015.06.003_br000065
  doi: 10.1145/2493432.2493449
– volume: 2
  start-page: 12
  year: 2014
  ident: 10.1016/j.pmcj.2015.06.003_br000110
  article-title: Development of a smartphone application to measure physical activity using sensor-assisted self-report
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2014.00012
– volume: 111
  start-page: 659
  year: 2011
  ident: 10.1016/j.pmcj.2015.06.003_br000035
  article-title: A comparison of energy expenditure estimates from the actiheart and actical physical activity monitors during low intensity activities, walking, and jogging
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-010-1672-7
– volume: 10
  start-page: 156
  year: 2006
  ident: 10.1016/j.pmcj.2015.06.003_br000010
  article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2005.856864
– ident: 10.1016/j.pmcj.2015.06.003_br000075
  doi: 10.1109/IEMBS.2007.4352552
SSID ssj0041470
Score 2.268089
Snippet This work describes an automatic method to recognize the position of an accelerometer worn on five different parts of the body–ankle, thigh, hip, arm and...
This work describes an automatic method to recognize the position of an accelerometer worn on five different parts of the body: ankle, thigh, hip, arm and...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 62
SubjectTerms Accelerometer
Activity recognition
Body location
Walking detection
Wearable sensors
Title Accelerometry-based recognition of the placement sites of a wearable sensor
URI https://dx.doi.org/10.1016/j.pmcj.2015.06.003
https://www.ncbi.nlm.nih.gov/pubmed/26213528
https://www.proquest.com/docview/1826637511
https://pubmed.ncbi.nlm.nih.gov/PMC4510470
Volume 21
WOSCitedRecordID wos000359026500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1589
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041470
  issn: 1574-1192
  databaseCode: AIEXJ
  dateStart: 20050301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6jQd4QHxTPqYg8ValyocdO48TGuJzmtSB-hbZiTNadUnVpmP899zZcZatMAESL1HrxOnJd70P-3d3hLzWeERSsNRPeZD7VFPpKyaUH6u4LFkumDLFdL5-4kdHYjpNjweDjcuFOV_wqhIXF-nyv7IaxoDZmDr7F-zuXgoD8BmYDldgO1z_iPEHeQ6mBKsQNKsfPlopTFBpYULWOzTpUbh_bpAAeH68tnmS32ExTC7VGqLbetX3XI9x99Zg3XGr_axWoE4MIH3TOOsnbc_lmekSZaGSndKfSAX0uTunelGPPo87uawaTEnsoc5Gk3F_PyJkHRqu3STbSpSxepVTPwxt27uxtmOCx37IbAchp4xtunSrTVs9be2ybeazpfHt5sN8vDzL54jUY6YcaxBf2rcOdThBKpAIcILR7RE7ZC_iLAV9vnfw_nD6wZlwGlLTZbCjus22ssDA67_0O49mO2K5DrzteTIn98jdNgTxDqzo3CcDXT0gd3qFKR-Sj78QIq8nRF5deiBEXidEnhEiHJaeEyLPCtEj8uXt4cmbd37bdsPPGeWNn7IyUSoBzx9cW82VgO9SSxpIzqgKkkJyFfAiEErpSEVFoahO06gsYogmkkjHj8luVVf6KfGo1BHVuZZJomlRJEKB-1yGCmISpmHqkIRu6bK8rUmPrVEWmQMfzjNc7gyXOzMIzHhIRt2cpa3IcuPTzHEka31K6ytmIEA3znvl2JeBwsVTNFnperPOMCBPYg6BypA8sezs6IiSKMRySUPCrzC6ewCLuV-9U82-maLulGHRlODZP9L7nNy-_DO-ILvNaqNfklv5eTNbr_bJDp-K_VbKfwIE3cb6
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerometry-based+recognition+of+the+placement+sites+of+a+wearable+sensor&rft.jtitle=Pervasive+and+mobile+computing&rft.au=Mannini%2C+Andrea&rft.au=Sabatini%2C+Angelo+M.&rft.au=Intille%2C+Stephen+S.&rft.date=2015-08-01&rft.pub=Elsevier+B.V&rft.issn=1574-1192&rft.eissn=1873-1589&rft.volume=21&rft.spage=62&rft.epage=74&rft_id=info:doi/10.1016%2Fj.pmcj.2015.06.003&rft.externalDocID=S1574119215001108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-1192&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-1192&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-1192&client=summon