High-throughput assay and engineering of self-cleaving ribozymes by sequencing

Self-cleaving ribozymes are found in all domains of life and are believed to play important roles in biology. Additionally, self-cleaving ribozymes have been the subject of extensive engineering efforts for applications in synthetic biology. These studies often involve laborious assays of multiple i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nucleic acids research Ročník 43; číslo 13; s. e85
Hlavní autoři: Kobori, Shungo, Nomura, Yoko, Miu, Anh, Yokobayashi, Yohei
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 27.07.2015
Témata:
ISSN:0305-1048, 1362-4962
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Self-cleaving ribozymes are found in all domains of life and are believed to play important roles in biology. Additionally, self-cleaving ribozymes have been the subject of extensive engineering efforts for applications in synthetic biology. These studies often involve laborious assays of multiple individual variants that are either designed rationally or discovered through selection or screening. However, these assays provide only a limited view of the large sequence space relevant to the ribozyme function. Here, we report a strategy that allows quantitative characterization of greater than 1000 ribozyme variants in a single experiment. We generated a library of predefined ribozyme variants that were converted to DNA and analyzed by high-throughput sequencing. By counting the number of cleaved and uncleaved reads of every variant in the library, we obtained a complete activity profile of the ribozyme pool which was used to both analyze and engineer allosteric ribozymes.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkv265