Learning on knowledge graph dynamics provides an early warning of impactful research

The scientific ecosystem relies on citation-based metrics that provide only imperfect, inconsistent and easily manipulated measures of research quality. Here we describe DELPHI (Dynamic Early-warning by Learning to Predict High Impact), a framework that provides an early-warning signal for ‘impactfu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature biotechnology Ročník 39; číslo 10; s. 1300 - 1307
Hlavní autoři: Weis, James W., Jacobson, Joseph M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Nature Publishing Group US 01.10.2021
Nature Publishing Group
Témata:
ISSN:1087-0156, 1546-1696, 1546-1696
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The scientific ecosystem relies on citation-based metrics that provide only imperfect, inconsistent and easily manipulated measures of research quality. Here we describe DELPHI (Dynamic Early-warning by Learning to Predict High Impact), a framework that provides an early-warning signal for ‘impactful’ research by autonomously learning high-dimensional relationships among features calculated across time from the scientific literature. We prototype this framework and deduce its performance and scaling properties on time-structured publication graphs from 1980 to 2019 drawn from 42 biotechnology-related journals, including over 7.8 million individual nodes, 201 million relationships and 3.8 billion calculated metrics. We demonstrate the framework’s performance by correctly identifying 19/20 seminal biotechnologies from 1980 to 2014 via a blinded retrospective study and provide 50 research papers from 2018 that DELPHI predicts will be in the top 5% of time-rescaled node centrality in the future. We propose DELPHI as a tool to aid in the construction of diversified, impact-optimized funding portfolios. Biotechnology-related papers predicted to be of long-term impact are identified in a machine learning framework (DELPHI) that analyzes relationships among a range of features from the scientific literature over time.
AbstractList The scientific ecosystem relies on citation-based metrics that provide only imperfect, inconsistent and easily manipulated measures of research quality. Here we describe DELPHI (Dynamic Early-warning by Learning to Predict High Impact), a framework that provides an early-warning signal for 'impactful' research by autonomously learning high-dimensional relationships among features calculated across time from the scientific literature. We prototype this framework and deduce its performance and scaling properties on time-structured publication graphs from 1980 to 2019 drawn from 42 biotechnology-related journals, including over 7.8 million individual nodes, 201 million relationships and 3.8 billion calculated metrics. We demonstrate the framework's performance by correctly identifying 19/20 seminal biotechnologies from 1980 to 2014 via a blinded retrospective study and provide 50 research papers from 2018 that DELPHI predicts will be in the top 5% of time-rescaled node centrality in the future. We propose DELPHI as a tool to aid in the construction of diversified, impact-optimized funding portfolios.
The scientific ecosystem relies on citation-based metrics that provide only imperfect, inconsistent and easily manipulated measures of research quality. Here we describe DELPHI (Dynamic Early-warning by Learning to Predict High Impact), a framework that provides an early-warning signal for 'impactful' research by autonomously learning high-dimensional relationships among features calculated across time from the scientific literature. We prototype this framework and deduce its performance and scaling properties on time-structured publication graphs from 1980 to 2019 drawn from 42 biotechnology-related journals, including over 7.8 million individual nodes, 201 million relationships and 3.8 billion calculated metrics. We demonstrate the framework's performance by correctly identifying 19/20 seminal biotechnologies from 1980 to 2014 via a blinded retrospective study and provide 50 research papers from 2018 that DELPHI predicts will be in the top 5% of time-rescaled node centrality in the future. We propose DELPHI as a tool to aid in the construction of diversified, impact-optimized funding portfolios. Biotechnology-related papers predicted to be of long-term impact are identified in a machine learning framework (DELPHI) that analyzes relationships among a range of features from the scientific literature over time.
The scientific ecosystem relies on citation-based metrics that provide only imperfect, inconsistent and easily manipulated measures of research quality. Here we describe DELPHI (Dynamic Early-warning by Learning to Predict High Impact), a framework that provides an early-warning signal for ‘impactful’ research by autonomously learning high-dimensional relationships among features calculated across time from the scientific literature. We prototype this framework and deduce its performance and scaling properties on time-structured publication graphs from 1980 to 2019 drawn from 42 biotechnology-related journals, including over 7.8 million individual nodes, 201 million relationships and 3.8 billion calculated metrics. We demonstrate the framework’s performance by correctly identifying 19/20 seminal biotechnologies from 1980 to 2014 via a blinded retrospective study and provide 50 research papers from 2018 that DELPHI predicts will be in the top 5% of time-rescaled node centrality in the future. We propose DELPHI as a tool to aid in the construction of diversified, impact-optimized funding portfolios. Biotechnology-related papers predicted to be of long-term impact are identified in a machine learning framework (DELPHI) that analyzes relationships among a range of features from the scientific literature over time.
The scientific ecosystem relies on citation-based metrics that provide only imperfect, inconsistent and easily manipulated measures of research quality. Here we describe DELPHI (Dynamic Early-warning by Learning to Predict High Impact), a framework that provides an early-warning signal for 'impactful' research by autonomously learning high-dimensional relationships among features calculated across time from the scientific literature. We prototype this framework and deduce its performance and scaling properties on time-structured publication graphs from 1980 to 2019 drawn from 42 biotechnology-related journals, including over 7.8 million individual nodes, 201 million relationships and 3.8 billion calculated metrics. We demonstrate the framework's performance by correctly identifying 19/20 seminal biotechnologies from 1980 to 2014 via a blinded retrospective study and provide 50 research papers from 2018 that DELPHI predicts will be in the top 5% of time-rescaled node centrality in the future. We propose DELPHI as a tool to aid in the construction of diversified, impact-optimized funding portfolios.The scientific ecosystem relies on citation-based metrics that provide only imperfect, inconsistent and easily manipulated measures of research quality. Here we describe DELPHI (Dynamic Early-warning by Learning to Predict High Impact), a framework that provides an early-warning signal for 'impactful' research by autonomously learning high-dimensional relationships among features calculated across time from the scientific literature. We prototype this framework and deduce its performance and scaling properties on time-structured publication graphs from 1980 to 2019 drawn from 42 biotechnology-related journals, including over 7.8 million individual nodes, 201 million relationships and 3.8 billion calculated metrics. We demonstrate the framework's performance by correctly identifying 19/20 seminal biotechnologies from 1980 to 2014 via a blinded retrospective study and provide 50 research papers from 2018 that DELPHI predicts will be in the top 5% of time-rescaled node centrality in the future. We propose DELPHI as a tool to aid in the construction of diversified, impact-optimized funding portfolios.
Audience Academic
Author Weis, James W.
Jacobson, Joseph M.
Author_xml – sequence: 1
  givenname: James W.
  orcidid: 0000-0003-3735-0365
  surname: Weis
  fullname: Weis, James W.
  email: jww@mit.edu
  organization: MIT Media Lab, Massachusetts Institute of Technology, Department of Computational and Systems Biology, Massachusetts Institute of Technology
– sequence: 2
  givenname: Joseph M.
  surname: Jacobson
  fullname: Jacobson, Joseph M.
  organization: MIT Media Lab, Massachusetts Institute of Technology, MIT Center for Bits and Atoms, Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34002098$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1vFCEUhompsR_6B7wwJN7YxKkwHwxcNo3VJps00eotYeDMLHWWWWHGuv_es05r3cY0hmQg8DzMAd5DsheGAIS85OyEs0K-SyWvZJ2xnGeMKVZn4gk54FUpMi6U2MMx2y7zSuyTw5SuGWOiFOIZ2S9KxnKm5AG5WoCJwYeODoF-C8NND64D2kWzXlK3CWblbaLrOPzwDhI1gSLfb-jNndVSv1obO7ZTTyMkXLXL5-Rpa_oEL277I_Ll_P3V2cdscfnh4ux0kdmqrMesls7gCQSYHKwCnCsLBcoBmEa5mkkr8qYqsS-4dVy0LXOykk0JyrYFM8UReTPvi_V9nyCNeuWThb43AYYp6bzKpeQFVxLR1w_Q62GKAatDqlZSiIoV91RnetA-tMMYjd1uqk9FLXOhKpEjdfIPCpsDvC18o9bj_I5wvCMgM8LPsTNTSvri86f_Zy-_7rJv_2KbKfkACT_Jd8sxzcoO_ur2DqZmBU6vo1-ZuNF3aUAgnwEbh5QitH8QzvQ2cnqOnMbI6d-R0wIl-UCyfjSjx7qj8f3jajGrCf8TOoj3j_KI9QtL2ebL
CitedBy_id crossref_primary_10_1038_s41562_024_02041_0
crossref_primary_10_1162_qss_a_00221
crossref_primary_10_1186_s40580_021_00282_7
crossref_primary_10_1109_RITA_2023_3301510
crossref_primary_10_3390_modelling5020024
crossref_primary_10_1073_pnas_2427157122
crossref_primary_10_3390_mca29040059
crossref_primary_10_1016_j_jik_2025_100778
crossref_primary_10_1016_j_joi_2024_101596
crossref_primary_10_1007_s11192_025_05345_8
crossref_primary_10_1039_D4NP00008K
crossref_primary_10_1016_j_joi_2022_101290
crossref_primary_10_1209_0295_5075_ac6bbb
crossref_primary_10_1061_JITSE4_ISENG_2399
crossref_primary_10_1371_journal_pone_0275192
crossref_primary_10_1016_j_techfore_2025_124053
crossref_primary_10_1007_s11192_022_04547_8
crossref_primary_10_1177_10597123231186432
crossref_primary_10_1016_j_jenvman_2022_115685
crossref_primary_10_1038_d41586_021_01358_4
crossref_primary_10_1007_s11390_022_2845_7
crossref_primary_10_1007_s11704_022_2078_5
crossref_primary_10_1038_s41598_024_52233_x
crossref_primary_10_1080_01446193_2022_2164598
crossref_primary_10_1080_00207721_2023_2300149
crossref_primary_10_1007_s00146_021_01259_0
crossref_primary_10_1038_d41586_023_00183_1
crossref_primary_10_1088_2632_2153_add6ef
crossref_primary_10_1371_journal_pone_0288469
crossref_primary_10_1016_j_joi_2022_101282
crossref_primary_10_1186_s13677_023_00585_6
crossref_primary_10_1038_s41524_025_01540_6
crossref_primary_10_4018_JDM_345400
Cites_doi 10.1016/j.joi.2019.101005
10.1136/bmj.314.7079.497
10.1038/s42254-018-0005-3
10.1101/gad.989402
10.1007/s11192-010-0160-5
10.1038/489201a
10.1016/j.jempfin.2009.11.001
10.1016/j.techfore.2018.01.036
10.1038/492034a
10.1073/pnas.1800485115
10.1109/MC.2013.374
10.1613/jair.953
10.1007/s11390-015-1518-1
10.1287/mnsc.2015.2366
10.1126/science.1212540
10.1038/s41586-019-0941-9
10.1209/0295-5075/116/30007
10.1016/j.stem.2007.05.015
10.1016/j.joi.2016.10.005
10.1126/science.aaa3796
10.1128/mBio.00694-16
10.1038/s41587-019-0362-1
10.3386/w22587
10.1109/JCDL.2017.7991559
10.1145/2939672.2939754
10.2139/ssrn.2053258
10.1038/4351003b
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
COPYRIGHT 2021 Nature Publishing Group
The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
– notice: 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
DBID AAYXX
CITATION
NPM
N95
IOV
ISR
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M2P
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
RC3
7X8
DOI 10.1038/s41587-021-00907-6
DatabaseName CrossRef
PubMed
Gale Business: Insights
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Proquest Research Library
ProQuest Science Database (NC LIVE)
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed



MEDLINE - Academic
Research Library Prep

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Agriculture
Biology
EISSN 1546-1696
EndPage 1307
ExternalDocumentID A678269562
34002098
10_1038_s41587_021_00907_6
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: MIT Media Lab, MIT Center for Bits and Atoms
GroupedDBID ---
-~X
.55
.GJ
0R~
123
29M
2FS
2XV
36B
39C
3V.
4.4
4R4
53G
5BI
5M7
5RE
5S5
70F
7X7
88A
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAEEF
AAHBH
AAIKC
AAMNW
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABJNI
ABLJU
ABOCM
ABUWG
ACBTR
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BAAKF
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKOMP
BPHCQ
BVXVI
C0K
CCPQU
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBC
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FA8
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAG
IAO
IEA
IEP
IH2
IHR
INH
INR
IOV
ISR
ITC
KOO
L6V
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
M7S
ML0
MVM
N95
NADUK
NEJ
NNMJJ
NXXTH
O9-
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
RVV
RXW
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
U5U
UKHRP
X7M
XI7
XOL
Y6R
YZZ
ZGI
ZHY
ZXP
~KM
AAYXX
ABFSG
ACSTC
AEZWR
AFFHD
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QO
7QP
7QR
7T7
7TK
7TM
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c547t-78da1586ea2ec9e547439e9deeab9d708c62b5408c31cd16ff0d858b4e9cf30a3
IEDL.DBID M2P
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000651336800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1087-0156
1546-1696
IngestDate Sun Sep 28 11:00:24 EDT 2025
Tue Oct 07 05:33:32 EDT 2025
Sat Nov 29 13:14:04 EST 2025
Sat Nov 29 09:53:09 EST 2025
Wed Nov 26 10:41:16 EST 2025
Wed Nov 26 09:37:16 EST 2025
Sat Nov 29 08:34:02 EST 2025
Thu Apr 03 07:00:53 EDT 2025
Sat Nov 29 06:22:26 EST 2025
Tue Nov 18 22:25:18 EST 2025
Fri Feb 21 02:38:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c547t-78da1586ea2ec9e547439e9deeab9d708c62b5408c31cd16ff0d858b4e9cf30a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3735-0365
PMID 34002098
PQID 2579866503
PQPubID 47191
PageCount 8
ParticipantIDs proquest_miscellaneous_2528813198
proquest_journals_2579866503
gale_infotracmisc_A678269562
gale_infotracacademiconefile_A678269562
gale_incontextgauss_ISR_A678269562
gale_incontextgauss_IOV_A678269562
gale_businessinsightsgauss_A678269562
pubmed_primary_34002098
crossref_primary_10_1038_s41587_021_00907_6
crossref_citationtrail_10_1038_s41587_021_00907_6
springer_journals_10_1038_s41587_021_00907_6
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Science and Business of Biotechnology
PublicationTitle Nature biotechnology
PublicationTitleAbbrev Nat Biotechnol
PublicationTitleAlternate Nat Biotechnol
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Dykstra (CR20) 2007; 1
CR18
Battiston (CR12) 2019; 1
CR15
Acuna, Allesina, Kording (CR13) 2012; 489
Nicholson, Ioannidis (CR26) 2012; 492
Mariani, Medo, Zhang (CR17) 2016; 10
Wu, Wang, Evans (CR10) 2019; 566
Ma, Uzzi (CR11) 2018; 115
Funk, Owen-Smith (CR8) 2017; 63
Fu, Aliferis (CR14) 2010; 85
Zhang, Liu, Xu (CR24) 2015; 30
Wilhite, Fong (CR3) 2012; 335
Xu, Mariani, Lü, Medo (CR22) 2020; 14
CR2
Seglen (CR4) 1997; 314
CR6
Tachibana (CR19) 2002; 16
CR7
Cumming, Dai (CR5) 2010; 17
CR25
Metcalfe (CR23) 2013; 46
Mariani, Medo, Lafond (CR9) 2019; 146
McNutt (CR1) 2014; 346
CR21
Vidmer, Medo (CR16) 2016; 116
Chawla, Bowyer, Hall, Kegelmeyer (CR27) 2002; 16
Y Ma (907_CR11) 2018; 115
B Dykstra (907_CR20) 2007; 1
907_CR21
F Battiston (907_CR12) 2019; 1
907_CR25
NV Chawla (907_CR27) 2002; 16
B Metcalfe (907_CR23) 2013; 46
DE Acuna (907_CR13) 2012; 489
A Vidmer (907_CR16) 2016; 116
MS Mariani (907_CR17) 2016; 10
MS Mariani (907_CR9) 2019; 146
LD Fu (907_CR14) 2010; 85
S Xu (907_CR22) 2020; 14
DJ Cumming (907_CR5) 2010; 17
907_CR15
M Tachibana (907_CR19) 2002; 16
AW Wilhite (907_CR3) 2012; 335
L Wu (907_CR10) 2019; 566
JM Nicholson (907_CR26) 2012; 492
907_CR7
907_CR18
907_CR6
907_CR2
X-Z Zhang (907_CR24) 2015; 30
M McNutt (907_CR1) 2014; 346
PO Seglen (907_CR4) 1997; 314
RJ Funk (907_CR8) 2017; 63
References_xml – volume: 14
  start-page: 101005
  year: 2020
  ident: CR22
  article-title: Unbiased evaluation of ranking metrics reveals consistent performance in science and technology citation data
  publication-title: J. Informetrics
  doi: 10.1016/j.joi.2019.101005
– ident: CR18
– volume: 314
  start-page: 498
  year: 1997
  end-page: 502
  ident: CR4
  article-title: Why the impact factor of journals should not be used for evaluating research
  publication-title: BMJ
  doi: 10.1136/bmj.314.7079.497
– ident: CR2
– volume: 1
  start-page: 89
  year: 2019
  end-page: 97
  ident: CR12
  article-title: Taking census of physics
  publication-title: Nat. Rev. Physics
  doi: 10.1038/s42254-018-0005-3
– volume: 16
  start-page: 1779
  year: 2002
  end-page: 1791
  ident: CR19
  article-title: G9a histone methyltransferase plays a dominant role in euchromatic histone h3 lysine 9 methylation and is essential for early embryogenesis
  publication-title: Genes Dev.
  doi: 10.1101/gad.989402
– volume: 85
  start-page: 257
  year: 2010
  end-page: 270
  ident: CR14
  article-title: Using content-based and bibliometric features for machine learning models to predict citation counts in the biomedical literature
  publication-title: Scientometrics
  doi: 10.1007/s11192-010-0160-5
– ident: CR6
– volume: 489
  start-page: 201
  year: 2012
  end-page: 202
  ident: CR13
  article-title: Predicting scientific success
  publication-title: Nature
  doi: 10.1038/489201a
– volume: 17
  start-page: 362
  year: 2010
  end-page: 380
  ident: CR5
  article-title: Local bias in venture capital investments
  publication-title: J. Empirical Finance
  doi: 10.1016/j.jempfin.2009.11.001
– ident: CR25
– volume: 146
  start-page: 644
  year: 2019
  end-page: 654
  ident: CR9
  article-title: Early identification of important patents: design and validation of citation network metrics
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2018.01.036
– volume: 492
  start-page: 34
  year: 2012
  end-page: 36
  ident: CR26
  article-title: Conform and be funded
  publication-title: Nature
  doi: 10.1038/492034a
– volume: 115
  start-page: 12608
  year: 2018
  end-page: 12615
  ident: CR11
  article-title: Scientific prize network predicts who pushes the boundaries of science
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1800485115
– ident: CR21
– volume: 46
  start-page: 26
  year: 2013
  end-page: 31
  ident: CR23
  article-title: Metcalfe’s law after 40 years of ethernet
  publication-title: Computer
  doi: 10.1109/MC.2013.374
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: CR27
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artificial Intell. Res.
  doi: 10.1613/jair.953
– ident: CR15
– volume: 30
  start-page: 246
  year: 2015
  end-page: 251
  ident: CR24
  article-title: Tencent and Facebook data validate Metcalfe’s law
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-015-1518-1
– volume: 63
  start-page: 791
  year: 2017
  end-page: 817
  ident: CR8
  article-title: A dynamic network measure of technological change
  publication-title: Management Sci.
  doi: 10.1287/mnsc.2015.2366
– volume: 335
  start-page: 542
  year: 2012
  end-page: 543
  ident: CR3
  article-title: Coercive citation in academic publishing
  publication-title: Science
  doi: 10.1126/science.1212540
– ident: CR7
– volume: 566
  start-page: 378
  year: 2019
  end-page: 382
  ident: CR10
  article-title: Large teams develop and small teams disrupt science and technology
  publication-title: Nature
  doi: 10.1038/s41586-019-0941-9
– volume: 116
  start-page: 30007
  year: 2016
  ident: CR16
  article-title: The essential role of time in network-based recommendation
  publication-title: Europhysics Lett.
  doi: 10.1209/0295-5075/116/30007
– volume: 1
  start-page: 218
  year: 2007
  end-page: 229
  ident: CR20
  article-title: Long-term propagation of distinct hematopoietic differentiation programs in vivo
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.05.015
– volume: 10
  start-page: 1207
  year: 2016
  end-page: 1223
  ident: CR17
  article-title: Identification of milestone papers through time-balanced network centrality
  publication-title: J. Informetrics
  doi: 10.1016/j.joi.2016.10.005
– volume: 346
  start-page: 1155
  year: 2014
  ident: CR1
  article-title: The measure of research merit
  publication-title: Science
  doi: 10.1126/science.aaa3796
– volume: 116
  start-page: 30007
  year: 2016
  ident: 907_CR16
  publication-title: Europhysics Lett.
  doi: 10.1209/0295-5075/116/30007
– volume: 63
  start-page: 791
  year: 2017
  ident: 907_CR8
  publication-title: Management Sci.
  doi: 10.1287/mnsc.2015.2366
– volume: 85
  start-page: 257
  year: 2010
  ident: 907_CR14
  publication-title: Scientometrics
  doi: 10.1007/s11192-010-0160-5
– ident: 907_CR25
  doi: 10.1128/mBio.00694-16
– volume: 314
  start-page: 498
  year: 1997
  ident: 907_CR4
  publication-title: BMJ
  doi: 10.1136/bmj.314.7079.497
– ident: 907_CR21
  doi: 10.1038/s41587-019-0362-1
– ident: 907_CR6
  doi: 10.3386/w22587
– volume: 346
  start-page: 1155
  year: 2014
  ident: 907_CR1
  publication-title: Science
  doi: 10.1126/science.aaa3796
– volume: 335
  start-page: 542
  year: 2012
  ident: 907_CR3
  publication-title: Science
  doi: 10.1126/science.1212540
– volume: 492
  start-page: 34
  year: 2012
  ident: 907_CR26
  publication-title: Nature
  doi: 10.1038/492034a
– volume: 489
  start-page: 201
  year: 2012
  ident: 907_CR13
  publication-title: Nature
  doi: 10.1038/489201a
– volume: 17
  start-page: 362
  year: 2010
  ident: 907_CR5
  publication-title: J. Empirical Finance
  doi: 10.1016/j.jempfin.2009.11.001
– ident: 907_CR15
  doi: 10.1109/JCDL.2017.7991559
– volume: 30
  start-page: 246
  year: 2015
  ident: 907_CR24
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-015-1518-1
– ident: 907_CR18
  doi: 10.1145/2939672.2939754
– volume: 1
  start-page: 218
  year: 2007
  ident: 907_CR20
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.05.015
– volume: 16
  start-page: 321
  year: 2002
  ident: 907_CR27
  publication-title: J. Artificial Intell. Res.
  doi: 10.1613/jair.953
– ident: 907_CR7
  doi: 10.2139/ssrn.2053258
– ident: 907_CR2
  doi: 10.1038/4351003b
– volume: 16
  start-page: 1779
  year: 2002
  ident: 907_CR19
  publication-title: Genes Dev.
  doi: 10.1101/gad.989402
– volume: 14
  start-page: 101005
  year: 2020
  ident: 907_CR22
  publication-title: J. Informetrics
  doi: 10.1016/j.joi.2019.101005
– volume: 46
  start-page: 26
  year: 2013
  ident: 907_CR23
  publication-title: Computer
  doi: 10.1109/MC.2013.374
– volume: 1
  start-page: 89
  year: 2019
  ident: 907_CR12
  publication-title: Nat. Rev. Physics
  doi: 10.1038/s42254-018-0005-3
– volume: 10
  start-page: 1207
  year: 2016
  ident: 907_CR17
  publication-title: J. Informetrics
  doi: 10.1016/j.joi.2016.10.005
– volume: 566
  start-page: 378
  year: 2019
  ident: 907_CR10
  publication-title: Nature
  doi: 10.1038/s41586-019-0941-9
– volume: 146
  start-page: 644
  year: 2019
  ident: 907_CR9
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2018.01.036
– volume: 115
  start-page: 12608
  year: 2018
  ident: 907_CR11
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1800485115
SSID ssj0006466
Score 2.552019
Snippet The scientific ecosystem relies on citation-based metrics that provide only imperfect, inconsistent and easily manipulated measures of research quality. Here...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1300
SubjectTerms 631/114/1305
631/114/2406
706/648/1496
Agriculture
Analysis
Artificial intelligence
Bibliometrics
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Datasets
Funding
Graph theory
Knowledge representation
Learning algorithms
Life Sciences
Machine learning
Mathematical analysis
Scientific papers
Warning systems
Title Learning on knowledge graph dynamics provides an early warning of impactful research
URI https://link.springer.com/article/10.1038/s41587-021-00907-6
https://www.ncbi.nlm.nih.gov/pubmed/34002098
https://www.proquest.com/docview/2579866503
https://www.proquest.com/docview/2528813198
Volume 39
WOSCitedRecordID wos000651336800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M7P
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M7S
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Research Library
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M2O
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Science Database (NC LIVE)
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M2P
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFhAceCyvQFkZBOIAUfP044QKagWHbldtQXuzEtspSFVSml0Q_x5P7KRNJSokLpY2Hq8Sz3hm7Bl_A_AqTXLrBWV5yGJDw6wweShUyUJWxMyOoFTnVVdsgs1mfLEQc3_g1vq0yl4ndopaNwrPyLesaAnEZovS96c_QqwahdFVX0JjDTasZxNjStdeMh80MXWxyjjimF6ZU39pJkr5VmsNFz5N7GY6shvEkI4M02X1fME-XQqYdnZo9-7_fsE9uOM9ULLtROY-XDP1BG64mpS_J3D7AkLhBG7u-dj7AzjyUKzHpKnJcBRHOsRrol1h-5b4m30tKWpiEDyZ_OpHVcRdyaxWJ8RjDH17CF92d44-fgp9TYZQ5Rlbhozrws4cNUVilDD2mfVojNDGFKXQLOKKJqX1ArlKY6VjWlWR5jkvMyNUlUZF-gjW66Y2T4Bw-1MbptKS60zrSpQqVyoTseGCVjkLIO4ZIpUHLMe6GSeyC5ynXDomSstE2TFR0gDeDmNOHVzHldSvkc_S1_u0TYsnIu1xsWpbuW3teELt_jEJ4GVHh3gZNSbkOILP-1__gejwYET0xhNVjf0WVfhLEHZGEIdrRLk5orSrXo27eyGTXuu08lzCAngxdONIzKSrTbNCmoTz2CpeHsBjJ9PDTKUZ7h6w510v5Od__vdpfHr1uzyDWwmusy4DchPWl2cr8xyuq5_L7-3ZFNbYgnUtn8LGh53Z_GCKq3i_a-fYMtce_gF4ukne
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8j7wWF6BAgZRcYCoiZM4zgGhCqi6artUsKDeTGI7pVLJlmaXav8Uv5GZxNl2K1Fx6YFLpMTjKHbm4bFnvgF4EfEEV0Fx4qehFX6c28TPdJH6aR6m2EMIk5RNsYl0MJA7O9n2AvzucmEorLLTiY2iNiNNe-QryFoZYbMF0duDnz5VjaLT1a6ERssWG3Z6hC5b_ab_Hv_vMudrH4bv1n1XVcDXSZyO_VSaPEyksDm3OrP4DG2yzYy1eZGZNJBa8ALXMVJHoTahKMvAyEQWsc10GQV5hO-9ABdjQhajUEG-PdP8oj0bDQNJ4ZyJcEk6QSRXajSU9JSj8x6gQ-qLOUN42hycsIenDmgbu7d283-bsVtww62w2WorErdhwVY9uNzW3Jz24PoJBMYeXNlysQV3YOigZnfZqGKzrUbWIHozM63yH3u6Zi5zsWZ5xSyBQ7OjrlfJ2pTTcrLPHIbS97vw5VzGeg8Wq1FlHwCTeGtsqqNCmtiYMit0onWchVZmokxSD8KOAZR2gOxUF2RfNYEBkVQt0yhkGtUwjRIevJr1OWjhSM6kXia-Uq6eKV5q2vGpd_NJXatVXKdwgf4x9-B5Q0d4IBUFHLUE_Y9f_4Ho86c5opeOqBzhWHTukjxwRghnbI5yaY4StZqeb-6YWjmtWqtjjvbg2ayZelKkYGVHE6LhUoZoWKQH91sZms1UFJN3RC2vO6E6fvnfp_Hh2d_yFK6uD7c21WZ_sPEIrnGS8SbacwkWx4cT-xgu6V_jvfrwSaMtGHw7b2H7A-zhoi4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVRw4LG8AgUMouIA0eZpOweECu2KVWFZtQX1ZhLbKZUgKc0u1f41fh3jxEm7lai49MAlUuJxtJn9xjNjzwPgeRjEaAVFsct8Td0o1bGbyIy5LPUZzqBUxXndbIKNx3xvL5kswe82F8aEVbZrYr1Qq1KaPfIBQisxtdm8cJDbsIjJxvDN4U_XdJAyJ61tO40GIlt6fozuW_V6tIH_9VoQDDd33713bYcBV8YRm7qMq9SPOdVpoGWi8RnqZ50ordMsUczjkgYZ2jRchr5UPs1zT_GYZ5FOZB56aYjvvQTLDI2MqAfLbzfHk-1OD9DmpNT3uAnujKlN2fFCPqhQbZqnAbryHrqnLl1Qi2eVwynteOa4ttaCwxv_M_9uwnVre5P1RlhuwZIu-nCl6cY578O1U7UZ-7Dy0UYd3IZdW4R2n5QF6TYhSV3rm6h5kf44kBWxOY0VSQuiTdloctzOykmTjIosIba60rc78PlCvvUu9Iqy0PeBcLxVmskw4ypSKk8yGUsZJb7mCc1j5oDfgkFIW6rddAz5LuqQgZCLBkACASRqAAnqwMtuzmFTqORc6jWDMWE7neKlMntB1X46qyqxjhZMQNFzDhx4VtOZSiGFwUxDMPr05R-IdrYXiF5YorzEb5GpTf9AjpgKZAuUqwuUuN7JxeEW4MKut5U4QbcDT7thM9PEEBa6nBmagHMfVQ534F4jTx2nwsj4TWbkVStgJy__OxsfnP9bnsAKypj4MBpvPYSrgRH3Ogx0FXrTo5l-BJflr-lBdfTYLh0Evl60tP0BoyysSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+on+knowledge+graph+dynamics+provides+an+early+warning+of+impactful+research&rft.jtitle=Nature+biotechnology&rft.au=Weis%2C+James+W.&rft.au=Jacobson%2C+Joseph+M.&rft.date=2021-10-01&rft.issn=1087-0156&rft.eissn=1546-1696&rft.volume=39&rft.issue=10&rft.spage=1300&rft.epage=1307&rft_id=info:doi/10.1038%2Fs41587-021-00907-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41587_021_00907_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon