Gradient-based simulation optimization under probability constraints
We study optimization problems subject to possible fatal failures. The probability of failure should not exceed a given confidence level. The distribution of the failure event is assumed unknown, but it can be generated via simulation or observation of historical data. Gradient-based simulation–opti...
Gespeichert in:
| Veröffentlicht in: | European journal of operational research Jg. 212; H. 2; S. 345 - 351 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
16.07.2011
Elsevier Elsevier Sequoia S.A |
| Schriftenreihe: | European Journal of Operational Research |
| Schlagworte: | |
| ISSN: | 0377-2217, 1872-6860 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We study optimization problems subject to possible fatal failures. The probability of failure should not exceed a given confidence level. The distribution of the failure event is assumed unknown, but it can be generated via simulation or observation of historical data. Gradient-based simulation–optimization methods pose the difficulty of the estimation of the gradient of the probability constraint under no knowledge of the distribution. In this work we provide two single-path estimators with bias: a convolution method and a finite difference, and we provide a full analysis of convergence of the Arrow–Hurwicz algorithm, which we use as our solver for optimization. Convergence results are used to tune the parameters of the numerical algorithms in order to achieve best convergence rates, and numerical results are included via an example of application in finance. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0377-2217 1872-6860 |
| DOI: | 10.1016/j.ejor.2011.01.049 |