Application of supernodal sparse factorization and inversion to the estimation of (co)variance components by residual maximum likelihood

We demonstrated that supernodal techniques were more efficient than traditional methods for factorization and inversion of a coefficient matrix of mixed model equations (MME), which are often required in residual maximum likelihood (REML). Supernodal left‐looking and inverse multifrontal algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of animal breeding and genetics (1986) Jg. 131; H. 3; S. 227 - 236
Hauptverfasser: Masuda, Y, Baba, T, Suzuki, M
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Blackwell Wissenschafts-Verlag 01.06.2014
Blackwell Publishing Ltd
Schlagworte:
ISSN:0931-2668, 1439-0388, 1439-0388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We demonstrated that supernodal techniques were more efficient than traditional methods for factorization and inversion of a coefficient matrix of mixed model equations (MME), which are often required in residual maximum likelihood (REML). Supernodal left‐looking and inverse multifrontal algorithms were employed for sparse factorization and inversion, respectively. The approximate minimum degree or multilevel nested dissection was used for ordering. A new computer package, Yet Another MME Solver (yams), was developed and compared with fspak with respect to computing time and size of temporary memory for 13 test matrices. The matrices were produced by fitting animal models to dairy data and by using simulations from sire, sire–maternal grand sire, maternal and dominance models for phenotypic data and animal model for genomic data. The order of matrices ranged from 32 840 to 1 048 872. The yams software factorized and inverted the matrices up to 13 and 10 times faster than fspak, respectively, when an appropriate ordering strategy was applied. The yams package required at most 282 MB and 512 MB of temporary memory for factorization and inversion, respectively. Processing time per iteration in average information REML was reduced, using yams. The yams package is freely available on request by contacting the corresponding author.
AbstractList We demonstrated that supernodal techniques were more efficient than traditional methods for factorization and inversion of a coefficient matrix of mixed model equations (MME), which are often required in residual maximum likelihood (REML). Supernodal left-looking and inverse multifrontal algorithms were employed for sparse factorization and inversion, respectively. The approximate minimum degree or multilevel nested dissection was used for ordering. A new computer package, Yet Another MME Solver (YAMS), was developed and compared with FSPAK with respect to computing time and size of temporary memory for 13 test matrices. The matrices were produced by fitting animal models to dairy data and by using simulations from sire, sire-maternal grand sire, maternal and dominance models for phenotypic data and animal model for genomic data. The order of matrices ranged from 32,840 to 1,048,872. The YAMS software factorized and inverted the matrices up to 13 and 10 times faster than FSPAK, respectively, when an appropriate ordering strategy was applied. The YAMS package required at most 282 MB and 512 MB of temporary memory for factorization and inversion, respectively. Processing time per iteration in average information REML was reduced, using YAMS. The YAMS package is freely available on request by contacting the corresponding author.
We demonstrated that supernodal techniques were more efficient than traditional methods for factorization and inversion of a coefficient matrix of mixed model equations ( MME ), which are often required in residual maximum likelihood ( REML ). Supernodal left‐looking and inverse multifrontal algorithms were employed for sparse factorization and inversion, respectively. The approximate minimum degree or multilevel nested dissection was used for ordering. A new computer package, Yet Another MME Solver ( yams ), was developed and compared with fspak with respect to computing time and size of temporary memory for 13 test matrices. The matrices were produced by fitting animal models to dairy data and by using simulations from sire, sire–maternal grand sire, maternal and dominance models for phenotypic data and animal model for genomic data. The order of matrices ranged from 32 840 to 1 048 872. The yams software factorized and inverted the matrices up to 13 and 10 times faster than fspak , respectively, when an appropriate ordering strategy was applied. The yams package required at most 282 MB and 512 MB of temporary memory for factorization and inversion, respectively. Processing time per iteration in average information REML was reduced, using yams . The yams package is freely available on request by contacting the corresponding author.
We demonstrated that supernodal techniques were more efficient than traditional methods for factorization and inversion of a coefficient matrix of mixed model equations (MME), which are often required in residual maximum likelihood (REML). Supernodal left-looking and inverse multifrontal algorithms were employed for sparse factorization and inversion, respectively. The approximate minimum degree or multilevel nested dissection was used for ordering. A new computer package, Yet Another MME Solver (YAMS), was developed and compared with FSPAK with respect to computing time and size of temporary memory for 13 test matrices. The matrices were produced by fitting animal models to dairy data and by using simulations from sire, sire-maternal grand sire, maternal and dominance models for phenotypic data and animal model for genomic data. The order of matrices ranged from 32,840 to 1,048,872. The YAMS software factorized and inverted the matrices up to 13 and 10 times faster than FSPAK, respectively, when an appropriate ordering strategy was applied. The YAMS package required at most 282 MB and 512 MB of temporary memory for factorization and inversion, respectively. Processing time per iteration in average information REML was reduced, using YAMS. The YAMS package is freely available on request by contacting the corresponding author.We demonstrated that supernodal techniques were more efficient than traditional methods for factorization and inversion of a coefficient matrix of mixed model equations (MME), which are often required in residual maximum likelihood (REML). Supernodal left-looking and inverse multifrontal algorithms were employed for sparse factorization and inversion, respectively. The approximate minimum degree or multilevel nested dissection was used for ordering. A new computer package, Yet Another MME Solver (YAMS), was developed and compared with FSPAK with respect to computing time and size of temporary memory for 13 test matrices. The matrices were produced by fitting animal models to dairy data and by using simulations from sire, sire-maternal grand sire, maternal and dominance models for phenotypic data and animal model for genomic data. The order of matrices ranged from 32,840 to 1,048,872. The YAMS software factorized and inverted the matrices up to 13 and 10 times faster than FSPAK, respectively, when an appropriate ordering strategy was applied. The YAMS package required at most 282 MB and 512 MB of temporary memory for factorization and inversion, respectively. Processing time per iteration in average information REML was reduced, using YAMS. The YAMS package is freely available on request by contacting the corresponding author.
Summary We demonstrated that supernodal techniques were more efficient than traditional methods for factorization and inversion of a coefficient matrix of mixed model equations (MME), which are often required in residual maximum likelihood (REML). Supernodal left‐looking and inverse multifrontal algorithms were employed for sparse factorization and inversion, respectively. The approximate minimum degree or multilevel nested dissection was used for ordering. A new computer package, Yet Another MME Solver (yams), was developed and compared with fspak with respect to computing time and size of temporary memory for 13 test matrices. The matrices were produced by fitting animal models to dairy data and by using simulations from sire, sire–maternal grand sire, maternal and dominance models for phenotypic data and animal model for genomic data. The order of matrices ranged from 32 840 to 1 048 872. The yams software factorized and inverted the matrices up to 13 and 10 times faster than fspak, respectively, when an appropriate ordering strategy was applied. The yams package required at most 282 MB and 512 MB of temporary memory for factorization and inversion, respectively. Processing time per iteration in average information REML was reduced, using yams. The yams package is freely available on request by contacting the corresponding author.
Summary We demonstrated that supernodal techniques were more efficient than traditional methods for factorization and inversion of a coefficient matrix of mixed model equations (MME), which are often required in residual maximum likelihood (REML). Supernodal left-looking and inverse multifrontal algorithms were employed for sparse factorization and inversion, respectively. The approximate minimum degree or multilevel nested dissection was used for ordering. A new computer package, Yet Another MME Solver (yams), was developed and compared with fspak with respect to computing time and size of temporary memory for 13 test matrices. The matrices were produced by fitting animal models to dairy data and by using simulations from sire, sire-maternal grand sire, maternal and dominance models for phenotypic data and animal model for genomic data. The order of matrices ranged from 32 840 to 1 048 872. The yams software factorized and inverted the matrices up to 13 and 10 times faster than fspak, respectively, when an appropriate ordering strategy was applied. The yams package required at most 282 MB and 512 MB of temporary memory for factorization and inversion, respectively. Processing time per iteration in average information REML was reduced, using yams. The yams package is freely available on request by contacting the corresponding author. [PUBLICATION ABSTRACT]
Author Baba, T.
Suzuki, M.
Masuda, Y.
Author_xml – sequence: 1
  fullname: Masuda, Y
– sequence: 2
  fullname: Baba, T
– sequence: 3
  fullname: Suzuki, M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24906028$$D View this record in MEDLINE/PubMed
BookMark eNqNkstO3DAUhq2Kqgy0i75Aa6kbWATs-BJnCaMytEKt1BbRneUkJ-AhiYOdUKZP0Meuh8AskHrxxhd9_6_jc_4dtNW5DhB6TckBjetwWVwe0JQI9QzNKGd5QphSW2hGckaTVEq1jXZCWBIS37P8BdpOeU4kSdUM_Trq-8aWZrCuw67GYezBd64yDQ698QFwbcrBeftzQkxXYdvdgg_r2-DwcAUYwmDbjcVe6fZvjbemKwGXru1jsd0QcLHCHoKtxujdmjvbji1u7DU09sq56iV6XpsmwKuHfRedn7z_Nj9Nzj4vPsyPzpJS8EwlRghqeEF5RSUDSiuoZSWA5xUvixoUK1QuUsJMHo8ik7RIJUgBdZXlmeAF20V7k2_v3c0YK9etDSU0jenAjUHTPC6esUz-GxWMq5SlnP0XyjNO2Bp99wRdutF38c-RSoVkQmU8Um8eqLFoodK9jx32K_04uQjsT0DpXQge6g1CiV6nQsdU6PtURPbwCVva4X5egze2-Zvih21g9Wdr_fF48ahIJoUNA9xtFMZfaxm7KfTFp4U-ld_nJ8cXSn-J_NuJr43T5tLboM-_poTymFKVSUnZbw9V4RM
CitedBy_id crossref_primary_10_1186_s12711_025_00991_1
crossref_primary_10_2527_jas_2015_9395
crossref_primary_10_1093_jas_skaa101
crossref_primary_10_1111_jbg_12161
crossref_primary_10_1186_s12711_017_0363_9
crossref_primary_10_1093_nar_gkad074
crossref_primary_10_3168_jds_2015_10540
crossref_primary_10_1186_s12711_023_00781_7
crossref_primary_10_2527_jas_2016_0699
crossref_primary_10_1186_s12711_020_00588_w
crossref_primary_10_3389_fgene_2020_556399
crossref_primary_10_1007_s11590_018_1229_y
crossref_primary_10_1093_jas_skac082
crossref_primary_10_1186_s12711_022_00730_w
crossref_primary_10_1186_s12711_019_0469_3
crossref_primary_10_1093_jas_skab092
Cites_doi 10.1111/j.1439-0388.2008.00774.x
10.1137/S0895479894278952
10.1137/0914048
10.1145/1916461.1916464
10.1080/10618600.1995.10474671
10.1016/j.livsci.2007.04.023
10.1137/S0895479899358194
10.21236/ADA326874
10.1137/S1064827595287997
10.3168/jds.2009-2730
10.1137/1.9780898719604
10.1111/j.1439-0388.1998.tb00347.x
10.1145/1391989.1391995
10.1137/09077432X
10.1137/0914063
10.1145/360680.360704
10.1079/9780851990002.0000
10.1137/1.9780898718881
10.3168/jds.S0022-0302(93)77478-0
10.1145/1377603.1377607
10.1145/1236463.1236465
10.1137/0614019
10.1093/bioinformatics/btp045
ContentType Journal Article
Copyright 2013 Blackwell Verlag GmbH
2013 Blackwell Verlag GmbH.
Copyright © 2014 Blackwell Verlag GmbH
Copyright_xml – notice: 2013 Blackwell Verlag GmbH
– notice: 2013 Blackwell Verlag GmbH.
– notice: Copyright © 2014 Blackwell Verlag GmbH
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TM
8FD
FR3
P64
RC3
7X8
7S9
L.6
DOI 10.1111/jbg.12058
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

Genetics Abstracts
CrossRef
MEDLINE - Academic

AGRICOLA
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1439-0388
EndPage 236
ExternalDocumentID 3306712331
24906028
10_1111_jbg_12058
JBG12058
ark_67375_WNG_H6XCFBW8_R
US201400087661
Genre article
Journal Article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29J
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHEFC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBD
EBS
ECGQY
EJD
EMK
EMOBN
EST
ESTFP
ESX
EYRJQ
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HVLQZ
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WOIKV
WPGGZ
WQJ
WRC
WXSBR
XG1
ZZTAW
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TM
8FD
FR3
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5478-a551a4b14d163e11def6d5e49d4cbfe83b895203a983b5761b26e65efd79754b3
IEDL.DBID DRFUL
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335958000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0931-2668
1439-0388
IngestDate Fri Sep 05 17:20:07 EDT 2025
Mon Sep 08 15:32:18 EDT 2025
Mon Sep 08 05:03:49 EDT 2025
Mon Nov 10 02:44:35 EST 2025
Thu Apr 03 07:10:05 EDT 2025
Sat Nov 29 02:50:53 EST 2025
Tue Nov 18 22:28:25 EST 2025
Wed Jan 22 17:08:23 EST 2025
Sun Sep 21 06:12:40 EDT 2025
Sun Apr 28 11:12:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords residual maximum likelihood
sparse matrix
mixed model equations
Computing methods
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 Blackwell Verlag GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5478-a551a4b14d163e11def6d5e49d4cbfe83b895203a983b5761b26e65efd79754b3
Notes http://dx.doi.org/10.1111/jbg.12058
Methods S1 Additional comparisons. Results S1 Factorization and inversion.
istex:2EA8E397B0FAA4468ECF556E2F8302360DE5B6C3
ArticleID:JBG12058
ark:/67375/WNG-H6XCFBW8-R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24906028
PQID 1525635874
PQPubID 29441
PageCount 10
ParticipantIDs proquest_miscellaneous_1999947376
proquest_miscellaneous_1534823243
proquest_miscellaneous_1534474033
proquest_journals_1525635874
pubmed_primary_24906028
crossref_primary_10_1111_jbg_12058
crossref_citationtrail_10_1111_jbg_12058
wiley_primary_10_1111_jbg_12058_JBG12058
istex_primary_ark_67375_WNG_H6XCFBW8_R
fao_agris_US201400087661
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Oxford
PublicationTitle Journal of animal breeding and genetics (1986)
PublicationTitleAlternate J. Anim. Breed. Genet
PublicationYear 2014
Publisher Blackwell Wissenschafts-Verlag
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Wissenschafts-Verlag
– name: Blackwell Publishing Ltd
References Mrode R.A. (2005) Linear Models for the Prediction of Animal Breeding Values. CABI Publishing, Oxford, UK.
Misztal I., Pérez-Enciso M. (1993) Sparse matrix inversion for restricted maximum likelihood estimation of variance components by expectation-maximization. J. Dairy Sci., 76, 1479-1483.
Sargolzaei M., Schenkel F.S. (2009) QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25, 680-681.
Togashi K., Lin C.Y., Atagi Y., Hagiya K., Sato J., Nakanishi T. (2008) Genetic characteristics of Japanese Holstein cows based on multiple-lactation random regression test-day animal models. Livest. Sci., 114, 194-201.
Erisman A.M., Tinney W.F. (1975) On computing certain elements of the inverse of a sparse matrix. Commun. ACM, 18, 177-179.
Misztal I. (2008) Reliable computing in estimation of variance components. J. Anim. Breed. Genet., 125, 363-370.
Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum A., Hammarling S., McKenney A., Sorensen D. (1999) LAPACK Users' Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA.
Ng E.G., Peyton B.W. (1993b) Block sparse Cholesky algorithms on advanced uniprocessor computers. SIAM J. Sci. Comp., 14, 1034-1056.
Karypis G., Kumar V. (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comp., 20, 359-392.
Aguilar I., Misztal I., Johnson D.L., Legarra A., Tsuruta S., Lawlor T.J. (2010) Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci., 93, 743-752.
Amestoy P.R., Duff I.S., L'Excellent J.-Y., Koster J. (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl., 23, 15-41.
Hofer A. (1998) Variance component estimation in animal breeding: a review. J. Anim. Breed. Genet., 115, 247-265.
Smith S.P. (1995) Differentiation of the Cholesky algorithm. J. Comput. Graph. Stat., 4, 134-147.
Davis T.A. (2006) Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2). Society for Industrial and Applied Mathematics, Philadelphia, PA.
Amestoy P.R., Davis T.A., Duff I.S. (1996) An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl., 17, 886-905.
Goto K., Van De Geijn R. (2008) High-performance implementation of the level-3 BLAS. ACM Trans. Math. Softw., 35, 4.
Ng E.G., Peyton B.W. (1993a) A supernodal Cholesky factorization algorithm for shared-memory multiprocessors. SIAM J. Sci. Comp., 14, 761-769.
Lin L., Yang C., Lu J., Ying L., Weinan E. (2011a) A fast parallel algorithm for selected inversion of structured sparse matrices with application to 2D electronic structure calculations. SIAM J. Sci. Comp., 33, 1329-1351.
George A., Liu J.W.H. (1981) Computer Solution of Large Sparse Positive Definite Systems. Prentice Hall Professional Technical Reference, Englewood Cliffs, NJ.
Jensen J., Mäntysaari E.A., Madsen P., Thompson R. (1997) Residual maximum likelihood estimation of (co)variance components in multivariate mixed linear models using average information. J. Indian Soc. Agric. Stat., 49, 215-236.
Lin L., Yang C., Meza J.C., Lu J., Ying L. (2011b) SelInv - an algorithm for selected inversion of a sparse symmetric matrix. ACM Trans. Math. Softw., 37, 40.
Chen Y., Davis T.A., Hager W.W., Rajamanickam S. (2008) Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw., 35, 22.
Liu J.W.H., Ng E.G., Peyton B.W. (1993) On finding supernodes for sparse matrix computations. SIAM J. Matrix Anal. Appl., 14, 242-252.
Boldman K.G., Kriese L.A., Van Vleck L.D., Van Tassell C.P., Kachman S.D. (1995) A Manual for Use of MTDFREML. ARS, USDA, Washington, DC.
Gould N.I.M., Scott J.A., Hu Y. (2007) A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations. ACM Trans. Math. Softw., 33, 10.
2009; 25
1996; 17
1993b; 14
1975; 18
1995
2008; 35
2006
1997; 49
1998; 115
2005
1994
2008; 125
2002
1991
2001; 23
2007; 33
1995; 4
1998; 20
1999
2011a; 33
1993; 14
2011b; 37
1993; 76
1981
2008; 114
2010; 93
1993a; 14
Boldman K.G. (e_1_2_5_6_1) 1995
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
George A. (e_1_2_5_11_1) 1981
Meyer K. (e_1_2_5_20_1) 2005
e_1_2_5_29_1
Jensen J. (e_1_2_5_15_1) 1997; 49
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
Smith S.P. (e_1_2_5_30_1) 1995; 4
e_1_2_5_7_1
e_1_2_5_10_1
Pérez‐Enciso M. (e_1_2_5_27_1) 1994
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Misztal I. (e_1_2_5_23_1) 2002
e_1_2_5_31_1
Gould N.I.M. (e_1_2_5_13_1) 2007; 33
References_xml – reference: Goto K., Van De Geijn R. (2008) High-performance implementation of the level-3 BLAS. ACM Trans. Math. Softw., 35, 4.
– reference: Jensen J., Mäntysaari E.A., Madsen P., Thompson R. (1997) Residual maximum likelihood estimation of (co)variance components in multivariate mixed linear models using average information. J. Indian Soc. Agric. Stat., 49, 215-236.
– reference: Gould N.I.M., Scott J.A., Hu Y. (2007) A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations. ACM Trans. Math. Softw., 33, 10.
– reference: Amestoy P.R., Davis T.A., Duff I.S. (1996) An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl., 17, 886-905.
– reference: Amestoy P.R., Duff I.S., L'Excellent J.-Y., Koster J. (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl., 23, 15-41.
– reference: Misztal I. (2008) Reliable computing in estimation of variance components. J. Anim. Breed. Genet., 125, 363-370.
– reference: Misztal I., Pérez-Enciso M. (1993) Sparse matrix inversion for restricted maximum likelihood estimation of variance components by expectation-maximization. J. Dairy Sci., 76, 1479-1483.
– reference: Lin L., Yang C., Meza J.C., Lu J., Ying L. (2011b) SelInv - an algorithm for selected inversion of a sparse symmetric matrix. ACM Trans. Math. Softw., 37, 40.
– reference: Smith S.P. (1995) Differentiation of the Cholesky algorithm. J. Comput. Graph. Stat., 4, 134-147.
– reference: George A., Liu J.W.H. (1981) Computer Solution of Large Sparse Positive Definite Systems. Prentice Hall Professional Technical Reference, Englewood Cliffs, NJ.
– reference: Togashi K., Lin C.Y., Atagi Y., Hagiya K., Sato J., Nakanishi T. (2008) Genetic characteristics of Japanese Holstein cows based on multiple-lactation random regression test-day animal models. Livest. Sci., 114, 194-201.
– reference: Chen Y., Davis T.A., Hager W.W., Rajamanickam S. (2008) Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw., 35, 22.
– reference: Erisman A.M., Tinney W.F. (1975) On computing certain elements of the inverse of a sparse matrix. Commun. ACM, 18, 177-179.
– reference: Liu J.W.H., Ng E.G., Peyton B.W. (1993) On finding supernodes for sparse matrix computations. SIAM J. Matrix Anal. Appl., 14, 242-252.
– reference: Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum A., Hammarling S., McKenney A., Sorensen D. (1999) LAPACK Users' Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA.
– reference: Ng E.G., Peyton B.W. (1993b) Block sparse Cholesky algorithms on advanced uniprocessor computers. SIAM J. Sci. Comp., 14, 1034-1056.
– reference: Ng E.G., Peyton B.W. (1993a) A supernodal Cholesky factorization algorithm for shared-memory multiprocessors. SIAM J. Sci. Comp., 14, 761-769.
– reference: Lin L., Yang C., Lu J., Ying L., Weinan E. (2011a) A fast parallel algorithm for selected inversion of structured sparse matrices with application to 2D electronic structure calculations. SIAM J. Sci. Comp., 33, 1329-1351.
– reference: Boldman K.G., Kriese L.A., Van Vleck L.D., Van Tassell C.P., Kachman S.D. (1995) A Manual for Use of MTDFREML. ARS, USDA, Washington, DC.
– reference: Karypis G., Kumar V. (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comp., 20, 359-392.
– reference: Mrode R.A. (2005) Linear Models for the Prediction of Animal Breeding Values. CABI Publishing, Oxford, UK.
– reference: Aguilar I., Misztal I., Johnson D.L., Legarra A., Tsuruta S., Lawlor T.J. (2010) Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci., 93, 743-752.
– reference: Davis T.A. (2006) Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2). Society for Industrial and Applied Mathematics, Philadelphia, PA.
– reference: Hofer A. (1998) Variance component estimation in animal breeding: a review. J. Anim. Breed. Genet., 115, 247-265.
– reference: Sargolzaei M., Schenkel F.S. (2009) QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25, 680-681.
– volume: 35
  start-page: 4
  year: 2008
  article-title: High‐performance implementation of the level‐3 BLAS
  publication-title: ACM Trans. Math. Softw.
– start-page: 87
  year: 1994
  end-page: 88
– year: 1981
– volume: 49
  start-page: 215
  year: 1997
  end-page: 236
  article-title: Residual maximum likelihood estimation of (co)variance components in multivariate mixed linear models using average information
  publication-title: J. Indian Soc. Agric. Stat.
– volume: 18
  start-page: 177
  year: 1975
  end-page: 179
  article-title: On computing certain elements of the inverse of a sparse matrix
  publication-title: Commun. ACM
– year: 2005
– volume: 33
  start-page: 10
  year: 2007
  article-title: A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations
  publication-title: ACM Trans. Math. Softw.
– volume: 37
  start-page: 40
  year: 2011b
  article-title: SelInv – an algorithm for selected inversion of a sparse symmetric matrix
  publication-title: ACM Trans. Math. Softw.
– volume: 4
  start-page: 134
  year: 1995
  end-page: 147
  article-title: Differentiation of the Cholesky algorithm
  publication-title: J. Comput. Graph. Stat.
– volume: 17
  start-page: 886
  year: 1996
  end-page: 905
  article-title: An approximate minimum degree ordering algorithm
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 125
  start-page: 363
  year: 2008
  end-page: 370
  article-title: Reliable computing in estimation of variance components
  publication-title: J. Anim. Breed. Genet.
– volume: 20
  start-page: 359
  year: 1998
  end-page: 392
  article-title: A fast and high quality multilevel scheme for partitioning irregular graphs
  publication-title: SIAM J. Sci. Comp.
– volume: 114
  start-page: 194
  year: 2008
  end-page: 201
  article-title: Genetic characteristics of Japanese Holstein cows based on multiple‐lactation random regression test‐day animal models
  publication-title: Livest. Sci.
– volume: 14
  start-page: 1034
  year: 1993b
  end-page: 1056
  article-title: Block sparse Cholesky algorithms on advanced uniprocessor computers
  publication-title: SIAM J. Sci. Comp.
– volume: 33
  start-page: 1329
  year: 2011a
  end-page: 1351
  article-title: A fast parallel algorithm for selected inversion of structured sparse matrices with application to 2D electronic structure calculations
  publication-title: SIAM J. Sci. Comp.
– volume: 14
  start-page: 761
  year: 1993a
  end-page: 769
  article-title: A supernodal Cholesky factorization algorithm for shared‐memory multiprocessors
  publication-title: SIAM J. Sci. Comp.
– year: 2002
– year: 2006
– volume: 35
  start-page: 22
  year: 2008
  article-title: Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate
  publication-title: ACM Trans. Math. Softw.
– volume: 14
  start-page: 242
  year: 1993
  end-page: 252
  article-title: On finding supernodes for sparse matrix computations
  publication-title: SIAM J. Matrix Anal. Appl.
– year: 1995
– start-page: 282
  year: 2005
  end-page: 285
– volume: 25
  start-page: 680
  year: 2009
  end-page: 681
  article-title: QMSim: a large‐scale genome simulator for livestock
  publication-title: Bioinformatics
– volume: 115
  start-page: 247
  year: 1998
  end-page: 265
  article-title: Variance component estimation in animal breeding: a review
  publication-title: J. Anim. Breed. Genet.
– volume: 76
  start-page: 1479
  year: 1993
  end-page: 1483
  article-title: Sparse matrix inversion for restricted maximum likelihood estimation of variance components by expectation‐maximization
  publication-title: J. Dairy Sci.
– year: 1991
– volume: 93
  start-page: 743
  year: 2010
  end-page: 752
  article-title: Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score
  publication-title: J. Dairy Sci.
– volume: 23
  start-page: 15
  year: 2001
  end-page: 41
  article-title: A fully asynchronous multifrontal solver using distributed dynamic scheduling
  publication-title: SIAM J. Matrix Anal. Appl.
– year: 1999
– ident: e_1_2_5_21_1
  doi: 10.1111/j.1439-0388.2008.00774.x
– ident: e_1_2_5_3_1
  doi: 10.1137/S0895479894278952
– ident: e_1_2_5_25_1
  doi: 10.1137/0914048
– start-page: 87
  volume-title: Proceedings of the 5th World Congress on Genetics Applied to Livestock Production
  year: 1994
  ident: e_1_2_5_27_1
– ident: e_1_2_5_18_1
  doi: 10.1145/1916461.1916464
– volume: 4
  start-page: 134
  year: 1995
  ident: e_1_2_5_30_1
  article-title: Differentiation of the Cholesky algorithm
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.1995.10474671
– ident: e_1_2_5_31_1
  doi: 10.1016/j.livsci.2007.04.023
– ident: e_1_2_5_4_1
  doi: 10.1137/S0895479899358194
– volume: 49
  start-page: 215
  year: 1997
  ident: e_1_2_5_15_1
  article-title: Residual maximum likelihood estimation of (co)variance components in multivariate mixed linear models using average information
  publication-title: J. Indian Soc. Agric. Stat.
– ident: e_1_2_5_28_1
  doi: 10.21236/ADA326874
– ident: e_1_2_5_7_1
– ident: e_1_2_5_16_1
  doi: 10.1137/S1064827595287997
– start-page: 282
  volume-title: Proceedings of the 16th Conference of the Association for the Advancement of Animal Breeding and Genetics
  year: 2005
  ident: e_1_2_5_20_1
– ident: e_1_2_5_2_1
  doi: 10.3168/jds.2009-2730
– ident: e_1_2_5_5_1
  doi: 10.1137/1.9780898719604
– ident: e_1_2_5_14_1
  doi: 10.1111/j.1439-0388.1998.tb00347.x
– ident: e_1_2_5_8_1
  doi: 10.1145/1391989.1391995
– ident: e_1_2_5_17_1
  doi: 10.1137/09077432X
– ident: e_1_2_5_26_1
  doi: 10.1137/0914063
– ident: e_1_2_5_10_1
  doi: 10.1145/360680.360704
– ident: e_1_2_5_24_1
  doi: 10.1079/9780851990002.0000
– ident: e_1_2_5_9_1
  doi: 10.1137/1.9780898718881
– volume-title: Proceedings of the 7th World Congress on Genetics Applied to Livestock Production
  year: 2002
  ident: e_1_2_5_23_1
– volume-title: Computer Solution of Large Sparse Positive Definite Systems
  year: 1981
  ident: e_1_2_5_11_1
– ident: e_1_2_5_22_1
  doi: 10.3168/jds.S0022-0302(93)77478-0
– ident: e_1_2_5_12_1
  doi: 10.1145/1377603.1377607
– volume: 33
  start-page: 10
  year: 2007
  ident: e_1_2_5_13_1
  article-title: A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1236463.1236465
– ident: e_1_2_5_19_1
  doi: 10.1137/0614019
– volume-title: A Manual for Use of MTDFREML
  year: 1995
  ident: e_1_2_5_6_1
– ident: e_1_2_5_29_1
  doi: 10.1093/bioinformatics/btp045
SSID ssj0003879
Score 2.0919795
Snippet We demonstrated that supernodal techniques were more efficient than traditional methods for factorization and inversion of a coefficient matrix of mixed model...
Summary We demonstrated that supernodal techniques were more efficient than traditional methods for factorization and inversion of a coefficient matrix of...
Summary We demonstrated that supernodal techniques were more efficient than traditional methods for factorization and inversion of a coefficient matrix of...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 227
SubjectTerms Algorithms
Analysis of Variance
Animal models
Animal reproduction
Animals
Breeding
Cattle
Computational Biology
Computational Biology - methods
computer software
Computing methods
Dairying
equations
Female
Genomics
Likelihood Functions
Male
methods
mixed model equations
residual maximum likelihood
sires
Software
sparse matrix
Statistics as Topic
Statistics as Topic - methods
Time Factors
variance
Title Application of supernodal sparse factorization and inversion to the estimation of (co)variance components by residual maximum likelihood
URI https://api.istex.fr/ark:/67375/WNG-H6XCFBW8-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbg.12058
https://www.ncbi.nlm.nih.gov/pubmed/24906028
https://www.proquest.com/docview/1525635874
https://www.proquest.com/docview/1534474033
https://www.proquest.com/docview/1534823243
https://www.proquest.com/docview/1999947376
Volume 131
WOSCitedRecordID wos000335958000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1439-0388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003879
  issn: 0931-2668
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6tHQ_wwG9YxpgMQmg8ZIoTJ3HEUzfoJjRVaFDWN8txnKramkxJW23_AX82ZycNTBoTEm-Reo7cy3f2d8n5O4B3Ic9s9xPTvSx0mUpMEQBXrkoimlIVa27Pwvw4iUcjPpkkXzfg4_osTKMP0b1wM5Fh12sT4DKt_wzydLpPfS_kPdj0EbesD5ufTofjk24hDngrtRdQF_ch3goL2UKe9eAb21EvlyWSVOPfq9sY500Ca3eg4aP_mvtjeNgSTzJokPIENnTxFB4MplUrvqGfwc_B76_ZpMxJvbzUVVFmOAzXnarWpOnO0x7dJLLIyKxYNW_cyKIkSCaJUe2Yd7fYU-WHFabjBlvElK-XhancIOk1wTzfHgQjc3k1my_n5GJ2jn_LyCw_h_Hw8_fDY7ft1OAqowfmSuRdkqWUZUjvNKWZzqMs1CzJmEpzzYOUJ6HvBTLBS8xwaOpHOgp1nsUIEZYGL6Bf4AS2gKANYkQGgR_ETFJP5jHFm2YJ14mKPe7A3vqBCdXKmJtuGheiS2fSqbDOdeBtZ3rZaHfcZrSFT11IdHctxt98k3Fanb6IOvDeQqEbLKtzUwcXh-JsdCSOo8nh8OCMi1MHdtZYEe0SUAvTWArZHI-ZA2-6nzF4zRcZWehyaWyM4CLzguBuG2547102SPMThjOLHHjZYLWbNObXXoQsEh1nIfl3V4gvB0f2YvvfTV_BfeOypnhuB_qLaqlfwz21Wszqahd68YTvtnH5CxfFN5w
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tHRLwwDcsMMAghMZDUBw7iSPx0g26AqVCY2V9s5zEqaqtyZR-aPwH_NmcnTQwaUxIvFnK2XIud_bvnPPvAF4FIrPVT0z1ssDlaWySAETqpnFIE5pGWti7MN8H0XAoxuP46wa8W9-Fqfkh2gM34xl2vTYObg6k__TyZPKW-l4gNmGLoxkFHdh6f9gbDdqVmImGa49RFzci0TAL2UyedecL-9FmrkpEqUbB55dBzosI1m5Bvdv_N_k7cKuBnqRb28pd2NDFPbjZnVQN_Ya-Dz-7v_9nkzIn8-WZrooyw2648lRzTer6PM3lTaKKjEyLVX3mRhYlQThJDG_HrB1iNy3frDAgN9ZFTAJ7WZjcDZL8IBjp26tgZKbOp7PljJxOT_C9DNHyAxj1Phzt992mVoObGkYwVyHyUjyhPEOApynNdB5mgeZxxtMk14IlIg58j6kYmxjj0MQPdRjoPIvQSHjCHkKnwAlsA0EZtBLFmM8irqin8ojioFksdJxGnnBgd_3FZNoQmZt6GqeyDWiSibTKdeBlK3pWs3dcJrSNn10qVPdcjr75Jua0TH0hdeC1tYW2s6pOTCZcFMjj4YHsh-P93t6xkIcO7KyNRTaLwFya0lKI50TEHXjRPkb3Nf9kVKHLpZExlIvcY-xqGWGQ71UyCPRjjjMLHXhUG2s7aYywvRBxJCrO2uTfVSE_7R3YxuN_F30O1_tHXwZy8HH4-QncMOqrU-l2oLOolvopXEtXi-m8eta45y9aSTqk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5tHULwwG9YYIBBCI2HoDhxEkfipdvIBlTVNCjrm-UkTlVtTaqkrcZ_wJ_N2UkDk8aExJulnC3nfGd_l5y_A3jj88xUP9HVy3ybpZFOAuCpnUYBTWgaKm7uwnwfhMMhH4-j4w34sL4L0_BDdB_ctGeY_Vo7uJpn-Z9enkzeU9fx-SZsMR_H7sHWwUk8GnQ7scdbrj2P2ngQ8ZZZyGTyrDtfOo82c1kiStUKvrgKcl5GsOYIiu_-3-TvwZ0WepJ-Yyv3YUMVD-B2f1K19BvqIfzs__6fTcqc1Mu5qooyw26481S1Ik19nvbyJpFFRqbFqvnmRhYlQThJNG_HrBtiNy3frTAg19ZFdAJ7WejcDZL8IBjpm6tgZCYvprPljJxPz_C9NNHyIxjFH7_tH9ltrQY71YxgtkTkJVlCWYYAT1GaqTzIfMWijKVJrriX8Mh3HU9G2MQYhyZuoAJf5VmIRsIS7zH0CpzANhCUQSuRnud6IZPUkXlIcdAs4ipKQ4dbsLteMZG2ROa6nsa56AKaZCKMci143YnOG_aOq4S2cdmFRHXXYvTV1TGnYeoLqAVvjS10nWV1pjPhQl-cDg_FUTDej_dOuTixYGdtLKLdBGqhS0shnuMhs-BV9xjdV_-TkYUql1pGUy4yx_Oul-Ea-V4ng0A_YjizwIInjbF2k8YI2wkQR6LijE3-XRXi896haTz9d9GXcPP4IBaDT8Mvz-CW1l6TSbcDvUW1VM_hRrpaTOvqReudvwCOxTof
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+supernodal+sparse+factorization+and+inversion+to+the+estimation+of+%28co%29variance+components+by+residual+maximum+likelihood&rft.jtitle=Journal+of+animal+breeding+and+genetics+%281986%29&rft.au=Masuda%2C+Y&rft.au=Baba%2C+T&rft.au=Suzuki%2C+M&rft.date=2014-06-01&rft.issn=1439-0388&rft.eissn=1439-0388&rft.volume=131&rft.issue=3&rft.spage=227&rft_id=info:doi/10.1111%2Fjbg.12058&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0931-2668&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0931-2668&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0931-2668&client=summon