Tunable and Selective Conversion of 5-HMF to 2,5-Furandimethanol and 2,5-Dimethylfuran over Copper-Doped Porous Metal Oxides

Tunable and selective hydrogenation of the platform chemical 5‐hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved with copper‐doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem Jg. 7; H. 8; S. 2266 - 2275
Hauptverfasser: Kumalaputri, Angela J., Bottari, Giovanni, Erne, Petra M., Heeres, Hero J., Barta, Katalin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Weinheim WILEY-VCH Verlag 01.08.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Schlagworte:
ISSN:1864-5631, 1864-564X, 1864-564X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Tunable and selective hydrogenation of the platform chemical 5‐hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved with copper‐doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by introducing small amounts of ruthenium dopant into the previously reported Cu0.59Mg2.34Al1.00 structure. At a mild reaction temperature (100 °C), 2,5‐furandimethanol is obtained with excellent selectivity up to >99 %. Higher reaction temperatures (220 °C) favor selective deoxygenation to 2,5‐dimethylfuran and minor product 2,5‐dimethyltetrahydrofuran with a combined yield as high as 81 %. Notably, these high product yields are maintained at a substrate concentration up to 10 wt % and a low catalyst loading. The influence of different alcohol solvents on product selectivity is explored. Furthermore, reaction intermediates formed at different reaction temperatures are identified. The composition of these product mixtures provides mechanistic insight into the nature of the reduction pathways that influence product selectivity. The catalysts are characterized by elemental analysis, TEM, and BET techniques before and after the reaction. Catalyst recycling experiments are conducted in batch and in a continuous‐flow setup. With a little help from Ru: Selective and tunable hydrogenation of 5‐hydroxymethylfurfural (HMF) with earth‐abundant, copper‐based porous metal oxides (Cu‐PMOs) is achieved. Addition of a small amount of ruthenium dopant enhances the combined selectivity to 2,5‐dimethylfuran (DMF) and 2,5‐dimethyltetrahydrofuran (DMTHF) under optimized conditions.
AbstractList Tunable and selective hydrogenation of the platform chemical 5-hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved with copper-doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by introducing small amounts of ruthenium dopant into the previously reported Cu(0.59) Mg2.34 Al1.00 structure. At a mild reaction temperature (100 °C), 2,5-furandimethanol is obtained with excellent selectivity up to >99%. Higher reaction temperatures (220 °C) favor selective deoxygenation to 2,5-dimethylfuran and minor product 2,5-dimethyltetrahydrofuran with a combined yield as high as 81%. Notably, these high product yields are maintained at a substrate concentration up to 10 wt% and a low catalyst loading. The influence of different alcohol solvents on product selectivity is explored. Furthermore, reaction intermediates formed at different reaction temperatures are identified. The composition of these product mixtures provides mechanistic insight into the nature of the reduction pathways that influence product selectivity. The catalysts are characterized by elemental analysis, TEM, and BET techniques before and after the reaction. Catalyst recycling experiments are conducted in batch and in a continuous-flow setup.Tunable and selective hydrogenation of the platform chemical 5-hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved with copper-doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by introducing small amounts of ruthenium dopant into the previously reported Cu(0.59) Mg2.34 Al1.00 structure. At a mild reaction temperature (100 °C), 2,5-furandimethanol is obtained with excellent selectivity up to >99%. Higher reaction temperatures (220 °C) favor selective deoxygenation to 2,5-dimethylfuran and minor product 2,5-dimethyltetrahydrofuran with a combined yield as high as 81%. Notably, these high product yields are maintained at a substrate concentration up to 10 wt% and a low catalyst loading. The influence of different alcohol solvents on product selectivity is explored. Furthermore, reaction intermediates formed at different reaction temperatures are identified. The composition of these product mixtures provides mechanistic insight into the nature of the reduction pathways that influence product selectivity. The catalysts are characterized by elemental analysis, TEM, and BET techniques before and after the reaction. Catalyst recycling experiments are conducted in batch and in a continuous-flow setup.
Tunable and selective hydrogenation of the platform chemical 5‐hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved with copper‐doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by introducing small amounts of ruthenium dopant into the previously reported Cu0.59Mg2.34Al1.00 structure. At a mild reaction temperature (100 °C), 2,5‐furandimethanol is obtained with excellent selectivity up to >99 %. Higher reaction temperatures (220 °C) favor selective deoxygenation to 2,5‐dimethylfuran and minor product 2,5‐dimethyltetrahydrofuran with a combined yield as high as 81 %. Notably, these high product yields are maintained at a substrate concentration up to 10 wt % and a low catalyst loading. The influence of different alcohol solvents on product selectivity is explored. Furthermore, reaction intermediates formed at different reaction temperatures are identified. The composition of these product mixtures provides mechanistic insight into the nature of the reduction pathways that influence product selectivity. The catalysts are characterized by elemental analysis, TEM, and BET techniques before and after the reaction. Catalyst recycling experiments are conducted in batch and in a continuous‐flow setup. With a little help from Ru: Selective and tunable hydrogenation of 5‐hydroxymethylfurfural (HMF) with earth‐abundant, copper‐based porous metal oxides (Cu‐PMOs) is achieved. Addition of a small amount of ruthenium dopant enhances the combined selectivity to 2,5‐dimethylfuran (DMF) and 2,5‐dimethyltetrahydrofuran (DMTHF) under optimized conditions.
Tunable and selective hydrogenation of the platform chemical 5‐hydroxymethylfurfural into valuable C 6 building blocks and liquid fuel additives is achieved with copper‐doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by introducing small amounts of ruthenium dopant into the previously reported Cu 0.59 Mg 2.34 Al 1.00 structure. At a mild reaction temperature (100 °C), 2,5‐furandimethanol is obtained with excellent selectivity up to >99 %. Higher reaction temperatures (220 °C) favor selective deoxygenation to 2,5‐dimethylfuran and minor product 2,5‐dimethyltetrahydrofuran with a combined yield as high as 81 %. Notably, these high product yields are maintained at a substrate concentration up to 10 wt % and a low catalyst loading. The influence of different alcohol solvents on product selectivity is explored. Furthermore, reaction intermediates formed at different reaction temperatures are identified. The composition of these product mixtures provides mechanistic insight into the nature of the reduction pathways that influence product selectivity. The catalysts are characterized by elemental analysis, TEM, and BET techniques before and after the reaction. Catalyst recycling experiments are conducted in batch and in a continuous‐flow setup.
Tunable and selective hydrogenation of the platform chemical 5-hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved with copper-doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by introducing small amounts of ruthenium dopant into the previously reported Cu(0.59) Mg2.34 Al1.00 structure. At a mild reaction temperature (100 °C), 2,5-furandimethanol is obtained with excellent selectivity up to >99%. Higher reaction temperatures (220 °C) favor selective deoxygenation to 2,5-dimethylfuran and minor product 2,5-dimethyltetrahydrofuran with a combined yield as high as 81%. Notably, these high product yields are maintained at a substrate concentration up to 10 wt% and a low catalyst loading. The influence of different alcohol solvents on product selectivity is explored. Furthermore, reaction intermediates formed at different reaction temperatures are identified. The composition of these product mixtures provides mechanistic insight into the nature of the reduction pathways that influence product selectivity. The catalysts are characterized by elemental analysis, TEM, and BET techniques before and after the reaction. Catalyst recycling experiments are conducted in batch and in a continuous-flow setup.
Tunable and selective hydrogenation of the platform chemical 5-hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved with copper-doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by introducing small amounts of ruthenium dopant into the previously reported Cu0.59Mg2.34Al1.00 structure. At a mild reaction temperature (100°C), 2,5-furandimethanol is obtained with excellent selectivity up to >99%. Higher reaction temperatures (220°C) favor selective deoxygenation to 2,5-dimethylfuran and minor product 2,5-dimethyltetrahydrofuran with a combined yield as high as 81%. Notably, these high product yields are maintained at a substrate concentration up to 10wt% and a low catalyst loading. The influence of different alcohol solvents on product selectivity is explored. Furthermore, reaction intermediates formed at different reaction temperatures are identified. The composition of these product mixtures provides mechanistic insight into the nature of the reduction pathways that influence product selectivity. The catalysts are characterized by elemental analysis, TEM, and BET techniques before and after the reaction. Catalyst recycling experiments are conducted in batch and in a continuous-flow setup. [PUBLICATION ABSTRACT]
Author Bottari, Giovanni
Barta, Katalin
Kumalaputri, Angela J.
Heeres, Hero J.
Erne, Petra M.
Author_xml – sequence: 1
  givenname: Angela J.
  surname: Kumalaputri
  fullname: Kumalaputri, Angela J.
  organization: Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands)
– sequence: 2
  givenname: Giovanni
  surname: Bottari
  fullname: Bottari, Giovanni
  organization: Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands)
– sequence: 3
  givenname: Petra M.
  surname: Erne
  fullname: Erne, Petra M.
  organization: Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands)
– sequence: 4
  givenname: Hero J.
  surname: Heeres
  fullname: Heeres, Hero J.
  email: h.j.heeres@rug.nl
  organization: Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands)
– sequence: 5
  givenname: Katalin
  surname: Barta
  fullname: Barta, Katalin
  email: k.barta@rug.nl
  organization: Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24924637$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhiNURD_gyhFZ4sKBLP7e5Agp26JuKWKL4GY5zkS4eONgJ6Ur8eNxuu0KVUKcbI2fZzya9zDb63wHWfac4BnBmL4xMZoZxYRjikvxKDsgheS5kPzb3u7OyH52GOMVxhKXUj7J9ikvKZdsfpD9vhw7XTtAumvQChyYwV4Dqnx3DSFa3yHfIpGfni_Q4BF9LfLFGBJr1zB81513t-JUP74tbVw7vSOf9NSl7yHkx76HBn3ywY8RncOgHbq4sQ3Ep9njVrsIz-7Oo-zL4v1ldZovL04-VG-XuRF8LnKOZQ1EciahKUresAIXElhDCNa4bYWp26KuwZSY1LikpZEUGGlITaHWrCzYUfZq27cP_ucIcVBrGw04pztIMykiBCNYFpgk9OUD9MqPoUvTTRQVIn3AE_XijhrrNTSqD3atw0bd7zUBfAuY4GMM0CpjBz2kfQ5BW6cIVlN8aopP7eJL2uyBdt_5n0K5FX5ZB5v_0Kparaq_3Xzr2jjAzc7V4YeSczYX6uvHE7U6-3z2bjkvFGd_ADdHusE
CitedBy_id crossref_primary_10_1002_jctb_6373
crossref_primary_10_1016_j_apcata_2020_117985
crossref_primary_10_3390_polym15040829
crossref_primary_10_1002_cssc_202200186
crossref_primary_10_1016_j_apcatb_2016_07_004
crossref_primary_10_1039_D0SE00361A
crossref_primary_10_1016_j_cattod_2020_03_016
crossref_primary_10_1016_j_apcata_2017_07_004
crossref_primary_10_1002_cplu_202300643
crossref_primary_10_1016_j_molliq_2023_123354
crossref_primary_10_1016_j_molcata_2016_11_023
crossref_primary_10_1039_C8CY02017E
crossref_primary_10_1021_jacs_4c11551
crossref_primary_10_1002_cssc_201600681
crossref_primary_10_1016_j_apcatb_2023_122547
crossref_primary_10_1016_j_joei_2020_10_004
crossref_primary_10_1515_ijcre_2017_0197
crossref_primary_10_1039_D0CY01279C
crossref_primary_10_1016_j_jssc_2018_11_003
crossref_primary_10_1002_ange_202500881
crossref_primary_10_1016_j_ccr_2015_02_004
crossref_primary_10_1002_cctc_201902028
crossref_primary_10_1016_j_fuel_2020_117524
crossref_primary_10_1002_cssc_201802126
crossref_primary_10_1039_D0SE00332H
crossref_primary_10_1016_j_jechem_2022_10_005
crossref_primary_10_1039_C8CC02937G
crossref_primary_10_1016_j_cattod_2025_115189
crossref_primary_10_1021_acscatal_5c01074
crossref_primary_10_1016_j_rser_2017_04_013
crossref_primary_10_1016_j_fuel_2020_119140
crossref_primary_10_1016_j_cej_2024_155867
crossref_primary_10_1002_ange_202418790
crossref_primary_10_1016_j_rser_2018_12_010
crossref_primary_10_1002_cctc_202101063
crossref_primary_10_1002_cssc_202200241
crossref_primary_10_1016_j_cattod_2016_02_019
crossref_primary_10_1002_cssc_201600060
crossref_primary_10_1016_j_rser_2024_114900
crossref_primary_10_1002_cssc_201501625
crossref_primary_10_1016_j_jiec_2021_04_057
crossref_primary_10_1016_j_apcata_2019_03_005
crossref_primary_10_1016_j_apcatb_2022_121790
crossref_primary_10_1007_s12209_021_00307_6
crossref_primary_10_1186_s40643_023_00676_x
crossref_primary_10_1007_s10562_022_03919_2
crossref_primary_10_1016_j_mcat_2019_110722
crossref_primary_10_1016_j_rser_2017_02_042
crossref_primary_10_1016_j_apcata_2020_117892
crossref_primary_10_1039_D1CY02197D
crossref_primary_10_1016_j_cjche_2021_08_004
crossref_primary_10_3390_molecules25204771
crossref_primary_10_1002_slct_202302365
crossref_primary_10_1016_j_jiec_2021_06_039
crossref_primary_10_3390_catal12080878
crossref_primary_10_1002_cctc_201500097
crossref_primary_10_1016_j_apcatb_2023_123622
crossref_primary_10_1007_s10853_020_05052_0
crossref_primary_10_1039_D5GC00924C
crossref_primary_10_1002_cssc_202200503
crossref_primary_10_1016_j_fuproc_2020_106528
crossref_primary_10_1055_a_1807_3188
crossref_primary_10_1002_cssc_201601426
crossref_primary_10_1016_j_fuel_2020_119757
crossref_primary_10_1016_j_ultsonch_2017_01_028
crossref_primary_10_1007_s13399_022_02768_8
crossref_primary_10_1002_anie_202500881
crossref_primary_10_1002_cssc_201403453
crossref_primary_10_1016_j_ces_2015_12_002
crossref_primary_10_1002_ajoc_201800307
crossref_primary_10_1016_j_indcrop_2020_113091
crossref_primary_10_1002_cssc_201700086
crossref_primary_10_1002_cssc_202102041
crossref_primary_10_1002_cssc_201600122
crossref_primary_10_1002_ejoc_201800149
crossref_primary_10_1016_j_apcatb_2017_05_039
crossref_primary_10_1002_cssc_202200412
crossref_primary_10_1080_15567036_2020_1869868
crossref_primary_10_1016_j_apcata_2022_118527
crossref_primary_10_3390_catal12111484
crossref_primary_10_1002_jctb_6508
crossref_primary_10_1016_S1872_2067_21_63842_1
crossref_primary_10_1002_cctc_201701754
crossref_primary_10_3389_fchem_2019_00529
crossref_primary_10_1002_slct_201903256
crossref_primary_10_1007_s11705_025_2582_x
crossref_primary_10_1016_j_ijbiomac_2020_09_258
crossref_primary_10_1002_slct_201701966
crossref_primary_10_1016_j_biombioe_2025_108131
crossref_primary_10_1139_cjc_2019_0374
crossref_primary_10_1016_j_catcom_2018_05_011
crossref_primary_10_1039_D5RA01002K
crossref_primary_10_1002_cssc_201700105
crossref_primary_10_1002_cssc_202101889
crossref_primary_10_1007_s00214_022_02880_y
crossref_primary_10_1016_j_fuel_2023_129622
crossref_primary_10_1063_5_0222092
crossref_primary_10_1016_j_mcat_2020_110966
crossref_primary_10_1016_j_cattod_2016_03_022
crossref_primary_10_1016_j_cattod_2023_01_028
crossref_primary_10_1016_j_jcat_2022_12_021
crossref_primary_10_1016_j_mcat_2020_111132
crossref_primary_10_1002_anie_202418790
crossref_primary_10_1016_j_chroma_2021_462145
crossref_primary_10_1016_j_ces_2019_03_011
crossref_primary_10_1016_j_biombioe_2020_105868
crossref_primary_10_1016_S1872_2067_17_62789_X
crossref_primary_10_3390_molecules26226848
crossref_primary_10_1039_D3SE01096A
crossref_primary_10_1016_j_fuel_2017_12_069
crossref_primary_10_1556_JFC_D_14_00037
crossref_primary_10_1002_aic_18047
crossref_primary_10_1016_j_ces_2017_07_045
crossref_primary_10_1007_s10562_023_04306_1
crossref_primary_10_1002_cite_202200091
Cites_doi 10.1039/C2RA22190J
10.1039/c3gc40727f
10.1016/j.molcata.2009.10.017
10.1016/j.apcata.2013.06.002
10.1002/cssc.201300414
10.1002/cssc.201300774
10.1038/nmat3872
10.1021/cs400616p
10.1002/anie.201102156
10.1016/j.molcata.2010.11.015
10.1002/cssc.200900137
10.1016/j.catcom.2010.09.003
10.1039/c3cc41526k
10.1016/j.apcata.2012.11.004
10.1039/C3GC41324A
10.1007/s10853-009-3670-x
10.1016/j.molcata.2003.11.046
10.1002/cssc.200900033
10.1039/c2gc35039d
10.1002/cssc.201000209
10.1002/cssc.201200072
10.1039/c3gc42145g
10.1039/C3GC41184B
10.1007/s11244-012-9839-6
10.1002/ange.201102156
10.1021/ja049181l
10.1016/0920-5861(91)80068-K
10.1016/j.jiec.2012.08.028
10.1002/pat.3147
10.1021/cs200456t
10.1021/cr300182k
10.1081/SCC-120026858
10.1038/nature05923
10.1055/s-2001-14595
10.1039/c2cs35188a
10.1016/j.cattod.2013.04.012
10.1016/j.apcata.2013.01.042
10.1016/j.tet.2008.04.086
10.1039/C1GC16074E
10.1002/cssc.201300017
10.1039/b922014c
10.1039/c0gc00181c
10.1006/abio.1996.0238
10.1039/c004343e
10.1039/c0gc00401d
10.1016/j.apcatb.2006.02.003
10.1002/cssc.201300288
10.1021/ja205436c
10.1016/j.apcatb.2013.04.026
10.1002/cssc.201200778
10.1887/0750308095
10.1039/c2gc35667h
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.201402095
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 2275
ExternalDocumentID 3399170581
24924637
10_1002_cssc_201402095
CSSC201402095
ark_67375_WNG_SKRKBL78_4
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Indonesian Directorate General of Higher Education (DIKTI)
– fundername: NSF
  funderid: CHE‐1240194
GroupedDBID ---
05W
0R~
1OC
29B
31~
33P
4.4
5GY
5VS
66C
77Q
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADKYN
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
BSCLL
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MY~
O9-
OIG
P2W
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
XV2
ZZTAW
~S-
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c5475-406be16436ed894d38086e3d110a0ff5cbf8bbec901b0929c62e31d1b2eba3983
IEDL.DBID DRFUL
ISICitedReferencesCount 176
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340519500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5631
1864-564X
IngestDate Thu Oct 02 05:43:04 EDT 2025
Sat Nov 29 14:27:50 EST 2025
Mon Jul 21 05:57:09 EDT 2025
Tue Nov 18 22:18:19 EST 2025
Thu Oct 16 04:24:27 EDT 2025
Thu Aug 21 01:20:10 EDT 2025
Sun Sep 21 06:20:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords copper
biomass
biofuels
heterocycles
hydrogenation
Language English
License 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5475-406be16436ed894d38086e3d110a0ff5cbf8bbec901b0929c62e31d1b2eba3983
Notes ArticleID:CSSC201402095
istex:73BC9E1FA09F84C20B8FCB4BA898C06EF56E3D0E
Indonesian Directorate General of Higher Education (DIKTI)
NSF - No. CHE-1240194
ark:/67375/WNG-SKRKBL78-4
These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24924637
PQID 1552550924
PQPubID 986333
PageCount 10
ParticipantIDs proquest_miscellaneous_1553106801
proquest_journals_1552550924
pubmed_primary_24924637
crossref_citationtrail_10_1002_cssc_201402095
crossref_primary_10_1002_cssc_201402095
wiley_primary_10_1002_cssc_201402095_CSSC201402095
istex_primary_ark_67375_WNG_SKRKBL78_4
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References P. L Gai, E. D Boyes, Electron Microscopy in Heterogeneous Catalysis, CRC Press, Boca Raton, 2003, p. 180
Y. Nakagawa, M. Tamura, K. Tomishige, ACS Catal. 2013, 3, 2655-2668.
M. Chidambaram, A. T. Bell, Green Chem. 2010, 12, 1253-1262.
T. S. Hansen, K. Barta, P. T. Anastas, P. C. Ford, A. Riisager, Green Chem. 2012, 14, 2457-2461.
T. Buntara, S. Noel, P. Huat Phua, I. Melián-Cabrera, J. G. de Vries, H. J. Heeres, Top. Catal. 2012, 55, 612-619
J. Ohyama, A. Esaki, Y. Yamamoto, S. Arai, A. Satsuma, RSC Adv. 2013, 3, 1033-1036.
N. R. Janga, H.-R. Kimb, C. T. Houc, B. Soo Kim, Polym. Adv. Technol. 2013, 24, 814-818
F. Cavani, F. Trifiró, A. Vaccari, Catal. Today 1991, 11, 173-301.
M. Chatterjee, T. Ishizaka, H. Kawanami, Green Chem. 2014, 16, 1543-1551.
K. Motokura, D. Nishimura, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 2004, 126, 5662-5663
B. M. Nagaraja, V. Siva Kumar, V. Shashikala, A. H. Padmasri, S. Sreevardhan Reddy, B. D. Raju, K. S. Rama Rao, J. Mol. Catal. A 2004, 223, 339-345.
S. K. Sharma, P. A. Parikh, R. V. Jasra, J. Mol. Catal. A 2010, 317, 27-33
D. M. Alonso, S. G. Wettstein, J. A. Dumesic, Chem. Soc. Rev. 2012, 41, 8075-8098
S. K. Sharma, K. B. Sidhpuria, R. V. Jasra, J. Mol. Catal. A 2011, 335, 65-70.
R. Alamillo, M. Tucker, M. Chia, Y. Pagán-Torres, J. Dumesic, Green Chem. 2012, 14, 1413-1419.
H. B. Friedrich, F. Khan, N. Singh, M. van Staden, Synlett 2001, 0869-0871.
O. Casanova, S. Iborra, A. Corma, ChemSusChem 2009, 2, 1138-1144
Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic, Nature 2007, 447, 982-986.
L. Cottier, G. Descotes, Y. Soro, Synth. Commun. 2003, 33, 4285-4295.
Q. Jiao, H. Liu, Y. Zhao, Z. Zhang, J. Mater. Sci. 2009, 44, 4422-4428.
G.-H. Wang, J. Hilgert, F. H. Richter, F. Wang, H.-J. Bongard, B. Spliethoff, C. Weidenthaler, F. Schüth, Nat. Mater. 2014, 13, 293-300.
J. Jae, W. Zheng, R. F. Lobo, D. G. Vlachos, ChemSusChem 2013, 6, 1158-1162.
J. J. Bozell, G. R. Petersen, Green Chem. 2010, 12, 539-554.
A. Takagaki, M. Takahashi, S. Nishimura, K. Ebitani, ACS Catal. 2011, 1, 1562-1565.
M. Tamura, K. Tokonami, Y. Nakagawa, K. Tomishige, Chem. Commun. 2013, 49, 7034-7036.
T. Thananatthanachon, T. Rauchfuss, ChemSusChem 2010, 3, 1139-1141.
M. Dixit, M. Mishra, P. A. Joshi, D. O. Shah, J. Ind. Eng. Chem. 2013, 19, 458-468.
T. S. Hansen, I. Sadaba, E. J. Garcia-Suarez, A. Riisager, Appl. Catal. A 2013, 456, 44-50
Y. Zu, P. Yang, J. Wang, X. Liu, J. Ren, G. Lu, Y. Wang, Appl. Catal. B 2014, 146, 244-248.
A. Martínez-Arias, A. B. Hungría, G. Munuera, D. Gamarra, Appl. Catal. B 2006, 65, 207-216.
V. V. Ordomsky, J. van der Schaaf, J. C. Schouten, T. A. Nijhuis, ChemSusChem 2013, 6, 1697-1707
T. Okano, K. Qiao, Q. Bao, D. Tomida, H. Hagiwara, C. Yokoyama, Appl. Catal. A 2013, 451, 1-5.
Y. Nakagawa, K. Tomishige, Catal. Commun. 2010, 12, 154-156.
H. Ait Rass, N. Essayem, M. Besson, Green Chem. 2013, 15, 2240-2251
S. Goswami, S. Dey, S. Jana, Tetrahedron 2008, 64, 6358-6363.
K. Barta, T. D. Matson, M. L. Fettig, S. L. Scott, A. V. Iretskii, P. C. Ford, Green Chem. 2010, 12, 1640-1647
G. S. Macala, T. D. Matson, C. L. Johnson, R. S. Lewis, A. V. Iretskii, P. C. Ford, ChemSusChem 2009, 2, 215-217.
P. Kuzmič, Anal. Biochem. 1996, 237, 260-273.
K. Pupovac, R. Palkovits, ChemSusChem 2013, 6, 2103-2110
R.-J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries, Chem. Rev. 2013, 113, 1499-1597
B. Saha, M. M. Abu-Omar, Green Chem. 2014, 16, 24-38
N.-T. Le, P. Lakshmanan, K. Cho, Y. Han, H. Kim, Appl. Catal. A 2013, 464-465, 305-312
T. Buntara, I. Melian-Cabrera, Q. Tan, J. L. G. Fierro, M. Neurock, J. G. de Vries, H. J. Heeres, Catal. Today 2013, 210, 106-116
S. E. Davis, B. N. Zope, R. J. Davis, Green Chem. 2012, 14, 143-147
A. A. Rosatella, S. P. Simeonov, R. F. M. Fradea, C. A. M. Afonso, Green Chem. 2011, 13, 754-793.
K. Barta, G. Warner, E. S. Beach, P. T. Anastas, Green Chem. 2014, 16, 191-196.
Angew. Chem. 2011, 123, 7221-7225.
A. Villa, M. Schiavoni, S. Campisi, G. M. Veith, L. Prati, ChemSusChem 2013, 6, 609-612
T. D. Matson, K. Barta, A. V. Iretskii, P. C. Ford, J. Am. Chem. Soc. 2011, 133, 14090-14097
D. Scholz, C. Aellig, I. Hermans, ChemSusChem 2014, 7, 268-275.
V. V. Ordomsky, J. van der Schaaf, J. C. Schouten, T. A. Nijhuis, ChemSusChem 2012, 5, 1812-1819
T. Buntara, S. Noel, P. Huat Phua, I. Melián-Cabrera, J. G. de Vries, H. J. Heeres, Angew. Chem. Int. Ed. 2011, 50, 7083-7087
2010; 12
2011; 335
2009; 44
2013; 3
2004; 126
2011; 1
2013; 49
2007; 447
2004; 223
2013 2013 2013
2011
2013; 24
1991; 11
2011; 13
2003
2012; 14
2013; 6
2012; 55
2011; 133
2003; 33
2013; 19
2013; 15
2001
2010; 317
2006; 65
2013; 456
2014; 16
2013; 210
1963
2013; 113
2014; 13
2011 2011; 50 123
2013; 451
2008; 64
2013; 464–465
2010; 3
2009; 2
2014; 7
2012; 5
2012; 41
2014; 146
1996; 237
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_15_3
e_1_2_6_15_4
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_64_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_61_2
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_40_3
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: S. Goswami, S. Dey, S. Jana, Tetrahedron 2008, 64, 6358-6363.
– reference: S. E. Davis, B. N. Zope, R. J. Davis, Green Chem. 2012, 14, 143-147;
– reference: V. V. Ordomsky, J. van der Schaaf, J. C. Schouten, T. A. Nijhuis, ChemSusChem 2012, 5, 1812-1819;
– reference: S. K. Sharma, P. A. Parikh, R. V. Jasra, J. Mol. Catal. A 2010, 317, 27-33;
– reference: O. Casanova, S. Iborra, A. Corma, ChemSusChem 2009, 2, 1138-1144;
– reference: G.-H. Wang, J. Hilgert, F. H. Richter, F. Wang, H.-J. Bongard, B. Spliethoff, C. Weidenthaler, F. Schüth, Nat. Mater. 2014, 13, 293-300.
– reference: T. Buntara, S. Noel, P. Huat Phua, I. Melián-Cabrera, J. G. de Vries, H. J. Heeres, Angew. Chem. Int. Ed. 2011, 50, 7083-7087;
– reference: G. S. Macala, T. D. Matson, C. L. Johnson, R. S. Lewis, A. V. Iretskii, P. C. Ford, ChemSusChem 2009, 2, 215-217.
– reference: N. R. Janga, H.-R. Kimb, C. T. Houc, B. Soo Kim, Polym. Adv. Technol. 2013, 24, 814-818;
– reference: V. V. Ordomsky, J. van der Schaaf, J. C. Schouten, T. A. Nijhuis, ChemSusChem 2013, 6, 1697-1707;
– reference: A. Villa, M. Schiavoni, S. Campisi, G. M. Veith, L. Prati, ChemSusChem 2013, 6, 609-612;
– reference: Y. Nakagawa, M. Tamura, K. Tomishige, ACS Catal. 2013, 3, 2655-2668.
– reference: J. Jae, W. Zheng, R. F. Lobo, D. G. Vlachos, ChemSusChem 2013, 6, 1158-1162.
– reference: Angew. Chem. 2011, 123, 7221-7225.
– reference: B. Saha, M. M. Abu-Omar, Green Chem. 2014, 16, 24-38;
– reference: Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic, Nature 2007, 447, 982-986.
– reference: J. Ohyama, A. Esaki, Y. Yamamoto, S. Arai, A. Satsuma, RSC Adv. 2013, 3, 1033-1036.
– reference: Y. Nakagawa, K. Tomishige, Catal. Commun. 2010, 12, 154-156.
– reference: H. Ait Rass, N. Essayem, M. Besson, Green Chem. 2013, 15, 2240-2251;
– reference: T. S. Hansen, K. Barta, P. T. Anastas, P. C. Ford, A. Riisager, Green Chem. 2012, 14, 2457-2461.
– reference: M. Chidambaram, A. T. Bell, Green Chem. 2010, 12, 1253-1262.
– reference: A. Martínez-Arias, A. B. Hungría, G. Munuera, D. Gamarra, Appl. Catal. B 2006, 65, 207-216.
– reference: P. Kuzmič, Anal. Biochem. 1996, 237, 260-273.
– reference: P. L Gai, E. D Boyes, Electron Microscopy in Heterogeneous Catalysis, CRC Press, Boca Raton, 2003, p. 180;
– reference: J. J. Bozell, G. R. Petersen, Green Chem. 2010, 12, 539-554.
– reference: M. Chatterjee, T. Ishizaka, H. Kawanami, Green Chem. 2014, 16, 1543-1551.
– reference: N.-T. Le, P. Lakshmanan, K. Cho, Y. Han, H. Kim, Appl. Catal. A 2013, 464-465, 305-312;
– reference: M. Tamura, K. Tokonami, Y. Nakagawa, K. Tomishige, Chem. Commun. 2013, 49, 7034-7036.
– reference: T. Okano, K. Qiao, Q. Bao, D. Tomida, H. Hagiwara, C. Yokoyama, Appl. Catal. A 2013, 451, 1-5.
– reference: K. Barta, G. Warner, E. S. Beach, P. T. Anastas, Green Chem. 2014, 16, 191-196.
– reference: Y. Zu, P. Yang, J. Wang, X. Liu, J. Ren, G. Lu, Y. Wang, Appl. Catal. B 2014, 146, 244-248.
– reference: K. Pupovac, R. Palkovits, ChemSusChem 2013, 6, 2103-2110;
– reference: T. D. Matson, K. Barta, A. V. Iretskii, P. C. Ford, J. Am. Chem. Soc. 2011, 133, 14090-14097;
– reference: K. Barta, T. D. Matson, M. L. Fettig, S. L. Scott, A. V. Iretskii, P. C. Ford, Green Chem. 2010, 12, 1640-1647;
– reference: F. Cavani, F. Trifiró, A. Vaccari, Catal. Today 1991, 11, 173-301.
– reference: T. Thananatthanachon, T. Rauchfuss, ChemSusChem 2010, 3, 1139-1141.
– reference: D. Scholz, C. Aellig, I. Hermans, ChemSusChem 2014, 7, 268-275.
– reference: T. Buntara, I. Melian-Cabrera, Q. Tan, J. L. G. Fierro, M. Neurock, J. G. de Vries, H. J. Heeres, Catal. Today 2013, 210, 106-116;
– reference: Q. Jiao, H. Liu, Y. Zhao, Z. Zhang, J. Mater. Sci. 2009, 44, 4422-4428.
– reference: K. Motokura, D. Nishimura, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 2004, 126, 5662-5663;
– reference: B. M. Nagaraja, V. Siva Kumar, V. Shashikala, A. H. Padmasri, S. Sreevardhan Reddy, B. D. Raju, K. S. Rama Rao, J. Mol. Catal. A 2004, 223, 339-345.
– reference: D. M. Alonso, S. G. Wettstein, J. A. Dumesic, Chem. Soc. Rev. 2012, 41, 8075-8098;
– reference: T. S. Hansen, I. Sadaba, E. J. Garcia-Suarez, A. Riisager, Appl. Catal. A 2013, 456, 44-50;
– reference: L. Cottier, G. Descotes, Y. Soro, Synth. Commun. 2003, 33, 4285-4295.
– reference: H. B. Friedrich, F. Khan, N. Singh, M. van Staden, Synlett 2001, 0869-0871.
– reference: R.-J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries, Chem. Rev. 2013, 113, 1499-1597;
– reference: A. A. Rosatella, S. P. Simeonov, R. F. M. Fradea, C. A. M. Afonso, Green Chem. 2011, 13, 754-793.
– reference: R. Alamillo, M. Tucker, M. Chia, Y. Pagán-Torres, J. Dumesic, Green Chem. 2012, 14, 1413-1419.
– reference: M. Dixit, M. Mishra, P. A. Joshi, D. O. Shah, J. Ind. Eng. Chem. 2013, 19, 458-468.
– reference: T. Buntara, S. Noel, P. Huat Phua, I. Melián-Cabrera, J. G. de Vries, H. J. Heeres, Top. Catal. 2012, 55, 612-619;
– reference: A. Takagaki, M. Takahashi, S. Nishimura, K. Ebitani, ACS Catal. 2011, 1, 1562-1565.
– reference: S. K. Sharma, K. B. Sidhpuria, R. V. Jasra, J. Mol. Catal. A 2011, 335, 65-70.
– year: 2011
– volume: 6
  start-page: 1158
  year: 2013
  end-page: 1162
  publication-title: ChemSusChem
– volume: 223
  start-page: 339
  year: 2004
  end-page: 345
  publication-title: J. Mol. Catal. A
– volume: 6
  start-page: 1697
  year: 2013
  end-page: 1707
  publication-title: ChemSusChem
– volume: 464–465
  start-page: 305
  year: 2013
  end-page: 312
  publication-title: Appl. Catal. A
– volume: 126
  start-page: 5662
  year: 2004
  end-page: 5663
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 4285
  year: 2003
  end-page: 4295
  publication-title: Synth. Commun.
– volume: 6
  start-page: 609
  year: 2013
  end-page: 612
  publication-title: ChemSusChem
– volume: 19
  start-page: 458
  year: 2013
  end-page: 468
  publication-title: J. Ind. Eng. Chem.
– volume: 317
  start-page: 27
  year: 2010
  end-page: 33
  publication-title: J. Mol. Catal. A
– volume: 451
  start-page: 1
  year: 2013
  end-page: 5
  publication-title: Appl. Catal. A
– volume: 12
  start-page: 1640
  year: 2010
  end-page: 1647
  publication-title: Green Chem.
– volume: 49
  start-page: 7034
  year: 2013
  end-page: 7036
  publication-title: Chem. Commun.
– year: 2013 2013 2013
– volume: 13
  start-page: 293
  year: 2014
  end-page: 300
  publication-title: Nat. Mater.
– volume: 24
  start-page: 814
  year: 2013
  end-page: 818
  publication-title: Polym. Adv. Technol.
– volume: 44
  start-page: 4422
  year: 2009
  end-page: 4428
  publication-title: J. Mater. Sci.
– volume: 210
  start-page: 106
  year: 2013
  end-page: 116
  publication-title: Catal. Today
– volume: 133
  start-page: 14090
  year: 2011
  end-page: 14097
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 2103
  year: 2013
  end-page: 2110
  publication-title: ChemSusChem
– volume: 13
  start-page: 754
  year: 2011
  end-page: 793
  publication-title: Green Chem.
– volume: 14
  start-page: 1413
  year: 2012
  end-page: 1419
  publication-title: Green Chem.
– volume: 12
  start-page: 1253
  year: 2010
  end-page: 1262
  publication-title: Green Chem.
– volume: 15
  start-page: 2240
  year: 2013
  end-page: 2251
  publication-title: Green Chem.
– volume: 2
  start-page: 215
  year: 2009
  end-page: 217
  publication-title: ChemSusChem
– volume: 2
  start-page: 1138
  year: 2009
  end-page: 1144
  publication-title: ChemSusChem
– volume: 50 123
  start-page: 7083 7221
  year: 2011 2011
  end-page: 7087 7225
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 64
  start-page: 6358
  year: 2008
  end-page: 6363
  publication-title: Tetrahedron
– volume: 456
  start-page: 44
  year: 2013
  end-page: 50
  publication-title: Appl. Catal. A
– start-page: 180
  year: 2003
– start-page: 0869
  year: 2001
  end-page: 0871
  publication-title: Synlett
– volume: 16
  start-page: 24
  year: 2014
  end-page: 38
  publication-title: Green Chem.
– volume: 3
  start-page: 1033
  year: 2013
  end-page: 1036
  publication-title: RSC Adv.
– volume: 16
  start-page: 191
  year: 2014
  end-page: 196
  publication-title: Green Chem.
– volume: 41
  start-page: 8075
  year: 2012
  end-page: 8098
  publication-title: Chem. Soc. Rev.
– volume: 335
  start-page: 65
  year: 2011
  end-page: 70
  publication-title: J. Mol. Catal. A
– volume: 16
  start-page: 1543
  year: 2014
  end-page: 1551
  publication-title: Green Chem.
– volume: 14
  start-page: 2457
  year: 2012
  end-page: 2461
  publication-title: Green Chem.
– volume: 237
  start-page: 260
  year: 1996
  end-page: 273
  publication-title: Anal. Biochem.
– volume: 65
  start-page: 207
  year: 2006
  end-page: 216
  publication-title: Appl. Catal. B
– year: 1963
– volume: 12
  start-page: 539
  year: 2010
  end-page: 554
  publication-title: Green Chem.
– volume: 5
  start-page: 1812
  year: 2012
  end-page: 1819
  publication-title: ChemSusChem
– volume: 3
  start-page: 2655
  year: 2013
  end-page: 2668
  publication-title: ACS Catal.
– volume: 55
  start-page: 612
  year: 2012
  end-page: 619
  publication-title: Top. Catal.
– volume: 447
  start-page: 982
  year: 2007
  end-page: 986
  publication-title: Nature
– volume: 1
  start-page: 1562
  year: 2011
  end-page: 1565
  publication-title: ACS Catal.
– volume: 3
  start-page: 1139
  year: 2010
  end-page: 1141
  publication-title: ChemSusChem
– volume: 11
  start-page: 173
  year: 1991
  end-page: 301
  publication-title: Catal. Today
– volume: 14
  start-page: 143
  year: 2012
  end-page: 147
  publication-title: Green Chem.
– volume: 113
  start-page: 1499
  year: 2013
  end-page: 1597
  publication-title: Chem. Rev.
– volume: 12
  start-page: 154
  year: 2010
  end-page: 156
  publication-title: Catal. Commun.
– volume: 7
  start-page: 268
  year: 2014
  end-page: 275
  publication-title: ChemSusChem
– volume: 146
  start-page: 244
  year: 2014
  end-page: 248
  publication-title: Appl. Catal. B
– ident: e_1_2_6_35_2
  doi: 10.1039/C2RA22190J
– ident: e_1_2_6_2_2
– ident: e_1_2_6_21_2
  doi: 10.1039/c3gc40727f
– ident: e_1_2_6_55_2
  doi: 10.1016/j.molcata.2009.10.017
– ident: e_1_2_6_17_2
  doi: 10.1016/j.apcata.2013.06.002
– ident: e_1_2_6_13_2
  doi: 10.1002/cssc.201300414
– ident: e_1_2_6_46_2
  doi: 10.1002/cssc.201300774
– ident: e_1_2_6_49_2
– ident: e_1_2_6_47_2
  doi: 10.1038/nmat3872
– ident: e_1_2_6_27_2
  doi: 10.1021/cs400616p
– ident: e_1_2_6_15_4
– ident: e_1_2_6_40_2
  doi: 10.1002/anie.201102156
– ident: e_1_2_6_56_2
  doi: 10.1016/j.molcata.2010.11.015
– ident: e_1_2_6_12_2
– ident: e_1_2_6_24_2
  doi: 10.1002/cssc.200900137
– ident: e_1_2_6_33_2
  doi: 10.1016/j.catcom.2010.09.003
– ident: e_1_2_6_34_2
  doi: 10.1039/c3cc41526k
– ident: e_1_2_6_11_2
  doi: 10.1016/j.apcata.2012.11.004
– ident: e_1_2_6_8_2
  doi: 10.1039/C3GC41324A
– ident: e_1_2_6_60_2
  doi: 10.1007/s10853-009-3670-x
– ident: e_1_2_6_61_2
  doi: 10.1016/j.molcata.2003.11.046
– ident: e_1_2_6_63_2
  doi: 10.1002/cssc.200900033
– ident: e_1_2_6_32_2
  doi: 10.1039/c2gc35039d
– ident: e_1_2_6_36_2
  doi: 10.1002/cssc.201000209
– ident: e_1_2_6_10_2
  doi: 10.1002/cssc.201200072
– ident: e_1_2_6_45_2
  doi: 10.1039/c3gc42145g
– ident: e_1_2_6_52_2
  doi: 10.1039/C3GC41184B
– ident: e_1_2_6_28_2
– ident: e_1_2_6_39_2
  doi: 10.1007/s11244-012-9839-6
– ident: e_1_2_6_40_3
  doi: 10.1002/ange.201102156
– ident: e_1_2_6_54_2
  doi: 10.1021/ja049181l
– ident: e_1_2_6_58_2
  doi: 10.1016/0920-5861(91)80068-K
– ident: e_1_2_6_25_2
– ident: e_1_2_6_16_2
– ident: e_1_2_6_62_2
  doi: 10.1016/j.jiec.2012.08.028
– ident: e_1_2_6_29_2
  doi: 10.1002/pat.3147
– ident: e_1_2_6_19_2
  doi: 10.1021/cs200456t
– ident: e_1_2_6_5_2
  doi: 10.1021/cr300182k
– ident: e_1_2_6_31_2
  doi: 10.1081/SCC-120026858
– ident: e_1_2_6_41_2
  doi: 10.1038/nature05923
– ident: e_1_2_6_57_2
  doi: 10.1055/s-2001-14595
– ident: e_1_2_6_14_2
  doi: 10.1039/c2cs35188a
– ident: e_1_2_6_38_2
  doi: 10.1016/j.cattod.2013.04.012
– ident: e_1_2_6_18_2
  doi: 10.1016/j.apcata.2013.01.042
– ident: e_1_2_6_30_2
  doi: 10.1016/j.tet.2008.04.086
– ident: e_1_2_6_15_2
– ident: e_1_2_6_23_2
  doi: 10.1039/C1GC16074E
– ident: e_1_2_6_9_2
  doi: 10.1002/cssc.201300017
– ident: e_1_2_6_3_2
  doi: 10.1039/b922014c
– ident: e_1_2_6_20_2
– ident: e_1_2_6_51_2
  doi: 10.1039/c0gc00181c
– ident: e_1_2_6_26_2
– ident: e_1_2_6_59_2
  doi: 10.1006/abio.1996.0238
– ident: e_1_2_6_42_2
  doi: 10.1039/c004343e
– ident: e_1_2_6_6_2
  doi: 10.1039/c0gc00401d
– ident: e_1_2_6_53_2
– ident: e_1_2_6_37_2
– ident: e_1_2_6_66_2
  doi: 10.1016/j.apcatb.2006.02.003
– ident: e_1_2_6_43_2
  doi: 10.1002/cssc.201300288
– ident: e_1_2_6_50_2
  doi: 10.1021/ja205436c
– ident: e_1_2_6_64_2
– ident: e_1_2_6_15_3
– ident: e_1_2_6_4_2
– ident: e_1_2_6_1_2
– ident: e_1_2_6_44_2
  doi: 10.1016/j.apcatb.2013.04.026
– ident: e_1_2_6_7_2
– ident: e_1_2_6_22_2
  doi: 10.1002/cssc.201200778
– ident: e_1_2_6_65_2
  doi: 10.1887/0750308095
– ident: e_1_2_6_48_2
  doi: 10.1039/c2gc35667h
SSID ssj0060966
Score 2.5048969
Snippet Tunable and selective hydrogenation of the platform chemical 5‐hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved...
Tunable and selective hydrogenation of the platform chemical 5‐hydroxymethylfurfural into valuable C 6 building blocks and liquid fuel additives is achieved...
Tunable and selective hydrogenation of the platform chemical 5-hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2266
SubjectTerms biofuels
biomass
Catalysis
copper
Copper - chemistry
Furaldehyde - analogs & derivatives
Furaldehyde - chemistry
Furans - chemistry
heterocycles
hydrogenation
Oxides - chemistry
Porosity
Pressure
Ruthenium - chemistry
Solvents - chemistry
Temperature
Title Tunable and Selective Conversion of 5-HMF to 2,5-Furandimethanol and 2,5-Dimethylfuran over Copper-Doped Porous Metal Oxides
URI https://api.istex.fr/ark:/67375/WNG-SKRKBL78-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201402095
https://www.ncbi.nlm.nih.gov/pubmed/24924637
https://www.proquest.com/docview/1552550924
https://www.proquest.com/docview/1553106801
Volume 7
WOSCitedRecordID wos000340519500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1864-564X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060966
  issn: 1864-5631
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2iM0iwKc9CoFRGQrAhah62kywhJVRqO1SdVszOimNHqhglo2SmKjsWfADfyJdw7WQCI4GQYBfHNw_Z1845zvW5AC-YHxXSD6nr5R51qQxKV5ZcYofEUayVRu6jbLKJaDKJZ7Pk9Jdd_J0-xLDgZkaGna_NAM9lu_9TNLRoWyNB6BsClLAtGAfovGwE44Oz7OJ4PRtzhOh2h1HMqct46K-FG71gf_MOGx-msWnj69-hzk0Qa79C2Z3_f_-7sN0jUPKmc5l7cENX9-FWuk789gC-nq_shiqSV4pMbZ4cnBJJauLT7eIaqUvCvn_5dniSkWVNgtemkK0as0PGZKTOq3puL-5qDuzJz_PSWBATMor3Wix0Y-rqhVbktG7qVUtONDIB8uH6Uun2IVxk787TQ7dP1uAWjEYMeSiXGrlXyLWKE6rCGMmSDhXCi9wrS1bIMpboMIg_pIeYrOCBDn3ly0DLPEzicAdGVV3px0C4J5G0J4Xyk5xqySRnZVhqVShaBkzmDrjrnhJFr2RuEmrMRafBHAjTtmJoWwdeDfaLTsPjj5YvbccPZnnzyUS-RUx8nLwX06Ozo7fHUSyoA7trzxD9oG-FUbNDwoeM1oHnQzV2nvkHk1caW9LYIKDmiAsceNR51PAwI95IeRg5EFjH-cvLinQ6TYfSk3-56CncNsddQOMujJbNSj-Dm8XV8rJt9mArmsV7_YD6ASqiIlE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JjtQwELVgGmm4sA8EBjASggvRZLGzHCFDaNQLo-keMTcrjh1pRCtpJd1ouHHgA_hGvoQqZ0EtgZAQx9iVzS477znlV4Q8526YS9dntpM5zGbSK2xZBBI6JAojrTRwH2WSTYTzeXR-Hp900YS4F6bVhxgW3HBkmPkaBzguSB_9Ug3NmwY1CF1kQDG_SkYMfAmcfHR8mp5N--k4AIxuthhFAbN54Lu9cqPjHe1eYefLNMJGvvwd7NxFseYzlN78Dy9wi9zoMCh93TrNbXJFl3fIftKnfrtLvi23ZksVzUpFFyZTDkyKNMEIdbO8RquC8h9fv49nKd1U1HuFB-m2xj0ymJM6K6uVObmtOTaFX1YFWlAMGoVrrde6xrpqrRU9qepq29CZBi5AP1xeKN3cI2fp22Uytrt0DXbOWciBiQZSA_vyA62imCk_ArqkfQUAI3OKgueyiCS4DCAQ6QAqywNP-65ypadl5seRf0D2yqrUDwgNHAm0Pc6VG2dMSy4DXviFVrlihcdlZhG77yqRd1rmmFJjJVoVZk9g24qhbS3ycrBftyoef7R8YXp-MMvqTxj7FnLxcf5OLCankzfTMBLMIoe9a4hu2DcC9eyA8gGntcizoRo6D__CZKWGlkQbgNQBIAOL3G9dargZyjeCF4cW8Yzn_OVhRbJYJMPRw3856SnZHy9nUzF9P588ItexvA1vPCR7m3qrH5Nr-efNRVM_6cbVT6pbJVk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LjtMwFLWgRcCG9yMwgJEQbIgmD9tJlpASBrVTqumMZnZWHNvSiCqJkhYNOxZ8AN_Il-DrpEGVQEiIZeJrJ7GvnXOS63MRekH9qBB-SFwv94hLRKBdoZkwAxJHsZLKcB9pk01E83l8dpYs-mhC2AvT6UMMH9xgZtj1Gia4qqXe_6UaWrQtaBD6wIASehmNCWSSGaHx5Cg7mW2XY2Ywut1iFDPiUhb6W-VGL9jfbWHnzTSGTr74HezcRbH2NZTd_A8PcAvd6DEoftM5zW10SZV30LV0m_rtLvp2vLFbqnBeSry0mXLMoohTiFC3n9dwpTH98fX7wWGG1xUOXsNBtmlgjwzkpM7LamUrdyUTe_LLSoMFhqBR01ZdqwbKqlpJvKiaatPiQ2W4AP54cS5Vew-dZO-O0wO3T9fgFpRE1DBRJpRhXyFTMk6IDGNDl1QoDcDIPa1pIXQsjMsYBCI8g8oKFqjQl74IlMjDJA7vo1FZleohwswThrYnhfSTnChBBaM61EoWkuiAitxB7naoeNFrmUNKjRXvVJgDDn3Lh7510KvBvu5UPP5o-dKO_GCWN58g9i2i_HT-ni-nR9O3syjmxEF7W9fg_bRvOejZGcpnOK2Dng_FZvDgL0xeKtOTYGMgNTPIwEEPOpcaLgbyjYSFkYMC6zl_uVmeLpfpcPToXyo9Q1cXk4zPPsynj9F1ON1FN-6h0brZqCfoSvF5fd42T_tp9RP_CyTU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+and+selective+conversion+of+5-HMF+to+2%2C5-furandimethanol+and+2%2C5-dimethylfuran+over+copper-doped+porous+metal+oxides&rft.jtitle=ChemSusChem&rft.au=Kumalaputri%2C+Angela+J&rft.au=Bottari%2C+Giovanni&rft.au=Erne%2C+Petra+M&rft.au=Heeres%2C+Hero+J&rft.date=2014-08-01&rft.eissn=1864-564X&rft.volume=7&rft.issue=8&rft.spage=2266&rft_id=info:doi/10.1002%2Fcssc.201402095&rft_id=info%3Apmid%2F24924637&rft.externalDocID=24924637
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon