Tunable and Selective Conversion of 5-HMF to 2,5-Furandimethanol and 2,5-Dimethylfuran over Copper-Doped Porous Metal Oxides
Tunable and selective hydrogenation of the platform chemical 5‐hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved with copper‐doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by...
Gespeichert in:
| Veröffentlicht in: | ChemSusChem Jg. 7; H. 8; S. 2266 - 2275 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Weinheim
WILEY-VCH Verlag
01.08.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 1864-5631, 1864-564X, 1864-564X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Tunable and selective hydrogenation of the platform chemical 5‐hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved with copper‐doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by introducing small amounts of ruthenium dopant into the previously reported Cu0.59Mg2.34Al1.00 structure. At a mild reaction temperature (100 °C), 2,5‐furandimethanol is obtained with excellent selectivity up to >99 %. Higher reaction temperatures (220 °C) favor selective deoxygenation to 2,5‐dimethylfuran and minor product 2,5‐dimethyltetrahydrofuran with a combined yield as high as 81 %. Notably, these high product yields are maintained at a substrate concentration up to 10 wt % and a low catalyst loading. The influence of different alcohol solvents on product selectivity is explored. Furthermore, reaction intermediates formed at different reaction temperatures are identified. The composition of these product mixtures provides mechanistic insight into the nature of the reduction pathways that influence product selectivity. The catalysts are characterized by elemental analysis, TEM, and BET techniques before and after the reaction. Catalyst recycling experiments are conducted in batch and in a continuous‐flow setup.
With a little help from Ru: Selective and tunable hydrogenation of 5‐hydroxymethylfurfural (HMF) with earth‐abundant, copper‐based porous metal oxides (Cu‐PMOs) is achieved. Addition of a small amount of ruthenium dopant enhances the combined selectivity to 2,5‐dimethylfuran (DMF) and 2,5‐dimethyltetrahydrofuran (DMTHF) under optimized conditions. |
|---|---|
| AbstractList | Tunable and selective hydrogenation of the platform chemical 5-hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved with copper-doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by introducing small amounts of ruthenium dopant into the previously reported Cu(0.59) Mg2.34 Al1.00 structure. At a mild reaction temperature (100 °C), 2,5-furandimethanol is obtained with excellent selectivity up to >99%. Higher reaction temperatures (220 °C) favor selective deoxygenation to 2,5-dimethylfuran and minor product 2,5-dimethyltetrahydrofuran with a combined yield as high as 81%. Notably, these high product yields are maintained at a substrate concentration up to 10 wt% and a low catalyst loading. The influence of different alcohol solvents on product selectivity is explored. Furthermore, reaction intermediates formed at different reaction temperatures are identified. The composition of these product mixtures provides mechanistic insight into the nature of the reduction pathways that influence product selectivity. The catalysts are characterized by elemental analysis, TEM, and BET techniques before and after the reaction. Catalyst recycling experiments are conducted in batch and in a continuous-flow setup.Tunable and selective hydrogenation of the platform chemical 5-hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved with copper-doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by introducing small amounts of ruthenium dopant into the previously reported Cu(0.59) Mg2.34 Al1.00 structure. At a mild reaction temperature (100 °C), 2,5-furandimethanol is obtained with excellent selectivity up to >99%. Higher reaction temperatures (220 °C) favor selective deoxygenation to 2,5-dimethylfuran and minor product 2,5-dimethyltetrahydrofuran with a combined yield as high as 81%. Notably, these high product yields are maintained at a substrate concentration up to 10 wt% and a low catalyst loading. The influence of different alcohol solvents on product selectivity is explored. Furthermore, reaction intermediates formed at different reaction temperatures are identified. The composition of these product mixtures provides mechanistic insight into the nature of the reduction pathways that influence product selectivity. The catalysts are characterized by elemental analysis, TEM, and BET techniques before and after the reaction. Catalyst recycling experiments are conducted in batch and in a continuous-flow setup. Tunable and selective hydrogenation of the platform chemical 5‐hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved with copper‐doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by introducing small amounts of ruthenium dopant into the previously reported Cu0.59Mg2.34Al1.00 structure. At a mild reaction temperature (100 °C), 2,5‐furandimethanol is obtained with excellent selectivity up to >99 %. Higher reaction temperatures (220 °C) favor selective deoxygenation to 2,5‐dimethylfuran and minor product 2,5‐dimethyltetrahydrofuran with a combined yield as high as 81 %. Notably, these high product yields are maintained at a substrate concentration up to 10 wt % and a low catalyst loading. The influence of different alcohol solvents on product selectivity is explored. Furthermore, reaction intermediates formed at different reaction temperatures are identified. The composition of these product mixtures provides mechanistic insight into the nature of the reduction pathways that influence product selectivity. The catalysts are characterized by elemental analysis, TEM, and BET techniques before and after the reaction. Catalyst recycling experiments are conducted in batch and in a continuous‐flow setup. With a little help from Ru: Selective and tunable hydrogenation of 5‐hydroxymethylfurfural (HMF) with earth‐abundant, copper‐based porous metal oxides (Cu‐PMOs) is achieved. Addition of a small amount of ruthenium dopant enhances the combined selectivity to 2,5‐dimethylfuran (DMF) and 2,5‐dimethyltetrahydrofuran (DMTHF) under optimized conditions. Tunable and selective hydrogenation of the platform chemical 5‐hydroxymethylfurfural into valuable C 6 building blocks and liquid fuel additives is achieved with copper‐doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by introducing small amounts of ruthenium dopant into the previously reported Cu 0.59 Mg 2.34 Al 1.00 structure. At a mild reaction temperature (100 °C), 2,5‐furandimethanol is obtained with excellent selectivity up to >99 %. Higher reaction temperatures (220 °C) favor selective deoxygenation to 2,5‐dimethylfuran and minor product 2,5‐dimethyltetrahydrofuran with a combined yield as high as 81 %. Notably, these high product yields are maintained at a substrate concentration up to 10 wt % and a low catalyst loading. The influence of different alcohol solvents on product selectivity is explored. Furthermore, reaction intermediates formed at different reaction temperatures are identified. The composition of these product mixtures provides mechanistic insight into the nature of the reduction pathways that influence product selectivity. The catalysts are characterized by elemental analysis, TEM, and BET techniques before and after the reaction. Catalyst recycling experiments are conducted in batch and in a continuous‐flow setup. Tunable and selective hydrogenation of the platform chemical 5-hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved with copper-doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by introducing small amounts of ruthenium dopant into the previously reported Cu(0.59) Mg2.34 Al1.00 structure. At a mild reaction temperature (100 °C), 2,5-furandimethanol is obtained with excellent selectivity up to >99%. Higher reaction temperatures (220 °C) favor selective deoxygenation to 2,5-dimethylfuran and minor product 2,5-dimethyltetrahydrofuran with a combined yield as high as 81%. Notably, these high product yields are maintained at a substrate concentration up to 10 wt% and a low catalyst loading. The influence of different alcohol solvents on product selectivity is explored. Furthermore, reaction intermediates formed at different reaction temperatures are identified. The composition of these product mixtures provides mechanistic insight into the nature of the reduction pathways that influence product selectivity. The catalysts are characterized by elemental analysis, TEM, and BET techniques before and after the reaction. Catalyst recycling experiments are conducted in batch and in a continuous-flow setup. Tunable and selective hydrogenation of the platform chemical 5-hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved with copper-doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by introducing small amounts of ruthenium dopant into the previously reported Cu0.59Mg2.34Al1.00 structure. At a mild reaction temperature (100°C), 2,5-furandimethanol is obtained with excellent selectivity up to >99%. Higher reaction temperatures (220°C) favor selective deoxygenation to 2,5-dimethylfuran and minor product 2,5-dimethyltetrahydrofuran with a combined yield as high as 81%. Notably, these high product yields are maintained at a substrate concentration up to 10wt% and a low catalyst loading. The influence of different alcohol solvents on product selectivity is explored. Furthermore, reaction intermediates formed at different reaction temperatures are identified. The composition of these product mixtures provides mechanistic insight into the nature of the reduction pathways that influence product selectivity. The catalysts are characterized by elemental analysis, TEM, and BET techniques before and after the reaction. Catalyst recycling experiments are conducted in batch and in a continuous-flow setup. [PUBLICATION ABSTRACT] |
| Author | Bottari, Giovanni Barta, Katalin Kumalaputri, Angela J. Heeres, Hero J. Erne, Petra M. |
| Author_xml | – sequence: 1 givenname: Angela J. surname: Kumalaputri fullname: Kumalaputri, Angela J. organization: Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) – sequence: 2 givenname: Giovanni surname: Bottari fullname: Bottari, Giovanni organization: Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) – sequence: 3 givenname: Petra M. surname: Erne fullname: Erne, Petra M. organization: Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) – sequence: 4 givenname: Hero J. surname: Heeres fullname: Heeres, Hero J. email: h.j.heeres@rug.nl organization: Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) – sequence: 5 givenname: Katalin surname: Barta fullname: Barta, Katalin email: k.barta@rug.nl organization: Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24924637$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1v1DAQhiNURD_gyhFZ4sKBLP7e5Agp26JuKWKL4GY5zkS4eONgJ6Ur8eNxuu0KVUKcbI2fZzya9zDb63wHWfac4BnBmL4xMZoZxYRjikvxKDsgheS5kPzb3u7OyH52GOMVxhKXUj7J9ikvKZdsfpD9vhw7XTtAumvQChyYwV4Dqnx3DSFa3yHfIpGfni_Q4BF9LfLFGBJr1zB81513t-JUP74tbVw7vSOf9NSl7yHkx76HBn3ywY8RncOgHbq4sQ3Ep9njVrsIz-7Oo-zL4v1ldZovL04-VG-XuRF8LnKOZQ1EciahKUresAIXElhDCNa4bYWp26KuwZSY1LikpZEUGGlITaHWrCzYUfZq27cP_ucIcVBrGw04pztIMykiBCNYFpgk9OUD9MqPoUvTTRQVIn3AE_XijhrrNTSqD3atw0bd7zUBfAuY4GMM0CpjBz2kfQ5BW6cIVlN8aopP7eJL2uyBdt_5n0K5FX5ZB5v_0Kparaq_3Xzr2jjAzc7V4YeSczYX6uvHE7U6-3z2bjkvFGd_ADdHusE |
| CitedBy_id | crossref_primary_10_1002_jctb_6373 crossref_primary_10_1016_j_apcata_2020_117985 crossref_primary_10_3390_polym15040829 crossref_primary_10_1002_cssc_202200186 crossref_primary_10_1016_j_apcatb_2016_07_004 crossref_primary_10_1039_D0SE00361A crossref_primary_10_1016_j_cattod_2020_03_016 crossref_primary_10_1016_j_apcata_2017_07_004 crossref_primary_10_1002_cplu_202300643 crossref_primary_10_1016_j_molliq_2023_123354 crossref_primary_10_1016_j_molcata_2016_11_023 crossref_primary_10_1039_C8CY02017E crossref_primary_10_1021_jacs_4c11551 crossref_primary_10_1002_cssc_201600681 crossref_primary_10_1016_j_apcatb_2023_122547 crossref_primary_10_1016_j_joei_2020_10_004 crossref_primary_10_1515_ijcre_2017_0197 crossref_primary_10_1039_D0CY01279C crossref_primary_10_1016_j_jssc_2018_11_003 crossref_primary_10_1002_ange_202500881 crossref_primary_10_1016_j_ccr_2015_02_004 crossref_primary_10_1002_cctc_201902028 crossref_primary_10_1016_j_fuel_2020_117524 crossref_primary_10_1002_cssc_201802126 crossref_primary_10_1039_D0SE00332H crossref_primary_10_1016_j_jechem_2022_10_005 crossref_primary_10_1039_C8CC02937G crossref_primary_10_1016_j_cattod_2025_115189 crossref_primary_10_1021_acscatal_5c01074 crossref_primary_10_1016_j_rser_2017_04_013 crossref_primary_10_1016_j_fuel_2020_119140 crossref_primary_10_1016_j_cej_2024_155867 crossref_primary_10_1002_ange_202418790 crossref_primary_10_1016_j_rser_2018_12_010 crossref_primary_10_1002_cctc_202101063 crossref_primary_10_1002_cssc_202200241 crossref_primary_10_1016_j_cattod_2016_02_019 crossref_primary_10_1002_cssc_201600060 crossref_primary_10_1016_j_rser_2024_114900 crossref_primary_10_1002_cssc_201501625 crossref_primary_10_1016_j_jiec_2021_04_057 crossref_primary_10_1016_j_apcata_2019_03_005 crossref_primary_10_1016_j_apcatb_2022_121790 crossref_primary_10_1007_s12209_021_00307_6 crossref_primary_10_1186_s40643_023_00676_x crossref_primary_10_1007_s10562_022_03919_2 crossref_primary_10_1016_j_mcat_2019_110722 crossref_primary_10_1016_j_rser_2017_02_042 crossref_primary_10_1016_j_apcata_2020_117892 crossref_primary_10_1039_D1CY02197D crossref_primary_10_1016_j_cjche_2021_08_004 crossref_primary_10_3390_molecules25204771 crossref_primary_10_1002_slct_202302365 crossref_primary_10_1016_j_jiec_2021_06_039 crossref_primary_10_3390_catal12080878 crossref_primary_10_1002_cctc_201500097 crossref_primary_10_1016_j_apcatb_2023_123622 crossref_primary_10_1007_s10853_020_05052_0 crossref_primary_10_1039_D5GC00924C crossref_primary_10_1002_cssc_202200503 crossref_primary_10_1016_j_fuproc_2020_106528 crossref_primary_10_1055_a_1807_3188 crossref_primary_10_1002_cssc_201601426 crossref_primary_10_1016_j_fuel_2020_119757 crossref_primary_10_1016_j_ultsonch_2017_01_028 crossref_primary_10_1007_s13399_022_02768_8 crossref_primary_10_1002_anie_202500881 crossref_primary_10_1002_cssc_201403453 crossref_primary_10_1016_j_ces_2015_12_002 crossref_primary_10_1002_ajoc_201800307 crossref_primary_10_1016_j_indcrop_2020_113091 crossref_primary_10_1002_cssc_201700086 crossref_primary_10_1002_cssc_202102041 crossref_primary_10_1002_cssc_201600122 crossref_primary_10_1002_ejoc_201800149 crossref_primary_10_1016_j_apcatb_2017_05_039 crossref_primary_10_1002_cssc_202200412 crossref_primary_10_1080_15567036_2020_1869868 crossref_primary_10_1016_j_apcata_2022_118527 crossref_primary_10_3390_catal12111484 crossref_primary_10_1002_jctb_6508 crossref_primary_10_1016_S1872_2067_21_63842_1 crossref_primary_10_1002_cctc_201701754 crossref_primary_10_3389_fchem_2019_00529 crossref_primary_10_1002_slct_201903256 crossref_primary_10_1007_s11705_025_2582_x crossref_primary_10_1016_j_ijbiomac_2020_09_258 crossref_primary_10_1002_slct_201701966 crossref_primary_10_1016_j_biombioe_2025_108131 crossref_primary_10_1139_cjc_2019_0374 crossref_primary_10_1016_j_catcom_2018_05_011 crossref_primary_10_1039_D5RA01002K crossref_primary_10_1002_cssc_201700105 crossref_primary_10_1002_cssc_202101889 crossref_primary_10_1007_s00214_022_02880_y crossref_primary_10_1016_j_fuel_2023_129622 crossref_primary_10_1063_5_0222092 crossref_primary_10_1016_j_mcat_2020_110966 crossref_primary_10_1016_j_cattod_2016_03_022 crossref_primary_10_1016_j_cattod_2023_01_028 crossref_primary_10_1016_j_jcat_2022_12_021 crossref_primary_10_1016_j_mcat_2020_111132 crossref_primary_10_1002_anie_202418790 crossref_primary_10_1016_j_chroma_2021_462145 crossref_primary_10_1016_j_ces_2019_03_011 crossref_primary_10_1016_j_biombioe_2020_105868 crossref_primary_10_1016_S1872_2067_17_62789_X crossref_primary_10_3390_molecules26226848 crossref_primary_10_1039_D3SE01096A crossref_primary_10_1016_j_fuel_2017_12_069 crossref_primary_10_1556_JFC_D_14_00037 crossref_primary_10_1002_aic_18047 crossref_primary_10_1016_j_ces_2017_07_045 crossref_primary_10_1007_s10562_023_04306_1 crossref_primary_10_1002_cite_202200091 |
| Cites_doi | 10.1039/C2RA22190J 10.1039/c3gc40727f 10.1016/j.molcata.2009.10.017 10.1016/j.apcata.2013.06.002 10.1002/cssc.201300414 10.1002/cssc.201300774 10.1038/nmat3872 10.1021/cs400616p 10.1002/anie.201102156 10.1016/j.molcata.2010.11.015 10.1002/cssc.200900137 10.1016/j.catcom.2010.09.003 10.1039/c3cc41526k 10.1016/j.apcata.2012.11.004 10.1039/C3GC41324A 10.1007/s10853-009-3670-x 10.1016/j.molcata.2003.11.046 10.1002/cssc.200900033 10.1039/c2gc35039d 10.1002/cssc.201000209 10.1002/cssc.201200072 10.1039/c3gc42145g 10.1039/C3GC41184B 10.1007/s11244-012-9839-6 10.1002/ange.201102156 10.1021/ja049181l 10.1016/0920-5861(91)80068-K 10.1016/j.jiec.2012.08.028 10.1002/pat.3147 10.1021/cs200456t 10.1021/cr300182k 10.1081/SCC-120026858 10.1038/nature05923 10.1055/s-2001-14595 10.1039/c2cs35188a 10.1016/j.cattod.2013.04.012 10.1016/j.apcata.2013.01.042 10.1016/j.tet.2008.04.086 10.1039/C1GC16074E 10.1002/cssc.201300017 10.1039/b922014c 10.1039/c0gc00181c 10.1006/abio.1996.0238 10.1039/c004343e 10.1039/c0gc00401d 10.1016/j.apcatb.2006.02.003 10.1002/cssc.201300288 10.1021/ja205436c 10.1016/j.apcatb.2013.04.026 10.1002/cssc.201200778 10.1887/0750308095 10.1039/c2gc35667h |
| ContentType | Journal Article |
| Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/cssc.201402095 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1864-564X |
| EndPage | 2275 |
| ExternalDocumentID | 3399170581 24924637 10_1002_cssc_201402095 CSSC201402095 ark_67375_WNG_SKRKBL78_4 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Indonesian Directorate General of Higher Education (DIKTI) – fundername: NSF funderid: CHE‐1240194 |
| GroupedDBID | --- 05W 0R~ 1OC 29B 31~ 33P 4.4 5GY 5VS 66C 77Q 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADKYN ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI BSCLL CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MY~ O9- OIG P2W PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR XV2 ZZTAW ~S- AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c5475-406be16436ed894d38086e3d110a0ff5cbf8bbec901b0929c62e31d1b2eba3983 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 176 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340519500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5631 1864-564X |
| IngestDate | Thu Oct 02 05:43:04 EDT 2025 Sat Nov 29 14:27:50 EST 2025 Mon Jul 21 05:57:09 EDT 2025 Tue Nov 18 22:18:19 EST 2025 Thu Oct 16 04:24:27 EDT 2025 Thu Aug 21 01:20:10 EDT 2025 Sun Sep 21 06:20:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | copper biomass biofuels heterocycles hydrogenation |
| Language | English |
| License | 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5475-406be16436ed894d38086e3d110a0ff5cbf8bbec901b0929c62e31d1b2eba3983 |
| Notes | ArticleID:CSSC201402095 istex:73BC9E1FA09F84C20B8FCB4BA898C06EF56E3D0E Indonesian Directorate General of Higher Education (DIKTI) NSF - No. CHE-1240194 ark:/67375/WNG-SKRKBL78-4 These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 24924637 |
| PQID | 1552550924 |
| PQPubID | 986333 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1553106801 proquest_journals_1552550924 pubmed_primary_24924637 crossref_citationtrail_10_1002_cssc_201402095 crossref_primary_10_1002_cssc_201402095 wiley_primary_10_1002_cssc_201402095_CSSC201402095 istex_primary_ark_67375_WNG_SKRKBL78_4 |
| PublicationCentury | 2000 |
| PublicationDate | August 2014 |
| PublicationDateYYYYMMDD | 2014-08-01 |
| PublicationDate_xml | – month: 08 year: 2014 text: August 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany |
| PublicationTitle | ChemSusChem |
| PublicationTitleAlternate | ChemSusChem |
| PublicationYear | 2014 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
| References | P. L Gai, E. D Boyes, Electron Microscopy in Heterogeneous Catalysis, CRC Press, Boca Raton, 2003, p. 180 Y. Nakagawa, M. Tamura, K. Tomishige, ACS Catal. 2013, 3, 2655-2668. M. Chidambaram, A. T. Bell, Green Chem. 2010, 12, 1253-1262. T. S. Hansen, K. Barta, P. T. Anastas, P. C. Ford, A. Riisager, Green Chem. 2012, 14, 2457-2461. T. Buntara, S. Noel, P. Huat Phua, I. Melián-Cabrera, J. G. de Vries, H. J. Heeres, Top. Catal. 2012, 55, 612-619 J. Ohyama, A. Esaki, Y. Yamamoto, S. Arai, A. Satsuma, RSC Adv. 2013, 3, 1033-1036. N. R. Janga, H.-R. Kimb, C. T. Houc, B. Soo Kim, Polym. Adv. Technol. 2013, 24, 814-818 F. Cavani, F. Trifiró, A. Vaccari, Catal. Today 1991, 11, 173-301. M. Chatterjee, T. Ishizaka, H. Kawanami, Green Chem. 2014, 16, 1543-1551. K. Motokura, D. Nishimura, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 2004, 126, 5662-5663 B. M. Nagaraja, V. Siva Kumar, V. Shashikala, A. H. Padmasri, S. Sreevardhan Reddy, B. D. Raju, K. S. Rama Rao, J. Mol. Catal. A 2004, 223, 339-345. S. K. Sharma, P. A. Parikh, R. V. Jasra, J. Mol. Catal. A 2010, 317, 27-33 D. M. Alonso, S. G. Wettstein, J. A. Dumesic, Chem. Soc. Rev. 2012, 41, 8075-8098 S. K. Sharma, K. B. Sidhpuria, R. V. Jasra, J. Mol. Catal. A 2011, 335, 65-70. R. Alamillo, M. Tucker, M. Chia, Y. Pagán-Torres, J. Dumesic, Green Chem. 2012, 14, 1413-1419. H. B. Friedrich, F. Khan, N. Singh, M. van Staden, Synlett 2001, 0869-0871. O. Casanova, S. Iborra, A. Corma, ChemSusChem 2009, 2, 1138-1144 Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic, Nature 2007, 447, 982-986. L. Cottier, G. Descotes, Y. Soro, Synth. Commun. 2003, 33, 4285-4295. Q. Jiao, H. Liu, Y. Zhao, Z. Zhang, J. Mater. Sci. 2009, 44, 4422-4428. G.-H. Wang, J. Hilgert, F. H. Richter, F. Wang, H.-J. Bongard, B. Spliethoff, C. Weidenthaler, F. Schüth, Nat. Mater. 2014, 13, 293-300. J. Jae, W. Zheng, R. F. Lobo, D. G. Vlachos, ChemSusChem 2013, 6, 1158-1162. J. J. Bozell, G. R. Petersen, Green Chem. 2010, 12, 539-554. A. Takagaki, M. Takahashi, S. Nishimura, K. Ebitani, ACS Catal. 2011, 1, 1562-1565. M. Tamura, K. Tokonami, Y. Nakagawa, K. Tomishige, Chem. Commun. 2013, 49, 7034-7036. T. Thananatthanachon, T. Rauchfuss, ChemSusChem 2010, 3, 1139-1141. M. Dixit, M. Mishra, P. A. Joshi, D. O. Shah, J. Ind. Eng. Chem. 2013, 19, 458-468. T. S. Hansen, I. Sadaba, E. J. Garcia-Suarez, A. Riisager, Appl. Catal. A 2013, 456, 44-50 Y. Zu, P. Yang, J. Wang, X. Liu, J. Ren, G. Lu, Y. Wang, Appl. Catal. B 2014, 146, 244-248. A. Martínez-Arias, A. B. Hungría, G. Munuera, D. Gamarra, Appl. Catal. B 2006, 65, 207-216. V. V. Ordomsky, J. van der Schaaf, J. C. Schouten, T. A. Nijhuis, ChemSusChem 2013, 6, 1697-1707 T. Okano, K. Qiao, Q. Bao, D. Tomida, H. Hagiwara, C. Yokoyama, Appl. Catal. A 2013, 451, 1-5. Y. Nakagawa, K. Tomishige, Catal. Commun. 2010, 12, 154-156. H. Ait Rass, N. Essayem, M. Besson, Green Chem. 2013, 15, 2240-2251 S. Goswami, S. Dey, S. Jana, Tetrahedron 2008, 64, 6358-6363. K. Barta, T. D. Matson, M. L. Fettig, S. L. Scott, A. V. Iretskii, P. C. Ford, Green Chem. 2010, 12, 1640-1647 G. S. Macala, T. D. Matson, C. L. Johnson, R. S. Lewis, A. V. Iretskii, P. C. Ford, ChemSusChem 2009, 2, 215-217. P. Kuzmič, Anal. Biochem. 1996, 237, 260-273. K. Pupovac, R. Palkovits, ChemSusChem 2013, 6, 2103-2110 R.-J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries, Chem. Rev. 2013, 113, 1499-1597 B. Saha, M. M. Abu-Omar, Green Chem. 2014, 16, 24-38 N.-T. Le, P. Lakshmanan, K. Cho, Y. Han, H. Kim, Appl. Catal. A 2013, 464-465, 305-312 T. Buntara, I. Melian-Cabrera, Q. Tan, J. L. G. Fierro, M. Neurock, J. G. de Vries, H. J. Heeres, Catal. Today 2013, 210, 106-116 S. E. Davis, B. N. Zope, R. J. Davis, Green Chem. 2012, 14, 143-147 A. A. Rosatella, S. P. Simeonov, R. F. M. Fradea, C. A. M. Afonso, Green Chem. 2011, 13, 754-793. K. Barta, G. Warner, E. S. Beach, P. T. Anastas, Green Chem. 2014, 16, 191-196. Angew. Chem. 2011, 123, 7221-7225. A. Villa, M. Schiavoni, S. Campisi, G. M. Veith, L. Prati, ChemSusChem 2013, 6, 609-612 T. D. Matson, K. Barta, A. V. Iretskii, P. C. Ford, J. Am. Chem. Soc. 2011, 133, 14090-14097 D. Scholz, C. Aellig, I. Hermans, ChemSusChem 2014, 7, 268-275. V. V. Ordomsky, J. van der Schaaf, J. C. Schouten, T. A. Nijhuis, ChemSusChem 2012, 5, 1812-1819 T. Buntara, S. Noel, P. Huat Phua, I. Melián-Cabrera, J. G. de Vries, H. J. Heeres, Angew. Chem. Int. Ed. 2011, 50, 7083-7087 2010; 12 2011; 335 2009; 44 2013; 3 2004; 126 2011; 1 2013; 49 2007; 447 2004; 223 2013 2013 2013 2011 2013; 24 1991; 11 2011; 13 2003 2012; 14 2013; 6 2012; 55 2011; 133 2003; 33 2013; 19 2013; 15 2001 2010; 317 2006; 65 2013; 456 2014; 16 2013; 210 1963 2013; 113 2014; 13 2011 2011; 50 123 2013; 451 2008; 64 2013; 464–465 2010; 3 2009; 2 2014; 7 2012; 5 2012; 41 2014; 146 1996; 237 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_15_3 e_1_2_6_15_4 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_62_2 e_1_2_6_64_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_1_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_61_2 e_1_2_6_63_2 e_1_2_6_42_2 e_1_2_6_40_3 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_65_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
| References_xml | – reference: S. Goswami, S. Dey, S. Jana, Tetrahedron 2008, 64, 6358-6363. – reference: S. E. Davis, B. N. Zope, R. J. Davis, Green Chem. 2012, 14, 143-147; – reference: V. V. Ordomsky, J. van der Schaaf, J. C. Schouten, T. A. Nijhuis, ChemSusChem 2012, 5, 1812-1819; – reference: S. K. Sharma, P. A. Parikh, R. V. Jasra, J. Mol. Catal. A 2010, 317, 27-33; – reference: O. Casanova, S. Iborra, A. Corma, ChemSusChem 2009, 2, 1138-1144; – reference: G.-H. Wang, J. Hilgert, F. H. Richter, F. Wang, H.-J. Bongard, B. Spliethoff, C. Weidenthaler, F. Schüth, Nat. Mater. 2014, 13, 293-300. – reference: T. Buntara, S. Noel, P. Huat Phua, I. Melián-Cabrera, J. G. de Vries, H. J. Heeres, Angew. Chem. Int. Ed. 2011, 50, 7083-7087; – reference: G. S. Macala, T. D. Matson, C. L. Johnson, R. S. Lewis, A. V. Iretskii, P. C. Ford, ChemSusChem 2009, 2, 215-217. – reference: N. R. Janga, H.-R. Kimb, C. T. Houc, B. Soo Kim, Polym. Adv. Technol. 2013, 24, 814-818; – reference: V. V. Ordomsky, J. van der Schaaf, J. C. Schouten, T. A. Nijhuis, ChemSusChem 2013, 6, 1697-1707; – reference: A. Villa, M. Schiavoni, S. Campisi, G. M. Veith, L. Prati, ChemSusChem 2013, 6, 609-612; – reference: Y. Nakagawa, M. Tamura, K. Tomishige, ACS Catal. 2013, 3, 2655-2668. – reference: J. Jae, W. Zheng, R. F. Lobo, D. G. Vlachos, ChemSusChem 2013, 6, 1158-1162. – reference: Angew. Chem. 2011, 123, 7221-7225. – reference: B. Saha, M. M. Abu-Omar, Green Chem. 2014, 16, 24-38; – reference: Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic, Nature 2007, 447, 982-986. – reference: J. Ohyama, A. Esaki, Y. Yamamoto, S. Arai, A. Satsuma, RSC Adv. 2013, 3, 1033-1036. – reference: Y. Nakagawa, K. Tomishige, Catal. Commun. 2010, 12, 154-156. – reference: H. Ait Rass, N. Essayem, M. Besson, Green Chem. 2013, 15, 2240-2251; – reference: T. S. Hansen, K. Barta, P. T. Anastas, P. C. Ford, A. Riisager, Green Chem. 2012, 14, 2457-2461. – reference: M. Chidambaram, A. T. Bell, Green Chem. 2010, 12, 1253-1262. – reference: A. Martínez-Arias, A. B. Hungría, G. Munuera, D. Gamarra, Appl. Catal. B 2006, 65, 207-216. – reference: P. Kuzmič, Anal. Biochem. 1996, 237, 260-273. – reference: P. L Gai, E. D Boyes, Electron Microscopy in Heterogeneous Catalysis, CRC Press, Boca Raton, 2003, p. 180; – reference: J. J. Bozell, G. R. Petersen, Green Chem. 2010, 12, 539-554. – reference: M. Chatterjee, T. Ishizaka, H. Kawanami, Green Chem. 2014, 16, 1543-1551. – reference: N.-T. Le, P. Lakshmanan, K. Cho, Y. Han, H. Kim, Appl. Catal. A 2013, 464-465, 305-312; – reference: M. Tamura, K. Tokonami, Y. Nakagawa, K. Tomishige, Chem. Commun. 2013, 49, 7034-7036. – reference: T. Okano, K. Qiao, Q. Bao, D. Tomida, H. Hagiwara, C. Yokoyama, Appl. Catal. A 2013, 451, 1-5. – reference: K. Barta, G. Warner, E. S. Beach, P. T. Anastas, Green Chem. 2014, 16, 191-196. – reference: Y. Zu, P. Yang, J. Wang, X. Liu, J. Ren, G. Lu, Y. Wang, Appl. Catal. B 2014, 146, 244-248. – reference: K. Pupovac, R. Palkovits, ChemSusChem 2013, 6, 2103-2110; – reference: T. D. Matson, K. Barta, A. V. Iretskii, P. C. Ford, J. Am. Chem. Soc. 2011, 133, 14090-14097; – reference: K. Barta, T. D. Matson, M. L. Fettig, S. L. Scott, A. V. Iretskii, P. C. Ford, Green Chem. 2010, 12, 1640-1647; – reference: F. Cavani, F. Trifiró, A. Vaccari, Catal. Today 1991, 11, 173-301. – reference: T. Thananatthanachon, T. Rauchfuss, ChemSusChem 2010, 3, 1139-1141. – reference: D. Scholz, C. Aellig, I. Hermans, ChemSusChem 2014, 7, 268-275. – reference: T. Buntara, I. Melian-Cabrera, Q. Tan, J. L. G. Fierro, M. Neurock, J. G. de Vries, H. J. Heeres, Catal. Today 2013, 210, 106-116; – reference: Q. Jiao, H. Liu, Y. Zhao, Z. Zhang, J. Mater. Sci. 2009, 44, 4422-4428. – reference: K. Motokura, D. Nishimura, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 2004, 126, 5662-5663; – reference: B. M. Nagaraja, V. Siva Kumar, V. Shashikala, A. H. Padmasri, S. Sreevardhan Reddy, B. D. Raju, K. S. Rama Rao, J. Mol. Catal. A 2004, 223, 339-345. – reference: D. M. Alonso, S. G. Wettstein, J. A. Dumesic, Chem. Soc. Rev. 2012, 41, 8075-8098; – reference: T. S. Hansen, I. Sadaba, E. J. Garcia-Suarez, A. Riisager, Appl. Catal. A 2013, 456, 44-50; – reference: L. Cottier, G. Descotes, Y. Soro, Synth. Commun. 2003, 33, 4285-4295. – reference: H. B. Friedrich, F. Khan, N. Singh, M. van Staden, Synlett 2001, 0869-0871. – reference: R.-J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries, Chem. Rev. 2013, 113, 1499-1597; – reference: A. A. Rosatella, S. P. Simeonov, R. F. M. Fradea, C. A. M. Afonso, Green Chem. 2011, 13, 754-793. – reference: R. Alamillo, M. Tucker, M. Chia, Y. Pagán-Torres, J. Dumesic, Green Chem. 2012, 14, 1413-1419. – reference: M. Dixit, M. Mishra, P. A. Joshi, D. O. Shah, J. Ind. Eng. Chem. 2013, 19, 458-468. – reference: T. Buntara, S. Noel, P. Huat Phua, I. Melián-Cabrera, J. G. de Vries, H. J. Heeres, Top. Catal. 2012, 55, 612-619; – reference: A. Takagaki, M. Takahashi, S. Nishimura, K. Ebitani, ACS Catal. 2011, 1, 1562-1565. – reference: S. K. Sharma, K. B. Sidhpuria, R. V. Jasra, J. Mol. Catal. A 2011, 335, 65-70. – year: 2011 – volume: 6 start-page: 1158 year: 2013 end-page: 1162 publication-title: ChemSusChem – volume: 223 start-page: 339 year: 2004 end-page: 345 publication-title: J. Mol. Catal. A – volume: 6 start-page: 1697 year: 2013 end-page: 1707 publication-title: ChemSusChem – volume: 464–465 start-page: 305 year: 2013 end-page: 312 publication-title: Appl. Catal. A – volume: 126 start-page: 5662 year: 2004 end-page: 5663 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 4285 year: 2003 end-page: 4295 publication-title: Synth. Commun. – volume: 6 start-page: 609 year: 2013 end-page: 612 publication-title: ChemSusChem – volume: 19 start-page: 458 year: 2013 end-page: 468 publication-title: J. Ind. Eng. Chem. – volume: 317 start-page: 27 year: 2010 end-page: 33 publication-title: J. Mol. Catal. A – volume: 451 start-page: 1 year: 2013 end-page: 5 publication-title: Appl. Catal. A – volume: 12 start-page: 1640 year: 2010 end-page: 1647 publication-title: Green Chem. – volume: 49 start-page: 7034 year: 2013 end-page: 7036 publication-title: Chem. Commun. – year: 2013 2013 2013 – volume: 13 start-page: 293 year: 2014 end-page: 300 publication-title: Nat. Mater. – volume: 24 start-page: 814 year: 2013 end-page: 818 publication-title: Polym. Adv. Technol. – volume: 44 start-page: 4422 year: 2009 end-page: 4428 publication-title: J. Mater. Sci. – volume: 210 start-page: 106 year: 2013 end-page: 116 publication-title: Catal. Today – volume: 133 start-page: 14090 year: 2011 end-page: 14097 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 2103 year: 2013 end-page: 2110 publication-title: ChemSusChem – volume: 13 start-page: 754 year: 2011 end-page: 793 publication-title: Green Chem. – volume: 14 start-page: 1413 year: 2012 end-page: 1419 publication-title: Green Chem. – volume: 12 start-page: 1253 year: 2010 end-page: 1262 publication-title: Green Chem. – volume: 15 start-page: 2240 year: 2013 end-page: 2251 publication-title: Green Chem. – volume: 2 start-page: 215 year: 2009 end-page: 217 publication-title: ChemSusChem – volume: 2 start-page: 1138 year: 2009 end-page: 1144 publication-title: ChemSusChem – volume: 50 123 start-page: 7083 7221 year: 2011 2011 end-page: 7087 7225 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 64 start-page: 6358 year: 2008 end-page: 6363 publication-title: Tetrahedron – volume: 456 start-page: 44 year: 2013 end-page: 50 publication-title: Appl. Catal. A – start-page: 180 year: 2003 – start-page: 0869 year: 2001 end-page: 0871 publication-title: Synlett – volume: 16 start-page: 24 year: 2014 end-page: 38 publication-title: Green Chem. – volume: 3 start-page: 1033 year: 2013 end-page: 1036 publication-title: RSC Adv. – volume: 16 start-page: 191 year: 2014 end-page: 196 publication-title: Green Chem. – volume: 41 start-page: 8075 year: 2012 end-page: 8098 publication-title: Chem. Soc. Rev. – volume: 335 start-page: 65 year: 2011 end-page: 70 publication-title: J. Mol. Catal. A – volume: 16 start-page: 1543 year: 2014 end-page: 1551 publication-title: Green Chem. – volume: 14 start-page: 2457 year: 2012 end-page: 2461 publication-title: Green Chem. – volume: 237 start-page: 260 year: 1996 end-page: 273 publication-title: Anal. Biochem. – volume: 65 start-page: 207 year: 2006 end-page: 216 publication-title: Appl. Catal. B – year: 1963 – volume: 12 start-page: 539 year: 2010 end-page: 554 publication-title: Green Chem. – volume: 5 start-page: 1812 year: 2012 end-page: 1819 publication-title: ChemSusChem – volume: 3 start-page: 2655 year: 2013 end-page: 2668 publication-title: ACS Catal. – volume: 55 start-page: 612 year: 2012 end-page: 619 publication-title: Top. Catal. – volume: 447 start-page: 982 year: 2007 end-page: 986 publication-title: Nature – volume: 1 start-page: 1562 year: 2011 end-page: 1565 publication-title: ACS Catal. – volume: 3 start-page: 1139 year: 2010 end-page: 1141 publication-title: ChemSusChem – volume: 11 start-page: 173 year: 1991 end-page: 301 publication-title: Catal. Today – volume: 14 start-page: 143 year: 2012 end-page: 147 publication-title: Green Chem. – volume: 113 start-page: 1499 year: 2013 end-page: 1597 publication-title: Chem. Rev. – volume: 12 start-page: 154 year: 2010 end-page: 156 publication-title: Catal. Commun. – volume: 7 start-page: 268 year: 2014 end-page: 275 publication-title: ChemSusChem – volume: 146 start-page: 244 year: 2014 end-page: 248 publication-title: Appl. Catal. B – ident: e_1_2_6_35_2 doi: 10.1039/C2RA22190J – ident: e_1_2_6_2_2 – ident: e_1_2_6_21_2 doi: 10.1039/c3gc40727f – ident: e_1_2_6_55_2 doi: 10.1016/j.molcata.2009.10.017 – ident: e_1_2_6_17_2 doi: 10.1016/j.apcata.2013.06.002 – ident: e_1_2_6_13_2 doi: 10.1002/cssc.201300414 – ident: e_1_2_6_46_2 doi: 10.1002/cssc.201300774 – ident: e_1_2_6_49_2 – ident: e_1_2_6_47_2 doi: 10.1038/nmat3872 – ident: e_1_2_6_27_2 doi: 10.1021/cs400616p – ident: e_1_2_6_15_4 – ident: e_1_2_6_40_2 doi: 10.1002/anie.201102156 – ident: e_1_2_6_56_2 doi: 10.1016/j.molcata.2010.11.015 – ident: e_1_2_6_12_2 – ident: e_1_2_6_24_2 doi: 10.1002/cssc.200900137 – ident: e_1_2_6_33_2 doi: 10.1016/j.catcom.2010.09.003 – ident: e_1_2_6_34_2 doi: 10.1039/c3cc41526k – ident: e_1_2_6_11_2 doi: 10.1016/j.apcata.2012.11.004 – ident: e_1_2_6_8_2 doi: 10.1039/C3GC41324A – ident: e_1_2_6_60_2 doi: 10.1007/s10853-009-3670-x – ident: e_1_2_6_61_2 doi: 10.1016/j.molcata.2003.11.046 – ident: e_1_2_6_63_2 doi: 10.1002/cssc.200900033 – ident: e_1_2_6_32_2 doi: 10.1039/c2gc35039d – ident: e_1_2_6_36_2 doi: 10.1002/cssc.201000209 – ident: e_1_2_6_10_2 doi: 10.1002/cssc.201200072 – ident: e_1_2_6_45_2 doi: 10.1039/c3gc42145g – ident: e_1_2_6_52_2 doi: 10.1039/C3GC41184B – ident: e_1_2_6_28_2 – ident: e_1_2_6_39_2 doi: 10.1007/s11244-012-9839-6 – ident: e_1_2_6_40_3 doi: 10.1002/ange.201102156 – ident: e_1_2_6_54_2 doi: 10.1021/ja049181l – ident: e_1_2_6_58_2 doi: 10.1016/0920-5861(91)80068-K – ident: e_1_2_6_25_2 – ident: e_1_2_6_16_2 – ident: e_1_2_6_62_2 doi: 10.1016/j.jiec.2012.08.028 – ident: e_1_2_6_29_2 doi: 10.1002/pat.3147 – ident: e_1_2_6_19_2 doi: 10.1021/cs200456t – ident: e_1_2_6_5_2 doi: 10.1021/cr300182k – ident: e_1_2_6_31_2 doi: 10.1081/SCC-120026858 – ident: e_1_2_6_41_2 doi: 10.1038/nature05923 – ident: e_1_2_6_57_2 doi: 10.1055/s-2001-14595 – ident: e_1_2_6_14_2 doi: 10.1039/c2cs35188a – ident: e_1_2_6_38_2 doi: 10.1016/j.cattod.2013.04.012 – ident: e_1_2_6_18_2 doi: 10.1016/j.apcata.2013.01.042 – ident: e_1_2_6_30_2 doi: 10.1016/j.tet.2008.04.086 – ident: e_1_2_6_15_2 – ident: e_1_2_6_23_2 doi: 10.1039/C1GC16074E – ident: e_1_2_6_9_2 doi: 10.1002/cssc.201300017 – ident: e_1_2_6_3_2 doi: 10.1039/b922014c – ident: e_1_2_6_20_2 – ident: e_1_2_6_51_2 doi: 10.1039/c0gc00181c – ident: e_1_2_6_26_2 – ident: e_1_2_6_59_2 doi: 10.1006/abio.1996.0238 – ident: e_1_2_6_42_2 doi: 10.1039/c004343e – ident: e_1_2_6_6_2 doi: 10.1039/c0gc00401d – ident: e_1_2_6_53_2 – ident: e_1_2_6_37_2 – ident: e_1_2_6_66_2 doi: 10.1016/j.apcatb.2006.02.003 – ident: e_1_2_6_43_2 doi: 10.1002/cssc.201300288 – ident: e_1_2_6_50_2 doi: 10.1021/ja205436c – ident: e_1_2_6_64_2 – ident: e_1_2_6_15_3 – ident: e_1_2_6_4_2 – ident: e_1_2_6_1_2 – ident: e_1_2_6_44_2 doi: 10.1016/j.apcatb.2013.04.026 – ident: e_1_2_6_7_2 – ident: e_1_2_6_22_2 doi: 10.1002/cssc.201200778 – ident: e_1_2_6_65_2 doi: 10.1887/0750308095 – ident: e_1_2_6_48_2 doi: 10.1039/c2gc35667h |
| SSID | ssj0060966 |
| Score | 2.5048969 |
| Snippet | Tunable and selective hydrogenation of the platform chemical 5‐hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved... Tunable and selective hydrogenation of the platform chemical 5‐hydroxymethylfurfural into valuable C 6 building blocks and liquid fuel additives is achieved... Tunable and selective hydrogenation of the platform chemical 5-hydroxymethylfurfural into valuable C6 building blocks and liquid fuel additives is achieved... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2266 |
| SubjectTerms | biofuels biomass Catalysis copper Copper - chemistry Furaldehyde - analogs & derivatives Furaldehyde - chemistry Furans - chemistry heterocycles hydrogenation Oxides - chemistry Porosity Pressure Ruthenium - chemistry Solvents - chemistry Temperature |
| Title | Tunable and Selective Conversion of 5-HMF to 2,5-Furandimethanol and 2,5-Dimethylfuran over Copper-Doped Porous Metal Oxides |
| URI | https://api.istex.fr/ark:/67375/WNG-SKRKBL78-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201402095 https://www.ncbi.nlm.nih.gov/pubmed/24924637 https://www.proquest.com/docview/1552550924 https://www.proquest.com/docview/1553106801 |
| Volume | 7 |
| WOSCitedRecordID | wos000340519500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1864-564X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060966 issn: 1864-5631 databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2iM0iwKc9CoFRGQrAhah62kywhJVRqO1SdVszOimNHqhglo2SmKjsWfADfyJdw7WQCI4GQYBfHNw_Z1845zvW5AC-YHxXSD6nr5R51qQxKV5ZcYofEUayVRu6jbLKJaDKJZ7Pk9Jdd_J0-xLDgZkaGna_NAM9lu_9TNLRoWyNB6BsClLAtGAfovGwE44Oz7OJ4PRtzhOh2h1HMqct46K-FG71gf_MOGx-msWnj69-hzk0Qa79C2Z3_f_-7sN0jUPKmc5l7cENX9-FWuk789gC-nq_shiqSV4pMbZ4cnBJJauLT7eIaqUvCvn_5dniSkWVNgtemkK0as0PGZKTOq3puL-5qDuzJz_PSWBATMor3Wix0Y-rqhVbktG7qVUtONDIB8uH6Uun2IVxk787TQ7dP1uAWjEYMeSiXGrlXyLWKE6rCGMmSDhXCi9wrS1bIMpboMIg_pIeYrOCBDn3ly0DLPEzicAdGVV3px0C4J5G0J4Xyk5xqySRnZVhqVShaBkzmDrjrnhJFr2RuEmrMRafBHAjTtmJoWwdeDfaLTsPjj5YvbccPZnnzyUS-RUx8nLwX06Ozo7fHUSyoA7trzxD9oG-FUbNDwoeM1oHnQzV2nvkHk1caW9LYIKDmiAsceNR51PAwI95IeRg5EFjH-cvLinQ6TYfSk3-56CncNsddQOMujJbNSj-Dm8XV8rJt9mArmsV7_YD6ASqiIlE |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JjtQwELVgGmm4sA8EBjASggvRZLGzHCFDaNQLo-keMTcrjh1pRCtpJd1ouHHgA_hGvoQqZ0EtgZAQx9iVzS477znlV4Q8526YS9dntpM5zGbSK2xZBBI6JAojrTRwH2WSTYTzeXR-Hp900YS4F6bVhxgW3HBkmPkaBzguSB_9Ug3NmwY1CF1kQDG_SkYMfAmcfHR8mp5N--k4AIxuthhFAbN54Lu9cqPjHe1eYefLNMJGvvwd7NxFseYzlN78Dy9wi9zoMCh93TrNbXJFl3fIftKnfrtLvi23ZksVzUpFFyZTDkyKNMEIdbO8RquC8h9fv49nKd1U1HuFB-m2xj0ymJM6K6uVObmtOTaFX1YFWlAMGoVrrde6xrpqrRU9qepq29CZBi5AP1xeKN3cI2fp22Uytrt0DXbOWciBiQZSA_vyA62imCk_ArqkfQUAI3OKgueyiCS4DCAQ6QAqywNP-65ypadl5seRf0D2yqrUDwgNHAm0Pc6VG2dMSy4DXviFVrlihcdlZhG77yqRd1rmmFJjJVoVZk9g24qhbS3ycrBftyoef7R8YXp-MMvqTxj7FnLxcf5OLCankzfTMBLMIoe9a4hu2DcC9eyA8gGntcizoRo6D__CZKWGlkQbgNQBIAOL3G9dargZyjeCF4cW8Yzn_OVhRbJYJMPRw3856SnZHy9nUzF9P588ItexvA1vPCR7m3qrH5Nr-efNRVM_6cbVT6pbJVk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LjtMwFLWgRcCG9yMwgJEQbIgmD9tJlpASBrVTqumMZnZWHNvSiCqJkhYNOxZ8AN_Il-DrpEGVQEiIZeJrJ7GvnXOS63MRekH9qBB-SFwv94hLRKBdoZkwAxJHsZLKcB9pk01E83l8dpYs-mhC2AvT6UMMH9xgZtj1Gia4qqXe_6UaWrQtaBD6wIASehmNCWSSGaHx5Cg7mW2XY2Ywut1iFDPiUhb6W-VGL9jfbWHnzTSGTr74HezcRbH2NZTd_A8PcAvd6DEoftM5zW10SZV30LV0m_rtLvp2vLFbqnBeSry0mXLMoohTiFC3n9dwpTH98fX7wWGG1xUOXsNBtmlgjwzkpM7LamUrdyUTe_LLSoMFhqBR01ZdqwbKqlpJvKiaatPiQ2W4AP54cS5Vew-dZO-O0wO3T9fgFpRE1DBRJpRhXyFTMk6IDGNDl1QoDcDIPa1pIXQsjMsYBCI8g8oKFqjQl74IlMjDJA7vo1FZleohwswThrYnhfSTnChBBaM61EoWkuiAitxB7naoeNFrmUNKjRXvVJgDDn3Lh7510KvBvu5UPP5o-dKO_GCWN58g9i2i_HT-ni-nR9O3syjmxEF7W9fg_bRvOejZGcpnOK2Dng_FZvDgL0xeKtOTYGMgNTPIwEEPOpcaLgbyjYSFkYMC6zl_uVmeLpfpcPToXyo9Q1cXk4zPPsynj9F1ON1FN-6h0brZqCfoSvF5fd42T_tp9RP_CyTU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+and+selective+conversion+of+5-HMF+to+2%2C5-furandimethanol+and+2%2C5-dimethylfuran+over+copper-doped+porous+metal+oxides&rft.jtitle=ChemSusChem&rft.au=Kumalaputri%2C+Angela+J&rft.au=Bottari%2C+Giovanni&rft.au=Erne%2C+Petra+M&rft.au=Heeres%2C+Hero+J&rft.date=2014-08-01&rft.eissn=1864-564X&rft.volume=7&rft.issue=8&rft.spage=2266&rft_id=info:doi/10.1002%2Fcssc.201402095&rft_id=info%3Apmid%2F24924637&rft.externalDocID=24924637 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |