Gallium Oxide Nanorods: Novel, Template-Free Synthesis and High Catalytic Activity in Epoxidation Reactions
Gallium oxide nanorods with unprecedented small dimensions (20–80 nm length and 3–5 nm width) were prepared using a novel, template‐free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark...
Saved in:
| Published in: | Angewandte Chemie International Edition Vol. 53; no. 6; pp. 1585 - 1589 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
WILEY-VCH Verlag
03.02.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Edition: | International ed. in English |
| Subjects: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Gallium oxide nanorods with unprecedented small dimensions (20–80 nm length and 3–5 nm width) were prepared using a novel, template‐free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark microporous titanosilicate TS‐1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites.
Selective epoxidation: Gallium oxide nanorods with unprecedented small dimensions (20–80 nm length and 3–5 nm width) were prepared using a novel, template‐free synthesis method. The nanorods are much superior to conventional gallium oxide both in terms of specific surface area and number of acid sites and display excellent performance as epoxidation catalyst with H2O2 as the oxidant (see picture). |
|---|---|
| AbstractList | Gallium oxide nanorods with unprecedented small dimensions (20–80 nm length and 3–5 nm width) were prepared using a novel, template‐free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H
2
O
2
, rivaling the industrial benchmark microporous titanosilicate TS‐1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites. Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites. [PUBLICATION ABSTRACT] Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H sub(2)O sub(2), rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites. Selective epoxidation: Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. The nanorods are much superior to conventional gallium oxide both in terms of specific surface area and number of acid sites and display excellent performance as epoxidation catalyst with H sub(2)O sub(2) as the oxidant (see picture). Gallium oxide nanorods with unprecedented small dimensions (20-80 nm length and 3-5 nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2 O2 , rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites. Gallium oxide nanorods with unprecedented small dimensions (20-80 nm length and 3-5 nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2 O2 , rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites.Gallium oxide nanorods with unprecedented small dimensions (20-80 nm length and 3-5 nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2 O2 , rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites. Gallium oxide nanorods with unprecedented small dimensions (20–80 nm length and 3–5 nm width) were prepared using a novel, template‐free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark microporous titanosilicate TS‐1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites. Selective epoxidation: Gallium oxide nanorods with unprecedented small dimensions (20–80 nm length and 3–5 nm width) were prepared using a novel, template‐free synthesis method. The nanorods are much superior to conventional gallium oxide both in terms of specific surface area and number of acid sites and display excellent performance as epoxidation catalyst with H2O2 as the oxidant (see picture). |
| Author | Li, Li Javon, Elsa Lueangchaichaweng, Warunee Van Tendeloo, Gustaaf Fiorilli, Sonia Martens, Johan A. Jacobs, Pierre A. Pescarmona, Paolo P. Parres-Esclapez, Sonia Lin, Kaifeng Brooks, Neil R. Kirschhock, Christine E. A. Gobechiya, Elena Bals, Sara |
| Author_xml | – sequence: 1 givenname: Warunee surname: Lueangchaichaweng fullname: Lueangchaichaweng, Warunee organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium) – sequence: 2 givenname: Neil R. surname: Brooks fullname: Brooks, Neil R. organization: Department of Chemistry, University of Leuven, Celestijnenlaan 200F, Heverlee, 3001 (Belgium) – sequence: 3 givenname: Sonia surname: Fiorilli fullname: Fiorilli, Sonia organization: DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 (Italy) – sequence: 4 givenname: Elena surname: Gobechiya fullname: Gobechiya, Elena organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium) – sequence: 5 givenname: Kaifeng surname: Lin fullname: Lin, Kaifeng organization: Natural Science Research Centre, Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology box-3026, 150080 Harbin (China) – sequence: 6 givenname: Li surname: Li fullname: Li, Li organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium) – sequence: 7 givenname: Sonia surname: Parres-Esclapez fullname: Parres-Esclapez, Sonia organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium) – sequence: 8 givenname: Elsa surname: Javon fullname: Javon, Elsa organization: EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium) – sequence: 9 givenname: Sara surname: Bals fullname: Bals, Sara organization: EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium) – sequence: 10 givenname: Gustaaf surname: Van Tendeloo fullname: Van Tendeloo, Gustaaf organization: EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium) – sequence: 11 givenname: Johan A. surname: Martens fullname: Martens, Johan A. organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium) – sequence: 12 givenname: Christine E. A. surname: Kirschhock fullname: Kirschhock, Christine E. A. organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium) – sequence: 13 givenname: Pierre A. surname: Jacobs fullname: Jacobs, Pierre A. organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium) – sequence: 14 givenname: Paolo P. surname: Pescarmona fullname: Pescarmona, Paolo P. email: paolo.pescarmona@biw.kuleuven.be organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24453173$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1P3DAURaOKqny02y4rS9100Uzt2I6T7qajYUBCQ0UpLC3HeSkGJx5sh5J_36QDqEKqWPktznnWu3c_2elcB0nynuAZwTj7ojoDswwTigtasFfJHuEZSakQdGecGaWpKDjZTfZDuB75osD5m2Q3Y4xTIuhecrNS1pq-Raf3pga0Vp3zrg5f0drdgf2MzqHdWBUhPfQA6MfQxSsIJiDV1ejI_LpCCxWVHaLRaK6juTNxQKZDy40b96loXIfOQOlpCG-T142yAd49vAfJz8Pl-eIoPTldHS_mJ6nmTLBU8TprNK8wVLTQDehc1aLBVABWIqdsOjanWVVkOS4VLyqa5aPCScNprSpOD5JP270b7257CFG2JmiwVnXg-iCJwLgsMR8DeBFlZUmyXNB8RD8-Q69d77vxkIlimBeMT39_eKD6qoVabrxplR_kY-IjwLaA9i4ED43UJv4NKnplrCRYTsXKqVj5VOyozZ5pj5v_K5Rb4bexMLxAy_n6ePmvm25dEyLcP7nK38gxCsHl5XolObm4_LY4-y4v6B-qdMNv |
| CODEN | ACIEAY |
| CitedBy_id | crossref_primary_10_1007_s00706_015_1628_z crossref_primary_10_1016_j_cattod_2014_02_055 crossref_primary_10_1016_j_ceramint_2018_07_173 crossref_primary_10_1002_cphc_201500105 crossref_primary_10_1016_j_jallcom_2019_02_113 crossref_primary_10_3390_catal14120933 crossref_primary_10_1002_celc_202100622 crossref_primary_10_1016_j_jcou_2021_101529 crossref_primary_10_1002_ejic_202300040 crossref_primary_10_1016_j_catcom_2016_05_013 crossref_primary_10_1016_j_chempr_2021_03_014 crossref_primary_10_1039_C7CC08554K crossref_primary_10_1002_ange_201511064 crossref_primary_10_1016_j_ceramint_2018_10_111 crossref_primary_10_1016_j_jcat_2015_09_017 crossref_primary_10_1002_slct_201902396 crossref_primary_10_1557_jmr_2015_132 crossref_primary_10_1080_10406638_2021_1957950 crossref_primary_10_1016_j_colsurfa_2019_05_070 crossref_primary_10_1016_j_jallcom_2015_02_065 crossref_primary_10_1002_cctc_201901378 crossref_primary_10_1002_cssc_201402334 crossref_primary_10_1016_j_mtchem_2020_100373 crossref_primary_10_1515_zkri_2015_1895 crossref_primary_10_1002_adma_202000896 crossref_primary_10_1039_C8RA07168C crossref_primary_10_1016_j_electacta_2017_03_047 crossref_primary_10_1016_j_jece_2024_114603 crossref_primary_10_1016_j_apsusc_2015_01_125 crossref_primary_10_1016_j_apsusc_2020_148100 crossref_primary_10_1002_anie_201511064 crossref_primary_10_1016_j_apsusc_2020_148303 crossref_primary_10_1016_j_catcom_2015_09_001 crossref_primary_10_3390_nano15131029 crossref_primary_10_1016_j_ceramint_2018_01_005 crossref_primary_10_1063_5_0038861 crossref_primary_10_1016_j_apcata_2018_12_017 |
| Cites_doi | 10.1039/a808366e 10.1016/j.polymer.2005.05.065 10.1039/c0cc02729d 10.1002/anie.201207554 10.1002/anie.200290032 10.1021/ja012477w 10.1016/j.apcata.2009.09.021 10.1002/chem.200700074 10.1021/cr020471z 10.1002/ange.201207554 10.1002/anie.200503821 10.1039/a800184g 10.1002/anie.201000235 10.1021/jp050103 10.1088/0953-8984/23/40/404201 10.1016/S0926-860X(01)00693-7 10.1021/ja7100399 10.1023/A:1013897703249 10.1002/chem.201203359 10.1016/B978-0-444-53188-9.00001-8 10.1021/jp0038310 10.1002/ange.201000235 10.1016/j.jcat.2009.01.013 10.1016/j.jcat.2004.06.028 10.1016/S1387-1811(00)00240-7 10.1111/j.1151-2916.1991.tb04102.x 10.1016/j.apcata.2004.09.001 10.1021/ja993935s 10.1002/ange.200503821 10.1002/1521-3757(20020715)114:14<2554::AID-ANGE2554>3.0.CO;2-Q 10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K 10.1002/ange.200290031 10.1006/jcat.2000.2889 10.1021/ol006287m 10.1002/cssc.200900020 |
| ContentType | Journal Article |
| Copyright | Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL AAYXX CITATION NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 |
| DOI | 10.1002/anie.201308384 |
| DatabaseName | Istex CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
| DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | 1589 |
| ExternalDocumentID | 3202973171 24453173 10_1002_anie_201308384 ANIE201308384 ark_67375_WNG_51VWBCRP_V |
| Genre | shortCommunication Journal Article |
| GrantInformation_xml | – fundername: ERC funderid: 24691; 335078 – fundername: Prodex – fundername: START1 – fundername: Methusalem – fundername: IAP‐PAI |
| GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ABUFD ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEIGN AEIMD AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT ALUQN AAYXX CITATION O8X NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 |
| ID | FETCH-LOGICAL-c5474-a5d2fc5b0eb38cfec6ad7f037e0a76340130632b82609a58b3265d251f53dab53 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 65 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330558400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Fri Jul 11 07:20:44 EDT 2025 Sun Nov 09 12:58:22 EST 2025 Sat Nov 29 14:59:31 EST 2025 Mon Jul 21 05:54:56 EDT 2025 Sat Nov 29 04:11:02 EST 2025 Tue Nov 18 22:36:11 EST 2025 Wed Aug 20 07:26:11 EDT 2025 Tue Nov 11 03:32:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | gallium oxide epoxidation heterogeneous catalysis nanorods hydrogen peroxide |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5474-a5d2fc5b0eb38cfec6ad7f037e0a76340130632b82609a58b3265d251f53dab53 |
| Notes | Prodex ArticleID:ANIE201308384 ERC - No. 24691; No. 335078 This work was supported by START1, Methusalem, Prodex, IAP-PAI, and the ERC (grant number 24691-COUNTATOMS and grant number 335078-COLOURATOM) projects. The authors acknowledge Dr. K. Houthoofd, G. Vanbutsele, Dr. C. Klaysom, Prof. J. W. Seo, Dr. T. Korányi, and Prof. K. Binnemans for their support in the characterizations, and Dr. C. Özdilek for useful scientific discussions. Methusalem IAP-PAI istex:C2D7C264D44005C65DC00CABB3FD88B2EB6B9262 ark:/67375/WNG-51VWBCRP-V START1 This work was supported by START1, Methusalem, Prodex, IAP‐PAI, and the ERC (grant number 24691—COUNTATOMS and grant number 335078—COLOURATOM) projects. The authors acknowledge Dr. K. Houthoofd, G. Vanbutsele, Dr. C. Klaysom, Prof. J. W. Seo, Dr. T. Korányi, and Prof. K. Binnemans for their support in the characterizations, and Dr. C. Özdilek for useful scientific discussions. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 24453173 |
| PQID | 1494058455 |
| PQPubID | 946352 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_1700990517 proquest_miscellaneous_1499126736 proquest_journals_1494058455 pubmed_primary_24453173 crossref_citationtrail_10_1002_anie_201308384 crossref_primary_10_1002_anie_201308384 wiley_primary_10_1002_anie_201308384_ANIE201308384 istex_primary_ark_67375_WNG_51VWBCRP_V |
| PublicationCentury | 2000 |
| PublicationDate | February 3, 2014 |
| PublicationDateYYYYMMDD | 2014-02-03 |
| PublicationDate_xml | – month: 02 year: 2014 text: February 3, 2014 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAlternate | Angew. Chem. Int. Ed |
| PublicationYear | 2014 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
| References | P. A. Buining, C. Pathmamanoharan, J. B. H. Jansen, H. N. W. Lekkerkerker, J. Am. Ceram. Soc. 1991, 74, 1303. D. Tunega, H. Pašalić, M. Gerzabek, H. Lischka, J. Phys. Condens. Matter 2011, 23, 404201. Angew. Chem. Int. Ed. 2012, 51, 13089. X. Krokidis, P. Raybaud, A. E. Gobichon, B. Rebours, P. Euzen, H. Toulhoat, J. Phys. Chem. B 2001, 105, 5121. R. Rinaldi, U. Schuchardt, J. Catal. 2004, 227, 109 C. Otero Areán, A. L. Bellan, M. P. Mentruit, M. R. Delgado, G. T. Palomino, Microporous Mesoporous Mater. 2000, 40, 35. S. Bordiga, A. Damin, F. Bonino, G. Ricchiardi, C. Lamberti, A. Zecchina, Angew. Chem. 2002, 114, 4928 I. Arends, R. Sheldon, Top. Catal. 2002, 19, 133. A. Vimont, J. Lavalley, A. Sahibed-Dine, C. O. Areán, M. R. Delgado, M. Daturi, J. Phys. Chem. B 2005, 109, 9656 P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Inorganic chemistry,4th ed., Oxford University, Oxford, 2006, p. 695. G. R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. 2002, 114, 2554 Y. Jun, J. Choi, J. Cheon, Angew. Chem. 2006, 118, 3492 G. R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Angew. Chem. 2011, 123, 852 F. Cavani, J. H. Teles, ChemSusChem 2009, 2, 508 G. Stoica, M. Santiago, P. A. Jacobs, J. Pérez-Ramírez, P. P. Pescarmona, Appl. Catal. A 2009, 371, 43. Angew. Chem. Int. Ed. 2002, 41, 4734 K. Lin, P. P. Pescarmona, K. Houthoofd, D. Liang, G. Van Tendeloo, P. A. Jacobs, J. Catal. 2009, 263, 75. H. Y. Playford, A. C. Hannon, E. R. Barney, R. I. Walton, Chem. Eur. J. 2013, 19, 2803. V. R. Choudhary, S. K. Jana, B. P. Kiran, J. Catal. 2000, 192, 257 W. Lin, H. Frei, J. Am. Chem. Soc. 2002, 124, 9292. K. Neimann, R. Neumann, Org. Lett. 2000, 2, 2861. C. Özdilek, K. Kazimierczak, S. J. Picken, Polymer 2005, 46, 6025-6034. X. Wang, Q. Xu, M. Li, S. Shen, X. Wang, Y. Wang, Z. Feng, J. Shi, H. Han, C. Li, Angew. Chem. 2012, 124, 13266 S. T. Oyama, Mechanisms in homogeneous and heterogeneous epoxidation catalysis, Elsevier Science, Amsterdam, 2008 H. Yao, D. E. Richardson, J. Am. Chem. Soc. 2000, 122, 3220. K. Nakagawa, M. Okamura, N. Ikenaga, T. Suzuki, T. Kobayashi, Chem. Commun. 1998, 9, 1025 V. Hulea, E. Dumitriu, Appl. Catal. A 2004, 277, 99. C. Aprile, E. Gobechiya, J. A. Martens, P. P. Pescarmona, Chem. Commun. 2010, 46, 7712. G. Busca, Phys. Chem. Chem. Phys. 1999, 1, 723. D. Mandelli, M. C. A. van Vliet, R. A. Sheldon, U. Schuchardt, Appl. Catal. A 2001, 219, 209 S. Bordiga, F. Bonino, A. Damin, C. Lamberti, Phys. Chem. Chem. Phys. 2008, 10, 4854. Angew. Chem. Int. Ed. 2002, 41, 2446 Angew. Chem. Int. Ed. 2011, 50, 826. W. Fan, R. G. Duan, T. Yokoi, P. Wu, Y. Kubota, T. Tatsumi, J. Am. Chem. Soc. 2008, 130, 10150. Angew. Chem. Int. Ed. 2006, 45, 3414. P. P. Pescarmona, K. P. F. Janssen, P. A. Jacobs, Chem. Eur. J. 2007, 13, 6562. B. S. Lane, K. Burgess, Chem. Rev. 2003, 103, 2457. 2002 2002; 114 41 2002; 19 1991; 74 2008 2006 2008; 10 2000; 2 2009; 371 2011 2011; 123 50 1999; 1 2004; 227 2007; 13 2006 2006; 118 45 2005; 46 2001; 105 2000; 192 2013; 19 2004; 277 2010; 46 2002; 124 2000; 40 2005; 109 2011; 23 2012 2012; 124 51 2000; 122 2009; 263 2003; 103 2009; 2 2001; 219 2008; 130 1998; 9 e_1_2_2_2_3 e_1_2_2_3_2 e_1_2_2_24_2 e_1_2_2_3_3 e_1_2_2_4_2 e_1_2_2_23_2 e_1_2_2_4_3 e_1_2_2_5_2 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_21_2 e_1_2_2_20_2 e_1_2_2_1_2 e_1_2_2_2_2 e_1_2_2_40_2 e_1_2_2_41_2 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_42_3 e_1_2_2_27_2 e_1_2_2_26_2 e_1_2_2_9_2 e_1_2_2_24_3 Bordiga S. (e_1_2_2_25_2) 2008; 10 Atkins P. (e_1_2_2_33_2) 2006 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_16_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_14_2 e_1_2_2_35_2 |
| References_xml | – reference: P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Inorganic chemistry,4th ed., Oxford University, Oxford, 2006, p. 695. – reference: W. Fan, R. G. Duan, T. Yokoi, P. Wu, Y. Kubota, T. Tatsumi, J. Am. Chem. Soc. 2008, 130, 10150. – reference: Angew. Chem. Int. Ed. 2002, 41, 4734; – reference: X. Wang, Q. Xu, M. Li, S. Shen, X. Wang, Y. Wang, Z. Feng, J. Shi, H. Han, C. Li, Angew. Chem. 2012, 124, 13266; – reference: V. R. Choudhary, S. K. Jana, B. P. Kiran, J. Catal. 2000, 192, 257; – reference: Angew. Chem. Int. Ed. 2006, 45, 3414. – reference: H. Y. Playford, A. C. Hannon, E. R. Barney, R. I. Walton, Chem. Eur. J. 2013, 19, 2803. – reference: S. T. Oyama, Mechanisms in homogeneous and heterogeneous epoxidation catalysis, Elsevier Science, Amsterdam, 2008; – reference: P. P. Pescarmona, K. P. F. Janssen, P. A. Jacobs, Chem. Eur. J. 2007, 13, 6562. – reference: C. Otero Areán, A. L. Bellan, M. P. Mentruit, M. R. Delgado, G. T. Palomino, Microporous Mesoporous Mater. 2000, 40, 35. – reference: V. Hulea, E. Dumitriu, Appl. Catal. A 2004, 277, 99. – reference: P. A. Buining, C. Pathmamanoharan, J. B. H. Jansen, H. N. W. Lekkerkerker, J. Am. Ceram. Soc. 1991, 74, 1303. – reference: R. Rinaldi, U. Schuchardt, J. Catal. 2004, 227, 109; – reference: B. S. Lane, K. Burgess, Chem. Rev. 2003, 103, 2457. – reference: D. Mandelli, M. C. A. van Vliet, R. A. Sheldon, U. Schuchardt, Appl. Catal. A 2001, 219, 209; – reference: G. R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Angew. Chem. 2011, 123, 852; – reference: S. Bordiga, F. Bonino, A. Damin, C. Lamberti, Phys. Chem. Chem. Phys. 2008, 10, 4854. – reference: Angew. Chem. Int. Ed. 2011, 50, 826. – reference: C. Aprile, E. Gobechiya, J. A. Martens, P. P. Pescarmona, Chem. Commun. 2010, 46, 7712. – reference: G. Busca, Phys. Chem. Chem. Phys. 1999, 1, 723. – reference: G. R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. 2002, 114, 2554; – reference: X. Krokidis, P. Raybaud, A. E. Gobichon, B. Rebours, P. Euzen, H. Toulhoat, J. Phys. Chem. B 2001, 105, 5121. – reference: K. Nakagawa, M. Okamura, N. Ikenaga, T. Suzuki, T. Kobayashi, Chem. Commun. 1998, 9, 1025; – reference: Angew. Chem. Int. Ed. 2002, 41, 2446; – reference: I. Arends, R. Sheldon, Top. Catal. 2002, 19, 133. – reference: C. Özdilek, K. Kazimierczak, S. J. Picken, Polymer 2005, 46, 6025-6034. – reference: W. Lin, H. Frei, J. Am. Chem. Soc. 2002, 124, 9292. – reference: K. Neimann, R. Neumann, Org. Lett. 2000, 2, 2861. – reference: A. Vimont, J. Lavalley, A. Sahibed-Dine, C. O. Areán, M. R. Delgado, M. Daturi, J. Phys. Chem. B 2005, 109, 9656; – reference: H. Yao, D. E. Richardson, J. Am. Chem. Soc. 2000, 122, 3220. – reference: K. Lin, P. P. Pescarmona, K. Houthoofd, D. Liang, G. Van Tendeloo, P. A. Jacobs, J. Catal. 2009, 263, 75. – reference: Angew. Chem. Int. Ed. 2012, 51, 13089. – reference: F. Cavani, J. H. Teles, ChemSusChem 2009, 2, 508; – reference: S. Bordiga, A. Damin, F. Bonino, G. Ricchiardi, C. Lamberti, A. Zecchina, Angew. Chem. 2002, 114, 4928; – reference: G. Stoica, M. Santiago, P. A. Jacobs, J. Pérez-Ramírez, P. P. Pescarmona, Appl. Catal. A 2009, 371, 43. – reference: D. Tunega, H. Pašalić, M. Gerzabek, H. Lischka, J. Phys. Condens. Matter 2011, 23, 404201. – reference: Y. Jun, J. Choi, J. Cheon, Angew. Chem. 2006, 118, 3492; – volume: 74 start-page: 1303 year: 1991 publication-title: J. Am. Ceram. Soc. – volume: 118 45 start-page: 3492 3414 year: 2006 2006 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 219 start-page: 209 year: 2001 publication-title: Appl. Catal. A – volume: 46 start-page: 7712 year: 2010 publication-title: Chem. Commun. – volume: 122 start-page: 3220 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 9656 year: 2005 publication-title: J. Phys. Chem. B – volume: 2 start-page: 2861 year: 2000 publication-title: Org. Lett. – volume: 1 start-page: 723 year: 1999 publication-title: Phys. Chem. Chem. Phys. – volume: 124 start-page: 9292 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 124 51 start-page: 13266 13089 year: 2012 2012 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 10 start-page: 4854 year: 2008 publication-title: Phys. Chem. Chem. Phys. – volume: 277 start-page: 99 year: 2004 publication-title: Appl. Catal. A – volume: 105 start-page: 5121 year: 2001 publication-title: J. Phys. Chem. B – volume: 192 start-page: 257 year: 2000 publication-title: J. Catal. – volume: 9 start-page: 1025 year: 1998 publication-title: Chem. Commun. – volume: 40 start-page: 35 year: 2000 publication-title: Microporous Mesoporous Mater. – volume: 114 41 start-page: 2554 2446 year: 2002 2002 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – year: 2008 – volume: 130 start-page: 10150 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 263 start-page: 75 year: 2009 publication-title: J. Catal. – volume: 19 start-page: 2803 year: 2013 publication-title: Chem. Eur. J. – volume: 123 50 start-page: 852 826 year: 2011 2011 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 13 start-page: 6562 year: 2007 publication-title: Chem. Eur. J. – volume: 23 start-page: 404201 year: 2011 publication-title: J. Phys. Condens. Matter – volume: 103 start-page: 2457 year: 2003 publication-title: Chem. Rev. – volume: 46 start-page: 6025 year: 2005 end-page: 6034 publication-title: Polymer – volume: 227 start-page: 109 year: 2004 publication-title: J. Catal. – volume: 2 start-page: 508 year: 2009 publication-title: ChemSusChem – volume: 371 start-page: 43 year: 2009 publication-title: Appl. Catal. A – volume: 114 41 start-page: 4928 4734 year: 2002 2002 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – start-page: 695 year: 2006 – volume: 19 start-page: 133 year: 2002 publication-title: Top. Catal. – ident: e_1_2_2_32_2 doi: 10.1039/a808366e – ident: e_1_2_2_31_2 doi: 10.1016/j.polymer.2005.05.065 – ident: e_1_2_2_9_2 doi: 10.1039/c0cc02729d – ident: e_1_2_2_11_2 – ident: e_1_2_2_36_2 – ident: e_1_2_2_42_3 doi: 10.1002/anie.201207554 – ident: e_1_2_2_28_2 – ident: e_1_2_2_24_3 doi: 10.1002/anie.200290032 – ident: e_1_2_2_26_2 doi: 10.1021/ja012477w – volume: 10 start-page: 4854 year: 2008 ident: e_1_2_2_25_2 publication-title: Phys. Chem. Chem. Phys. – ident: e_1_2_2_30_2 doi: 10.1016/j.apcata.2009.09.021 – ident: e_1_2_2_38_2 doi: 10.1002/chem.200700074 – ident: e_1_2_2_17_2 doi: 10.1021/cr020471z – ident: e_1_2_2_42_2 doi: 10.1002/ange.201207554 – ident: e_1_2_2_3_3 doi: 10.1002/anie.200503821 – ident: e_1_2_2_41_2 doi: 10.1039/a800184g – ident: e_1_2_2_39_2 – ident: e_1_2_2_4_3 doi: 10.1002/anie.201000235 – ident: e_1_2_2_10_2 – ident: e_1_2_2_8_2 doi: 10.1021/jp050103 – ident: e_1_2_2_14_2 doi: 10.1088/0953-8984/23/40/404201 – ident: e_1_2_2_37_2 doi: 10.1016/S0926-860X(01)00693-7 – ident: e_1_2_2_1_2 – ident: e_1_2_2_7_2 – ident: e_1_2_2_20_2 doi: 10.1021/ja7100399 – ident: e_1_2_2_27_2 doi: 10.1023/A:1013897703249 – ident: e_1_2_2_6_2 doi: 10.1002/chem.201203359 – start-page: 695 volume-title: Inorganic chemistry year: 2006 ident: e_1_2_2_33_2 – ident: e_1_2_2_16_2 doi: 10.1016/B978-0-444-53188-9.00001-8 – ident: e_1_2_2_13_2 doi: 10.1021/jp0038310 – ident: e_1_2_2_4_2 doi: 10.1002/ange.201000235 – ident: e_1_2_2_21_2 doi: 10.1016/j.jcat.2009.01.013 – ident: e_1_2_2_29_2 doi: 10.1016/j.jcat.2004.06.028 – ident: e_1_2_2_5_2 doi: 10.1016/S1387-1811(00)00240-7 – ident: e_1_2_2_12_2 doi: 10.1111/j.1151-2916.1991.tb04102.x – ident: e_1_2_2_22_2 doi: 10.1016/j.apcata.2004.09.001 – ident: e_1_2_2_35_2 doi: 10.1021/ja993935s – ident: e_1_2_2_3_2 doi: 10.1002/ange.200503821 – ident: e_1_2_2_2_2 doi: 10.1002/1521-3757(20020715)114:14<2554::AID-ANGE2554>3.0.CO;2-Q – ident: e_1_2_2_2_3 doi: 10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K – ident: e_1_2_2_24_2 doi: 10.1002/ange.200290031 – ident: e_1_2_2_40_2 doi: 10.1006/jcat.2000.2889 – ident: e_1_2_2_15_2 – ident: e_1_2_2_23_2 – ident: e_1_2_2_34_2 doi: 10.1021/ol006287m – ident: e_1_2_2_18_2 – ident: e_1_2_2_19_2 doi: 10.1002/cssc.200900020 |
| SSID | ssj0028806 |
| Score | 2.3834624 |
| Snippet | Gallium oxide nanorods with unprecedented small dimensions (20–80 nm length and 3–5 nm width) were prepared using a novel, template‐free synthesis method. This... Gallium oxide nanorods with unprecedented small dimensions (20-80 nm length and 3-5 nm width) were prepared using a novel, template-free synthesis method. This... Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. This... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1585 |
| SubjectTerms | Alkenes Catalysts Epoxidation Gallium gallium oxide Gallium oxides heterogeneous catalysis Hydrogen peroxide Nanorods Nanostructure Physicochemical properties R&D Research & development Specific surface Synthesis |
| Title | Gallium Oxide Nanorods: Novel, Template-Free Synthesis and High Catalytic Activity in Epoxidation Reactions |
| URI | https://api.istex.fr/ark:/67375/WNG-51VWBCRP-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201308384 https://www.ncbi.nlm.nih.gov/pubmed/24453173 https://www.proquest.com/docview/1494058455 https://www.proquest.com/docview/1499126736 https://www.proquest.com/docview/1700990517 |
| Volume | 53 |
| WOSCitedRecordID | wos000330558400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xLRJceC8ElpWREFyINrXj2OFWSrsgobAq--gtchJbikiTqtmudm_8BH4jv4Rx0gYq8ZDglihjx7Hn8Y0zngF4LjM0mxrd1EEijYsWT7pSG-qaINNUZCZkgWqKTYgokrNZePTTKf42P0S34WYlo9HXVsBVUh_8SBpqT2Db0CyGIEL6O9CnyLy8B_2308nJh87pQv5sTxgx5tpC9JvEjR492O5hyzD17Rxf_gp1boPYxgpNbv__-O_ArTUCJcOWZe7CNV3egxujTeG3-zA_VEWRr-bk42WeaYL6t0ItW78mUXWhi1fkWM8XBULUb1--TpZak09XJaLIOq-JKjNiA0fIyG4KXeELyDBty1OQvCTjRYU9NqxApro9UVE_gJPJ-Hj0zl1XZXBT7gvfVTyjJuWJh264TI1OA5UJ4zGhPYXKyvprCHtogn6LFyouEwSI2IQPDGeZSjjbhV5ZlfoREIRmGh9qlgaJL9Bshj4PDSIaSoXJAu6Au1mSOF2nLLeVM4q4TbZMYzuJcTeJDrzs6Bdtso7fUr5oVrgjU8vPNsRN8PgsOoz54PTszWh6FJ86sLdhgXgt3TW6SyHiXOlzHOGz7jGukv3ZokpdrRqacEBt1NwfaIQF6DZLmgMPW_bqBoSwC9WjYA7Qhov-8kHxMHo_7u4e_0ujJ3ATr_0mJJ3tQe98udJP4Xp6cZ7Xy33YETO5v5au7wQaIoU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgi7RceC8EFjASggvRpnYcJ9xKaXdXlLAq3cfNcmJbikiTqtmudm_8BH4jv4RxkgZV4iEhjonHjh_jmW-c8QxCL0MFalODmdpPQuOCxgvdUBvimkBpwpWJaCDrZBM8jsOzs-io9Sa0d2Ga-BDdgZvdGbW8thvcHkjv_Ywaaq9gW98sCigi9K-jng-8BEzeez8dH086qwsYtLliRKlrM9GvIzd6ZG-zhQ3N1LOTfPkr2LmJYms1NL79HwZwB91qMSgeNExzF13TxT20PVynfruP5vsyz7PVHH-6zJTGIIFLkLPVWxyXFzp_g2d6vsgBpH7_-m281Bp_vioAR1ZZhWWhsHUdwUN7LHQFH8CDtElQgbMCjxYltFgzA57q5k5F9QAdj0ez4YHb5mVwU-Zz35VMEZOyxANDPEyNTgOpuPEo154EcWUtNgA-JAHLxYskCxOAiFCF9Q2jSiaM7qCtoiz0I4QBnGko1DQNEp-D4ox8FhnANIRwowLmIHe9JiJtg5bb3Bm5aMItE2EnUXST6KDXHf2iCdfxW8pX9RJ3ZHL5xTq5cSZO433B-ien74bTI3HioN01D4h2f1dgMEWAdEOfQQ9fdMWwSvZ3iyx0uappoj6xfnN_oOEWots4aQ562PBX1yEAXiAgOXUQqdnoLwMSg_hw1D09_pdKz9H2wezjREwO4w9P0E1479cO6nQXbZ0vV_opupFenGfV8lm7yX4AkrYljQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagRSwX3guBBYyE4EK0qR3HCbfSbZcVq1CVfd0sJ7aliDSpmu1q98ZP4DfySxgnaVAlHhLimHjs-DGe-cYZzyD0KlSgNjWYqYMkNC5ovNANtSGuCZQmXJmIBrJONsHjODw7i6atN6G9C9PEh-gO3OzOqOW13eB6oczuz6ih9gq29c2igCJC_zrq-zaTTA_192aT48PO6gIGba4YUeraTPTryI0e2d1sYUMz9e0kX_4Kdm6i2FoNTe78hwHcRbdbDIqHDdPcQ9d0cR9tjdap3x6g-b7M82w1x58uM6UxSOAS5Gz1Dsflhc7f4iM9X-QAUr9__TZZao0_XxWAI6uswrJQ2LqO4JE9FrqCD-Bh2iSowFmBx4sSWqyZAc90c6eieoiOJ-Oj0Qe3zcvgpsznviuZIiZliQeGeJganQZSceNRrj0J4spabAB8SAKWixdJFiYAEaEKGxhGlUwY3Ua9oiz0Y4QBnGko1DQNEp-D4oxgEQ1gGkK4UQFzkLteE5G2Qctt7oxcNOGWibCTKLpJdNCbjn7RhOv4LeXreok7Mrn8Yp3cOBOn8b5gg5PT96PZVJw4aGfNA6Ld3xUYTBEg3dBn0MOXXTGskv3dIgtdrmqaaECs39wfaLiF6DZOmoMeNfzVdQiAFwhITh1Eajb6y4DEMD4Yd09P_qXSC3RzujcRhwfxx6foFrz2a_90uoN658uVfoZupBfnWbV83u6xH-UZJQg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gallium+oxide+nanorods%3A+novel%2C+template-free+synthesis+and+high+catalytic+activity+in+epoxidation+reactions&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lueangchaichaweng%2C+Warunee&rft.au=Brooks%2C+Neil+R&rft.au=Fiorilli%2C+Sonia&rft.au=Gobechiya%2C+Elena&rft.date=2014-02-03&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=53&rft.issue=6&rft.spage=1585&rft_id=info:doi/10.1002%2Fanie.201308384&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |