Gallium Oxide Nanorods: Novel, Template-Free Synthesis and High Catalytic Activity in Epoxidation Reactions

Gallium oxide nanorods with unprecedented small dimensions (20–80 nm length and 3–5 nm width) were prepared using a novel, template‐free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition Vol. 53; no. 6; pp. 1585 - 1589
Main Authors: Lueangchaichaweng, Warunee, Brooks, Neil R., Fiorilli, Sonia, Gobechiya, Elena, Lin, Kaifeng, Li, Li, Parres-Esclapez, Sonia, Javon, Elsa, Bals, Sara, Van Tendeloo, Gustaaf, Martens, Johan A., Kirschhock, Christine E. A., Jacobs, Pierre A., Pescarmona, Paolo P.
Format: Journal Article
Language:English
Published: Weinheim WILEY-VCH Verlag 03.02.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Edition:International ed. in English
Subjects:
ISSN:1433-7851, 1521-3773, 1521-3773
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Gallium oxide nanorods with unprecedented small dimensions (20–80 nm length and 3–5 nm width) were prepared using a novel, template‐free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark microporous titanosilicate TS‐1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites. Selective epoxidation: Gallium oxide nanorods with unprecedented small dimensions (20–80 nm length and 3–5 nm width) were prepared using a novel, template‐free synthesis method. The nanorods are much superior to conventional gallium oxide both in terms of specific surface area and number of acid sites and display excellent performance as epoxidation catalyst with H2O2 as the oxidant (see picture).
AbstractList Gallium oxide nanorods with unprecedented small dimensions (20–80 nm length and 3–5 nm width) were prepared using a novel, template‐free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H 2 O 2 , rivaling the industrial benchmark microporous titanosilicate TS‐1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites.
Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites. [PUBLICATION ABSTRACT]
Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H sub(2)O sub(2), rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites. Selective epoxidation: Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. The nanorods are much superior to conventional gallium oxide both in terms of specific surface area and number of acid sites and display excellent performance as epoxidation catalyst with H sub(2)O sub(2) as the oxidant (see picture).
Gallium oxide nanorods with unprecedented small dimensions (20-80 nm length and 3-5 nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2 O2 , rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites.
Gallium oxide nanorods with unprecedented small dimensions (20-80 nm length and 3-5 nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2 O2 , rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites.Gallium oxide nanorods with unprecedented small dimensions (20-80 nm length and 3-5 nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2 O2 , rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites.
Gallium oxide nanorods with unprecedented small dimensions (20–80 nm length and 3–5 nm width) were prepared using a novel, template‐free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark microporous titanosilicate TS‐1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites. Selective epoxidation: Gallium oxide nanorods with unprecedented small dimensions (20–80 nm length and 3–5 nm width) were prepared using a novel, template‐free synthesis method. The nanorods are much superior to conventional gallium oxide both in terms of specific surface area and number of acid sites and display excellent performance as epoxidation catalyst with H2O2 as the oxidant (see picture).
Author Li, Li
Javon, Elsa
Lueangchaichaweng, Warunee
Van Tendeloo, Gustaaf
Fiorilli, Sonia
Martens, Johan A.
Jacobs, Pierre A.
Pescarmona, Paolo P.
Parres-Esclapez, Sonia
Lin, Kaifeng
Brooks, Neil R.
Kirschhock, Christine E. A.
Gobechiya, Elena
Bals, Sara
Author_xml – sequence: 1
  givenname: Warunee
  surname: Lueangchaichaweng
  fullname: Lueangchaichaweng, Warunee
  organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium)
– sequence: 2
  givenname: Neil R.
  surname: Brooks
  fullname: Brooks, Neil R.
  organization: Department of Chemistry, University of Leuven, Celestijnenlaan 200F, Heverlee, 3001 (Belgium)
– sequence: 3
  givenname: Sonia
  surname: Fiorilli
  fullname: Fiorilli, Sonia
  organization: DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 (Italy)
– sequence: 4
  givenname: Elena
  surname: Gobechiya
  fullname: Gobechiya, Elena
  organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium)
– sequence: 5
  givenname: Kaifeng
  surname: Lin
  fullname: Lin, Kaifeng
  organization: Natural Science Research Centre, Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology box-3026, 150080 Harbin (China)
– sequence: 6
  givenname: Li
  surname: Li
  fullname: Li, Li
  organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium)
– sequence: 7
  givenname: Sonia
  surname: Parres-Esclapez
  fullname: Parres-Esclapez, Sonia
  organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium)
– sequence: 8
  givenname: Elsa
  surname: Javon
  fullname: Javon, Elsa
  organization: EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)
– sequence: 9
  givenname: Sara
  surname: Bals
  fullname: Bals, Sara
  organization: EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)
– sequence: 10
  givenname: Gustaaf
  surname: Van Tendeloo
  fullname: Van Tendeloo, Gustaaf
  organization: EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)
– sequence: 11
  givenname: Johan A.
  surname: Martens
  fullname: Martens, Johan A.
  organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium)
– sequence: 12
  givenname: Christine E. A.
  surname: Kirschhock
  fullname: Kirschhock, Christine E. A.
  organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium)
– sequence: 13
  givenname: Pierre A.
  surname: Jacobs
  fullname: Jacobs, Pierre A.
  organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium)
– sequence: 14
  givenname: Paolo P.
  surname: Pescarmona
  fullname: Pescarmona, Paolo P.
  email: paolo.pescarmona@biw.kuleuven.be
  organization: Centre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, Heverlee, 3001 (Belgium)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24453173$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAURaOKqny02y4rS9100Uzt2I6T7qajYUBCQ0UpLC3HeSkGJx5sh5J_36QDqEKqWPktznnWu3c_2elcB0nynuAZwTj7ojoDswwTigtasFfJHuEZSakQdGecGaWpKDjZTfZDuB75osD5m2Q3Y4xTIuhecrNS1pq-Raf3pga0Vp3zrg5f0drdgf2MzqHdWBUhPfQA6MfQxSsIJiDV1ejI_LpCCxWVHaLRaK6juTNxQKZDy40b96loXIfOQOlpCG-T142yAd49vAfJz8Pl-eIoPTldHS_mJ6nmTLBU8TprNK8wVLTQDehc1aLBVABWIqdsOjanWVVkOS4VLyqa5aPCScNprSpOD5JP270b7257CFG2JmiwVnXg-iCJwLgsMR8DeBFlZUmyXNB8RD8-Q69d77vxkIlimBeMT39_eKD6qoVabrxplR_kY-IjwLaA9i4ED43UJv4NKnplrCRYTsXKqVj5VOyozZ5pj5v_K5Rb4bexMLxAy_n6ePmvm25dEyLcP7nK38gxCsHl5XolObm4_LY4-y4v6B-qdMNv
CODEN ACIEAY
CitedBy_id crossref_primary_10_1007_s00706_015_1628_z
crossref_primary_10_1016_j_cattod_2014_02_055
crossref_primary_10_1016_j_ceramint_2018_07_173
crossref_primary_10_1002_cphc_201500105
crossref_primary_10_1016_j_jallcom_2019_02_113
crossref_primary_10_3390_catal14120933
crossref_primary_10_1002_celc_202100622
crossref_primary_10_1016_j_jcou_2021_101529
crossref_primary_10_1002_ejic_202300040
crossref_primary_10_1016_j_catcom_2016_05_013
crossref_primary_10_1016_j_chempr_2021_03_014
crossref_primary_10_1039_C7CC08554K
crossref_primary_10_1002_ange_201511064
crossref_primary_10_1016_j_ceramint_2018_10_111
crossref_primary_10_1016_j_jcat_2015_09_017
crossref_primary_10_1002_slct_201902396
crossref_primary_10_1557_jmr_2015_132
crossref_primary_10_1080_10406638_2021_1957950
crossref_primary_10_1016_j_colsurfa_2019_05_070
crossref_primary_10_1016_j_jallcom_2015_02_065
crossref_primary_10_1002_cctc_201901378
crossref_primary_10_1002_cssc_201402334
crossref_primary_10_1016_j_mtchem_2020_100373
crossref_primary_10_1515_zkri_2015_1895
crossref_primary_10_1002_adma_202000896
crossref_primary_10_1039_C8RA07168C
crossref_primary_10_1016_j_electacta_2017_03_047
crossref_primary_10_1016_j_jece_2024_114603
crossref_primary_10_1016_j_apsusc_2015_01_125
crossref_primary_10_1016_j_apsusc_2020_148100
crossref_primary_10_1002_anie_201511064
crossref_primary_10_1016_j_apsusc_2020_148303
crossref_primary_10_1016_j_catcom_2015_09_001
crossref_primary_10_3390_nano15131029
crossref_primary_10_1016_j_ceramint_2018_01_005
crossref_primary_10_1063_5_0038861
crossref_primary_10_1016_j_apcata_2018_12_017
Cites_doi 10.1039/a808366e
10.1016/j.polymer.2005.05.065
10.1039/c0cc02729d
10.1002/anie.201207554
10.1002/anie.200290032
10.1021/ja012477w
10.1016/j.apcata.2009.09.021
10.1002/chem.200700074
10.1021/cr020471z
10.1002/ange.201207554
10.1002/anie.200503821
10.1039/a800184g
10.1002/anie.201000235
10.1021/jp050103
10.1088/0953-8984/23/40/404201
10.1016/S0926-860X(01)00693-7
10.1021/ja7100399
10.1023/A:1013897703249
10.1002/chem.201203359
10.1016/B978-0-444-53188-9.00001-8
10.1021/jp0038310
10.1002/ange.201000235
10.1016/j.jcat.2009.01.013
10.1016/j.jcat.2004.06.028
10.1016/S1387-1811(00)00240-7
10.1111/j.1151-2916.1991.tb04102.x
10.1016/j.apcata.2004.09.001
10.1021/ja993935s
10.1002/ange.200503821
10.1002/1521-3757(20020715)114:14<2554::AID-ANGE2554>3.0.CO;2-Q
10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K
10.1002/ange.200290031
10.1006/jcat.2000.2889
10.1021/ol006287m
10.1002/cssc.200900020
ContentType Journal Article
Copyright Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
DOI 10.1002/anie.201308384
DatabaseName Istex
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
Materials Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 1589
ExternalDocumentID 3202973171
24453173
10_1002_anie_201308384
ANIE201308384
ark_67375_WNG_51VWBCRP_V
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: ERC
  funderid: 24691; 335078
– fundername: Prodex
– fundername: START1
– fundername: Methusalem
– fundername: IAP‐PAI
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ABUFD
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
ALUQN
AAYXX
CITATION
O8X
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c5474-a5d2fc5b0eb38cfec6ad7f037e0a76340130632b82609a58b3265d251f53dab53
IEDL.DBID DRFUL
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330558400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 07:20:44 EDT 2025
Sun Nov 09 12:58:22 EST 2025
Sat Nov 29 14:59:31 EST 2025
Mon Jul 21 05:54:56 EDT 2025
Sat Nov 29 04:11:02 EST 2025
Tue Nov 18 22:36:11 EST 2025
Wed Aug 20 07:26:11 EDT 2025
Tue Nov 11 03:32:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords gallium oxide
epoxidation
heterogeneous catalysis
nanorods
hydrogen peroxide
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5474-a5d2fc5b0eb38cfec6ad7f037e0a76340130632b82609a58b3265d251f53dab53
Notes Prodex
ArticleID:ANIE201308384
ERC - No. 24691; No. 335078
This work was supported by START1, Methusalem, Prodex, IAP-PAI, and the ERC (grant number 24691-COUNTATOMS and grant number 335078-COLOURATOM) projects. The authors acknowledge Dr. K. Houthoofd, G. Vanbutsele, Dr. C. Klaysom, Prof. J. W. Seo, Dr. T. Korányi, and Prof. K. Binnemans for their support in the characterizations, and Dr. C. Özdilek for useful scientific discussions.
Methusalem
IAP-PAI
istex:C2D7C264D44005C65DC00CABB3FD88B2EB6B9262
ark:/67375/WNG-51VWBCRP-V
START1
This work was supported by START1, Methusalem, Prodex, IAP‐PAI, and the ERC (grant number 24691—COUNTATOMS and grant number 335078—COLOURATOM) projects. The authors acknowledge Dr. K. Houthoofd, G. Vanbutsele, Dr. C. Klaysom, Prof. J. W. Seo, Dr. T. Korányi, and Prof. K. Binnemans for their support in the characterizations, and Dr. C. Özdilek for useful scientific discussions.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24453173
PQID 1494058455
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1700990517
proquest_miscellaneous_1499126736
proquest_journals_1494058455
pubmed_primary_24453173
crossref_citationtrail_10_1002_anie_201308384
crossref_primary_10_1002_anie_201308384
wiley_primary_10_1002_anie_201308384_ANIE201308384
istex_primary_ark_67375_WNG_51VWBCRP_V
PublicationCentury 2000
PublicationDate February 3, 2014
PublicationDateYYYYMMDD 2014-02-03
PublicationDate_xml – month: 02
  year: 2014
  text: February 3, 2014
  day: 03
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References P. A. Buining, C. Pathmamanoharan, J. B. H. Jansen, H. N. W. Lekkerkerker, J. Am. Ceram. Soc. 1991, 74, 1303.
D. Tunega, H. Pašalić, M. Gerzabek, H. Lischka, J. Phys. Condens. Matter 2011, 23, 404201.
Angew. Chem. Int. Ed. 2012, 51, 13089.
X. Krokidis, P. Raybaud, A. E. Gobichon, B. Rebours, P. Euzen, H. Toulhoat, J. Phys. Chem. B 2001, 105, 5121.
R. Rinaldi, U. Schuchardt, J. Catal. 2004, 227, 109
C. Otero Areán, A. L. Bellan, M. P. Mentruit, M. R. Delgado, G. T. Palomino, Microporous Mesoporous Mater. 2000, 40, 35.
S. Bordiga, A. Damin, F. Bonino, G. Ricchiardi, C. Lamberti, A. Zecchina, Angew. Chem. 2002, 114, 4928
I. Arends, R. Sheldon, Top. Catal. 2002, 19, 133.
A. Vimont, J. Lavalley, A. Sahibed-Dine, C. O. Areán, M. R. Delgado, M. Daturi, J. Phys. Chem. B 2005, 109, 9656
P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Inorganic chemistry,4th ed., Oxford University, Oxford, 2006, p. 695.
G. R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. 2002, 114, 2554
Y. Jun, J. Choi, J. Cheon, Angew. Chem. 2006, 118, 3492
G. R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Angew. Chem. 2011, 123, 852
F. Cavani, J. H. Teles, ChemSusChem 2009, 2, 508
G. Stoica, M. Santiago, P. A. Jacobs, J. Pérez-Ramírez, P. P. Pescarmona, Appl. Catal. A 2009, 371, 43.
Angew. Chem. Int. Ed. 2002, 41, 4734
K. Lin, P. P. Pescarmona, K. Houthoofd, D. Liang, G. Van Tendeloo, P. A. Jacobs, J. Catal. 2009, 263, 75.
H. Y. Playford, A. C. Hannon, E. R. Barney, R. I. Walton, Chem. Eur. J. 2013, 19, 2803.
V. R. Choudhary, S. K. Jana, B. P. Kiran, J. Catal. 2000, 192, 257
W. Lin, H. Frei, J. Am. Chem. Soc. 2002, 124, 9292.
K. Neimann, R. Neumann, Org. Lett. 2000, 2, 2861.
C. Özdilek, K. Kazimierczak, S. J. Picken, Polymer 2005, 46, 6025-6034.
X. Wang, Q. Xu, M. Li, S. Shen, X. Wang, Y. Wang, Z. Feng, J. Shi, H. Han, C. Li, Angew. Chem. 2012, 124, 13266
S. T. Oyama, Mechanisms in homogeneous and heterogeneous epoxidation catalysis, Elsevier Science, Amsterdam, 2008
H. Yao, D. E. Richardson, J. Am. Chem. Soc. 2000, 122, 3220.
K. Nakagawa, M. Okamura, N. Ikenaga, T. Suzuki, T. Kobayashi, Chem. Commun. 1998, 9, 1025
V. Hulea, E. Dumitriu, Appl. Catal. A 2004, 277, 99.
C. Aprile, E. Gobechiya, J. A. Martens, P. P. Pescarmona, Chem. Commun. 2010, 46, 7712.
G. Busca, Phys. Chem. Chem. Phys. 1999, 1, 723.
D. Mandelli, M. C. A. van Vliet, R. A. Sheldon, U. Schuchardt, Appl. Catal. A 2001, 219, 209
S. Bordiga, F. Bonino, A. Damin, C. Lamberti, Phys. Chem. Chem. Phys. 2008, 10, 4854.
Angew. Chem. Int. Ed. 2002, 41, 2446
Angew. Chem. Int. Ed. 2011, 50, 826.
W. Fan, R. G. Duan, T. Yokoi, P. Wu, Y. Kubota, T. Tatsumi, J. Am. Chem. Soc. 2008, 130, 10150.
Angew. Chem. Int. Ed. 2006, 45, 3414.
P. P. Pescarmona, K. P. F. Janssen, P. A. Jacobs, Chem. Eur. J. 2007, 13, 6562.
B. S. Lane, K. Burgess, Chem. Rev. 2003, 103, 2457.
2002 2002; 114 41
2002; 19
1991; 74
2008
2006
2008; 10
2000; 2
2009; 371
2011 2011; 123 50
1999; 1
2004; 227
2007; 13
2006 2006; 118 45
2005; 46
2001; 105
2000; 192
2013; 19
2004; 277
2010; 46
2002; 124
2000; 40
2005; 109
2011; 23
2012 2012; 124 51
2000; 122
2009; 263
2003; 103
2009; 2
2001; 219
2008; 130
1998; 9
e_1_2_2_2_3
e_1_2_2_3_2
e_1_2_2_24_2
e_1_2_2_3_3
e_1_2_2_4_2
e_1_2_2_23_2
e_1_2_2_4_3
e_1_2_2_5_2
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_21_2
e_1_2_2_20_2
e_1_2_2_1_2
e_1_2_2_2_2
e_1_2_2_40_2
e_1_2_2_41_2
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_42_3
e_1_2_2_27_2
e_1_2_2_26_2
e_1_2_2_9_2
e_1_2_2_24_3
Bordiga S. (e_1_2_2_25_2) 2008; 10
Atkins P. (e_1_2_2_33_2) 2006
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_16_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_14_2
e_1_2_2_35_2
References_xml – reference: P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Inorganic chemistry,4th ed., Oxford University, Oxford, 2006, p. 695.
– reference: W. Fan, R. G. Duan, T. Yokoi, P. Wu, Y. Kubota, T. Tatsumi, J. Am. Chem. Soc. 2008, 130, 10150.
– reference: Angew. Chem. Int. Ed. 2002, 41, 4734;
– reference: X. Wang, Q. Xu, M. Li, S. Shen, X. Wang, Y. Wang, Z. Feng, J. Shi, H. Han, C. Li, Angew. Chem. 2012, 124, 13266;
– reference: V. R. Choudhary, S. K. Jana, B. P. Kiran, J. Catal. 2000, 192, 257;
– reference: Angew. Chem. Int. Ed. 2006, 45, 3414.
– reference: H. Y. Playford, A. C. Hannon, E. R. Barney, R. I. Walton, Chem. Eur. J. 2013, 19, 2803.
– reference: S. T. Oyama, Mechanisms in homogeneous and heterogeneous epoxidation catalysis, Elsevier Science, Amsterdam, 2008;
– reference: P. P. Pescarmona, K. P. F. Janssen, P. A. Jacobs, Chem. Eur. J. 2007, 13, 6562.
– reference: C. Otero Areán, A. L. Bellan, M. P. Mentruit, M. R. Delgado, G. T. Palomino, Microporous Mesoporous Mater. 2000, 40, 35.
– reference: V. Hulea, E. Dumitriu, Appl. Catal. A 2004, 277, 99.
– reference: P. A. Buining, C. Pathmamanoharan, J. B. H. Jansen, H. N. W. Lekkerkerker, J. Am. Ceram. Soc. 1991, 74, 1303.
– reference: R. Rinaldi, U. Schuchardt, J. Catal. 2004, 227, 109;
– reference: B. S. Lane, K. Burgess, Chem. Rev. 2003, 103, 2457.
– reference: D. Mandelli, M. C. A. van Vliet, R. A. Sheldon, U. Schuchardt, Appl. Catal. A 2001, 219, 209;
– reference: G. R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Angew. Chem. 2011, 123, 852;
– reference: S. Bordiga, F. Bonino, A. Damin, C. Lamberti, Phys. Chem. Chem. Phys. 2008, 10, 4854.
– reference: Angew. Chem. Int. Ed. 2011, 50, 826.
– reference: C. Aprile, E. Gobechiya, J. A. Martens, P. P. Pescarmona, Chem. Commun. 2010, 46, 7712.
– reference: G. Busca, Phys. Chem. Chem. Phys. 1999, 1, 723.
– reference: G. R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. 2002, 114, 2554;
– reference: X. Krokidis, P. Raybaud, A. E. Gobichon, B. Rebours, P. Euzen, H. Toulhoat, J. Phys. Chem. B 2001, 105, 5121.
– reference: K. Nakagawa, M. Okamura, N. Ikenaga, T. Suzuki, T. Kobayashi, Chem. Commun. 1998, 9, 1025;
– reference: Angew. Chem. Int. Ed. 2002, 41, 2446;
– reference: I. Arends, R. Sheldon, Top. Catal. 2002, 19, 133.
– reference: C. Özdilek, K. Kazimierczak, S. J. Picken, Polymer 2005, 46, 6025-6034.
– reference: W. Lin, H. Frei, J. Am. Chem. Soc. 2002, 124, 9292.
– reference: K. Neimann, R. Neumann, Org. Lett. 2000, 2, 2861.
– reference: A. Vimont, J. Lavalley, A. Sahibed-Dine, C. O. Areán, M. R. Delgado, M. Daturi, J. Phys. Chem. B 2005, 109, 9656;
– reference: H. Yao, D. E. Richardson, J. Am. Chem. Soc. 2000, 122, 3220.
– reference: K. Lin, P. P. Pescarmona, K. Houthoofd, D. Liang, G. Van Tendeloo, P. A. Jacobs, J. Catal. 2009, 263, 75.
– reference: Angew. Chem. Int. Ed. 2012, 51, 13089.
– reference: F. Cavani, J. H. Teles, ChemSusChem 2009, 2, 508;
– reference: S. Bordiga, A. Damin, F. Bonino, G. Ricchiardi, C. Lamberti, A. Zecchina, Angew. Chem. 2002, 114, 4928;
– reference: G. Stoica, M. Santiago, P. A. Jacobs, J. Pérez-Ramírez, P. P. Pescarmona, Appl. Catal. A 2009, 371, 43.
– reference: D. Tunega, H. Pašalić, M. Gerzabek, H. Lischka, J. Phys. Condens. Matter 2011, 23, 404201.
– reference: Y. Jun, J. Choi, J. Cheon, Angew. Chem. 2006, 118, 3492;
– volume: 74
  start-page: 1303
  year: 1991
  publication-title: J. Am. Ceram. Soc.
– volume: 118 45
  start-page: 3492 3414
  year: 2006 2006
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 219
  start-page: 209
  year: 2001
  publication-title: Appl. Catal. A
– volume: 46
  start-page: 7712
  year: 2010
  publication-title: Chem. Commun.
– volume: 122
  start-page: 3220
  year: 2000
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 9656
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 2
  start-page: 2861
  year: 2000
  publication-title: Org. Lett.
– volume: 1
  start-page: 723
  year: 1999
  publication-title: Phys. Chem. Chem. Phys.
– volume: 124
  start-page: 9292
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 124 51
  start-page: 13266 13089
  year: 2012 2012
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 10
  start-page: 4854
  year: 2008
  publication-title: Phys. Chem. Chem. Phys.
– volume: 277
  start-page: 99
  year: 2004
  publication-title: Appl. Catal. A
– volume: 105
  start-page: 5121
  year: 2001
  publication-title: J. Phys. Chem. B
– volume: 192
  start-page: 257
  year: 2000
  publication-title: J. Catal.
– volume: 9
  start-page: 1025
  year: 1998
  publication-title: Chem. Commun.
– volume: 40
  start-page: 35
  year: 2000
  publication-title: Microporous Mesoporous Mater.
– volume: 114 41
  start-page: 2554 2446
  year: 2002 2002
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– year: 2008
– volume: 130
  start-page: 10150
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 263
  start-page: 75
  year: 2009
  publication-title: J. Catal.
– volume: 19
  start-page: 2803
  year: 2013
  publication-title: Chem. Eur. J.
– volume: 123 50
  start-page: 852 826
  year: 2011 2011
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 13
  start-page: 6562
  year: 2007
  publication-title: Chem. Eur. J.
– volume: 23
  start-page: 404201
  year: 2011
  publication-title: J. Phys. Condens. Matter
– volume: 103
  start-page: 2457
  year: 2003
  publication-title: Chem. Rev.
– volume: 46
  start-page: 6025
  year: 2005
  end-page: 6034
  publication-title: Polymer
– volume: 227
  start-page: 109
  year: 2004
  publication-title: J. Catal.
– volume: 2
  start-page: 508
  year: 2009
  publication-title: ChemSusChem
– volume: 371
  start-page: 43
  year: 2009
  publication-title: Appl. Catal. A
– volume: 114 41
  start-page: 4928 4734
  year: 2002 2002
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– start-page: 695
  year: 2006
– volume: 19
  start-page: 133
  year: 2002
  publication-title: Top. Catal.
– ident: e_1_2_2_32_2
  doi: 10.1039/a808366e
– ident: e_1_2_2_31_2
  doi: 10.1016/j.polymer.2005.05.065
– ident: e_1_2_2_9_2
  doi: 10.1039/c0cc02729d
– ident: e_1_2_2_11_2
– ident: e_1_2_2_36_2
– ident: e_1_2_2_42_3
  doi: 10.1002/anie.201207554
– ident: e_1_2_2_28_2
– ident: e_1_2_2_24_3
  doi: 10.1002/anie.200290032
– ident: e_1_2_2_26_2
  doi: 10.1021/ja012477w
– volume: 10
  start-page: 4854
  year: 2008
  ident: e_1_2_2_25_2
  publication-title: Phys. Chem. Chem. Phys.
– ident: e_1_2_2_30_2
  doi: 10.1016/j.apcata.2009.09.021
– ident: e_1_2_2_38_2
  doi: 10.1002/chem.200700074
– ident: e_1_2_2_17_2
  doi: 10.1021/cr020471z
– ident: e_1_2_2_42_2
  doi: 10.1002/ange.201207554
– ident: e_1_2_2_3_3
  doi: 10.1002/anie.200503821
– ident: e_1_2_2_41_2
  doi: 10.1039/a800184g
– ident: e_1_2_2_39_2
– ident: e_1_2_2_4_3
  doi: 10.1002/anie.201000235
– ident: e_1_2_2_10_2
– ident: e_1_2_2_8_2
  doi: 10.1021/jp050103
– ident: e_1_2_2_14_2
  doi: 10.1088/0953-8984/23/40/404201
– ident: e_1_2_2_37_2
  doi: 10.1016/S0926-860X(01)00693-7
– ident: e_1_2_2_1_2
– ident: e_1_2_2_7_2
– ident: e_1_2_2_20_2
  doi: 10.1021/ja7100399
– ident: e_1_2_2_27_2
  doi: 10.1023/A:1013897703249
– ident: e_1_2_2_6_2
  doi: 10.1002/chem.201203359
– start-page: 695
  volume-title: Inorganic chemistry
  year: 2006
  ident: e_1_2_2_33_2
– ident: e_1_2_2_16_2
  doi: 10.1016/B978-0-444-53188-9.00001-8
– ident: e_1_2_2_13_2
  doi: 10.1021/jp0038310
– ident: e_1_2_2_4_2
  doi: 10.1002/ange.201000235
– ident: e_1_2_2_21_2
  doi: 10.1016/j.jcat.2009.01.013
– ident: e_1_2_2_29_2
  doi: 10.1016/j.jcat.2004.06.028
– ident: e_1_2_2_5_2
  doi: 10.1016/S1387-1811(00)00240-7
– ident: e_1_2_2_12_2
  doi: 10.1111/j.1151-2916.1991.tb04102.x
– ident: e_1_2_2_22_2
  doi: 10.1016/j.apcata.2004.09.001
– ident: e_1_2_2_35_2
  doi: 10.1021/ja993935s
– ident: e_1_2_2_3_2
  doi: 10.1002/ange.200503821
– ident: e_1_2_2_2_2
  doi: 10.1002/1521-3757(20020715)114:14<2554::AID-ANGE2554>3.0.CO;2-Q
– ident: e_1_2_2_2_3
  doi: 10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K
– ident: e_1_2_2_24_2
  doi: 10.1002/ange.200290031
– ident: e_1_2_2_40_2
  doi: 10.1006/jcat.2000.2889
– ident: e_1_2_2_15_2
– ident: e_1_2_2_23_2
– ident: e_1_2_2_34_2
  doi: 10.1021/ol006287m
– ident: e_1_2_2_18_2
– ident: e_1_2_2_19_2
  doi: 10.1002/cssc.200900020
SSID ssj0028806
Score 2.3834624
Snippet Gallium oxide nanorods with unprecedented small dimensions (20–80 nm length and 3–5 nm width) were prepared using a novel, template‐free synthesis method. This...
Gallium oxide nanorods with unprecedented small dimensions (20-80 nm length and 3-5 nm width) were prepared using a novel, template-free synthesis method. This...
Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. This...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1585
SubjectTerms Alkenes
Catalysts
Epoxidation
Gallium
gallium oxide
Gallium oxides
heterogeneous catalysis
Hydrogen peroxide
Nanorods
Nanostructure
Physicochemical properties
R&D
Research & development
Specific surface
Synthesis
Title Gallium Oxide Nanorods: Novel, Template-Free Synthesis and High Catalytic Activity in Epoxidation Reactions
URI https://api.istex.fr/ark:/67375/WNG-51VWBCRP-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201308384
https://www.ncbi.nlm.nih.gov/pubmed/24453173
https://www.proquest.com/docview/1494058455
https://www.proquest.com/docview/1499126736
https://www.proquest.com/docview/1700990517
Volume 53
WOSCitedRecordID wos000330558400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xLRJceC8ElpWREFyINrXj2OFWSrsgobAq--gtchJbikiTqtmudm_8BH4jv4Rx0gYq8ZDglihjx7Hn8Y0zngF4LjM0mxrd1EEijYsWT7pSG-qaINNUZCZkgWqKTYgokrNZePTTKf42P0S34WYlo9HXVsBVUh_8SBpqT2Db0CyGIEL6O9CnyLy8B_2308nJh87pQv5sTxgx5tpC9JvEjR492O5hyzD17Rxf_gp1boPYxgpNbv__-O_ArTUCJcOWZe7CNV3egxujTeG3-zA_VEWRr-bk42WeaYL6t0ItW78mUXWhi1fkWM8XBULUb1--TpZak09XJaLIOq-JKjNiA0fIyG4KXeELyDBty1OQvCTjRYU9NqxApro9UVE_gJPJ-Hj0zl1XZXBT7gvfVTyjJuWJh264TI1OA5UJ4zGhPYXKyvprCHtogn6LFyouEwSI2IQPDGeZSjjbhV5ZlfoREIRmGh9qlgaJL9Bshj4PDSIaSoXJAu6Au1mSOF2nLLeVM4q4TbZMYzuJcTeJDrzs6Bdtso7fUr5oVrgjU8vPNsRN8PgsOoz54PTszWh6FJ86sLdhgXgt3TW6SyHiXOlzHOGz7jGukv3ZokpdrRqacEBt1NwfaIQF6DZLmgMPW_bqBoSwC9WjYA7Qhov-8kHxMHo_7u4e_0ujJ3ATr_0mJJ3tQe98udJP4Xp6cZ7Xy33YETO5v5au7wQaIoU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgi7RceC8EFjASggvRpnYcJ9xKaXdXlLAq3cfNcmJbikiTqtmudm_8BH4jv4RxkgZV4iEhjonHjh_jmW-c8QxCL0MFalODmdpPQuOCxgvdUBvimkBpwpWJaCDrZBM8jsOzs-io9Sa0d2Ga-BDdgZvdGbW8thvcHkjv_Ywaaq9gW98sCigi9K-jng-8BEzeez8dH086qwsYtLliRKlrM9GvIzd6ZG-zhQ3N1LOTfPkr2LmJYms1NL79HwZwB91qMSgeNExzF13TxT20PVynfruP5vsyz7PVHH-6zJTGIIFLkLPVWxyXFzp_g2d6vsgBpH7_-m281Bp_vioAR1ZZhWWhsHUdwUN7LHQFH8CDtElQgbMCjxYltFgzA57q5k5F9QAdj0ez4YHb5mVwU-Zz35VMEZOyxANDPEyNTgOpuPEo154EcWUtNgA-JAHLxYskCxOAiFCF9Q2jSiaM7qCtoiz0I4QBnGko1DQNEp-D4ox8FhnANIRwowLmIHe9JiJtg5bb3Bm5aMItE2EnUXST6KDXHf2iCdfxW8pX9RJ3ZHL5xTq5cSZO433B-ien74bTI3HioN01D4h2f1dgMEWAdEOfQQ9fdMWwSvZ3iyx0uappoj6xfnN_oOEWots4aQ562PBX1yEAXiAgOXUQqdnoLwMSg_hw1D09_pdKz9H2wezjREwO4w9P0E1479cO6nQXbZ0vV_opupFenGfV8lm7yX4AkrYljQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagRSwX3guBBYyE4EK0qR3HCbfSbZcVq1CVfd0sJ7aliDSpmu1q98ZP4DfySxgnaVAlHhLimHjs-DGe-cYZzyD0KlSgNjWYqYMkNC5ovNANtSGuCZQmXJmIBrJONsHjODw7i6atN6G9C9PEh-gO3OzOqOW13eB6oczuz6ih9gq29c2igCJC_zrq-zaTTA_192aT48PO6gIGba4YUeraTPTryI0e2d1sYUMz9e0kX_4Kdm6i2FoNTe78hwHcRbdbDIqHDdPcQ9d0cR9tjdap3x6g-b7M82w1x58uM6UxSOAS5Gz1Dsflhc7f4iM9X-QAUr9__TZZao0_XxWAI6uswrJQ2LqO4JE9FrqCD-Bh2iSowFmBx4sSWqyZAc90c6eieoiOJ-Oj0Qe3zcvgpsznviuZIiZliQeGeJganQZSceNRrj0J4spabAB8SAKWixdJFiYAEaEKGxhGlUwY3Ua9oiz0Y4QBnGko1DQNEp-D4oxgEQ1gGkK4UQFzkLteE5G2Qctt7oxcNOGWibCTKLpJdNCbjn7RhOv4LeXreok7Mrn8Yp3cOBOn8b5gg5PT96PZVJw4aGfNA6Ld3xUYTBEg3dBn0MOXXTGskv3dIgtdrmqaaECs39wfaLiF6DZOmoMeNfzVdQiAFwhITh1Eajb6y4DEMD4Yd09P_qXSC3RzujcRhwfxx6foFrz2a_90uoN658uVfoZupBfnWbV83u6xH-UZJQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gallium+oxide+nanorods%3A+novel%2C+template-free+synthesis+and+high+catalytic+activity+in+epoxidation+reactions&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lueangchaichaweng%2C+Warunee&rft.au=Brooks%2C+Neil+R&rft.au=Fiorilli%2C+Sonia&rft.au=Gobechiya%2C+Elena&rft.date=2014-02-03&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=53&rft.issue=6&rft.spage=1585&rft_id=info:doi/10.1002%2Fanie.201308384&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon