Targeting evolution to inhibit antibiotic resistance

Drug‐resistant bacterial infections have led to a global health crisis. Although much effort is placed on the development of new antibiotics or variants that are less subject to existing resistance mechanisms, history shows that this strategy by itself is unlikely to solve the problem of drug resist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal Jg. 287; H. 20; S. 4341 - 4353
Hauptverfasser: Merrikh, Houra, Kohli, Rahul M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Blackwell Publishing Ltd 01.10.2020
Schlagworte:
ISSN:1742-464X, 1742-4658, 1742-4658
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Drug‐resistant bacterial infections have led to a global health crisis. Although much effort is placed on the development of new antibiotics or variants that are less subject to existing resistance mechanisms, history shows that this strategy by itself is unlikely to solve the problem of drug resistance. Here, we discuss inhibiting evolution as a strategy that, in combination with antibiotics, may resolve the problem. Although mutagenesis is the main driver of drug resistance development, attacking the drivers of genetic diversification in pathogens has not been well explored. Bacteria possess active mechanisms that increase the rate of mutagenesis, especially at times of stress, such as during replication within eukaryotic host cells, or exposure to antibiotics. We highlight how the existence of these promutagenic proteins (evolvability factors) presents an opportunity that can be capitalized upon for the effective inhibition of drug resistance development. To help move this idea from concept to execution, we first describe a set of criteria that an ‘optimal’ evolvability factor would likely have to meet to be a viable therapeutic target. We then discuss the intricacies of some of the known mutagenic mechanisms and evaluate their potential as drug targets to inhibit evolution. In principle, and as suggested by recent studies, we argue that the inhibition of these and other evolvability factors should reduce resistance development. Finally, we discuss the challenges of transitioning anti‐evolution drugs from the laboratory to the clinic. Bacteria can activate a variety of mechanisms to accelerate their access to genotypic variants, some of which can convert antibiotic‐susceptible bacteria into antibiotic‐resistant ones. These active mutagenesis mechanisms are ripe candidates for the development of anti‐evolutionary therapies, offering a novel and needed and novel approach to combating the challenge of antibiotic resistance.
AbstractList Drug‐resistant bacterial infections have led to a global health crisis. Although much effort is placed on the development of new antibiotics or variants that are less subject to existing resistance mechanisms, history shows that this strategy by itself is unlikely to solve the problem of drug resistance. Here, we discuss inhibiting evolution as a strategy that, in combination with antibiotics, may resolve the problem. Although mutagenesis is the main driver of drug resistance development, attacking the drivers of genetic diversification in pathogens has not been well explored. Bacteria possess active mechanisms that increase the rate of mutagenesis, especially at times of stress, such as during replication within eukaryotic host cells, or exposure to antibiotics. We highlight how the existence of these promutagenic proteins (evolvability factors) presents an opportunity that can be capitalized upon for the effective inhibition of drug resistance development. To help move this idea from concept to execution, we first describe a set of criteria that an ‘optimal’ evolvability factor would likely have to meet to be a viable therapeutic target. We then discuss the intricacies of some of the known mutagenic mechanisms and evaluate their potential as drug targets to inhibit evolution. In principle, and as suggested by recent studies, we argue that the inhibition of these and other evolvability factors should reduce resistance development. Finally, we discuss the challenges of transitioning anti‐evolution drugs from the laboratory to the clinic.
Drug‐resistant bacterial infections have led to a global health crisis. Although much effort is placed on the development of new antibiotics or variants that are less subject to existing resistance mechanisms, history shows that this strategy by itself is unlikely to solve the problem of drug resistance. Here, we discuss inhibiting evolution as a strategy that, in combination with antibiotics, may resolve the problem. Although mutagenesis is the main driver of drug resistance development, attacking the drivers of genetic diversification in pathogens has not been well explored. Bacteria possess active mechanisms that increase the rate of mutagenesis, especially at times of stress, such as during replication within eukaryotic host cells, or exposure to antibiotics. We highlight how the existence of these promutagenic proteins (evolvability factors) presents an opportunity that can be capitalized upon for the effective inhibition of drug resistance development. To help move this idea from concept to execution, we first describe a set of criteria that an ‘optimal’ evolvability factor would likely have to meet to be a viable therapeutic target. We then discuss the intricacies of some of the known mutagenic mechanisms and evaluate their potential as drug targets to inhibit evolution. In principle, and as suggested by recent studies, we argue that the inhibition of these and other evolvability factors should reduce resistance development. Finally, we discuss the challenges of transitioning anti‐evolution drugs from the laboratory to the clinic. Bacteria can activate a variety of mechanisms to accelerate their access to genotypic variants, some of which can convert antibiotic‐susceptible bacteria into antibiotic‐resistant ones. These active mutagenesis mechanisms are ripe candidates for the development of anti‐evolutionary therapies, offering a novel and needed and novel approach to combating the challenge of antibiotic resistance.
Drug resistant bacterial infections have led to a global health crisis. Although much effort is placed on the development of new antibiotics or variants that are less subject to existing resistance mechanisms, history shows that this strategy by itself is unlikely to solve the problem of drug resistance. Here, we discuss inhibiting evolution as a strategy that, in combination with antibiotics, may resolve the problem. Although mutagenesis is the main driver of drug resistance development, attacking the drivers of genetic diversification in pathogens has not been well explored. Bacteria possess active mechanisms that increase the rate of mutagenesis, especially at times of stress, such as during replication within eukaryotic host cells, or exposure to antibiotics. We highlight how the existence of these pro-mutagenic proteins (evolvability factors) presents an opportunity that can be capitalized upon for the effective inhibition of drug resistance development. To help move this idea to move from concept to execution, we first describe a set of criteria that an “optimal” evolvability factor would likely have to meet to be a viable therapeutic target. We then discuss the intricacies of some of the known mutagenic mechanisms, and evaluate their potential as drug targets to inhibit evolution. In principle, and as suggested by recent studies, we argue that the inhibition of these and other evolvability factors should reduce resistance development. Finally, we discuss the challenges of transitioning anti-evolution drugs from the laboratory to the clinic.
Drug-resistant bacterial infections have led to a global health crisis. Although much effort is placed on the development of new antibiotics or variants that are less subject to existing resistance mechanisms, history shows that this strategy by itself is unlikely to solve the problem of drug resistance. Here, we discuss inhibiting evolution as a strategy that, in combination with antibiotics, may resolve the problem. Although mutagenesis is the main driver of drug resistance development, attacking the drivers of genetic diversification in pathogens has not been well explored. Bacteria possess active mechanisms that increase the rate of mutagenesis, especially at times of stress, such as during replication within eukaryotic host cells, or exposure to antibiotics. We highlight how the existence of these promutagenic proteins (evolvability factors) presents an opportunity that can be capitalized upon for the effective inhibition of drug resistance development. To help move this idea from concept to execution, we first describe a set of criteria that an 'optimal' evolvability factor would likely have to meet to be a viable therapeutic target. We then discuss the intricacies of some of the known mutagenic mechanisms and evaluate their potential as drug targets to inhibit evolution. In principle, and as suggested by recent studies, we argue that the inhibition of these and other evolvability factors should reduce resistance development. Finally, we discuss the challenges of transitioning anti-evolution drugs from the laboratory to the clinic.Drug-resistant bacterial infections have led to a global health crisis. Although much effort is placed on the development of new antibiotics or variants that are less subject to existing resistance mechanisms, history shows that this strategy by itself is unlikely to solve the problem of drug resistance. Here, we discuss inhibiting evolution as a strategy that, in combination with antibiotics, may resolve the problem. Although mutagenesis is the main driver of drug resistance development, attacking the drivers of genetic diversification in pathogens has not been well explored. Bacteria possess active mechanisms that increase the rate of mutagenesis, especially at times of stress, such as during replication within eukaryotic host cells, or exposure to antibiotics. We highlight how the existence of these promutagenic proteins (evolvability factors) presents an opportunity that can be capitalized upon for the effective inhibition of drug resistance development. To help move this idea from concept to execution, we first describe a set of criteria that an 'optimal' evolvability factor would likely have to meet to be a viable therapeutic target. We then discuss the intricacies of some of the known mutagenic mechanisms and evaluate their potential as drug targets to inhibit evolution. In principle, and as suggested by recent studies, we argue that the inhibition of these and other evolvability factors should reduce resistance development. Finally, we discuss the challenges of transitioning anti-evolution drugs from the laboratory to the clinic.
Author Merrikh, Houra
Kohli, Rahul M.
AuthorAffiliation c Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
b Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
d Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
a Department of Biochemistry, Vanderbilt University, Nashville, TN, 37205, USA
AuthorAffiliation_xml – name: d Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
– name: c Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
– name: a Department of Biochemistry, Vanderbilt University, Nashville, TN, 37205, USA
– name: b Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
Author_xml – sequence: 1
  givenname: Houra
  orcidid: 0000-0001-9956-9640
  surname: Merrikh
  fullname: Merrikh, Houra
  email: houra.merrikh@vanderbilt.edu
  organization: Vanderbilt University Medical Center
– sequence: 2
  givenname: Rahul M.
  orcidid: 0000-0002-7689-5678
  surname: Kohli
  fullname: Kohli, Rahul M.
  email: rkohli@pennmedicine.upenn.edu
  organization: University of Pennsylvania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32434280$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1LHDEYhYNYun70xh8gA94UYbf5nMzcFFRcWxB6oYXehST7zm5kNtEkY_Hfm3V3pZVSzM0byPMeTs7ZR7s-eEDoiOAJKedLByZNiGAS76A9Ijkd81o0u693_muE9lO6w5gJ3rYf0YhRzjht8B7itzrOITs_r-Ax9EN2wVc5VM4vnHG50j6XGbKzVYTkUtbewiH60Ok-wafNPEA_p5e3F9_G1z-uvl-cXY-t4BKPra51KyltmTG1EaTTBPPiUoKlsuWW17ZjMy1rg0HMmrYWXOjOEDAghCAtO0Bf17r3g1nCzILPUffqPrqljk8qaKf-fvFuoebhUUkhG4xXAp83AjE8DJCyWrpkoe-1hzAkRUUJAlPavAPlWDDGGy4KevIGvQtD9CWJQgnS1Ji3rFDHf5p_db3NvgB4DdgYUorQKeuyXhVQ_uJ6RbBa1atW9aqXesvK6ZuVreo_YbKGf7senv5Dqunl-c165xmXxrSQ
CitedBy_id crossref_primary_10_1002_pro_4354
crossref_primary_10_1038_s41467_025_60302_6
crossref_primary_10_1073_pnas_2317322121
crossref_primary_10_1093_nar_gkac515
crossref_primary_10_3389_fmicb_2021_625705
crossref_primary_10_3390_antibiotics10010069
crossref_primary_10_3390_metabo14040210
crossref_primary_10_1016_j_jbc_2024_107650
crossref_primary_10_1038_s41467_025_58282_8
crossref_primary_10_1016_j_biotechadv_2025_108621
crossref_primary_10_1111_mmi_15253
crossref_primary_10_15252_embr_202357309
crossref_primary_10_1038_s41594_024_01317_3
crossref_primary_10_1093_jb_mvac079
crossref_primary_10_1073_pnas_2217493120
crossref_primary_10_1016_j_heliyon_2024_e34719
crossref_primary_10_3390_biom11060843
crossref_primary_10_1093_femsle_fnaf061
crossref_primary_10_3389_fmicb_2021_764451
crossref_primary_10_1016_j_micpath_2025_107962
crossref_primary_10_1016_j_isci_2024_111726
crossref_primary_10_1016_j_jbc_2024_108108
crossref_primary_10_14309_ajg_0000000000001681
crossref_primary_10_7554_eLife_75628
Cites_doi 10.1038/nrmicro.2015.13
10.1128/MMBR.00062‐18
10.1016/j.chom.2019.06.004
10.1038/ja.2014.107
10.1016/j.chom.2010.06.002
10.1038/nrg3152
10.1016/j.mib.2009.06.018
10.1073/pnas.0405116101
10.1038/nm0806-890
10.1016/j.dnarep.2015.11.019
10.1016/j.tibs.2018.02.010
10.1021/acsinfecdis.7b00122
10.1128/microbiolspec.VMBF‐2015
10.1016/j.dnarep.2015.04.020
10.1371/journal.pbio.0030176
10.1111/j.1574-6976.2012.00338.x
10.1099/mic.0.27315-0
10.1126/science.288.5469.1251
10.2217/fmb.14.66
10.1371/journal.pbio.1000317
10.1038/nrm3289
10.1128/CMR.00088‐17
10.1038/35021219
10.1146/annurev.genet.34.1.479
10.1159/000332751
10.1534/genetics.118.301237
10.1111/j.1574-6976.2007.00082.x
10.1093/genetics/158.1.41
10.1128/CMR.00117-14
10.1038/nature11989
10.1080/08927014.2010.501895
10.1128/AAC.03774-14
10.1016/j.molcel.2012.04.009
10.1111/j.1365-2958.1993.tb01184.x
10.1016/j.diagmicrobio.2009.08.007
10.1016/j.molcel.2019.02.037
10.1016/j.molcel.2018.10.015
10.1073/pnas.88.16.7160
10.1038/cr.2008.4
10.1016/j.tim.2006.12.004
10.1128/mSphere.00163‐16
10.1080/10409230701597741
10.1038/nrd2201
10.1073/pnas.1416651112
10.1038/nature06971
10.1038/nrm2198
10.1371/journal.ppat.1000083
10.1111/php.12675
10.1038/nchembio.2007.24
10.1038/nrd.2017.23
10.1016/j.molcel.2016.05.003
10.1371/journal.pgen.1000760
10.1126/science.1172914
10.1146/annurev-micro-090110-102946
10.1128/mBio.00971‐17
10.1016/S0378-1135(00)00372-2
10.1046/j.1365-2958.2003.03765.x
10.1128/CMR.00015-06
10.1038/nature18316
10.3389/fmicb.2018.02961
10.1126/science.1226683
10.1128/jb.174.20.6321-6325.1992
10.1038/nature02241
10.1021/cr400017y
10.1038/s41579-018-0141-x
10.1172/JCI117750
10.1054/drup.1998.0068
10.1021/bi500019s
10.1016/j.molcel.2019.01.024
10.1093/nar/gky751
10.1021/acs.biochem.5b00109
10.1128/mBio.00141‐11
10.1016/j.cell.2019.05.028
10.1016/S0092-8674(01)00479-2
10.1128/IAI.00882-09
10.1093/jac/dkr173
10.1101/cshperspect.a012682
10.1080/10409230701648502
10.1016/S0092-8674(03)00270-8
10.1126/science.aag0822
10.1016/S0092-8674(02)00769-9
10.1016/j.cell.2018.12.008
10.1128/JB.06725-11
10.1093/genetics/28.6.491
10.1038/nrmicro3232
10.1074/jbc.M112.357715
10.1073/pnas.80.23.7085
10.1016/j.chembiol.2016.02.010
10.1128/jb.178.7.1881-1894.1996
10.1101/cshperspect.a025239
10.1006/mpat.1999.0279
ContentType Journal Article
Copyright 2020 Federation of European Biochemical Societies
2020 Federation of European Biochemical Societies.
Copyright © 2020 Federation of European Biochemical Societies
Copyright_xml – notice: 2020 Federation of European Biochemical Societies
– notice: 2020 Federation of European Biochemical Societies.
– notice: Copyright © 2020 Federation of European Biochemical Societies
DBID AAYXX
CITATION
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/febs.15370
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Virology and AIDS Abstracts

AGRICOLA
PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Public Health
EISSN 1742-4658
EndPage 4353
ExternalDocumentID PMC7578009
32434280
10_1111_febs_15370
FEBS15370
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: the Burroughs Wellcome Fund
– fundername: Bill & Melinda Gates Foundation
  funderid: OPP1154551
– fundername: NIH
  funderid: R01‐AI‐127422; R01‐GM‐127593
– fundername: NIAID NIH HHS
  grantid: R01 AI127422
– fundername: NIGMS NIH HHS
  grantid: R01 GM127593
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EAD
EAP
EAS
EAU
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HH5
HZI
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OK1
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIJ
WIK
WIN
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
Y6R
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ESTFP
7S9
L.6
5PM
ID FETCH-LOGICAL-c5470-ca6a972293bb6b51fa1043707ec2794c46cf3da76b0e5d896545afb1ebe555193
IEDL.DBID WIN
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538747800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1742-464X
1742-4658
IngestDate Tue Sep 30 16:35:46 EDT 2025
Fri Sep 05 17:16:31 EDT 2025
Mon Sep 08 07:19:55 EDT 2025
Fri Jul 25 19:44:36 EDT 2025
Mon Jul 21 05:56:10 EDT 2025
Sat Nov 29 04:35:54 EST 2025
Tue Nov 18 21:00:43 EST 2025
Wed Jan 22 16:33:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords stress response
RpoS
antibiotic resistance
Mfd
SOS response
evolution
transcription-associated mutagenesis
mutagenesis
Language English
License 2020 Federation of European Biochemical Societies.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5470-ca6a972293bb6b51fa1043707ec2794c46cf3da76b0e5d896545afb1ebe555193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
HM and RMK developed the concepts together and wrote the manuscript.
Author Contributions
ORCID 0000-0001-9956-9640
0000-0002-7689-5678
OpenAccessLink https://febs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/febs.15370
PMID 32434280
PQID 2451860493
PQPubID 28478
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7578009
proquest_miscellaneous_2524302289
proquest_miscellaneous_2405334845
proquest_journals_2451860493
pubmed_primary_32434280
crossref_citationtrail_10_1111_febs_15370
crossref_primary_10_1111_febs_15370
wiley_primary_10_1111_febs_15370_FEBS15370
PublicationCentury 2000
PublicationDate October 2020
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The FEBS journal
PublicationTitleAlternate FEBS J
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1993; 7
2017; 7
2017; 8
2012; 287
2015; 32
2019; 17
2018; 209
2008; 4
2007; 31
2012; 13
2003; 50
2016; 38
2003; 113
2013; 5
2018; 43
2014; 67
2001; 106
2018; 46
2009; 12
2018; 9
2010; 26
2018; 4
2015; 40
1991; 88
2019; 26
2000; 406
2007; 8
2007; 6
2016; 353
2011; 66
2013; 113
2011; 65
2011; 21
2002; 109
2000; 288
2007; 3
2007; 20
2014; 9
2018; 31
1996; 178
2012; 338
2014; 12
2009; 324
2010; 8
2014; 53
2004; 101
2010; 78
1995; 95
2015; 59
2019; 73
2011; 2
2009; 65
2006; 12
2019; 74
2008; 18
1999; 27
1989; 9
2015; 54
1999; 2
2012; 36
2004; 427
2016; 14
2007; 15
2001; 80
2012; 194
2016; 4
2015; 28
2016; 1
2017; 93
2019; 83
1992; 174
2000; 34
2017; 16
2015; 112
2004; 150
1943; 28
2016; 62
2016
2016; 535
1983; 80
2013; 495
2009; 5
2005; 3
2007; 42
2005; 59
2008; 453
2012; 46
2001; 158
2019; 178
2016; 23
2019; 176
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_89_1
Unnikumar KR (e_1_2_11_19_1) 1989; 9
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
Ventola CL (e_1_2_11_2_1) 2015; 40
e_1_2_11_94_1
e_1_2_11_50_1
e_1_2_11_71_1
e_1_2_11_92_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_96_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_82_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
Kawabata M (e_1_2_11_62_1) 2005; 59
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 406
  start-page: 775
  year: 2000
  end-page: 781
  article-title: Molecular mechanisms that confer antibacterial drug resistance
  publication-title: Nature
– volume: 27
  start-page: 13
  year: 1999
  end-page: 23
  article-title: Influence of RecA on virulence and Shiga toxin 2 production in pathogens
  publication-title: Microb Pathog
– volume: 93
  start-page: 280
  year: 2017
  end-page: 295
  article-title: Mfd protein and transcription‐repair coupling in
  publication-title: Photochem Photobiol
– volume: 106
  start-page: 585
  year: 2001
  end-page: 594
  article-title: Crystal structure of LexA: a conformational switch for regulation of self‐cleavage
  publication-title: Cell
– volume: 495
  start-page: 512
  year: 2013
  end-page: 515
  article-title: Accelerated gene evolution through replication‐transcription conflicts
  publication-title: Nature
– volume: 9
  start-page: 201
  year: 1989
  end-page: 209
  article-title: Quantitative estimation of enzymatic changes in the trigeminal ganglia of rat with acute high dose of methylmercuric chloride
  publication-title: J Environ Pathol Toxicol Oncol
– volume: 5
  year: 2009
  article-title: SOS response induces persistence to fluoroquinolones in
  publication-title: PLoS Genet
– volume: 65
  start-page: 189
  year: 2011
  end-page: 213
  article-title: The RpoS‐mediated general stress response in
  publication-title: Annu Rev Microbiol
– volume: 288
  start-page: 1251
  year: 2000
  end-page: 1254
  article-title: High frequency of hypermutable in cystic fibrosis lung infection
  publication-title: Science
– volume: 174
  start-page: 6321
  year: 1992
  end-page: 6325
  article-title: The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8‐hydroxyguanine (7,8‐dihydro‐8‐oxoguanine)
  publication-title: J Bacteriol
– volume: 20
  start-page: 79
  year: 2007
  end-page: 114
  article-title: Modes and modulations of antibiotic resistance gene expression
  publication-title: Clin Microbiol Rev
– volume: 7
  start-page: 933
  year: 1993
  end-page: 936
  article-title: Recombination‐deficient mutants of are avirulent and sensitive to the oxidative burst of macrophages
  publication-title: Mol Microbiol
– volume: 50
  start-page: 1031
  year: 2003
  end-page: 1042
  article-title: The majority of inducible DNA repair genes in are induced independently of RecA
  publication-title: Mol Microbiol
– volume: 353
  start-page: 1147
  year: 2016
  end-page: 1151
  article-title: Spatiotemporal microbial evolution on antibiotic landscapes
  publication-title: Science
– volume: 73
  start-page: 398
  year: 2019
  end-page: 411
  article-title: R‐loops as cellular regulators and genomic threats
  publication-title: Mol Cell
– volume: 209
  start-page: 1029
  year: 2018
  end-page: 1042
  article-title: Determinants of base‐pair substitution patterns revealed by whole‐genome sequencing of DNA mismatch repair defective
  publication-title: Genetics
– volume: 338
  start-page: 1344
  year: 2012
  end-page: 1348
  article-title: Identity and function of a large gene network underlying mutagenic repair of DNA breaks
  publication-title: Science
– volume: 73
  start-page: 157
  year: 2019
  end-page: 165
  article-title: Inhibiting the evolution of antibiotic resistance
  publication-title: Mol Cell
– volume: 427
  start-page: 72
  year: 2004
  end-page: 74
  article-title: SOS response promotes horizontal dissemination of antibiotic resistance genes
  publication-title: Nature
– volume: 15
  start-page: 70
  year: 2007
  end-page: 77
  article-title: Y‐family DNA polymerases in
  publication-title: Trends Microbiol
– volume: 34
  start-page: 479
  year: 2000
  end-page: 497
  article-title: The SOS response: recent insights into umuDC‐dependent mutagenesis and DNA damage tolerance
  publication-title: Annu Rev Genet
– volume: 3
  year: 2005
  article-title: Inhibition of mutation and combating the evolution of antibiotic resistance
  publication-title: PLoS Biol
– volume: 80
  start-page: 53
  year: 2001
  end-page: 61
  article-title: Virulence of Pasteurella multocida recA mutants
  publication-title: Vet Microbiol
– volume: 36
  start-page: 1105
  year: 2012
  end-page: 1121
  article-title: DNA replication fidelity in : a multi‐DNA polymerase affair
  publication-title: FEMS Microbiol Rev
– volume: 13
  start-page: 204
  year: 2012
  end-page: 214
  article-title: Transcription as a source of genome instability
  publication-title: Nat Rev Genet
– volume: 18
  start-page: 148
  year: 2008
  end-page: 161
  article-title: The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases
  publication-title: Cell Res
– volume: 78
  start-page: 887
  year: 2010
  end-page: 897
  article-title: Role of RpoS in virulence of pathogens
  publication-title: Infect Immun
– volume: 3
  start-page: 541
  year: 2007
  end-page: 548
  article-title: Targeting virulence: a new paradigm for antimicrobial therapy
  publication-title: Nat Chem Biol
– volume: 4
  start-page: 349
  year: 2018
  end-page: 359
  article-title: Inhibitors of LexA autoproteolysis and the bacterial SOS response discovered by an academic‐industry partnership
  publication-title: ACS Infect Dis
– volume: 4
  year: 2008
  article-title: Key role of Mfd in the development of fluoroquinolone resistance in
  publication-title: PLoS Pathog
– volume: 12
  start-page: 890
  year: 2006
  end-page: 891
  article-title: Side effects may include evolution
  publication-title: Nat Med
– volume: 8
  year: 2010
  article-title: Ciprofloxacin causes persister formation by inducing the TisB toxin in
  publication-title: PLoS Biol
– volume: 40
  start-page: 277
  year: 2015
  end-page: 283
  article-title: The antibiotic resistance crisis: part 1: causes and threats
  publication-title: P T
– volume: 46
  start-page: 9236
  year: 2018
  end-page: 9250
  article-title: Directed evolution of with lower‐than‐natural plasmid mutation rates
  publication-title: Nucleic Acids Res
– volume: 12
  start-page: 300
  year: 2014
  end-page: 308
  article-title: Targeting virulence: can we make evolution‐proof drugs?
  publication-title: Nat Rev Microbiol
– volume: 66
  start-page: 1417
  year: 2011
  end-page: 1430
  article-title: Molecular basis and mechanisms of drug resistance in : classical and new drugs
  publication-title: J Antimicrob Chemother
– volume: 53
  start-page: 2793
  year: 2014
  end-page: 2803
  article-title: An overview of Y‐Family DNA polymerases and a case study of human DNA polymerase eta
  publication-title: Biochemistry
– volume: 7
  start-page: a025239
  year: 2017
  article-title: beta‐lactamases: a focus on current challenges
  publication-title: Cold Spring Harb Perspect Med
– volume: 287
  start-page: 22004
  year: 2012
  end-page: 22014
  article-title: Global analysis of the regulon of the transcriptional repressor LexA, a key component of the SOS response in
  publication-title: J Biol Chem
– volume: 6
  start-page: 29
  year: 2007
  end-page: 40
  article-title: Drugs for bad bugs: confronting the challenges of antibacterial discovery
  publication-title: Nat Rev Drug Discov
– volume: 46
  start-page: 115
  year: 2012
  end-page: 124
  article-title: R loops: from transcription byproducts to threats to genome stability
  publication-title: Mol Cell
– volume: 59
  start-page: 1
  year: 2005
  end-page: 9
  article-title: Role of recA/RAD51 family proteins in mammals
  publication-title: Acta Med Okayama
– volume: 101
  start-page: 13448
  year: 2004
  end-page: 13453
  article-title: Naturally occurring H‐DNA‐forming sequences are mutagenic in mammalian cells
  publication-title: Proc Natl Acad Sci USA
– volume: 26
  start-page: 61
  year: 2019
  end-page: 72
  article-title: Non‐traditional antibacterial therapeutic options and challenges
  publication-title: Cell Host Microbe
– volume: 14
  start-page: 150
  year: 2016
  end-page: 162
  article-title: Within‐host evolution of bacterial pathogens
  publication-title: Nat Rev Microbiol
– volume: 112
  start-page: 1096
  year: 2015
  article-title: An underlying mechanism for the increased mutagenesis of lagging‐strand genes in
  publication-title: Proc Natl Acad Sci USA
– volume: 9
  year: 2018
  article-title: Advancement of the 5‐Amino‐1‐(Carbamoylmethyl)‐1H‐1,2,3‐Triazole‐4‐carboxamide scaffold to disarm the bacterial SOS response
  publication-title: Front Microbiol
– volume: 83
  year: 2019
  article-title: Deciphering within‐host microevolution of through whole‐genome sequencing: the phenotypic impact and way forward
  publication-title: Microbiol Mol Biol Rev
– volume: 26
  start-page: 603
  year: 2010
  end-page: 611
  article-title: SOS involvement in stress‐inducible biofilm formation
  publication-title: Biofouling
– volume: 95
  start-page: 1047
  year: 1995
  end-page: 1053
  article-title: DNA repair is more important than catalase for in mice
  publication-title: J Clin Invest
– volume: 59
  start-page: 289
  year: 2015
  end-page: 298
  article-title: Bacterial resistance to leucyl‐tRNA synthetase inhibitor GSK2251052 develops during treatment of complicated urinary tract infections
  publication-title: Antimicrob Agents Chemother
– volume: 88
  start-page: 7160
  year: 1991
  end-page: 7164
  article-title: A constant rate of spontaneous mutation in DNA‐based microbes
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 457
  year: 2017
  end-page: 471
  article-title: Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance
  publication-title: Nat Rev Drug Discov
– volume: 13
  start-page: 141
  year: 2012
  end-page: 152
  article-title: Y‐family DNA polymerases and their role in tolerance of cellular DNA damage
  publication-title: Nat Rev Mol Cell Biol
– volume: 8
  start-page: 68
  year: 2010
  end-page: 76
  article-title: wears what it eats
  publication-title: Cell Host Microbe
– volume: 32
  start-page: 106
  year: 2015
  end-page: 112
  article-title: The hidden side of unstable DNA repeats: mutagenesis at a distance
  publication-title: DNA Repair
– volume: 178
  start-page: 1881
  year: 1996
  end-page: 1894
  article-title: Evolutionary conservation of RecA genes in relation to protein structure and function
  publication-title: J Bacteriol
– volume: 21
  start-page: 45
  year: 2011
  end-page: 58
  article-title: Transcriptional de‐repression and Mfd are mutagenic in stressed cells
  publication-title: J Mol Microbiol Biotechnol
– volume: 178
  start-page: 152
  year: 2019
  end-page: 159
  article-title: A small molecule targeting mutagenic translesion synthesis improves chemotherapy
  publication-title: Cell
– volume: 194
  start-page: 2637
  year: 2012
  end-page: 2645
  article-title: Mfd is required for rapid recovery of transcription following UV‐induced DNA damage but not oxidative DNA damage in
  publication-title: J Bacteriol
– volume: 67
  start-page: 625
  year: 2014
  end-page: 630
  article-title: Resistance to rifampicin: a review
  publication-title: J Antibiot
– volume: 453
  start-page: 489
  year: 2008
  end-page: 484
  article-title: Mechanism of homologous recombination from the RecA‐ssDNA/dsDNA structures
  publication-title: Nature
– volume: 65
  start-page: 454
  year: 2009
  end-page: 456
  article-title: The Mfd protein is important for antibiotic resistance and DNA repair
  publication-title: Diagn Microbiol Infect Dis
– volume: 43
  start-page: 327
  year: 2018
  end-page: 341
  article-title: The cellular response to transcription‐blocking DNA damage
  publication-title: Trends Biochem Sci
– volume: 150
  start-page: 3783
  year: 2004
  end-page: 3795
  article-title: Reconstruction of the evolutionary history of the LexA‐binding sequence
  publication-title: Microbiology
– year: 2016
– volume: 109
  start-page: 757
  year: 2002
  end-page: 767
  article-title: . Transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation
  publication-title: Cell
– volume: 2
  start-page: 38
  year: 1999
  end-page: 55
  article-title: Mechanisms of fluoroquinolone resistance
  publication-title: Drug Resist Updat
– volume: 31
  start-page: 637
  year: 2007
  end-page: 656
  article-title: Aeons of distress: an evolutionary perspective on the bacterial SOS response
  publication-title: FEMS Microbiol Rev
– volume: 158
  start-page: 41
  year: 2001
  end-page: 64
  article-title: Comparative gene expression profiles following UV exposure in wild‐type and SOS‐deficient
  publication-title: Genetics
– volume: 9
  start-page: 1165
  year: 2014
  end-page: 1177
  article-title: Multidrug efflux pumps in Gram‐negative bacteria and their role in antibiotic resistance
  publication-title: Future Microbiol
– volume: 2
  year: 2011
  article-title: Antimicrobial actions of reactive oxygen species
  publication-title: MBio
– volume: 4
  year: 2016
  article-title: Evolution of bacterial pathogens within the human host
  publication-title: Microbiol Spectr
– volume: 535
  start-page: 178
  year: 2016
  end-page: 181
  article-title: The nature of mutations induced by replication‐transcription collisions
  publication-title: Nature
– volume: 1
  year: 2016
  article-title: Systematically altering bacterial SOS activity under stress reveals therapeutic strategies for potentiating antibiotics
  publication-title: mSphere
– volume: 28
  start-page: 337
  year: 2015
  end-page: 418
  article-title: The challenge of efflux‐mediated antibiotic resistance in Gram‐negative bacteria
  publication-title: Clin Microbiol Rev
– volume: 113
  start-page: 8638
  year: 2013
  end-page: 8661
  article-title: Transcription‐associated genome instability
  publication-title: Chem Rev
– volume: 5
  start-page: a012682
  year: 2013
  article-title: Translesion DNA synthesis and mutagenesis in prokaryotes
  publication-title: Cold Spring Harb Perspect Biol
– volume: 42
  start-page: 341
  year: 2007
  end-page: 354
  article-title: Controlling mutation: intervening in evolution as a therapeutic strategy
  publication-title: Crit Rev Biochem Mol Biol
– volume: 176
  start-page: 127
  year: 2019
  end-page: 143
  article-title: Bacteria‐to‐human protein networks reveal origins of endogenous DNA damage
  publication-title: Cell
– volume: 28
  start-page: 491
  year: 1943
  end-page: 511
  article-title: Mutations of bacteria from virus sensitivity to virus resistance
  publication-title: Genetics
– volume: 17
  start-page: 141
  year: 2019
  end-page: 155
  article-title: Drug combinations: a strategy to extend the life of antibiotics in the 21st century
  publication-title: Nat Rev Microbiol
– volume: 74
  start-page: 785
  year: 2019
  end-page: 800
  article-title: Gamblers: an antibiotic‐induced evolvable cell subpopulation differentiated by reactive‐oxygen‐induced general stress response
  publication-title: Mol Cell
– volume: 324
  start-page: 1034
  year: 2009
  article-title: The SOS response controls integron recombination
  publication-title: Science
– volume: 23
  start-page: 381
  year: 2016
  end-page: 391
  article-title: RecA Inhibitors potentiate antibiotic activity and block evolution of antibiotic resistance
  publication-title: Cell Chem Biol
– volume: 80
  start-page: 7085
  year: 1983
  end-page: 7089
  article-title: Identification of the epsilon‐subunit of DNA polymerase III holoenzyme as the dnaQ gene product: a fidelity subunit for DNA replication
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 587
  year: 2007
  end-page: 594
  article-title: Lessons from 50 years of SOS DNA‐damage‐induced mutagenesis
  publication-title: Nat Rev Mol Cell Biol
– volume: 62
  start-page: 745
  year: 2016
  end-page: 755
  article-title: DNA replication‐a matter of fidelity
  publication-title: Mol Cell
– volume: 42
  start-page: 399
  year: 2007
  end-page: 435
  article-title: Mutation as a stress response and the regulation of evolvability
  publication-title: Crit Rev Biochem Mol Biol
– volume: 8
  year: 2017
  article-title: Quinolone resistance reversion by targeting the SOS response
  publication-title: MBio
– volume: 31
  year: 2018
  article-title: Mobile genetic elements associated with antimicrobial resistance
  publication-title: Clin Microbiol Rev
– volume: 54
  start-page: 3573
  year: 2015
  end-page: 3582
  article-title: Targets for combating the evolution of acquired antibiotic resistance
  publication-title: Biochemistry
– volume: 12
  start-page: 482
  year: 2009
  end-page: 489
  article-title: Role of reactive oxygen species in antibiotic action and resistance
  publication-title: Curr Opin Microbiol
– volume: 38
  start-page: 94
  year: 2016
  end-page: 101
  article-title: DNA mismatch repair and the DNA damage response
  publication-title: DNA Repair
– volume: 113
  start-page: 183
  year: 2003
  end-page: 193
  article-title: DnaE2 polymerase contributes to survival and the emergence of drug resistance in
  publication-title: Cell
– ident: e_1_2_11_86_1
  doi: 10.1038/nrmicro.2015.13
– ident: e_1_2_11_88_1
  doi: 10.1128/MMBR.00062‐18
– ident: e_1_2_11_96_1
  doi: 10.1016/j.chom.2019.06.004
– ident: e_1_2_11_6_1
  doi: 10.1038/ja.2014.107
– ident: e_1_2_11_23_1
  doi: 10.1016/j.chom.2010.06.002
– ident: e_1_2_11_20_1
  doi: 10.1038/nrg3152
– ident: e_1_2_11_25_1
  doi: 10.1016/j.mib.2009.06.018
– ident: e_1_2_11_30_1
  doi: 10.1073/pnas.0405116101
– ident: e_1_2_11_37_1
  doi: 10.1038/nm0806-890
– ident: e_1_2_11_18_1
  doi: 10.1016/j.dnarep.2015.11.019
– volume: 40
  start-page: 277
  year: 2015
  ident: e_1_2_11_2_1
  article-title: The antibiotic resistance crisis: part 1: causes and threats
  publication-title: P T
– ident: e_1_2_11_81_1
  doi: 10.1016/j.tibs.2018.02.010
– ident: e_1_2_11_54_1
  doi: 10.1021/acsinfecdis.7b00122
– ident: e_1_2_11_87_1
  doi: 10.1128/microbiolspec.VMBF‐2015
– ident: e_1_2_11_32_1
  doi: 10.1016/j.dnarep.2015.04.020
– ident: e_1_2_11_49_1
  doi: 10.1371/journal.pbio.0030176
– ident: e_1_2_11_16_1
  doi: 10.1111/j.1574-6976.2012.00338.x
– ident: e_1_2_11_56_1
  doi: 10.1099/mic.0.27315-0
– ident: e_1_2_11_92_1
  doi: 10.1126/science.288.5469.1251
– ident: e_1_2_11_9_1
  doi: 10.2217/fmb.14.66
– ident: e_1_2_11_45_1
  doi: 10.1371/journal.pbio.1000317
– ident: e_1_2_11_65_1
  doi: 10.1038/nrm3289
– ident: e_1_2_11_11_1
  doi: 10.1128/CMR.00088‐17
– ident: e_1_2_11_5_1
  doi: 10.1038/35021219
– ident: e_1_2_11_28_1
  doi: 10.1146/annurev.genet.34.1.479
– ident: e_1_2_11_76_1
  doi: 10.1159/000332751
– ident: e_1_2_11_31_1
  doi: 10.1534/genetics.118.301237
– ident: e_1_2_11_52_1
  doi: 10.1111/j.1574-6976.2007.00082.x
– ident: e_1_2_11_42_1
  doi: 10.1093/genetics/158.1.41
– ident: e_1_2_11_10_1
  doi: 10.1128/CMR.00117-14
– ident: e_1_2_11_21_1
  doi: 10.1038/nature11989
– ident: e_1_2_11_47_1
  doi: 10.1080/08927014.2010.501895
– ident: e_1_2_11_90_1
  doi: 10.1128/AAC.03774-14
– ident: e_1_2_11_33_1
  doi: 10.1016/j.molcel.2012.04.009
– ident: e_1_2_11_58_1
  doi: 10.1111/j.1365-2958.1993.tb01184.x
– ident: e_1_2_11_3_1
– ident: e_1_2_11_75_1
  doi: 10.1016/j.diagmicrobio.2009.08.007
– ident: e_1_2_11_73_1
  doi: 10.1016/j.molcel.2019.02.037
– ident: e_1_2_11_24_1
  doi: 10.1016/j.molcel.2018.10.015
– ident: e_1_2_11_14_1
  doi: 10.1073/pnas.88.16.7160
– ident: e_1_2_11_29_1
  doi: 10.1038/cr.2008.4
– ident: e_1_2_11_66_1
  doi: 10.1016/j.tim.2006.12.004
– ident: e_1_2_11_50_1
  doi: 10.1128/mSphere.00163‐16
– ident: e_1_2_11_38_1
  doi: 10.1080/10409230701597741
– ident: e_1_2_11_82_1
  doi: 10.1038/nrd2201
– ident: e_1_2_11_22_1
  doi: 10.1073/pnas.1416651112
– ident: e_1_2_11_63_1
  doi: 10.1038/nature06971
– ident: e_1_2_11_44_1
  doi: 10.1038/nrm2198
– ident: e_1_2_11_77_1
  doi: 10.1371/journal.ppat.1000083
– ident: e_1_2_11_79_1
  doi: 10.1111/php.12675
– ident: e_1_2_11_93_1
  doi: 10.1038/nchembio.2007.24
– ident: e_1_2_11_94_1
  doi: 10.1038/nrd.2017.23
– ident: e_1_2_11_15_1
  doi: 10.1016/j.molcel.2016.05.003
– ident: e_1_2_11_46_1
  doi: 10.1371/journal.pgen.1000760
– ident: e_1_2_11_48_1
  doi: 10.1126/science.1172914
– ident: e_1_2_11_71_1
  doi: 10.1146/annurev-micro-090110-102946
– ident: e_1_2_11_51_1
  doi: 10.1128/mBio.00971‐17
– ident: e_1_2_11_61_1
  doi: 10.1016/S0378-1135(00)00372-2
– volume: 59
  start-page: 1
  year: 2005
  ident: e_1_2_11_62_1
  article-title: Role of recA/RAD51 family proteins in mammals
  publication-title: Acta Med Okayama
– ident: e_1_2_11_40_1
  doi: 10.1046/j.1365-2958.2003.03765.x
– ident: e_1_2_11_8_1
  doi: 10.1128/CMR.00015-06
– ident: e_1_2_11_36_1
  doi: 10.1038/nature18316
– ident: e_1_2_11_53_1
  doi: 10.3389/fmicb.2018.02961
– ident: e_1_2_11_72_1
  doi: 10.1126/science.1226683
– ident: e_1_2_11_27_1
  doi: 10.1128/jb.174.20.6321-6325.1992
– ident: e_1_2_11_43_1
  doi: 10.1038/nature02241
– ident: e_1_2_11_35_1
  doi: 10.1021/cr400017y
– ident: e_1_2_11_91_1
  doi: 10.1038/s41579-018-0141-x
– ident: e_1_2_11_59_1
  doi: 10.1172/JCI117750
– ident: e_1_2_11_7_1
  doi: 10.1054/drup.1998.0068
– ident: e_1_2_11_67_1
  doi: 10.1021/bi500019s
– ident: e_1_2_11_34_1
  doi: 10.1016/j.molcel.2019.01.024
– ident: e_1_2_11_83_1
  doi: 10.1093/nar/gky751
– ident: e_1_2_11_4_1
  doi: 10.1021/acs.biochem.5b00109
– ident: e_1_2_11_26_1
  doi: 10.1128/mBio.00141‐11
– ident: e_1_2_11_69_1
  doi: 10.1016/j.cell.2019.05.028
– ident: e_1_2_11_64_1
  doi: 10.1016/S0092-8674(01)00479-2
– ident: e_1_2_11_74_1
  doi: 10.1128/IAI.00882-09
– ident: e_1_2_11_89_1
  doi: 10.1093/jac/dkr173
– ident: e_1_2_11_70_1
  doi: 10.1101/cshperspect.a012682
– volume: 9
  start-page: 201
  year: 1989
  ident: e_1_2_11_19_1
  article-title: Quantitative estimation of enzymatic changes in the trigeminal ganglia of rat with acute high dose of methylmercuric chloride
  publication-title: J Environ Pathol Toxicol Oncol
– ident: e_1_2_11_39_1
  doi: 10.1080/10409230701648502
– ident: e_1_2_11_68_1
  doi: 10.1016/S0092-8674(03)00270-8
– ident: e_1_2_11_85_1
  doi: 10.1126/science.aag0822
– ident: e_1_2_11_78_1
  doi: 10.1016/S0092-8674(02)00769-9
– ident: e_1_2_11_84_1
  doi: 10.1016/j.cell.2018.12.008
– ident: e_1_2_11_80_1
  doi: 10.1128/JB.06725-11
– ident: e_1_2_11_13_1
  doi: 10.1093/genetics/28.6.491
– ident: e_1_2_11_95_1
  doi: 10.1038/nrmicro3232
– ident: e_1_2_11_41_1
  doi: 10.1074/jbc.M112.357715
– ident: e_1_2_11_17_1
  doi: 10.1073/pnas.80.23.7085
– ident: e_1_2_11_55_1
  doi: 10.1016/j.chembiol.2016.02.010
– ident: e_1_2_11_57_1
  doi: 10.1128/jb.178.7.1881-1894.1996
– ident: e_1_2_11_12_1
  doi: 10.1101/cshperspect.a025239
– ident: e_1_2_11_60_1
  doi: 10.1006/mpat.1999.0279
SSID ssj0035499
Score 2.47044
SecondaryResourceType review_article
Snippet Drug‐resistant bacterial infections have led to a global health crisis. Although much effort is placed on the development of new antibiotics or variants that...
Drug-resistant bacterial infections have led to a global health crisis. Although much effort is placed on the development of new antibiotics or variants that...
Drug resistant bacterial infections have led to a global health crisis. Although much effort is placed on the development of new antibiotics or variants that...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4341
SubjectTerms Antibiotic resistance
Antibiotics
Bacterial diseases
Drug development
Drug resistance
drugs
Evolution
Genetic diversity
genetic variation
Global health
Mfd
Mutagenesis
mutagens
Public health
Resistance factors
RpoS
SOS response
stress response
Therapeutic targets
therapeutics
transcription‐associated mutagenesis
Title Targeting evolution to inhibit antibiotic resistance
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.15370
https://www.ncbi.nlm.nih.gov/pubmed/32434280
https://www.proquest.com/docview/2451860493
https://www.proquest.com/docview/2405334845
https://www.proquest.com/docview/2524302289
https://pubmed.ncbi.nlm.nih.gov/PMC7578009
Volume 287
WOSCitedRecordID wos000538747800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1742-4658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035499
  issn: 1742-464X
  databaseCode: WIN
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1742-4658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035499
  issn: 1742-464X
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_8KNiX-t2m6rFiKShELsluNgt9UetRQQ5pld5b2E02XKDNFe8U-t93ZvNRD0UQnxLYSdjMzuz-ZjP7G4BPVlElydz6WkbG54obXxVc-oJrFeYyCPOkLjYhh8NkNFJXC_ClPQtT80N0G27kGW6-JgfXZvrAyQtrpsfor5IC9oAHVL7g58WwnYYjCnzq05Chz2M-arhJKY3n_6Pzq9EjiPk4U_IhgnVL0GD1dZ1fg3cN9GQnta2sw4KtNmDzpMKw-_df9pm5ZFC3y74BK2dtIbhN4NcuWxzXOGbvG0tlswkrq3FpyhnDscHrBN_KMHYnPIqGtAU3g_Prs29-U2zBzwSXfT_TsVYyxNXfmNiIoNAB0R71pc1C9NmMx1kR5VrGpm9FnqgYoZcuTIBGIATBwG1YqiaV_QBMI8xBIMGJBJ3LRBj0cpwYuYpzghO5B4et0tOsYSKnghi_0jYiIfWkTj0eHHSyf2r-jSeldtuxSxsfnKYhF0ESYwQUebDfNaPu6JeIruzkjmTqs8hcPCMjQh4RTZDy4H1tDl1XEI5GGMBhB-ScoXQCxN4931KVY8fiTYUEEOB6cOQM5ZmvSwfnpz_c3ceXCO_A25A2B1zm4S4szW7v7B68ye5n5fS2B4tylPRg-ev3wc1lz7nOP9ikGLM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9EBftSP2tTP7rFIrQQuSS72eyjiodSewi90nsLu8kGA5or3in43zuz-dBDEcSnBHYSNrszu7-ZzP4G4LtVVEkyt76WkfG54sZXBZe-4FqFuQzCPKmLTcjBIBmN1EWTm0NnYWp-iC7gRpbh1msycApIP7HywprJARqsRI99gSPSoMoN_84G7UIcketTn4cMfR7zUcNOSok8j8_O7kfPQObzXMmnGNZtQv3ld3Z_BT426JMd1uqyCnO2WoP1wwo97-t7ts9cPqgLtK_B0nFbC24d-NAljOM2x-xdo6xsOmZldVmacspwevA6xrcydN8JkqIubcDf_snw-NRv6i34meCy52c61kqGCACMiY0ICh0Q81FP2ixEs814nBVRrmVselbkiYoRfenCBKgHQhAS_ATz1biyn4FpRDqIJTjxoHOZCIOGjmsjV3FOiCL34Ec76mnWkJFTTYyrtHVKaHhSNzwe7HWy_2sKjhelttvJSxsznKQhF0ESoxMUefCta8axo78iurLjW5KpjyNz8YqMCHlETEHKg81aH7quICKN0IfDDsgZTekEiMB7tqUqLx2RN9USQIzrwU-nKa98Xdo_Ofrj7r68RfgrLJ0Of5-n52eDX1vwIaRYgUtE3Ib56c2t3YHF7G5aTm52neU8AOkEGkk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_KWWpfaqvWprXtiqVQIeWS7Gazj36FFuWQqnBvYTfZcAGbE-8U_O-d2XzooQilTwnsJGRnZ3Z_s5n9DcA3q6iSZGF9LSPjc8WNr0oufcG1CgsZhEXSFJuQo1EyHquTNjeHzsI0_BD9hht5hpuvycHtZVE-8PLSmtlPdFiJEfsSpyoyA1g6-JOeH3dTcUTBT3MiMvR5zMctPyml8tw_vbgiPYKZj7MlH6JYtwylK__ZgbfwpsWfbLcxmHfwwtarsLZbY-z995Z9Zy4j1G21r8LyflcNbg34mUsZx4WO2ZvWXNl8yqp6UplqznCA8DrFtzIM4AmUojWtw3l6eLb_y28rLvi54HLo5zrWSoYIAYyJjQhKHRD30VDaPETHzXmcl1GhZWyGVhSJihF_6dIEaAlCEBZ8D4N6WtsPwDRiHUQTnJjQuUyEQVfH2ZGruCBMUXjwo9N6lrd05FQV4yLrwhJST-bU48F2L3vZkHA8KbXZDV7WOuIsC7kIkhjDoMiDrb4ZdUf_RXRtp9ck0xxI5uIZGRHyiLiClAcbjT30n4KYNMIoDj9ALlhKL0AU3ostdTVxVN5UTQBRrgc7zlKe6V2WHu6duruP_yL8FV6dHKTZ8e_R0Sd4HdJmgctE3ITB_OrafoaX-c28ml19aV3nDsSFGvI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+evolution+to+inhibit+antibiotic+resistance&rft.jtitle=The+FEBS+journal&rft.au=Merrikh%2C+Houra&rft.au=Kohli%2C+Rahul+M&rft.date=2020-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1742-464X&rft.eissn=1742-4658&rft.volume=287&rft.issue=20&rft.spage=4341&rft.epage=4353&rft_id=info:doi/10.1111%2Ffebs.15370&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon