Projected subgradient techniques and viscosity methods for optimization with variational inequality constraints

In this paper, we propose an easily implementable algorithm in Hilbert spaces for solving some classical monotone variational inequality problem over the set of solutions of mixed variational inequalities. The proposed method combines two strategies: projected subgradient techniques and viscosity-ty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research Jg. 205; H. 3; S. 501 - 506
1. Verfasser: MAINGE, Paul-Emile
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 16.09.2010
Elsevier
Elsevier Sequoia S.A
Schriftenreihe:European Journal of Operational Research
Schlagworte:
ISSN:0377-2217, 1872-6860
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose an easily implementable algorithm in Hilbert spaces for solving some classical monotone variational inequality problem over the set of solutions of mixed variational inequalities. The proposed method combines two strategies: projected subgradient techniques and viscosity-type approximations. The involved stepsizes are controlled and a strong convergence theorem is established under very classical assumptions. Our algorithm can be applied for instance to some mathematical programs with complementarity constraints.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2010.01.042