The yeast Red1 protein localizes to the cores of meiotic chromosomes

Mutants in the meiosis-specific RED1 gene of S. cerevisiae fail to make any synaptonemal complex (SC) or any obvious precursors to the SC. Using antibodies that specifically recognize the Red1 protein, Red1 has been localized along meiotic pachytene chromosomes. Red1 also localizes to the unsynapsed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology Jg. 136; H. 5; S. 957
Hauptverfasser: Smith, A V, Roeder, G S
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 10.03.1997
Schlagworte:
ISSN:0021-9525
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Mutants in the meiosis-specific RED1 gene of S. cerevisiae fail to make any synaptonemal complex (SC) or any obvious precursors to the SC. Using antibodies that specifically recognize the Red1 protein, Red1 has been localized along meiotic pachytene chromosomes. Red1 also localizes to the unsynapsed axial elements present in a zip1 mutant, suggesting that Red1 is a component of the lateral elements of mature SCs. Anti-Red1 staining is confined to the cores of meiotic chromosomes and is not associated with the loops of chromatin that lie outside the SC. Analysis of the spo11 mutant demonstrates that Red1 localization does not depend upon meiotic recombination. The localization of Red1 has been compared with two other meiosis-specific components of chromosomes, Hop1 and Zip1; Zip1 serves as a marker for synapsed chromosomes. Double labeling of wild-type meiotic chromosomes with anti-Zip1 and anti-Red1 antibodies demonstrates that Red1 localizes to chromosomes both before and during pachytene. Double labeling with anti-Hop1 and anti-Red1 antibodies reveals that Hop1 protein localizes only in areas that also contain Red1, and studies of Hop1 localization in a red1 null mutant demonstrate that Hop1 localization depends on Red1 function. These observations are consistent with previous genetic studies suggesting that Red1 and Hop1 directly interact. There is little or no Hop1 protein on pachytene chromosomes or in synapsed chromosomal regions.
AbstractList Mutants in the meiosis-specific RED1 gene of S. cerevisiae fail to make any synaptonemal complex (SC) or any obvious precursors to the SC. Using antibodies that specifically recognize the Red1 protein, Red1 has been localized along meiotic pachytene chromosomes. Red1 also localizes to the unsynapsed axial elements present in a zip1 mutant, suggesting that Red1 is a component of the lateral elements of mature SCs. Anti-Red1 staining is confined to the cores of meiotic chromosomes and is not associated with the loops of chromatin that lie outside the SC. Analysis of the spo11 mutant demonstrates that Red1 localization does not depend upon meiotic recombination. The localization of Red1 has been compared with two other meiosis-specific components of chromosomes, Hop1 and Zip1; Zip1 serves as a marker for synapsed chromosomes. Double labeling of wild-type meiotic chromosomes with anti-Zip1 and anti-Red1 antibodies demonstrates that Red1 localizes to chromosomes both before and during pachytene. Double labeling with anti-Hop1 and anti-Red1 antibodies reveals that Hop1 protein localizes only in areas that also contain Red1, and studies of Hop1 localization in a red1 null mutant demonstrate that Hop1 localization depends on Red1 function. These observations are consistent with previous genetic studies suggesting that Red1 and Hop1 directly interact. There is little or no Hop1 protein on pachytene chromosomes or in synapsed chromosomal regions.Mutants in the meiosis-specific RED1 gene of S. cerevisiae fail to make any synaptonemal complex (SC) or any obvious precursors to the SC. Using antibodies that specifically recognize the Red1 protein, Red1 has been localized along meiotic pachytene chromosomes. Red1 also localizes to the unsynapsed axial elements present in a zip1 mutant, suggesting that Red1 is a component of the lateral elements of mature SCs. Anti-Red1 staining is confined to the cores of meiotic chromosomes and is not associated with the loops of chromatin that lie outside the SC. Analysis of the spo11 mutant demonstrates that Red1 localization does not depend upon meiotic recombination. The localization of Red1 has been compared with two other meiosis-specific components of chromosomes, Hop1 and Zip1; Zip1 serves as a marker for synapsed chromosomes. Double labeling of wild-type meiotic chromosomes with anti-Zip1 and anti-Red1 antibodies demonstrates that Red1 localizes to chromosomes both before and during pachytene. Double labeling with anti-Hop1 and anti-Red1 antibodies reveals that Hop1 protein localizes only in areas that also contain Red1, and studies of Hop1 localization in a red1 null mutant demonstrate that Hop1 localization depends on Red1 function. These observations are consistent with previous genetic studies suggesting that Red1 and Hop1 directly interact. There is little or no Hop1 protein on pachytene chromosomes or in synapsed chromosomal regions.
Mutants in the meiosis-specific RED1 gene of S. cerevisiae fail to make any synaptonemal complex (SC) or any obvious precursors to the SC. Using antibodies that specifically recognize the Red1 protein, Red1 has been localized along meiotic pachytene chromosomes. Red1 also localizes to the unsynapsed axial elements present in a zip1 mutant, suggesting that Red1 is a component of the lateral elements of mature SCs. Anti-Red1 staining is confined to the cores of meiotic chromosomes and is not associated with the loops of chromatin that lie outside the SC. Analysis of the spo11 mutant demonstrates that Red1 localization does not depend upon meiotic recombination. The localization of Red1 has been compared with two other meiosis-specific components of chromosomes, Hop1 and Zip1; Zip1 serves as a marker for synapsed chromosomes. Double labeling of wild-type meiotic chromosomes with anti-Zip1 and anti-Red1 antibodies demonstrates that Red1 localizes to chromosomes both before and during pachytene. Double labeling with anti-Hop1 and anti-Red1 antibodies reveals that Hop1 protein localizes only in areas that also contain Red1, and studies of Hop1 localization in a red1 null mutant demonstrate that Hop1 localization depends on Red1 function. These observations are consistent with previous genetic studies suggesting that Red1 and Hop1 directly interact. There is little or no Hop1 protein on pachytene chromosomes or in synapsed chromosomal regions.
Author Smith, A V
Roeder, G S
Author_xml – sequence: 1
  givenname: A V
  surname: Smith
  fullname: Smith, A V
  organization: Department of Biology, Yale University, New Haven, Connecticut 06520-8103, USA
– sequence: 2
  givenname: G S
  surname: Roeder
  fullname: Roeder, G S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9060462$$D View this record in MEDLINE/PubMed
BookMark eNotj7trwzAYxDWkpEnasWNBUze7ej_Gkj4hUCjpbCT5M3GwrdRShvSvr6GejoPfHXdrtBjiAAjdUVJSYvjjMfiSclXK0kq9QCtCGC2sZPIarVM6EkKEFnyJlpYoIhRboef9AfAFXMr4C2qKT2PM0A64i8F17S8knCPOExPiOJnY4B7amNuAw2GMfUyxh3SDrhrXJbiddYO-X1_22_di9_n2sX3aFUEKlQvHeHDCMwYqWOuV0MR7rawVrrEGRA2UUuFJqI0SRvuGc6apcVPGcO0Y26CH_95p5c8ZUq76NgXoOjdAPKdKGyO1VnIC72fw7Huoq9PY9m68VPNt9gfMwlix
CitedBy_id crossref_primary_10_1038_sj_cr_7310052
crossref_primary_10_1093_genetics_153_2_607
crossref_primary_10_1093_nar_gkaa527
crossref_primary_10_1083_jcb_201506103
crossref_primary_10_1093_genetics_148_2_581
crossref_primary_10_1126_science_aaf4778
crossref_primary_10_1371_journal_pbio_1002329
crossref_primary_10_1093_nar_gkw506
crossref_primary_10_1534_genetics_104_036301
crossref_primary_10_1016_j_devcel_2006_04_003
crossref_primary_10_1074_jbc_274_3_1783
crossref_primary_10_1128_MCB_20_4_1361_1369_2000
crossref_primary_10_1371_journal_pgen_1007832
crossref_primary_10_1093_nar_gkac1160
crossref_primary_10_1146_annurev_cellbio_19_111301_155141
crossref_primary_10_1101_gad_12_22_3551
crossref_primary_10_1007_s00412_006_0047_7
crossref_primary_10_1242_jcs_02362
crossref_primary_10_1073_pnas_0711864105
crossref_primary_10_1128_MCB_00416_07
crossref_primary_10_1371_journal_pgen_0020155
crossref_primary_10_1530_rep_1_00306
crossref_primary_10_1016_j_cub_2006_10_069
crossref_primary_10_1038_s41467_019_08875_x
crossref_primary_10_1101_gad_11_20_2600
crossref_primary_10_1093_jxb_erg041
crossref_primary_10_1128_MCB_18_3_1424
crossref_primary_10_1038_nrm2849
crossref_primary_10_1093_genetics_iyad214
crossref_primary_10_1016_S1097_2765_00_80390_1
crossref_primary_10_1016_S0092_8674_04_00249_1
crossref_primary_10_1083_jcb_142_2_331
crossref_primary_10_1073_pnas_97_20_10814
crossref_primary_10_1023_A_1016086624640
crossref_primary_10_1093_g3journal_jkac128
crossref_primary_10_1101_gad_11_14_1786
crossref_primary_10_1093_nar_gks920
crossref_primary_10_1371_journal_pgen_1009560
crossref_primary_10_1016_S1534_5807_03_00357_5
crossref_primary_10_1083_jcb_201509076
crossref_primary_10_15252_embj_201695895
crossref_primary_10_1093_genetics_iyad125
crossref_primary_10_1371_journal_pgen_1008905
crossref_primary_10_1534_genetics_104_029660
crossref_primary_10_1091_mbc_e10_12_1011
crossref_primary_10_1016_j_jmb_2006_08_096
crossref_primary_10_1101_gad_1422506
crossref_primary_10_1006_prep_1999_1052
crossref_primary_10_1093_genetics_149_1_57
crossref_primary_10_1023_A_1016690802570
crossref_primary_10_1016_j_pep_2010_03_016
crossref_primary_10_1038_nature13120
crossref_primary_10_1534_genetics_108_095513
crossref_primary_10_1016_j_cub_2025_08_019
crossref_primary_10_1371_journal_pone_0020948
crossref_primary_10_1371_journal_pgen_1003837
crossref_primary_10_1371_journal_pone_0266035
crossref_primary_10_1371_journal_pbio_1002369
crossref_primary_10_1016_j_cub_2006_04_045
crossref_primary_10_1073_pnas_220464597
crossref_primary_10_1371_journal_pgen_1004005
crossref_primary_10_1101_gad_348973_121
crossref_primary_10_1534_genetics_117_300359
crossref_primary_10_1101_gad_14_4_493
crossref_primary_10_3390_ijms252312861
crossref_primary_10_1016_S0092_8674_03_00083_7
crossref_primary_10_1016_S0092_8674_04_00297_1
crossref_primary_10_1091_mbc_11_10_3601
crossref_primary_10_1371_journal_pgen_1005335
crossref_primary_10_1016_S0092_8674_00_80831_4
crossref_primary_10_1083_jcb_200603063
crossref_primary_10_1016_S0092_8674_00_81164_2
crossref_primary_10_1016_S0092_8674_00_80609_1
crossref_primary_10_1371_journal_pgen_1002507
crossref_primary_10_1371_journal_pgen_1000557
crossref_primary_10_7554_eLife_57720
crossref_primary_10_1016_j_cell_2012_08_044
crossref_primary_10_3389_fcell_2021_688878
crossref_primary_10_1093_nar_gkm1082
crossref_primary_10_1038_emboj_2009_362
crossref_primary_10_1371_journal_pgen_1003262
crossref_primary_10_1007_s00412_019_00709_5
crossref_primary_10_1016_S0092_8674_00_81020_X
crossref_primary_10_1016_j_cub_2003_10_059
crossref_primary_10_1371_journal_pgen_1000669
crossref_primary_10_1093_jxb_erq421
crossref_primary_10_1534_genetics_103_025700
crossref_primary_10_1128_MCB_00895_10
crossref_primary_10_1371_journal_pgen_1011432
crossref_primary_10_1093_nar_gkae111
crossref_primary_10_1111_j_1365_2443_2012_01600_x
crossref_primary_10_1371_journal_pbio_3000817
crossref_primary_10_1083_jcb_200310077
crossref_primary_10_1091_mbc_e03_07_0499
crossref_primary_10_1093_nar_gkaf206
crossref_primary_10_1016_j_cub_2010_09_016
crossref_primary_10_1128_MCB_20_13_4838_4848_2000
crossref_primary_10_1016_j_cell_2008_02_026
crossref_primary_10_1093_pnasnexus_pgac302
crossref_primary_10_1073_pnas_2312820121
crossref_primary_10_1242_jcs_02736
crossref_primary_10_1371_journal_pgen_1001190
crossref_primary_10_1186_s12864_018_5368_4
crossref_primary_10_1007_s00412_010_0288_3
crossref_primary_10_1073_pnas_1919459117
crossref_primary_10_1534_genetics_120_303060
crossref_primary_10_1371_journal_pgen_0030176
crossref_primary_10_1093_jxb_erx077
crossref_primary_10_1128_MCB_06032_11
crossref_primary_10_1093_genetics_iyac106
crossref_primary_10_1534_genetics_167_1_51
crossref_primary_10_1371_journal_pgen_1003637
crossref_primary_10_1083_jcb_148_3_417
crossref_primary_10_1146_annurev_genet_32_1_619
crossref_primary_10_3389_fpls_2022_882965
crossref_primary_10_1007_s10577_010_9169_0
crossref_primary_10_1016_j_cell_2006_04_039
crossref_primary_10_1371_journal_pgen_1003197
crossref_primary_10_1101_gad_12_16_2574
crossref_primary_10_1371_journal_pgen_1008640
crossref_primary_10_1016_S0092_8674_00_80378_5
crossref_primary_10_7554_eLife_40372
crossref_primary_10_1371_journal_pgen_1006226
crossref_primary_10_1371_journal_pgen_1006347
crossref_primary_10_3389_fpls_2019_00773
crossref_primary_10_1007_s00294_021_01166_3
crossref_primary_10_1101_gad_1430406
crossref_primary_10_1038_s41467_019_12629_0
crossref_primary_10_1146_annurev_genet_120213_092304
crossref_primary_10_1242_jcs_03054
crossref_primary_10_1074_jbc_M117_796425
crossref_primary_10_1038_ng_83
crossref_primary_10_1093_nar_gkq137
crossref_primary_10_1242_dev_00550
crossref_primary_10_7554_eLife_07424
crossref_primary_10_1101_gad_1709408
crossref_primary_10_1371_journal_pgen_1003194
crossref_primary_10_1083_jcb_200308027
crossref_primary_10_1074_jbc_272_48_30345
crossref_primary_10_1007_s00294_018_0827_7
crossref_primary_10_1038_s44318_024_00318_8
crossref_primary_10_1371_journal_pgen_1003978
crossref_primary_10_1093_genetics_iyab102
crossref_primary_10_1146_annurev_cellbio_17_1_753
crossref_primary_10_1016_j_cub_2009_08_048
crossref_primary_10_1016_S0960_9822_03_00050_2
crossref_primary_10_1101_gad_938102
crossref_primary_10_1002_yea_1847
crossref_primary_10_1371_journal_pgen_1010822
crossref_primary_10_1371_journal_pone_0096648
crossref_primary_10_1146_annurev_arplant_57_032905_105255
crossref_primary_10_1095_biolreprod_112_106773
crossref_primary_10_15252_embj_2019101625
crossref_primary_10_1016_j_bbrc_2005_08_196
crossref_primary_10_1101_gad_536109
crossref_primary_10_1016_S0027_5107_00_00043_9
crossref_primary_10_1093_genetics_149_2_817
crossref_primary_10_1016_j_cropd_2023_100038
crossref_primary_10_1091_mbc_e05_05_0465
crossref_primary_10_1093_nar_gkab566
crossref_primary_10_1093_genetics_164_1_81
crossref_primary_10_1186_s12859_014_0391_1
crossref_primary_10_26508_lsa_202000933
crossref_primary_10_1128_MMBR_68_1_1_108_2004
crossref_primary_10_1016_S1097_2765_00_80404_9
crossref_primary_10_1016_j_cell_2008_01_035
crossref_primary_10_1016_S0959_437X_98_80142_1
crossref_primary_10_1016_j_yexcr_2009_08_007
crossref_primary_10_1016_j_cell_2011_07_003
crossref_primary_10_1128_MCB_19_5_3515
crossref_primary_10_1242_jcs_01203
crossref_primary_10_7554_eLife_19669
crossref_primary_10_1083_jcb_200501042
crossref_primary_10_1093_genetics_163_4_1273
crossref_primary_10_1371_journal_pgen_1000722
crossref_primary_10_1038_nature04885
crossref_primary_10_7554_eLife_72330
crossref_primary_10_3389_fcell_2022_1097446
crossref_primary_10_1371_journal_pgen_1010407
crossref_primary_10_1534_genetics_117_199703
crossref_primary_10_1007_s11373_007_9176_0
crossref_primary_10_1534_g3_116_033910
crossref_primary_10_1128_MMBR_63_2_349_404_1999
crossref_primary_10_1016_S0092_8674_00_81876_0
crossref_primary_10_1128_MCB_00919_09
crossref_primary_10_1371_journal_pgen_1008201
crossref_primary_10_1093_nar_gkx1196
crossref_primary_10_1083_jcb_147_2_207
crossref_primary_10_1128_MCB_20_18_6646_6658_2000
crossref_primary_10_1007_s00294_021_01160_9
crossref_primary_10_1007_s00294_019_00937_3
crossref_primary_10_1534_genetics_105_050658
crossref_primary_10_1534_genetics_106_064303
crossref_primary_10_1016_j_ajhg_2019_11_013
crossref_primary_10_1128_MCB_21_16_5667_5677_2001
crossref_primary_10_1371_journal_pone_0028255
crossref_primary_10_1007_s00412_019_00696_7
crossref_primary_10_1016_S0092_8674_02_01167_4
crossref_primary_10_1093_genetics_158_3_1013
crossref_primary_10_1093_nar_gkw034
crossref_primary_10_1371_journal_pone_0155931
crossref_primary_10_1038_s41598_024_60082_x
crossref_primary_10_1093_nar_gkae1264
crossref_primary_10_1093_genetics_163_3_973
crossref_primary_10_1093_g3journal_jkab283
crossref_primary_10_1093_genetics_iyae106
crossref_primary_10_1371_journal_pgen_1000702
crossref_primary_10_1093_genetics_153_2_621
crossref_primary_10_1146_annurev_genet_33_1_603
crossref_primary_10_1101_gad_1711408
crossref_primary_10_1091_mbc_e09_05_0392
crossref_primary_10_1016_S0092_8674_00_80741_2
crossref_primary_10_1111_gtc_13081
crossref_primary_10_1371_journal_pgen_0030223
crossref_primary_10_1101_gad_308510_117
crossref_primary_10_1242_jcs_00048
crossref_primary_10_1371_journal_pgen_1006928
crossref_primary_10_3390_genes13050777
crossref_primary_10_1126_science_1108283
crossref_primary_10_1002_bies_201100002
crossref_primary_10_1242_jcs_009977
crossref_primary_10_1093_genetics_157_3_1179
crossref_primary_10_1007_s00412_011_0336_7
crossref_primary_10_1017_S095375629800714X
crossref_primary_10_3389_fcell_2021_642737
crossref_primary_10_1371_journal_pone_0085687
crossref_primary_10_1534_genetics_107_071100
crossref_primary_10_1371_journal_pgen_1010298
crossref_primary_10_1007_s00412_010_0284_7
crossref_primary_10_1371_journal_pgen_1011026
crossref_primary_10_1091_mbc_e10_08_0667
crossref_primary_10_1534_genetics_106_058768
crossref_primary_10_1242_jcs_112_17_2957
crossref_primary_10_1074_jbc_M403727200
crossref_primary_10_1242_jcs_114_13_2417
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1083/jcb.136.5.957
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
ExternalDocumentID 9060462
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0VX
123
18M
1VV
29K
2WC
36B
3O-
4.4
53G
85S
9QQ
AAUTI
ABDNZ
ABOCM
ABPPZ
ABRJW
ABZEH
ACGFO
ACGOD
ACIWK
ACKIV
ACKOT
ACNCT
ACNKL
ACPRK
ACPVT
ADBBV
AEILP
AENEX
AEUPB
AFFDN
AFOSN
AFRAH
AHJTV
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
C45
CGR
CS3
CUY
CVF
D-I
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMB
F5P
F9R
FRP
GX1
H13
HF~
HGD
HYE
IH2
J5H
JENOY
JST
JZ9
KQ8
MVM
N9A
NHB
NPM
O5R
O5S
OK1
P2P
PQQKQ
R.V
RHF
RHI
RNS
RPM
RXW
SJN
TAE
TN5
TR2
TRP
TWZ
UBX
UHB
UKR
UPT
VH1
VQA
VXZ
W8F
WH7
WOQ
X7L
X7M
XOL
YIN
YKV
YNH
YOC
YQT
YSK
YWH
YYP
YZZ
ZCA
ZGI
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c546t-a23ca4b22e6c99b6470bb76994af98e4de1114b0cd86487bf332718aa4b837a22
IEDL.DBID 7X8
ISICitedReferencesCount 263
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10.1083/jcb.136.5.957&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9525
IngestDate Thu Oct 02 07:56:39 EDT 2025
Wed Feb 19 02:32:59 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-a23ca4b22e6c99b6470bb76994af98e4de1114b0cd86487bf332718aa4b837a22
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2132480
PMID 9060462
PQID 78857765
PQPubID 23479
ParticipantIDs proquest_miscellaneous_78857765
pubmed_primary_9060462
PublicationCentury 1900
PublicationDate 1997-03-10
PublicationDateYYYYMMDD 1997-03-10
PublicationDate_xml – month: 03
  year: 1997
  text: 1997-03-10
  day: 10
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of cell biology
PublicationTitleAlternate J Cell Biol
PublicationYear 1997
SSID ssj0004743
Score 2.0363061
Snippet Mutants in the meiosis-specific RED1 gene of S. cerevisiae fail to make any synaptonemal complex (SC) or any obvious precursors to the SC. Using antibodies...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 957
SubjectTerms Cell Nucleolus - chemistry
Chromosomes, Fungal - chemistry
DNA-Binding Proteins - analysis
Fungal Proteins - analysis
Fungal Proteins - genetics
Meiosis
Mutation
Nuclear Proteins
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - physiology
Saccharomyces cerevisiae Proteins
Spores, Fungal
Synaptonemal Complex
Title The yeast Red1 protein localizes to the cores of meiotic chromosomes
URI https://www.ncbi.nlm.nih.gov/pubmed/9060462
https://www.proquest.com/docview/78857765
Volume 136
WOSCitedRecordID wos10.1083/jcb.136.5.957&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6qVfDiu1ife_Ca1uwzC4KIWjxoKaLSW9ndbDBCk2qqUH-9s3mAF_HgJbcNy-xk5pudL98gdGpCa86sJgFgBx2wJAwDY8MkcAC1JXERdWX3_PlODofReKxGLXTe_AvjaZVNTCwDdZxbf0feh1KNSyn4xewt8DOjfG-1HqCxhNoUgIz3aTn-oRUua86cJyFwwmuFTcAc_VdrPL-rx3uKy9-xZZljBhv_290mWq-xJb6snGELtVy2jVaraZOLHXQNLoEXflYPfnBxiEuJhjTDZTpLv1yB5zkGPIi9smWB8wRPXZrDu7B98aS9Ip-6Yhc9DW4er26DeohCYDkT80ATajUzhDhhlTKCyTNjpFCK6URFjsUOoh2D84ojAcWLSSglkK80rIHaVRPSQctZnrk9hCmjQmgpYufAtDZRwnDJtOCa-8qGdtFJY5wJOKnvPOjM5R_FpDFPF3Uq-05mlZbGRHnxHkH2_1x6gNYq5VhPpTtE7QS-TneEVuznPC3ej8ujh-dwdP8Nrou4Mw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+yeast+Red1+protein+localizes+to+the+cores+of+meiotic+chromosomes&rft.jtitle=The+Journal+of+cell+biology&rft.au=Smith%2C+A+V&rft.au=Roeder%2C+G+S&rft.date=1997-03-10&rft.issn=0021-9525&rft.volume=136&rft.issue=5&rft.spage=957&rft_id=info:doi/10.1083%2Fjcb.136.5.957&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon