The influence of Antarctic subglacial volcanism on the global iron cycle during the Last Glacial Maximum

Marine sediment records suggest that episodes of major atmospheric CO 2 drawdown during the last glacial period were linked to iron (Fe) fertilization of subantarctic surface waters. The principal source of this Fe is thought to be dust transported from southern mid-latitude deserts. However, uncert...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 8; no. 1; pp. 15425 - 9
Main Authors: Frisia, Silvia, Weyrich, Laura S., Hellstrom, John, Borsato, Andrea, Golledge, Nicholas R., Anesio, Alexandre M., Bajo, Petra, Drysdale, Russell N., Augustinus, Paul C., Rivard, Camille, Cooper, Alan
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 09.06.2017
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2041-1723, 2041-1723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Marine sediment records suggest that episodes of major atmospheric CO 2 drawdown during the last glacial period were linked to iron (Fe) fertilization of subantarctic surface waters. The principal source of this Fe is thought to be dust transported from southern mid-latitude deserts. However, uncertainty exists over contributions to CO 2 sequestration from complementary Fe sources, such as the Antarctic ice sheet, due to the difficulty of locating and interrogating suitable archives that have the potential to preserve such information. Here we present petrographic, geochemical and microbial DNA evidence preserved in precisely dated subglacial calcites from close to the East Antarctic Ice-Sheet margin, which together suggest that volcanically-induced drainage of Fe-rich waters during the Last Glacial Maximum could have reached the Southern Ocean. Our results support a significant contribution of Antarctic volcanism to subglacial transport and delivery of nutrients with implications on ocean productivity at peak glacial conditions. Contributions of iron sources to Southern Ocean CO 2 sequestration during the last glacial period remain uncertain. Here, based on the biogeochemical analysis of subglacial calcites, the authors propose Antarctic volcanism, via subglacial drainage of Fe-rich waters, as a key contributor.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms15425