Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers, speciation and ozone formation potential
Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric chemistry. In this work, we estimated the total and speciated NMVOC emissions from China's anthropogenic sources during 1990–2017 by using a bott...
Uloženo v:
| Vydáno v: | Atmospheric chemistry and physics Ročník 19; číslo 13; s. 8897 - 8913 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Katlenburg-Lindau
Copernicus GmbH
12.07.2019
Copernicus Publications |
| Témata: | |
| ISSN: | 1680-7324, 1680-7316, 1680-7324 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Non-methane volatile organic compounds (NMVOCs) are
important ozone and secondary organic aerosol precursors and play important
roles in tropospheric chemistry. In this work, we estimated the total and
speciated NMVOC emissions from China's anthropogenic sources during
1990–2017 by using a bottom-up emission inventory framework and
investigated the main drivers behind the trends. We found that anthropogenic
NMVOC emissions in China have been increasing continuously since 1990 due to
the dramatic growth in activity rates and absence of effective control
measures. We estimated that anthropogenic NMVOC emissions in China increased
from 9.76 Tg in 1990 to 28.5 Tg in 2017, mainly driven by the persistent
growth from the industry sector and solvent use. Meanwhile, emissions
from the residential and transportation sectors declined after 2005, partly
offsetting the total emission increase. During 1990–2017, mass-based
emissions of alkanes, alkenes, alkynes, aromatics, oxygenated volatile organic compounds (OVOCs)
and other species increased by 274 %, 88 %, 4 %, 387 %, 91 % and
231 %, respectively. Following the growth in total NMVOC emissions, the
corresponding ozone formation potential (OFP) increased from 38.2 Tg of O3
in 1990 to 99.7 Tg of O3 in 2017. We estimated that aromatics accounted
for the largest share (43 %) of the total OFP, followed by alkenes
(37 %) and OVOCs (10 %). Growth in China's NMVOC emissions was mainly
driven by the transportation sector before 2000, while industry and solvent
use dominated the emission growth during 2000–2010. Since 2010, although
emissions from the industry sector and solvent use kept growing, strict
control measures on transportation and fuel transition in residential stoves
have successfully slowed down the increasing trend, especially after the
implementation of China's clean air action since 2013. However, compared to
large emission decreases in other major air pollutants in China (e.g.,
SO2, NOx and primary PM) during 2013–2017, the relatively flat
trend in NMVOC emissions and OFP revealed the absence of effective control
measures, which might have contributed to the increase in ozone during the
same period. Given their high contributions to emissions and OFP, tailored
control measures for solvent use and industrial sources should be developed,
and multi-pollutant control strategies should be designed to mitigate both
PM2.5 and ozone pollution simultaneously. |
|---|---|
| AbstractList | Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric chemistry. In this work, we estimated the total and speciated NMVOC emissions from China's anthropogenic sources during 1990–2017 by using a bottom-up emission inventory framework and investigated the main drivers behind the trends. We found that anthropogenic NMVOC emissions in China have been increasing continuously since 1990 due to the dramatic growth in activity rates and absence of effective control measures. We estimated that anthropogenic NMVOC emissions in China increased from 9.76 Tg in 1990 to 28.5 Tg in 2017, mainly driven by the persistent growth from the industry sector and solvent use. Meanwhile, emissions from the residential and transportation sectors declined after 2005, partly offsetting the total emission increase. During 1990–2017, mass-based emissions of alkanes, alkenes, alkynes, aromatics, oxygenated volatile organic compounds (OVOCs) and other species increased by 274 %, 88 %, 4 %, 387 %, 91 % and 231 %, respectively. Following the growth in total NMVOC emissions, the corresponding ozone formation potential (OFP) increased from 38.2 Tg of O3 in 1990 to 99.7 Tg of O3 in 2017. We estimated that aromatics accounted for the largest share (43 %) of the total OFP, followed by alkenes (37 %) and OVOCs (10 %). Growth in China's NMVOC emissions was mainly driven by the transportation sector before 2000, while industry and solvent use dominated the emission growth during 2000–2010. Since 2010, although emissions from the industry sector and solvent use kept growing, strict control measures on transportation and fuel transition in residential stoves have successfully slowed down the increasing trend, especially after the implementation of China's clean air action since 2013. However, compared to large emission decreases in other major air pollutants in China (e.g., SO2 , NOx and primary PM) during 2013–2017, the relatively flat trend in NMVOC emissions and OFP revealed the absence of effective control measures, which might have contributed to the increase in ozone during the same period. Given their high contributions to emissions and OFP, tailored control measures for solvent use and industrial sources should be developed, and multi-pollutant control strategies should be designed to mitigate both PM 2.5 and ozone pollution simultaneously. Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric chemistry. In this work, we estimated the total and speciated NMVOC emissions from China's anthropogenic sources during 1990–2017 by using a bottom-up emission inventory framework and investigated the main drivers behind the trends. We found that anthropogenic NMVOC emissions in China have been increasing continuously since 1990 due to the dramatic growth in activity rates and absence of effective control measures. We estimated that anthropogenic NMVOC emissions in China increased from 9.76 Tg in 1990 to 28.5 Tg in 2017, mainly driven by the persistent growth from the industry sector and solvent use. Meanwhile, emissions from the residential and transportation sectors declined after 2005, partly offsetting the total emission increase. During 1990–2017, mass-based emissions of alkanes, alkenes, alkynes, aromatics, oxygenated volatile organic compounds (OVOCs) and other species increased by 274 %, 88 %, 4 %, 387 %, 91 % and 231 %, respectively. Following the growth in total NMVOC emissions, the corresponding ozone formation potential (OFP) increased from 38.2 Tg of O3 in 1990 to 99.7 Tg of O3 in 2017. We estimated that aromatics accounted for the largest share (43 %) of the total OFP, followed by alkenes (37 %) and OVOCs (10 %). Growth in China's NMVOC emissions was mainly driven by the transportation sector before 2000, while industry and solvent use dominated the emission growth during 2000–2010. Since 2010, although emissions from the industry sector and solvent use kept growing, strict control measures on transportation and fuel transition in residential stoves have successfully slowed down the increasing trend, especially after the implementation of China's clean air action since 2013. However, compared to large emission decreases in other major air pollutants in China (e.g., SO2, NOx and primary PM) during 2013–2017, the relatively flat trend in NMVOC emissions and OFP revealed the absence of effective control measures, which might have contributed to the increase in ozone during the same period. Given their high contributions to emissions and OFP, tailored control measures for solvent use and industrial sources should be developed, and multi-pollutant control strategies should be designed to mitigate both PM2.5 and ozone pollution simultaneously. Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric chemistry. In this work, we estimated the total and speciated NMVOC emissions from China's anthropogenic sources during 1990-2017 by using a bottom-up emission inventory framework and investigated the main drivers behind the trends. We found that anthropogenic NMVOC emissions in China have been increasing continuously since 1990 due to the dramatic growth in activity rates and absence of effective control measures. We estimated that anthropogenic NMVOC emissions in China increased from 9.76 Tg in 1990 to 28.5 Tg in 2017, mainly driven by the persistent growth from the industry sector and solvent use. Meanwhile, emissions from the residential and transportation sectors declined after 2005, partly offsetting the total emission increase. During 1990-2017, mass-based emissions of alkanes, alkenes, alkynes, aromatics, oxygenated volatile organic compounds (OVOCs) and other species increased by 274 %, 88 %, 4 %, 387 %, 91 % and 231 %, respectively. Following the growth in total NMVOC emissions, the corresponding ozone formation potential (OFP) increased from 38.2 Tg of O.sub.3 in 1990 to 99.7 Tg of O.sub.3 in 2017. We estimated that aromatics accounted for the largest share (43 %) of the total OFP, followed by alkenes (37 %) and OVOCs (10 %). Growth in China's NMVOC emissions was mainly driven by the transportation sector before 2000, while industry and solvent use dominated the emission growth during 2000-2010. Since 2010, although emissions from the industry sector and solvent use kept growing, strict control measures on transportation and fuel transition in residential stoves have successfully slowed down the increasing trend, especially after the implementation of China's clean air action since 2013. However, compared to large emission decreases in other major air pollutants in China (e.g., SO.sub.2, NO.sub.x and primary PM) during 2013-2017, the relatively flat trend in NMVOC emissions and OFP revealed the absence of effective control measures, which might have contributed to the increase in ozone during the same period. Given their high contributions to emissions and OFP, tailored control measures for solvent use and industrial sources should be developed, and multi-pollutant control strategies should be designed to mitigate both PM.sub.2.5 and ozone pollution simultaneously. Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric chemistry. In this work, we estimated the total and speciated NMVOC emissions from China's anthropogenic sources during 1990–2017 by using a bottom-up emission inventory framework and investigated the main drivers behind the trends. We found that anthropogenic NMVOC emissions in China have been increasing continuously since 1990 due to the dramatic growth in activity rates and absence of effective control measures. We estimated that anthropogenic NMVOC emissions in China increased from 9.76 Tg in 1990 to 28.5 Tg in 2017, mainly driven by the persistent growth from the industry sector and solvent use. Meanwhile, emissions from the residential and transportation sectors declined after 2005, partly offsetting the total emission increase. During 1990–2017, mass-based emissions of alkanes, alkenes, alkynes, aromatics, oxygenated volatile organic compounds (OVOCs) and other species increased by 274 %, 88 %, 4 %, 387 %, 91 % and 231 %, respectively. Following the growth in total NMVOC emissions, the corresponding ozone formation potential (OFP) increased from 38.2 Tg of O3 in 1990 to 99.7 Tg of O3 in 2017. We estimated that aromatics accounted for the largest share (43 %) of the total OFP, followed by alkenes (37 %) and OVOCs (10 %). Growth in China's NMVOC emissions was mainly driven by the transportation sector before 2000, while industry and solvent use dominated the emission growth during 2000–2010. Since 2010, although emissions from the industry sector and solvent use kept growing, strict control measures on transportation and fuel transition in residential stoves have successfully slowed down the increasing trend, especially after the implementation of China's clean air action since 2013. However, compared to large emission decreases in other major air pollutants in China (e.g.,SO2, NOx and primary PM) during 2013–2017, the relatively flat trend in NMVOC emissions and OFP revealed the absence of effective control measures, which might have contributed to the increase in ozone during the same period. Given their high contributions to emissions and OFP, tailored control measures for solvent use and industrial sources should be developed, and multi-pollutant control strategies should be designed to mitigate both PM2.5 and ozone pollution simultaneously. |
| Audience | Academic |
| Author | Kang, Sicong Cheng, Yafang Zheng, Bo Li, Meng Zhang, Qiang Tong, Dan Yan, Liu Bo, Yu Lei, Yu He, Kebin Hong, Chaopeng Liu, Fei Zhang, Yuxuan Su, Hang |
| Author_xml | – sequence: 1 givenname: Meng orcidid: 0000-0001-5418-9177 surname: Li fullname: Li, Meng – sequence: 2 givenname: Qiang surname: Zhang fullname: Zhang, Qiang – sequence: 3 givenname: Bo orcidid: 0000-0001-8344-3445 surname: Zheng fullname: Zheng, Bo – sequence: 4 givenname: Dan surname: Tong fullname: Tong, Dan – sequence: 5 givenname: Yu surname: Lei fullname: Lei, Yu – sequence: 6 givenname: Fei orcidid: 0000-0002-0357-0274 surname: Liu fullname: Liu, Fei – sequence: 7 givenname: Chaopeng surname: Hong fullname: Hong, Chaopeng – sequence: 8 givenname: Sicong surname: Kang fullname: Kang, Sicong – sequence: 9 givenname: Liu surname: Yan fullname: Yan, Liu – sequence: 10 givenname: Yuxuan surname: Zhang fullname: Zhang, Yuxuan – sequence: 11 givenname: Yu surname: Bo fullname: Bo, Yu – sequence: 12 givenname: Hang orcidid: 0000-0003-4889-1669 surname: Su fullname: Su, Hang – sequence: 13 givenname: Yafang orcidid: 0000-0003-4912-9879 surname: Cheng fullname: Cheng, Yafang – sequence: 14 givenname: Kebin surname: He fullname: He, Kebin |
| BookMark | eNp1UsluFDEQbaEgkQTuHC1xIRId7G4vbW7RiGWkQBDb1aq47R6PeuzG9oTlxD_wFfwWX4I7A4JBIB9sVb33quq5jqoDH7ypqrsEnzIi6UPQU01k3XVS1A0m8kZ1SHiHa9E29OCP963qKKU1xg3DhB5W316amFzKxmc0xPAhr1CwCHxexTCFwXinUalUb0xegTfoKoyQ3WhQiAPMSR02U9j6Ht1_8fzdxeIEmY1LyQWfkPNosXIeUL-Nzg-ISIm_f_lauhOPUB_dVSn9AKXJaFc0gy9lexQ-l7mQDXGzi01h7s3BeLu6aWFM5s7P-7h6--Txm8Wz-vzi6XJxdl5rRnmuO90JC5rYBjema7gx2hrRdpxL0KYFjc2lZlgII6nQzJCS01pecguSCwbtcbXc6fYB1mqKbgPxkwrg1HWgzK0gZqdHo9pZT7ScMc5pT3vgFDOwhMpGas1p0bq305pieL81Kat12EZf2ldNw3gxggj8GzVAEXXehhxBFxu1OmOyJaShLS-o03-gyumL47qYZsu37BNO9ggFk83HPMA2JbV8_Wofy3dYHUNK0VilXb7-gFLEjYpgNW-ZKlumiFTzlql5ywoR_0X85dh_KT8A8_rX5Q |
| CitedBy_id | crossref_primary_10_1029_2022JD037906 crossref_primary_10_1016_j_envint_2025_109627 crossref_primary_10_1016_j_trpro_2025_03_034 crossref_primary_10_1016_j_atmosres_2022_106184 crossref_primary_10_1016_j_atmosenv_2019_117254 crossref_primary_10_5194_acp_21_4939_2021 crossref_primary_10_1002_ieam_4706 crossref_primary_10_20935_AcadEnvSci7712 crossref_primary_10_1016_j_atmosres_2021_105921 crossref_primary_10_1016_j_jes_2024_01_033 crossref_primary_10_5194_acp_25_7467_2025 crossref_primary_10_3390_su16229915 crossref_primary_10_1016_j_scitotenv_2023_166494 crossref_primary_10_1016_j_envint_2021_106482 crossref_primary_10_1016_j_envpol_2023_122223 crossref_primary_10_1016_j_atmosenv_2025_121149 crossref_primary_10_1016_j_atmosenv_2022_119454 crossref_primary_10_1016_j_jhazmat_2022_130173 crossref_primary_10_1190_geo2023_0080_1 crossref_primary_10_5572_KOSAE_2025_41_3_403 crossref_primary_10_3390_toxics12120868 crossref_primary_10_1016_j_envres_2025_122742 crossref_primary_10_5194_acp_20_14617_2020 crossref_primary_10_1016_j_atmosenv_2021_118869 crossref_primary_10_1016_j_jclepro_2022_132025 crossref_primary_10_1016_j_jes_2022_08_035 crossref_primary_10_1038_s41467_024_48902_0 crossref_primary_10_1016_j_scitotenv_2021_149375 crossref_primary_10_1016_j_scitotenv_2023_169066 crossref_primary_10_1016_j_cej_2020_124986 crossref_primary_10_1016_j_scitotenv_2020_140838 crossref_primary_10_3390_catal12010063 crossref_primary_10_1016_j_scitotenv_2021_152661 crossref_primary_10_1016_j_scitotenv_2024_175342 crossref_primary_10_1016_j_envpol_2021_118192 crossref_primary_10_1088_1748_9326_ac69fe crossref_primary_10_1016_j_envint_2023_107786 crossref_primary_10_6023_A21050224 crossref_primary_10_5194_acp_21_14275_2021 crossref_primary_10_1016_j_scitotenv_2023_162431 crossref_primary_10_1029_2022JD038228 crossref_primary_10_1016_j_jenvman_2022_116436 crossref_primary_10_1029_2021GL092816 crossref_primary_10_1016_j_scitotenv_2022_156998 crossref_primary_10_1016_j_chemosphere_2023_139001 crossref_primary_10_1016_j_scitotenv_2024_173713 crossref_primary_10_1007_s11356_022_21308_5 crossref_primary_10_1126_science_ade1771 crossref_primary_10_3390_catal13020429 crossref_primary_10_1016_j_scitotenv_2021_148176 crossref_primary_10_1016_j_oneear_2022_03_015 crossref_primary_10_5194_acp_22_4841_2022 crossref_primary_10_1016_j_envres_2022_113036 crossref_primary_10_1021_envhealth_3c00209 crossref_primary_10_1038_s41612_024_00847_3 crossref_primary_10_1016_j_jhazmat_2021_126847 crossref_primary_10_1073_pnas_1907956116 crossref_primary_10_1016_j_jhazmat_2025_137681 crossref_primary_10_1016_j_scitotenv_2023_161449 crossref_primary_10_1016_j_scitotenv_2023_162659 crossref_primary_10_3390_coatings15040429 crossref_primary_10_3390_atmos14010024 crossref_primary_10_1016_j_scitotenv_2020_136692 crossref_primary_10_1016_j_envpol_2024_123748 crossref_primary_10_1038_s41467_023_44685_y crossref_primary_10_1016_j_chemosphere_2022_133756 crossref_primary_10_3390_atmos12050555 crossref_primary_10_5194_acp_21_13609_2021 crossref_primary_10_1016_j_envpol_2020_114366 crossref_primary_10_1016_j_jclepro_2022_135795 crossref_primary_10_3390_ma18081758 crossref_primary_10_1016_j_cej_2021_129246 crossref_primary_10_1016_j_gsf_2022_101499 crossref_primary_10_1016_j_scitotenv_2021_150247 crossref_primary_10_1007_s00376_022_1346_5 crossref_primary_10_1016_j_apr_2024_102300 crossref_primary_10_1016_j_scitotenv_2021_148348 crossref_primary_10_1007_s00376_021_0317_6 crossref_primary_10_1021_acsestair_4c00304 crossref_primary_10_1016_j_jclepro_2025_146471 crossref_primary_10_1038_s41467_020_19035_x crossref_primary_10_1016_j_jes_2022_10_034 crossref_primary_10_1016_j_jhazmat_2024_135710 crossref_primary_10_1016_j_envpol_2022_119383 crossref_primary_10_1016_j_scitotenv_2020_143295 crossref_primary_10_5194_acp_24_7101_2024 crossref_primary_10_1016_j_jclepro_2023_140408 crossref_primary_10_5194_acp_20_5729_2020 crossref_primary_10_1016_j_scitotenv_2024_176824 crossref_primary_10_1016_j_atmosenv_2025_121183 crossref_primary_10_1016_j_envint_2024_109137 crossref_primary_10_1016_j_scitotenv_2024_174523 crossref_primary_10_1016_j_envpol_2023_121293 crossref_primary_10_1016_j_jclepro_2024_143348 crossref_primary_10_1016_j_jece_2025_118128 crossref_primary_10_1088_2515_7620_ace614 crossref_primary_10_1002_ep_14156 crossref_primary_10_1016_j_envpol_2020_114657 crossref_primary_10_5194_acp_24_219_2024 crossref_primary_10_3390_atmos16050559 crossref_primary_10_1016_j_apr_2021_01_013 crossref_primary_10_1029_2021JD035050 crossref_primary_10_1016_j_envpol_2023_123234 crossref_primary_10_1016_j_envpol_2022_120144 crossref_primary_10_3390_atmos15040426 crossref_primary_10_1016_j_scitotenv_2022_161295 crossref_primary_10_1016_j_scitotenv_2023_166602 crossref_primary_10_1016_j_atmosenv_2022_119254 crossref_primary_10_1016_j_jclepro_2023_136407 crossref_primary_10_1021_acs_estlett_5c00584 crossref_primary_10_1088_1748_9326_ac46eb crossref_primary_10_1016_j_atmosenv_2021_118424 crossref_primary_10_1016_j_fuel_2022_126905 crossref_primary_10_1016_j_scitotenv_2023_165060 crossref_primary_10_1016_j_atmosenv_2020_117927 crossref_primary_10_1016_j_envres_2022_113485 crossref_primary_10_1021_acsestair_5c00210 crossref_primary_10_1016_j_scitotenv_2024_177563 crossref_primary_10_5194_acp_23_6217_2023 crossref_primary_10_5194_acp_20_9351_2020 crossref_primary_10_1007_s00477_022_02224_z crossref_primary_10_1016_j_envint_2020_105514 crossref_primary_10_1029_2022JD037296 crossref_primary_10_1016_j_scitotenv_2022_156274 crossref_primary_10_1029_2021GL093668 crossref_primary_10_1126_science_adq2840 crossref_primary_10_1016_j_atmosenv_2024_120825 crossref_primary_10_3390_pr10091773 crossref_primary_10_1016_j_cej_2022_137629 crossref_primary_10_1016_j_jes_2021_12_029 crossref_primary_10_5194_acp_23_2877_2023 crossref_primary_10_1016_j_atmosenv_2021_118779 crossref_primary_10_1029_2020JD033519 crossref_primary_10_3390_atmos16090995 crossref_primary_10_5194_acp_23_13755_2023 crossref_primary_10_1016_j_atmosenv_2020_117817 crossref_primary_10_3390_atmos15101162 crossref_primary_10_1016_j_jphotochem_2023_114847 crossref_primary_10_1016_j_jclepro_2021_125810 crossref_primary_10_1016_j_scitotenv_2024_171352 crossref_primary_10_3390_atmos13010009 crossref_primary_10_1016_j_apr_2025_102632 crossref_primary_10_1038_s41612_024_00869_x crossref_primary_10_1007_s11869_022_01298_6 crossref_primary_10_1016_j_jes_2023_04_016 crossref_primary_10_1038_s41612_023_00560_7 crossref_primary_10_1016_j_jhazmat_2024_133668 crossref_primary_10_1016_j_atmosenv_2022_119351 crossref_primary_10_1093_nsr_nwab061 crossref_primary_10_1016_j_envpol_2020_116183 crossref_primary_10_1007_s13762_024_06300_5 crossref_primary_10_1002_cssc_202200702 crossref_primary_10_1016_j_scitotenv_2024_170138 crossref_primary_10_1016_j_atmosenv_2022_118942 crossref_primary_10_1016_j_jes_2020_03_035 crossref_primary_10_1016_j_scitotenv_2021_145392 crossref_primary_10_5194_acp_23_3311_2023 crossref_primary_10_5194_acp_24_9031_2024 crossref_primary_10_1016_j_scib_2020_12_008 crossref_primary_10_5194_acp_20_9837_2020 crossref_primary_10_1016_j_apr_2025_102587 crossref_primary_10_5194_acp_21_12895_2021 crossref_primary_10_1007_s11869_024_01569_4 crossref_primary_10_1016_j_scitotenv_2023_161758 crossref_primary_10_1016_j_scitotenv_2023_161636 crossref_primary_10_1016_j_scitotenv_2023_166416 crossref_primary_10_1016_j_apr_2022_101640 crossref_primary_10_1016_j_scitotenv_2023_167622 crossref_primary_10_1029_2020GL091351 crossref_primary_10_1038_s41561_019_0464_x crossref_primary_10_1088_1748_9326_ac3872 crossref_primary_10_1016_j_cej_2023_144570 crossref_primary_10_1016_j_scitotenv_2022_155904 crossref_primary_10_1016_j_jenvman_2021_112419 crossref_primary_10_1016_j_apr_2025_102452 crossref_primary_10_1016_j_scitotenv_2019_135620 crossref_primary_10_1016_j_atmosenv_2024_121000 crossref_primary_10_1016_j_jclepro_2025_145104 crossref_primary_10_1016_j_scitotenv_2021_145169 crossref_primary_10_1016_j_scp_2024_101857 crossref_primary_10_1007_s11356_024_33991_7 crossref_primary_10_1186_s13021_023_00229_x crossref_primary_10_1016_j_atmosenv_2025_121546 crossref_primary_10_1007_s11356_020_09646_8 crossref_primary_10_1016_j_atmosenv_2024_120830 crossref_primary_10_5194_acp_21_11053_2021 crossref_primary_10_3390_nano13071189 crossref_primary_10_1016_j_atmosenv_2024_120837 crossref_primary_10_1016_j_scitotenv_2023_162287 crossref_primary_10_1016_j_enbenv_2023_03_003 crossref_primary_10_3390_systems12120520 crossref_primary_10_1016_j_envpol_2020_115952 crossref_primary_10_1016_j_jes_2021_08_010 crossref_primary_10_1016_j_nexus_2022_100064 crossref_primary_10_1029_2023JD038594 crossref_primary_10_1016_j_atmosres_2025_107979 crossref_primary_10_1016_j_jes_2021_01_007 crossref_primary_10_1016_j_atmosenv_2023_119908 crossref_primary_10_3390_atmos14071181 crossref_primary_10_5194_acp_21_15447_2021 crossref_primary_10_1016_j_scitotenv_2020_143823 crossref_primary_10_3389_fenvs_2024_1418948 crossref_primary_10_3390_atmos13091347 crossref_primary_10_1016_j_scitotenv_2023_167847 crossref_primary_10_1016_j_energy_2023_127899 crossref_primary_10_5194_acp_24_3925_2024 crossref_primary_10_1016_j_envpol_2023_122403 crossref_primary_10_1016_j_apr_2023_101838 crossref_primary_10_1038_s41893_021_00837_w crossref_primary_10_1016_j_apcatb_2022_121955 crossref_primary_10_1515_revic_2022_0036 crossref_primary_10_1016_j_scitotenv_2024_174304 crossref_primary_10_1007_s11356_024_32368_0 crossref_primary_10_1007_s11869_024_01597_0 crossref_primary_10_1016_j_envpol_2025_126648 crossref_primary_10_1016_j_apr_2025_102550 crossref_primary_10_5194_acp_22_8935_2022 crossref_primary_10_1016_j_jhazmat_2024_134273 crossref_primary_10_1016_j_atmosenv_2025_121206 crossref_primary_10_3390_rs16101680 crossref_primary_10_3390_su13105685 crossref_primary_10_1007_s11356_021_17356_y crossref_primary_10_1016_j_scitotenv_2022_160064 crossref_primary_10_1016_j_atmosenv_2021_118686 crossref_primary_10_1016_j_jes_2021_04_017 crossref_primary_10_3390_toxics12010034 crossref_primary_10_1007_s11270_023_06324_6 crossref_primary_10_1016_j_envres_2023_116329 crossref_primary_10_1016_j_jclepro_2023_138445 crossref_primary_10_1038_s41612_025_01138_1 crossref_primary_10_1016_j_scitotenv_2021_149155 crossref_primary_10_1016_j_apr_2024_102260 crossref_primary_10_1016_j_heliyon_2024_e41616 crossref_primary_10_1525_elementa_434 crossref_primary_10_5194_acp_21_7253_2021 crossref_primary_10_1016_j_jssc_2021_122802 crossref_primary_10_1021_acs_est_5c01020 crossref_primary_10_1016_j_envpol_2025_127046 crossref_primary_10_1016_j_envint_2021_106710 crossref_primary_10_5194_acp_21_11201_2021 crossref_primary_10_1038_s41561_022_00899_1 crossref_primary_10_1016_j_chemosphere_2022_135469 crossref_primary_10_1016_j_envres_2022_113302 crossref_primary_10_1016_j_jenvman_2022_116534 crossref_primary_10_1029_2023JD039591 crossref_primary_10_1016_j_scitotenv_2023_169156 crossref_primary_10_1016_j_scitotenv_2024_176424 crossref_primary_10_1016_j_atmosenv_2025_121462 crossref_primary_10_1016_j_eiar_2022_106840 crossref_primary_10_1016_j_fuel_2023_129157 crossref_primary_10_1016_j_scitotenv_2021_149603 crossref_primary_10_1016_j_envpol_2023_122786 crossref_primary_10_3390_atmos13081241 crossref_primary_10_5194_acp_19_8897_2019 crossref_primary_10_3390_rs17132318 crossref_primary_10_1016_j_atmosres_2024_107643 crossref_primary_10_1016_j_envpol_2024_125553 crossref_primary_10_1016_j_scitotenv_2020_144535 crossref_primary_10_5194_amt_16_273_2023 crossref_primary_10_1016_j_scitotenv_2023_167416 crossref_primary_10_1016_j_jhazmat_2024_134453 crossref_primary_10_1016_j_psep_2023_07_093 crossref_primary_10_1016_j_fuproc_2023_108021 crossref_primary_10_1016_j_jclepro_2023_137459 crossref_primary_10_5194_acp_20_10707_2020 crossref_primary_10_1016_j_jes_2021_08_055 crossref_primary_10_1016_j_apr_2022_101390 crossref_primary_10_1007_s11356_023_31039_w crossref_primary_10_1016_j_aeaoa_2025_100316 crossref_primary_10_1016_j_scitotenv_2021_152447 crossref_primary_10_3389_fenvs_2022_941100 crossref_primary_10_1016_j_scitotenv_2021_151134 crossref_primary_10_1016_j_jes_2022_11_015 crossref_primary_10_1016_j_scitotenv_2022_153994 crossref_primary_10_5194_essd_16_4351_2024 crossref_primary_10_5194_acp_21_16183_2021 crossref_primary_10_5194_acp_20_5887_2020 crossref_primary_10_1016_j_jes_2023_02_015 crossref_primary_10_1016_j_scitotenv_2024_172707 crossref_primary_10_1007_s11356_022_19825_4 crossref_primary_10_1016_j_jes_2021_08_048 crossref_primary_10_1016_j_jes_2025_02_053 crossref_primary_10_1038_s41598_024_63157_x crossref_primary_10_1016_j_envpol_2025_126964 crossref_primary_10_1016_j_jece_2025_117334 crossref_primary_10_1016_j_uclim_2025_102353 crossref_primary_10_1016_j_atmosenv_2023_119819 crossref_primary_10_1016_j_uclim_2023_101584 crossref_primary_10_1016_j_atmosenv_2025_121364 crossref_primary_10_5194_amt_17_5113_2024 crossref_primary_10_1016_j_jes_2022_01_040 crossref_primary_10_1029_2020GL091265 crossref_primary_10_5194_acp_21_13655_2021 crossref_primary_10_5194_acp_24_8847_2024 crossref_primary_10_1016_j_atmosenv_2022_119077 crossref_primary_10_1016_j_scitotenv_2022_161235 crossref_primary_10_1016_j_scitotenv_2020_139763 crossref_primary_10_1016_j_scitotenv_2022_159951 crossref_primary_10_1016_j_oneear_2021_02_003 crossref_primary_10_3390_atmos13060894 crossref_primary_10_1016_j_jelechem_2025_118998 |
| Cites_doi | 10.1016/j.atmosenv.2015.01.054 10.1093/nsr/nwx150 10.1016/j.cclet.2015.05.047 10.1029/2002JD003093 10.1016/j.apenergy.2018.11.043 10.5194/acp-13-8815-2013 10.1002/2015JD023250 10.1016/S1352-2310(01)00529-5 10.5194/acp-9-5131-2009 10.1080/1073161X.1994.10467290 10.1021/es5035188 10.1073/pnas.1714715115 10.1038/ngeo2493 10.1016/j.scitotenv.2015.02.034 10.5194/acp-7-4419-2007 10.4209/aaqr.2013.03.0064 10.1016/j.atmosenv.2008.01.070 10.1016/j.atmosenv.2016.08.025 10.1016/S1352-2310(98)00163-0 10.5094/APR.2010.026 10.5194/gmd-5-1471-2012 10.1016/S1352-2310(99)00450-1 10.1029/2000GB001382 10.1021/acs.est.6b03634 10.5194/acp-19-8897-2019 10.1021/es026232a 10.5194/acp-18-14095-2018 10.1016/j.scitotenv.2015.06.089 10.1016/j.atmosenv.2010.02.014 10.5194/acp-14-5617-2014 10.1021/es0625982 10.5194/acp-18-3433-2018 10.1016/j.atmosenv.2008.02.044 10.1038/s41598-017-03929-w 10.5194/acp-8-7297-2008 10.5194/essd-10-1987-2018 10.5194/acp-15-13299-2015 10.5194/acp-14-6571-2014 10.1021/es901688e 10.5194/bg-16-1629-2019 10.1007/s11783-012-0428-5 10.1007/s11783-012-0461-4 10.1016/j.atmosenv.2015.12.015 10.1021/es980081n 10.1021/acs.estlett.8b00366 10.1016/j.jenvman.2007.12.008 10.1016/j.scitotenv.2013.03.055 10.1021/es0108077 10.1016/j.atmosenv.2009.05.040 10.5194/acp-10-11707-2010 10.1073/pnas.1812168116 10.1016/j.scitotenv.2017.06.099 10.5194/acp-13-11019-2013 10.5194/acp-15-8889-2015 10.5194/acp-14-9787-2014 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2019 Copernicus GmbH 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2019 Copernicus GmbH – notice: 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY DOA |
| DOI | 10.5194/acp-19-8897-2019 |
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1680-7324 |
| EndPage | 8913 |
| ExternalDocumentID | oai_doaj_org_article_3e3ac73655664d4da6405af14929cc64 A593112436 10_5194_acp_19_8897_2019 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BANNL BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PYCSY Q2X RKB RNS TR2 XSB ~02 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQUKI |
| ID | FETCH-LOGICAL-c546t-8c87fac1f202e826eecfe738669ace3ac0ebc5077e947c5e1738cc9b6fa9675a3 |
| IEDL.DBID | RKB |
| ISICitedReferencesCount | 338 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475370200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1680-7324 1680-7316 |
| IngestDate | Fri Oct 03 12:52:08 EDT 2025 Fri Jul 25 23:41:45 EDT 2025 Sat Nov 29 13:35:10 EST 2025 Sat Nov 29 10:10:20 EST 2025 Wed Nov 26 09:39:18 EST 2025 Sat Nov 29 05:52:38 EST 2025 Tue Nov 18 22:02:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c546t-8c87fac1f202e826eecfe738669ace3ac0ebc5077e947c5e1738cc9b6fa9675a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5418-9177 0000-0003-4889-1669 0000-0002-0357-0274 0000-0003-4912-9879 0000-0001-8344-3445 |
| OpenAccessLink | https://doaj.org/article/3e3ac73655664d4da6405af14929cc64 |
| PQID | 2256017170 |
| PQPubID | 105744 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3e3ac73655664d4da6405af14929cc64 proquest_journals_2256017170 gale_infotracmisc_A593112436 gale_infotracacademiconefile_A593112436 gale_incontextgauss_ISR_A593112436 crossref_citationtrail_10_5194_acp_19_8897_2019 crossref_primary_10_5194_acp_19_8897_2019 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-12 |
| PublicationDateYYYYMMDD | 2019-07-12 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-12 day: 12 |
| PublicationDecade | 2010 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Atmospheric chemistry and physics |
| PublicationYear | 2019 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref55 doi: 10.1016/j.atmosenv.2015.01.054 – ident: ref19 doi: 10.1093/nsr/nwx150 – ident: ref53 doi: 10.1016/j.cclet.2015.05.047 – ident: ref39 doi: 10.1029/2002JD003093 – ident: ref32 doi: 10.1016/j.apenergy.2018.11.043 – ident: ref57 doi: 10.5194/acp-13-8815-2013 – ident: ref13 doi: 10.1002/2015JD023250 – ident: ref15 doi: 10.1016/S1352-2310(01)00529-5 – ident: ref60 doi: 10.5194/acp-9-5131-2009 – ident: ref3 doi: 10.1080/1073161X.1994.10467290 – ident: ref9 – ident: ref61 doi: 10.1021/es5035188 – ident: ref14 doi: 10.1073/pnas.1714715115 – ident: ref42 doi: 10.1038/ngeo2493 – ident: ref36 doi: 10.1016/j.scitotenv.2015.02.034 – ident: ref30 – ident: ref31 doi: 10.5194/acp-7-4419-2007 – ident: ref43 doi: 10.4209/aaqr.2013.03.0064 – ident: ref23 doi: 10.1016/j.atmosenv.2008.01.070 – ident: ref25 doi: 10.1016/j.atmosenv.2016.08.025 – ident: ref6 doi: 10.1016/S1352-2310(98)00163-0 – ident: ref37 doi: 10.5094/APR.2010.026 – ident: ref50 – ident: ref11 doi: 10.5194/gmd-5-1471-2012 – ident: ref59 doi: 10.1016/S1352-2310(99)00450-1 – ident: ref1 doi: 10.1029/2000GB001382 – ident: ref54 doi: 10.1021/acs.est.6b03634 – ident: ref21 doi: 10.5194/acp-19-8897-2019 – ident: ref40 doi: 10.1021/es026232a – ident: ref63 doi: 10.5194/acp-18-14095-2018 – ident: ref26 doi: 10.1016/j.scitotenv.2015.06.089 – ident: ref58 doi: 10.1016/j.atmosenv.2010.02.014 – ident: ref18 doi: 10.5194/acp-14-5617-2014 – ident: ref38 doi: 10.1021/es0625982 – ident: ref12 – ident: ref20 doi: 10.5194/acp-18-3433-2018 – ident: ref49 doi: 10.1016/j.atmosenv.2008.02.044 – ident: ref7 – ident: ref47 doi: 10.1038/s41598-017-03929-w – ident: ref2 doi: 10.5194/acp-8-7297-2008 – ident: ref5 doi: 10.5194/essd-10-1987-2018 – ident: ref22 doi: 10.5194/acp-15-13299-2015 – ident: ref29 – ident: ref46 doi: 10.5194/acp-14-6571-2014 – ident: ref48 – ident: ref64 doi: 10.1021/es901688e – ident: ref56 doi: 10.5194/bg-16-1629-2019 – ident: ref44 doi: 10.1007/s11783-012-0428-5 – ident: ref51 doi: 10.1007/s11783-012-0461-4 – ident: ref52 doi: 10.1016/j.atmosenv.2015.12.015 – ident: ref33 doi: 10.1021/es980081n – ident: ref4 – ident: ref24 doi: 10.1021/acs.estlett.8b00366 – ident: ref35 doi: 10.1016/j.jenvman.2007.12.008 – ident: ref65 doi: 10.1016/j.scitotenv.2013.03.055 – ident: ref34 doi: 10.1021/es0108077 – ident: ref28 – ident: ref45 doi: 10.1016/j.atmosenv.2009.05.040 – ident: ref41 doi: 10.5194/acp-10-11707-2010 – ident: ref17 doi: 10.1073/pnas.1812168116 – ident: ref8 – ident: ref10 doi: 10.1016/j.scitotenv.2017.06.099 – ident: ref16 doi: 10.5194/acp-13-11019-2013 – ident: ref27 doi: 10.5194/acp-15-8889-2015 – ident: ref62 doi: 10.5194/acp-14-9787-2014 |
| SSID | ssj0025014 |
| Score | 2.6829567 |
| Snippet | Non-methane volatile organic compounds (NMVOCs) are
important ozone and secondary organic aerosol precursors and play important
roles in tropospheric... Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 8897 |
| SubjectTerms | Air pollution Air pollution control Alkanes Alkenes Alkynes Anthropogenic factors Aromatic compounds Atmospheric chemistry Atmospheric ozone Chinese history Emission analysis Emission inventories Emission measurements Emissions (Pollution) Environmental aspects Environmental law Forecasts and trends Growth Methane Nitrogen compounds open climate campaign Organic chemistry Organic compounds Oxides Ozone Ozone formation Particulate matter Pollutants Pollution Pollution control Pollution sources Secondary aerosols Solvents Speciation Stoves Sulfur dioxide Transportation Trends Tropospheric chemistry VOCs Volatile organic compounds |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LjtMwFLXQiAUbxFMUBnSFEDASUfNw7JjdUDECiSmIl2ZnuTf2UKlKqqYzi1nxD3wFv8WXcK-TVtMFsGHZxFFsn1v7XMc-R4gnWhPJr1Ems6xgUe1CJTMs8wQ9TSahrrx2UV3_nZ5Oq5MT8-GS1RfvCevlgfuOGxe-cKgLVRLvkLWsnSKK4QIR-9wgqqgESqxnk0wNqRZ_LeNUS1Vpwt5M_QdKYity7HCZZCapKqMpRFhh59KEFHX7_zQ6xynn6Ia4PnBFOOzreFNc8c0tMTommtuu4mo4PIXJYk6cM_66LX7yfnbGrVnDKeXX62_QBnCDFwKFyhyB0v2EbaNd44GGJgJm4aH3dkLgDebsswTPp8df308OgN3geD2tg3kD0Wsb-oONkNEE8-v7D2qbfgn1Km7veAFdtLNnsOm1NbQXLb1me0ASli3XjUL-jvhy9Prz5E0yeDEkWEq1TiqsdHCYhTzNPaUk3mPwbBiqjEOGKPWEcaq1N1Jj6TO6h2hmKjhDOYkr7oo9aqC_JyDomQ4h805KJ1UhnaIrpatTNLIm-jQS4w0gFgehcvbLWFhKWBhCSxDazFiG0DKEI3GwfWLZi3T8pewrxnhbjuW14wXqaTsEnf1X0I3EY44QywIaDe_QOXVnXWfffvpoD0tTEIeVhRqJZ0Oh0FL90Q0HHqgXWHNrp-T-TkmCFndvbwLRDiNMZ_OYS1Mynt7_Hy16IK5x7_CqdZbvi7316sw_FFfxfD3vVo_in-s3S30ozw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4ELb8RCQRZCQCWszcOxYy6oXbUCiS5Veag3yzuxy0qrZNlsOXDiP_Ar-Fv8EmYS70IP9MIx8UTx4_N4ZmzPx9gTrdHIr0CKaZpTUu1ciSkUmQCPi0moSq9dl13_rZ5MypMTcxQDbm08VrnWiZ2irhqgGPko63wHdD6SV4svglijaHc1UmhcZluUqUwO2Nbe_uToeONy0a4ZuVyqTARxNPUblWi1yJGDhUiNKEujESqUaeevhanL3_8vLd0tPQfX_7fSN9i1aHTy3R4lN9klX99iw0O0l5tlF1bnT_l4PkPjtXu6zX7SwXgCQL3ip-iorz7zJnAXSRUQczPgdVML4p92teeo43CE5573JFHA6aQ6ETbx55PDT-_GO5xo5Sgw1_JZzTvSbt7fkOQprlS_vv_AztEvebXszom84HQDtEcN_rbizbcGf7O5ackXDdUN584d9vFg_8P4tYikDgIKqVaihFIHB2nIksyjb-M9BE_Mo8o48LmDxCNYEq29kRoKn2IZgJmq4Aw6Ny6_ywbYQH-P8aCnOoTUOymdVLl0Ct8UrkrAyArtsCEbrUfUQsx4TsQbc4ueD2HAIgZsaixhwBIGhmxn88Wiz_ZxgewegWQjR3m6uxfY0zZOe5tTi3SuCrSaZSUrp9BAdgHd0swAKDlkjwliljJx1HTU59Sdta198_7Y7hYmR2NY5mrInkWh0GD9wcWbE9gLlLzrnOT2OUkcWjhfvIapjaqqtX8wev_i4gfsKrWbAttpts0Gq-WZf8iuwNfVrF0-ijPvNz6rOLg priority: 102 providerName: ProQuest |
| Title | Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers, speciation and ozone formation potential |
| URI | https://www.proquest.com/docview/2256017170 https://doaj.org/article/3e3ac73655664d4da6405af14929cc64 |
| Volume | 19 |
| WOSCitedRecordID | wos000475370200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: RKB dateStart: 20010101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: P5Z dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BFMQW dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PCBAR dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PATMY dateStart: 20100415 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BENPR dateStart: 20100415 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PIMPY dateStart: 20100415 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQwoEL_4jAsrIQAlYian4cO-bWrXbFSrREZUELF8ud2EulKqnaLAdOvANPwWvxJMwk2Wp7AA5waVRnojgzE3vGGX8fY0-VwiC_BBHO4pRAtVMZziBLQnA4mfgyd8q26Ppv1GSSn57q4hLVF9WEdfDAneIGqUstqFRmGHeIUpRWYohhPQb2iQaQhASKbkjcBVPicOtTLfpaRqmWzKOQuJm6D5QYrYiBhWUY6zDPtUIXIYSdSxNSi9v_u9G5nXKObv5DZ2-xG32cyYfdJbfZFVfdYcEYQ-R61a6k82d8tJhjvNr-u8t-UC082bxq-Bnm5s1nXntuex4FdLM58KquQqKctpXjOKyhUReOd7xQwKk4nTia-IvJ-MPb0T4nJjlai1vzecVbnm7ebYrkMU5OP799R72oV7xctaUhLzlt-uwcBW9b8vprjbfZbK7ky5r6hq_LPfb-6PBk9DrseRxCyIRswhxy5S3EPokSh-mMc-AdkY1KbYE0Fjn0j0gpp4WCzMV4DkDPpLca8xmb3mc7-IDuAeNezZT3sbNCWCFTYSW2ZLaMQIsSQ6-ADS6MaaAHOSeujYXBZIfMb9D8JtaGzG_I_AHb31yx7AA-_iB7QCbfyBE0d9uAmja9D5i_-UDAnpB3GQLfqKi658yer9fm-N3UDDOdYvwrUhmw572Qr7H_YPvNEqgFwuvaktzdkkTTwvbpCyc2_ei0Nkmbh2MiHz38H0_0iF0n7dCKd5zssp1mde4es2vwpZmvV3vs6sHhpJjutasd-Ftkn7CtGJ6MP9LxeFzgkV7eX7zAQZ8 |
| linkProvider | Copernicus Gesellschaft |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NctMwENaUlhm48N8hUEDDQKEzeBLbsmQxw6ENZJppEv4K7U0oa7lkJmOHOKUDJ96Bp-DCQ_Ek7NpOIAd664GjLdmWpd3VftJqP8YeKIVOfgLCG_ohJdUOpTeEKPDA4WSSJrFTtsyu31ODQXx4qF-tsJ_zszAUVjm3iaWhTnKgNfJmUGIHBB-tOoJyz305QXxWPOs-x8F8GASdF_vtXa-mEPAgEnLmxRCr1IKfIsZ36Ek7B6kjnkupLbjQQsth01pKOS0URM7HMgA9lKnV6ErbEN-7OfnkEUsV7ebWlB3n2FosdYh6tbbT6b8-WEA82qUjiCfjlkecUNXGKHpJomlh4vnai2OtUDQps89fE2HJF_CvWaGc6jqX_7dOusIu1U4136604Cpbcdk11ugjHsin5bYB3-Tt8Qid8_LqOvtBgf8k4NmMH03zk9lHnqfc1qQRqFMj4FmeecSvbTPH0YajBI8dr0iwgFMkPhFS8ceD_vuX7S1OtHm08FjwUcZLUnJenQDlPs7Ev759x8FQT3kyLeNgnnA64VppBX424fnXHD-zOEnKJzm1DW3DDfbuTDpzna3iD7qbjKdqqNLUd1YIK2QorMQ7kU1aoEWCfmaDNecSZKDO6E7EImODyI5kzqDMGV8bkjlDMtdgW4snJlU2k1Pq7pBQLupRHvLyBva0qc2aCemPVCgjRAUiEYmVCABsirA70ABSNNh9EmlDmUYyCmU6ssdFYbpv35jtSIfo7ItQNtijulKaY_vB1idDsBcoOdlSzY2lmji0sFw8VwtTm-LC_NGJW6cX32MXdvf7PdPrDvZus4vUB7SI7wcbbHU2PXZ32Hn4PBsV07u11nP24azV6jffwZgM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFLZGhxA3_CMKAyzE3ySi5sexEySEuo6KalupNkC7M-6JPSpVSWk7JrjiHXgKXoHH4Uk4J0kLvWB3u-AysZM49neOz7F9zsfYQ6XQyM9AeMMgoqTakfSGEIceWJxMXJZYZcrs-ruq308OD9PBGvu5iIWhY5ULnVgq6qwAWiNvhaXvgM6H33L1sYjBdvfl5JNHDFK007qg06ggsmO_nKD7NnvR28axfhSG3VdvO6-9mmHAg1jIuZdAopyBwIV-aNHQthacJRpMmRqwkQHfYst9pWwqFMQ2wDKAdCidSdHSNhG-9xxbT6TywwZbH3S22vtLd4927Mjdk4nvET9UtUmKFpNoGZh4QeolSaoQppTl569JseQO-NcMUU573cv_c4ddYZdqY5u3K-m4ytZsfo0199BPKKbldgJ_zDvjERrt5dV19oMCAgj4-ZwfTYuT-UdeOG5qMgmUtRHwvMg94t02ueWo2xHZY8srcizgdEKfiKr40_7e-zedTU50erQgOeOjnJdk5byKDOUBztC_vn3HgVHPeTYtz8c84xT5WkkLfjbjxdcCP7OMMOWTgtqGOuMGe3cmPXeTNfAH7S3GnRoq5wJrhDBCRsJIvBObzIdUZGh_NllrgSYNdaZ3IhwZa_T4CH8a8aeDVBP-NOGvyTaXT0yqLCen1N0igC7rUX7y8gb2tK7VnY7oj1QkY_QWRCYyI9ExMA7d8TAFkKLJHhC8NWUgyQmaR-Z4NtO9g33djtMInQARySZ7UldyBbYfTB0xgr1ASctWam6s1MShhdXihYjoWkXP9B_5uH168X12AQVH7_b6O3fYReoCWtsPwg3WmE-P7V12Hj7PR7PpvVoBcPbhrEXoN8i6oJo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Persistent+growth+of+anthropogenic+non-methane+volatile+organic+compound+%28NMVOC%29+emissions+in+China+during+1990%E2%80%932017%3A+drivers%2C+speciation+and+ozone+formation+potential&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Li%2C+Meng&rft.au=Zhang%2C+Qiang&rft.au=Zheng%2C+Bo&rft.au=Tong%2C+Dan&rft.date=2019-07-12&rft.issn=1680-7324&rft.eissn=1680-7324&rft.volume=19&rft.issue=13&rft.spage=8897&rft.epage=8913&rft_id=info:doi/10.5194%2Facp-19-8897-2019&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_acp_19_8897_2019 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |