Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers, speciation and ozone formation potential

Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric chemistry. In this work, we estimated the total and speciated NMVOC emissions from China's anthropogenic sources during 1990–2017 by using a bott...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Atmospheric chemistry and physics Ročník 19; číslo 13; s. 8897 - 8913
Hlavní autoři: Li, Meng, Zhang, Qiang, Zheng, Bo, Tong, Dan, Lei, Yu, Liu, Fei, Hong, Chaopeng, Kang, Sicong, Yan, Liu, Zhang, Yuxuan, Bo, Yu, Su, Hang, Cheng, Yafang, He, Kebin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Katlenburg-Lindau Copernicus GmbH 12.07.2019
Copernicus Publications
Témata:
ISSN:1680-7324, 1680-7316, 1680-7324
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric chemistry. In this work, we estimated the total and speciated NMVOC emissions from China's anthropogenic sources during 1990–2017 by using a bottom-up emission inventory framework and investigated the main drivers behind the trends. We found that anthropogenic NMVOC emissions in China have been increasing continuously since 1990 due to the dramatic growth in activity rates and absence of effective control measures. We estimated that anthropogenic NMVOC emissions in China increased from 9.76 Tg in 1990 to 28.5 Tg in 2017, mainly driven by the persistent growth from the industry sector and solvent use. Meanwhile, emissions from the residential and transportation sectors declined after 2005, partly offsetting the total emission increase. During 1990–2017, mass-based emissions of alkanes, alkenes, alkynes, aromatics, oxygenated volatile organic compounds (OVOCs) and other species increased by 274 %, 88 %, 4 %, 387 %, 91 % and 231 %, respectively. Following the growth in total NMVOC emissions, the corresponding ozone formation potential (OFP) increased from 38.2 Tg of O3 in 1990 to 99.7 Tg of O3 in 2017. We estimated that aromatics accounted for the largest share (43 %) of the total OFP, followed by alkenes (37 %) and OVOCs (10 %). Growth in China's NMVOC emissions was mainly driven by the transportation sector before 2000, while industry and solvent use dominated the emission growth during 2000–2010. Since 2010, although emissions from the industry sector and solvent use kept growing, strict control measures on transportation and fuel transition in residential stoves have successfully slowed down the increasing trend, especially after the implementation of China's clean air action since 2013. However, compared to large emission decreases in other major air pollutants in China (e.g., SO2, NOx and primary PM) during 2013–2017, the relatively flat trend in NMVOC emissions and OFP revealed the absence of effective control measures, which might have contributed to the increase in ozone during the same period. Given their high contributions to emissions and OFP, tailored control measures for solvent use and industrial sources should be developed, and multi-pollutant control strategies should be designed to mitigate both PM2.5 and ozone pollution simultaneously.
AbstractList Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric chemistry. In this work, we estimated the total and speciated NMVOC emissions from China's anthropogenic sources during 1990–2017 by using a bottom-up emission inventory framework and investigated the main drivers behind the trends. We found that anthropogenic NMVOC emissions in China have been increasing continuously since 1990 due to the dramatic growth in activity rates and absence of effective control measures. We estimated that anthropogenic NMVOC emissions in China increased from 9.76 Tg in 1990 to 28.5 Tg in 2017, mainly driven by the persistent growth from the industry sector and solvent use. Meanwhile, emissions from the residential and transportation sectors declined after 2005, partly offsetting the total emission increase. During 1990–2017, mass-based emissions of alkanes, alkenes, alkynes, aromatics, oxygenated volatile organic compounds (OVOCs) and other species increased by 274 %, 88 %, 4 %, 387 %, 91 % and 231 %, respectively. Following the growth in total NMVOC emissions, the corresponding ozone formation potential (OFP) increased from 38.2 Tg of O3 in 1990 to 99.7 Tg of O3 in 2017. We estimated that aromatics accounted for the largest share (43 %) of the total OFP, followed by alkenes (37 %) and OVOCs (10 %). Growth in China's NMVOC emissions was mainly driven by the transportation sector before 2000, while industry and solvent use dominated the emission growth during 2000–2010. Since 2010, although emissions from the industry sector and solvent use kept growing, strict control measures on transportation and fuel transition in residential stoves have successfully slowed down the increasing trend, especially after the implementation of China's clean air action since 2013. However, compared to large emission decreases in other major air pollutants in China (e.g., SO2 , NOx and primary PM) during 2013–2017, the relatively flat trend in NMVOC emissions and OFP revealed the absence of effective control measures, which might have contributed to the increase in ozone during the same period. Given their high contributions to emissions and OFP, tailored control measures for solvent use and industrial sources should be developed, and multi-pollutant control strategies should be designed to mitigate both PM 2.5 and ozone pollution simultaneously.
Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric chemistry. In this work, we estimated the total and speciated NMVOC emissions from China's anthropogenic sources during 1990–2017 by using a bottom-up emission inventory framework and investigated the main drivers behind the trends. We found that anthropogenic NMVOC emissions in China have been increasing continuously since 1990 due to the dramatic growth in activity rates and absence of effective control measures. We estimated that anthropogenic NMVOC emissions in China increased from 9.76 Tg in 1990 to 28.5 Tg in 2017, mainly driven by the persistent growth from the industry sector and solvent use. Meanwhile, emissions from the residential and transportation sectors declined after 2005, partly offsetting the total emission increase. During 1990–2017, mass-based emissions of alkanes, alkenes, alkynes, aromatics, oxygenated volatile organic compounds (OVOCs) and other species increased by 274 %, 88 %, 4 %, 387 %, 91 % and 231 %, respectively. Following the growth in total NMVOC emissions, the corresponding ozone formation potential (OFP) increased from 38.2 Tg of O3 in 1990 to 99.7 Tg of O3 in 2017. We estimated that aromatics accounted for the largest share (43 %) of the total OFP, followed by alkenes (37 %) and OVOCs (10 %). Growth in China's NMVOC emissions was mainly driven by the transportation sector before 2000, while industry and solvent use dominated the emission growth during 2000–2010. Since 2010, although emissions from the industry sector and solvent use kept growing, strict control measures on transportation and fuel transition in residential stoves have successfully slowed down the increasing trend, especially after the implementation of China's clean air action since 2013. However, compared to large emission decreases in other major air pollutants in China (e.g., SO2, NOx and primary PM) during 2013–2017, the relatively flat trend in NMVOC emissions and OFP revealed the absence of effective control measures, which might have contributed to the increase in ozone during the same period. Given their high contributions to emissions and OFP, tailored control measures for solvent use and industrial sources should be developed, and multi-pollutant control strategies should be designed to mitigate both PM2.5 and ozone pollution simultaneously.
Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric chemistry. In this work, we estimated the total and speciated NMVOC emissions from China's anthropogenic sources during 1990-2017 by using a bottom-up emission inventory framework and investigated the main drivers behind the trends. We found that anthropogenic NMVOC emissions in China have been increasing continuously since 1990 due to the dramatic growth in activity rates and absence of effective control measures. We estimated that anthropogenic NMVOC emissions in China increased from 9.76 Tg in 1990 to 28.5 Tg in 2017, mainly driven by the persistent growth from the industry sector and solvent use. Meanwhile, emissions from the residential and transportation sectors declined after 2005, partly offsetting the total emission increase. During 1990-2017, mass-based emissions of alkanes, alkenes, alkynes, aromatics, oxygenated volatile organic compounds (OVOCs) and other species increased by 274 %, 88 %, 4 %, 387 %, 91 % and 231 %, respectively. Following the growth in total NMVOC emissions, the corresponding ozone formation potential (OFP) increased from 38.2 Tg of O.sub.3 in 1990 to 99.7 Tg of O.sub.3 in 2017. We estimated that aromatics accounted for the largest share (43 %) of the total OFP, followed by alkenes (37 %) and OVOCs (10 %). Growth in China's NMVOC emissions was mainly driven by the transportation sector before 2000, while industry and solvent use dominated the emission growth during 2000-2010. Since 2010, although emissions from the industry sector and solvent use kept growing, strict control measures on transportation and fuel transition in residential stoves have successfully slowed down the increasing trend, especially after the implementation of China's clean air action since 2013. However, compared to large emission decreases in other major air pollutants in China (e.g., SO.sub.2, NO.sub.x and primary PM) during 2013-2017, the relatively flat trend in NMVOC emissions and OFP revealed the absence of effective control measures, which might have contributed to the increase in ozone during the same period. Given their high contributions to emissions and OFP, tailored control measures for solvent use and industrial sources should be developed, and multi-pollutant control strategies should be designed to mitigate both PM.sub.2.5 and ozone pollution simultaneously.
Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric chemistry. In this work, we estimated the total and speciated NMVOC emissions from China's anthropogenic sources during 1990–2017 by using a bottom-up emission inventory framework and investigated the main drivers behind the trends. We found that anthropogenic NMVOC emissions in China have been increasing continuously since 1990 due to the dramatic growth in activity rates and absence of effective control measures. We estimated that anthropogenic NMVOC emissions in China increased from 9.76 Tg in 1990 to 28.5 Tg in 2017, mainly driven by the persistent growth from the industry sector and solvent use. Meanwhile, emissions from the residential and transportation sectors declined after 2005, partly offsetting the total emission increase. During 1990–2017, mass-based emissions of alkanes, alkenes, alkynes, aromatics, oxygenated volatile organic compounds (OVOCs) and other species increased by 274 %, 88 %, 4 %, 387 %, 91 % and 231 %, respectively. Following the growth in total NMVOC emissions, the corresponding ozone formation potential (OFP) increased from 38.2 Tg of O3 in 1990 to 99.7 Tg of O3 in 2017. We estimated that aromatics accounted for the largest share (43 %) of the total OFP, followed by alkenes (37 %) and OVOCs (10 %). Growth in China's NMVOC emissions was mainly driven by the transportation sector before 2000, while industry and solvent use dominated the emission growth during 2000–2010. Since 2010, although emissions from the industry sector and solvent use kept growing, strict control measures on transportation and fuel transition in residential stoves have successfully slowed down the increasing trend, especially after the implementation of China's clean air action since 2013. However, compared to large emission decreases in other major air pollutants in China (e.g.,SO2, NOx and primary PM) during 2013–2017, the relatively flat trend in NMVOC emissions and OFP revealed the absence of effective control measures, which might have contributed to the increase in ozone during the same period. Given their high contributions to emissions and OFP, tailored control measures for solvent use and industrial sources should be developed, and multi-pollutant control strategies should be designed to mitigate both PM2.5 and ozone pollution simultaneously.
Audience Academic
Author Kang, Sicong
Cheng, Yafang
Zheng, Bo
Li, Meng
Zhang, Qiang
Tong, Dan
Yan, Liu
Bo, Yu
Lei, Yu
He, Kebin
Hong, Chaopeng
Liu, Fei
Zhang, Yuxuan
Su, Hang
Author_xml – sequence: 1
  givenname: Meng
  orcidid: 0000-0001-5418-9177
  surname: Li
  fullname: Li, Meng
– sequence: 2
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
– sequence: 3
  givenname: Bo
  orcidid: 0000-0001-8344-3445
  surname: Zheng
  fullname: Zheng, Bo
– sequence: 4
  givenname: Dan
  surname: Tong
  fullname: Tong, Dan
– sequence: 5
  givenname: Yu
  surname: Lei
  fullname: Lei, Yu
– sequence: 6
  givenname: Fei
  orcidid: 0000-0002-0357-0274
  surname: Liu
  fullname: Liu, Fei
– sequence: 7
  givenname: Chaopeng
  surname: Hong
  fullname: Hong, Chaopeng
– sequence: 8
  givenname: Sicong
  surname: Kang
  fullname: Kang, Sicong
– sequence: 9
  givenname: Liu
  surname: Yan
  fullname: Yan, Liu
– sequence: 10
  givenname: Yuxuan
  surname: Zhang
  fullname: Zhang, Yuxuan
– sequence: 11
  givenname: Yu
  surname: Bo
  fullname: Bo, Yu
– sequence: 12
  givenname: Hang
  orcidid: 0000-0003-4889-1669
  surname: Su
  fullname: Su, Hang
– sequence: 13
  givenname: Yafang
  orcidid: 0000-0003-4912-9879
  surname: Cheng
  fullname: Cheng, Yafang
– sequence: 14
  givenname: Kebin
  surname: He
  fullname: He, Kebin
BookMark eNp1UsluFDEQbaEgkQTuHC1xIRId7G4vbW7RiGWkQBDb1aq47R6PeuzG9oTlxD_wFfwWX4I7A4JBIB9sVb33quq5jqoDH7ypqrsEnzIi6UPQU01k3XVS1A0m8kZ1SHiHa9E29OCP963qKKU1xg3DhB5W316amFzKxmc0xPAhr1CwCHxexTCFwXinUalUb0xegTfoKoyQ3WhQiAPMSR02U9j6Ht1_8fzdxeIEmY1LyQWfkPNosXIeUL-Nzg-ISIm_f_lauhOPUB_dVSn9AKXJaFc0gy9lexQ-l7mQDXGzi01h7s3BeLu6aWFM5s7P-7h6--Txm8Wz-vzi6XJxdl5rRnmuO90JC5rYBjema7gx2hrRdpxL0KYFjc2lZlgII6nQzJCS01pecguSCwbtcbXc6fYB1mqKbgPxkwrg1HWgzK0gZqdHo9pZT7ScMc5pT3vgFDOwhMpGas1p0bq305pieL81Kat12EZf2ldNw3gxggj8GzVAEXXehhxBFxu1OmOyJaShLS-o03-gyumL47qYZsu37BNO9ggFk83HPMA2JbV8_Wofy3dYHUNK0VilXb7-gFLEjYpgNW-ZKlumiFTzlql5ywoR_0X85dh_KT8A8_rX5Q
CitedBy_id crossref_primary_10_1029_2022JD037906
crossref_primary_10_1016_j_envint_2025_109627
crossref_primary_10_1016_j_trpro_2025_03_034
crossref_primary_10_1016_j_atmosres_2022_106184
crossref_primary_10_1016_j_atmosenv_2019_117254
crossref_primary_10_5194_acp_21_4939_2021
crossref_primary_10_1002_ieam_4706
crossref_primary_10_20935_AcadEnvSci7712
crossref_primary_10_1016_j_atmosres_2021_105921
crossref_primary_10_1016_j_jes_2024_01_033
crossref_primary_10_5194_acp_25_7467_2025
crossref_primary_10_3390_su16229915
crossref_primary_10_1016_j_scitotenv_2023_166494
crossref_primary_10_1016_j_envint_2021_106482
crossref_primary_10_1016_j_envpol_2023_122223
crossref_primary_10_1016_j_atmosenv_2025_121149
crossref_primary_10_1016_j_atmosenv_2022_119454
crossref_primary_10_1016_j_jhazmat_2022_130173
crossref_primary_10_1190_geo2023_0080_1
crossref_primary_10_5572_KOSAE_2025_41_3_403
crossref_primary_10_3390_toxics12120868
crossref_primary_10_1016_j_envres_2025_122742
crossref_primary_10_5194_acp_20_14617_2020
crossref_primary_10_1016_j_atmosenv_2021_118869
crossref_primary_10_1016_j_jclepro_2022_132025
crossref_primary_10_1016_j_jes_2022_08_035
crossref_primary_10_1038_s41467_024_48902_0
crossref_primary_10_1016_j_scitotenv_2021_149375
crossref_primary_10_1016_j_scitotenv_2023_169066
crossref_primary_10_1016_j_cej_2020_124986
crossref_primary_10_1016_j_scitotenv_2020_140838
crossref_primary_10_3390_catal12010063
crossref_primary_10_1016_j_scitotenv_2021_152661
crossref_primary_10_1016_j_scitotenv_2024_175342
crossref_primary_10_1016_j_envpol_2021_118192
crossref_primary_10_1088_1748_9326_ac69fe
crossref_primary_10_1016_j_envint_2023_107786
crossref_primary_10_6023_A21050224
crossref_primary_10_5194_acp_21_14275_2021
crossref_primary_10_1016_j_scitotenv_2023_162431
crossref_primary_10_1029_2022JD038228
crossref_primary_10_1016_j_jenvman_2022_116436
crossref_primary_10_1029_2021GL092816
crossref_primary_10_1016_j_scitotenv_2022_156998
crossref_primary_10_1016_j_chemosphere_2023_139001
crossref_primary_10_1016_j_scitotenv_2024_173713
crossref_primary_10_1007_s11356_022_21308_5
crossref_primary_10_1126_science_ade1771
crossref_primary_10_3390_catal13020429
crossref_primary_10_1016_j_scitotenv_2021_148176
crossref_primary_10_1016_j_oneear_2022_03_015
crossref_primary_10_5194_acp_22_4841_2022
crossref_primary_10_1016_j_envres_2022_113036
crossref_primary_10_1021_envhealth_3c00209
crossref_primary_10_1038_s41612_024_00847_3
crossref_primary_10_1016_j_jhazmat_2021_126847
crossref_primary_10_1073_pnas_1907956116
crossref_primary_10_1016_j_jhazmat_2025_137681
crossref_primary_10_1016_j_scitotenv_2023_161449
crossref_primary_10_1016_j_scitotenv_2023_162659
crossref_primary_10_3390_coatings15040429
crossref_primary_10_3390_atmos14010024
crossref_primary_10_1016_j_scitotenv_2020_136692
crossref_primary_10_1016_j_envpol_2024_123748
crossref_primary_10_1038_s41467_023_44685_y
crossref_primary_10_1016_j_chemosphere_2022_133756
crossref_primary_10_3390_atmos12050555
crossref_primary_10_5194_acp_21_13609_2021
crossref_primary_10_1016_j_envpol_2020_114366
crossref_primary_10_1016_j_jclepro_2022_135795
crossref_primary_10_3390_ma18081758
crossref_primary_10_1016_j_cej_2021_129246
crossref_primary_10_1016_j_gsf_2022_101499
crossref_primary_10_1016_j_scitotenv_2021_150247
crossref_primary_10_1007_s00376_022_1346_5
crossref_primary_10_1016_j_apr_2024_102300
crossref_primary_10_1016_j_scitotenv_2021_148348
crossref_primary_10_1007_s00376_021_0317_6
crossref_primary_10_1021_acsestair_4c00304
crossref_primary_10_1016_j_jclepro_2025_146471
crossref_primary_10_1038_s41467_020_19035_x
crossref_primary_10_1016_j_jes_2022_10_034
crossref_primary_10_1016_j_jhazmat_2024_135710
crossref_primary_10_1016_j_envpol_2022_119383
crossref_primary_10_1016_j_scitotenv_2020_143295
crossref_primary_10_5194_acp_24_7101_2024
crossref_primary_10_1016_j_jclepro_2023_140408
crossref_primary_10_5194_acp_20_5729_2020
crossref_primary_10_1016_j_scitotenv_2024_176824
crossref_primary_10_1016_j_atmosenv_2025_121183
crossref_primary_10_1016_j_envint_2024_109137
crossref_primary_10_1016_j_scitotenv_2024_174523
crossref_primary_10_1016_j_envpol_2023_121293
crossref_primary_10_1016_j_jclepro_2024_143348
crossref_primary_10_1016_j_jece_2025_118128
crossref_primary_10_1088_2515_7620_ace614
crossref_primary_10_1002_ep_14156
crossref_primary_10_1016_j_envpol_2020_114657
crossref_primary_10_5194_acp_24_219_2024
crossref_primary_10_3390_atmos16050559
crossref_primary_10_1016_j_apr_2021_01_013
crossref_primary_10_1029_2021JD035050
crossref_primary_10_1016_j_envpol_2023_123234
crossref_primary_10_1016_j_envpol_2022_120144
crossref_primary_10_3390_atmos15040426
crossref_primary_10_1016_j_scitotenv_2022_161295
crossref_primary_10_1016_j_scitotenv_2023_166602
crossref_primary_10_1016_j_atmosenv_2022_119254
crossref_primary_10_1016_j_jclepro_2023_136407
crossref_primary_10_1021_acs_estlett_5c00584
crossref_primary_10_1088_1748_9326_ac46eb
crossref_primary_10_1016_j_atmosenv_2021_118424
crossref_primary_10_1016_j_fuel_2022_126905
crossref_primary_10_1016_j_scitotenv_2023_165060
crossref_primary_10_1016_j_atmosenv_2020_117927
crossref_primary_10_1016_j_envres_2022_113485
crossref_primary_10_1021_acsestair_5c00210
crossref_primary_10_1016_j_scitotenv_2024_177563
crossref_primary_10_5194_acp_23_6217_2023
crossref_primary_10_5194_acp_20_9351_2020
crossref_primary_10_1007_s00477_022_02224_z
crossref_primary_10_1016_j_envint_2020_105514
crossref_primary_10_1029_2022JD037296
crossref_primary_10_1016_j_scitotenv_2022_156274
crossref_primary_10_1029_2021GL093668
crossref_primary_10_1126_science_adq2840
crossref_primary_10_1016_j_atmosenv_2024_120825
crossref_primary_10_3390_pr10091773
crossref_primary_10_1016_j_cej_2022_137629
crossref_primary_10_1016_j_jes_2021_12_029
crossref_primary_10_5194_acp_23_2877_2023
crossref_primary_10_1016_j_atmosenv_2021_118779
crossref_primary_10_1029_2020JD033519
crossref_primary_10_3390_atmos16090995
crossref_primary_10_5194_acp_23_13755_2023
crossref_primary_10_1016_j_atmosenv_2020_117817
crossref_primary_10_3390_atmos15101162
crossref_primary_10_1016_j_jphotochem_2023_114847
crossref_primary_10_1016_j_jclepro_2021_125810
crossref_primary_10_1016_j_scitotenv_2024_171352
crossref_primary_10_3390_atmos13010009
crossref_primary_10_1016_j_apr_2025_102632
crossref_primary_10_1038_s41612_024_00869_x
crossref_primary_10_1007_s11869_022_01298_6
crossref_primary_10_1016_j_jes_2023_04_016
crossref_primary_10_1038_s41612_023_00560_7
crossref_primary_10_1016_j_jhazmat_2024_133668
crossref_primary_10_1016_j_atmosenv_2022_119351
crossref_primary_10_1093_nsr_nwab061
crossref_primary_10_1016_j_envpol_2020_116183
crossref_primary_10_1007_s13762_024_06300_5
crossref_primary_10_1002_cssc_202200702
crossref_primary_10_1016_j_scitotenv_2024_170138
crossref_primary_10_1016_j_atmosenv_2022_118942
crossref_primary_10_1016_j_jes_2020_03_035
crossref_primary_10_1016_j_scitotenv_2021_145392
crossref_primary_10_5194_acp_23_3311_2023
crossref_primary_10_5194_acp_24_9031_2024
crossref_primary_10_1016_j_scib_2020_12_008
crossref_primary_10_5194_acp_20_9837_2020
crossref_primary_10_1016_j_apr_2025_102587
crossref_primary_10_5194_acp_21_12895_2021
crossref_primary_10_1007_s11869_024_01569_4
crossref_primary_10_1016_j_scitotenv_2023_161758
crossref_primary_10_1016_j_scitotenv_2023_161636
crossref_primary_10_1016_j_scitotenv_2023_166416
crossref_primary_10_1016_j_apr_2022_101640
crossref_primary_10_1016_j_scitotenv_2023_167622
crossref_primary_10_1029_2020GL091351
crossref_primary_10_1038_s41561_019_0464_x
crossref_primary_10_1088_1748_9326_ac3872
crossref_primary_10_1016_j_cej_2023_144570
crossref_primary_10_1016_j_scitotenv_2022_155904
crossref_primary_10_1016_j_jenvman_2021_112419
crossref_primary_10_1016_j_apr_2025_102452
crossref_primary_10_1016_j_scitotenv_2019_135620
crossref_primary_10_1016_j_atmosenv_2024_121000
crossref_primary_10_1016_j_jclepro_2025_145104
crossref_primary_10_1016_j_scitotenv_2021_145169
crossref_primary_10_1016_j_scp_2024_101857
crossref_primary_10_1007_s11356_024_33991_7
crossref_primary_10_1186_s13021_023_00229_x
crossref_primary_10_1016_j_atmosenv_2025_121546
crossref_primary_10_1007_s11356_020_09646_8
crossref_primary_10_1016_j_atmosenv_2024_120830
crossref_primary_10_5194_acp_21_11053_2021
crossref_primary_10_3390_nano13071189
crossref_primary_10_1016_j_atmosenv_2024_120837
crossref_primary_10_1016_j_scitotenv_2023_162287
crossref_primary_10_1016_j_enbenv_2023_03_003
crossref_primary_10_3390_systems12120520
crossref_primary_10_1016_j_envpol_2020_115952
crossref_primary_10_1016_j_jes_2021_08_010
crossref_primary_10_1016_j_nexus_2022_100064
crossref_primary_10_1029_2023JD038594
crossref_primary_10_1016_j_atmosres_2025_107979
crossref_primary_10_1016_j_jes_2021_01_007
crossref_primary_10_1016_j_atmosenv_2023_119908
crossref_primary_10_3390_atmos14071181
crossref_primary_10_5194_acp_21_15447_2021
crossref_primary_10_1016_j_scitotenv_2020_143823
crossref_primary_10_3389_fenvs_2024_1418948
crossref_primary_10_3390_atmos13091347
crossref_primary_10_1016_j_scitotenv_2023_167847
crossref_primary_10_1016_j_energy_2023_127899
crossref_primary_10_5194_acp_24_3925_2024
crossref_primary_10_1016_j_envpol_2023_122403
crossref_primary_10_1016_j_apr_2023_101838
crossref_primary_10_1038_s41893_021_00837_w
crossref_primary_10_1016_j_apcatb_2022_121955
crossref_primary_10_1515_revic_2022_0036
crossref_primary_10_1016_j_scitotenv_2024_174304
crossref_primary_10_1007_s11356_024_32368_0
crossref_primary_10_1007_s11869_024_01597_0
crossref_primary_10_1016_j_envpol_2025_126648
crossref_primary_10_1016_j_apr_2025_102550
crossref_primary_10_5194_acp_22_8935_2022
crossref_primary_10_1016_j_jhazmat_2024_134273
crossref_primary_10_1016_j_atmosenv_2025_121206
crossref_primary_10_3390_rs16101680
crossref_primary_10_3390_su13105685
crossref_primary_10_1007_s11356_021_17356_y
crossref_primary_10_1016_j_scitotenv_2022_160064
crossref_primary_10_1016_j_atmosenv_2021_118686
crossref_primary_10_1016_j_jes_2021_04_017
crossref_primary_10_3390_toxics12010034
crossref_primary_10_1007_s11270_023_06324_6
crossref_primary_10_1016_j_envres_2023_116329
crossref_primary_10_1016_j_jclepro_2023_138445
crossref_primary_10_1038_s41612_025_01138_1
crossref_primary_10_1016_j_scitotenv_2021_149155
crossref_primary_10_1016_j_apr_2024_102260
crossref_primary_10_1016_j_heliyon_2024_e41616
crossref_primary_10_1525_elementa_434
crossref_primary_10_5194_acp_21_7253_2021
crossref_primary_10_1016_j_jssc_2021_122802
crossref_primary_10_1021_acs_est_5c01020
crossref_primary_10_1016_j_envpol_2025_127046
crossref_primary_10_1016_j_envint_2021_106710
crossref_primary_10_5194_acp_21_11201_2021
crossref_primary_10_1038_s41561_022_00899_1
crossref_primary_10_1016_j_chemosphere_2022_135469
crossref_primary_10_1016_j_envres_2022_113302
crossref_primary_10_1016_j_jenvman_2022_116534
crossref_primary_10_1029_2023JD039591
crossref_primary_10_1016_j_scitotenv_2023_169156
crossref_primary_10_1016_j_scitotenv_2024_176424
crossref_primary_10_1016_j_atmosenv_2025_121462
crossref_primary_10_1016_j_eiar_2022_106840
crossref_primary_10_1016_j_fuel_2023_129157
crossref_primary_10_1016_j_scitotenv_2021_149603
crossref_primary_10_1016_j_envpol_2023_122786
crossref_primary_10_3390_atmos13081241
crossref_primary_10_5194_acp_19_8897_2019
crossref_primary_10_3390_rs17132318
crossref_primary_10_1016_j_atmosres_2024_107643
crossref_primary_10_1016_j_envpol_2024_125553
crossref_primary_10_1016_j_scitotenv_2020_144535
crossref_primary_10_5194_amt_16_273_2023
crossref_primary_10_1016_j_scitotenv_2023_167416
crossref_primary_10_1016_j_jhazmat_2024_134453
crossref_primary_10_1016_j_psep_2023_07_093
crossref_primary_10_1016_j_fuproc_2023_108021
crossref_primary_10_1016_j_jclepro_2023_137459
crossref_primary_10_5194_acp_20_10707_2020
crossref_primary_10_1016_j_jes_2021_08_055
crossref_primary_10_1016_j_apr_2022_101390
crossref_primary_10_1007_s11356_023_31039_w
crossref_primary_10_1016_j_aeaoa_2025_100316
crossref_primary_10_1016_j_scitotenv_2021_152447
crossref_primary_10_3389_fenvs_2022_941100
crossref_primary_10_1016_j_scitotenv_2021_151134
crossref_primary_10_1016_j_jes_2022_11_015
crossref_primary_10_1016_j_scitotenv_2022_153994
crossref_primary_10_5194_essd_16_4351_2024
crossref_primary_10_5194_acp_21_16183_2021
crossref_primary_10_5194_acp_20_5887_2020
crossref_primary_10_1016_j_jes_2023_02_015
crossref_primary_10_1016_j_scitotenv_2024_172707
crossref_primary_10_1007_s11356_022_19825_4
crossref_primary_10_1016_j_jes_2021_08_048
crossref_primary_10_1016_j_jes_2025_02_053
crossref_primary_10_1038_s41598_024_63157_x
crossref_primary_10_1016_j_envpol_2025_126964
crossref_primary_10_1016_j_jece_2025_117334
crossref_primary_10_1016_j_uclim_2025_102353
crossref_primary_10_1016_j_atmosenv_2023_119819
crossref_primary_10_1016_j_uclim_2023_101584
crossref_primary_10_1016_j_atmosenv_2025_121364
crossref_primary_10_5194_amt_17_5113_2024
crossref_primary_10_1016_j_jes_2022_01_040
crossref_primary_10_1029_2020GL091265
crossref_primary_10_5194_acp_21_13655_2021
crossref_primary_10_5194_acp_24_8847_2024
crossref_primary_10_1016_j_atmosenv_2022_119077
crossref_primary_10_1016_j_scitotenv_2022_161235
crossref_primary_10_1016_j_scitotenv_2020_139763
crossref_primary_10_1016_j_scitotenv_2022_159951
crossref_primary_10_1016_j_oneear_2021_02_003
crossref_primary_10_3390_atmos13060894
crossref_primary_10_1016_j_jelechem_2025_118998
Cites_doi 10.1016/j.atmosenv.2015.01.054
10.1093/nsr/nwx150
10.1016/j.cclet.2015.05.047
10.1029/2002JD003093
10.1016/j.apenergy.2018.11.043
10.5194/acp-13-8815-2013
10.1002/2015JD023250
10.1016/S1352-2310(01)00529-5
10.5194/acp-9-5131-2009
10.1080/1073161X.1994.10467290
10.1021/es5035188
10.1073/pnas.1714715115
10.1038/ngeo2493
10.1016/j.scitotenv.2015.02.034
10.5194/acp-7-4419-2007
10.4209/aaqr.2013.03.0064
10.1016/j.atmosenv.2008.01.070
10.1016/j.atmosenv.2016.08.025
10.1016/S1352-2310(98)00163-0
10.5094/APR.2010.026
10.5194/gmd-5-1471-2012
10.1016/S1352-2310(99)00450-1
10.1029/2000GB001382
10.1021/acs.est.6b03634
10.5194/acp-19-8897-2019
10.1021/es026232a
10.5194/acp-18-14095-2018
10.1016/j.scitotenv.2015.06.089
10.1016/j.atmosenv.2010.02.014
10.5194/acp-14-5617-2014
10.1021/es0625982
10.5194/acp-18-3433-2018
10.1016/j.atmosenv.2008.02.044
10.1038/s41598-017-03929-w
10.5194/acp-8-7297-2008
10.5194/essd-10-1987-2018
10.5194/acp-15-13299-2015
10.5194/acp-14-6571-2014
10.1021/es901688e
10.5194/bg-16-1629-2019
10.1007/s11783-012-0428-5
10.1007/s11783-012-0461-4
10.1016/j.atmosenv.2015.12.015
10.1021/es980081n
10.1021/acs.estlett.8b00366
10.1016/j.jenvman.2007.12.008
10.1016/j.scitotenv.2013.03.055
10.1021/es0108077
10.1016/j.atmosenv.2009.05.040
10.5194/acp-10-11707-2010
10.1073/pnas.1812168116
10.1016/j.scitotenv.2017.06.099
10.5194/acp-13-11019-2013
10.5194/acp-15-8889-2015
10.5194/acp-14-9787-2014
ContentType Journal Article
Copyright COPYRIGHT 2019 Copernicus GmbH
2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2019 Copernicus GmbH
– notice: 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOA
DOI 10.5194/acp-19-8897-2019
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 8913
ExternalDocumentID oai_doaj_org_article_3e3ac73655664d4da6405af14929cc64
A593112436
10_5194_acp_19_8897_2019
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BANNL
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
ID FETCH-LOGICAL-c546t-8c87fac1f202e826eecfe738669ace3ac0ebc5077e947c5e1738cc9b6fa9675a3
IEDL.DBID RKB
ISICitedReferencesCount 338
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475370200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1680-7324
1680-7316
IngestDate Fri Oct 03 12:52:08 EDT 2025
Fri Jul 25 23:41:45 EDT 2025
Sat Nov 29 13:35:10 EST 2025
Sat Nov 29 10:10:20 EST 2025
Wed Nov 26 09:39:18 EST 2025
Sat Nov 29 05:52:38 EST 2025
Tue Nov 18 22:02:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-8c87fac1f202e826eecfe738669ace3ac0ebc5077e947c5e1738cc9b6fa9675a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5418-9177
0000-0003-4889-1669
0000-0002-0357-0274
0000-0003-4912-9879
0000-0001-8344-3445
OpenAccessLink https://doaj.org/article/3e3ac73655664d4da6405af14929cc64
PQID 2256017170
PQPubID 105744
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_3e3ac73655664d4da6405af14929cc64
proquest_journals_2256017170
gale_infotracmisc_A593112436
gale_infotracacademiconefile_A593112436
gale_incontextgauss_ISR_A593112436
crossref_citationtrail_10_5194_acp_19_8897_2019
crossref_primary_10_5194_acp_19_8897_2019
PublicationCentury 2000
PublicationDate 2019-07-12
PublicationDateYYYYMMDD 2019-07-12
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-12
  day: 12
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2019
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref55
  doi: 10.1016/j.atmosenv.2015.01.054
– ident: ref19
  doi: 10.1093/nsr/nwx150
– ident: ref53
  doi: 10.1016/j.cclet.2015.05.047
– ident: ref39
  doi: 10.1029/2002JD003093
– ident: ref32
  doi: 10.1016/j.apenergy.2018.11.043
– ident: ref57
  doi: 10.5194/acp-13-8815-2013
– ident: ref13
  doi: 10.1002/2015JD023250
– ident: ref15
  doi: 10.1016/S1352-2310(01)00529-5
– ident: ref60
  doi: 10.5194/acp-9-5131-2009
– ident: ref3
  doi: 10.1080/1073161X.1994.10467290
– ident: ref9
– ident: ref61
  doi: 10.1021/es5035188
– ident: ref14
  doi: 10.1073/pnas.1714715115
– ident: ref42
  doi: 10.1038/ngeo2493
– ident: ref36
  doi: 10.1016/j.scitotenv.2015.02.034
– ident: ref30
– ident: ref31
  doi: 10.5194/acp-7-4419-2007
– ident: ref43
  doi: 10.4209/aaqr.2013.03.0064
– ident: ref23
  doi: 10.1016/j.atmosenv.2008.01.070
– ident: ref25
  doi: 10.1016/j.atmosenv.2016.08.025
– ident: ref6
  doi: 10.1016/S1352-2310(98)00163-0
– ident: ref37
  doi: 10.5094/APR.2010.026
– ident: ref50
– ident: ref11
  doi: 10.5194/gmd-5-1471-2012
– ident: ref59
  doi: 10.1016/S1352-2310(99)00450-1
– ident: ref1
  doi: 10.1029/2000GB001382
– ident: ref54
  doi: 10.1021/acs.est.6b03634
– ident: ref21
  doi: 10.5194/acp-19-8897-2019
– ident: ref40
  doi: 10.1021/es026232a
– ident: ref63
  doi: 10.5194/acp-18-14095-2018
– ident: ref26
  doi: 10.1016/j.scitotenv.2015.06.089
– ident: ref58
  doi: 10.1016/j.atmosenv.2010.02.014
– ident: ref18
  doi: 10.5194/acp-14-5617-2014
– ident: ref38
  doi: 10.1021/es0625982
– ident: ref12
– ident: ref20
  doi: 10.5194/acp-18-3433-2018
– ident: ref49
  doi: 10.1016/j.atmosenv.2008.02.044
– ident: ref7
– ident: ref47
  doi: 10.1038/s41598-017-03929-w
– ident: ref2
  doi: 10.5194/acp-8-7297-2008
– ident: ref5
  doi: 10.5194/essd-10-1987-2018
– ident: ref22
  doi: 10.5194/acp-15-13299-2015
– ident: ref29
– ident: ref46
  doi: 10.5194/acp-14-6571-2014
– ident: ref48
– ident: ref64
  doi: 10.1021/es901688e
– ident: ref56
  doi: 10.5194/bg-16-1629-2019
– ident: ref44
  doi: 10.1007/s11783-012-0428-5
– ident: ref51
  doi: 10.1007/s11783-012-0461-4
– ident: ref52
  doi: 10.1016/j.atmosenv.2015.12.015
– ident: ref33
  doi: 10.1021/es980081n
– ident: ref4
– ident: ref24
  doi: 10.1021/acs.estlett.8b00366
– ident: ref35
  doi: 10.1016/j.jenvman.2007.12.008
– ident: ref65
  doi: 10.1016/j.scitotenv.2013.03.055
– ident: ref34
  doi: 10.1021/es0108077
– ident: ref28
– ident: ref45
  doi: 10.1016/j.atmosenv.2009.05.040
– ident: ref41
  doi: 10.5194/acp-10-11707-2010
– ident: ref17
  doi: 10.1073/pnas.1812168116
– ident: ref8
– ident: ref10
  doi: 10.1016/j.scitotenv.2017.06.099
– ident: ref16
  doi: 10.5194/acp-13-11019-2013
– ident: ref27
  doi: 10.5194/acp-15-8889-2015
– ident: ref62
  doi: 10.5194/acp-14-9787-2014
SSID ssj0025014
Score 2.6829567
Snippet Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric...
Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 8897
SubjectTerms Air pollution
Air pollution control
Alkanes
Alkenes
Alkynes
Anthropogenic factors
Aromatic compounds
Atmospheric chemistry
Atmospheric ozone
Chinese history
Emission analysis
Emission inventories
Emission measurements
Emissions (Pollution)
Environmental aspects
Environmental law
Forecasts and trends
Growth
Methane
Nitrogen compounds
open climate campaign
Organic chemistry
Organic compounds
Oxides
Ozone
Ozone formation
Particulate matter
Pollutants
Pollution
Pollution control
Pollution sources
Secondary aerosols
Solvents
Speciation
Stoves
Sulfur dioxide
Transportation
Trends
Tropospheric chemistry
VOCs
Volatile organic compounds
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LjtMwFLXQiAUbxFMUBnSFEDASUfNw7JjdUDECiSmIl2ZnuTf2UKlKqqYzi1nxD3wFv8WXcK-TVtMFsGHZxFFsn1v7XMc-R4gnWhPJr1Ems6xgUe1CJTMs8wQ9TSahrrx2UV3_nZ5Oq5MT8-GS1RfvCevlgfuOGxe-cKgLVRLvkLWsnSKK4QIR-9wgqqgESqxnk0wNqRZ_LeNUS1Vpwt5M_QdKYity7HCZZCapKqMpRFhh59KEFHX7_zQ6xynn6Ia4PnBFOOzreFNc8c0tMTommtuu4mo4PIXJYk6cM_66LX7yfnbGrVnDKeXX62_QBnCDFwKFyhyB0v2EbaNd44GGJgJm4aH3dkLgDebsswTPp8df308OgN3geD2tg3kD0Wsb-oONkNEE8-v7D2qbfgn1Km7veAFdtLNnsOm1NbQXLb1me0ASli3XjUL-jvhy9Prz5E0yeDEkWEq1TiqsdHCYhTzNPaUk3mPwbBiqjEOGKPWEcaq1N1Jj6TO6h2hmKjhDOYkr7oo9aqC_JyDomQ4h805KJ1UhnaIrpatTNLIm-jQS4w0gFgehcvbLWFhKWBhCSxDazFiG0DKEI3GwfWLZi3T8pewrxnhbjuW14wXqaTsEnf1X0I3EY44QywIaDe_QOXVnXWfffvpoD0tTEIeVhRqJZ0Oh0FL90Q0HHqgXWHNrp-T-TkmCFndvbwLRDiNMZ_OYS1Mynt7_Hy16IK5x7_CqdZbvi7316sw_FFfxfD3vVo_in-s3S30ozw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4ELb8RCQRZCQCWszcOxYy6oXbUCiS5Veag3yzuxy0qrZNlsOXDiP_Ar-Fv8EmYS70IP9MIx8UTx4_N4ZmzPx9gTrdHIr0CKaZpTUu1ciSkUmQCPi0moSq9dl13_rZ5MypMTcxQDbm08VrnWiZ2irhqgGPko63wHdD6SV4svglijaHc1UmhcZluUqUwO2Nbe_uToeONy0a4ZuVyqTARxNPUblWi1yJGDhUiNKEujESqUaeevhanL3_8vLd0tPQfX_7fSN9i1aHTy3R4lN9klX99iw0O0l5tlF1bnT_l4PkPjtXu6zX7SwXgCQL3ip-iorz7zJnAXSRUQczPgdVML4p92teeo43CE5573JFHA6aQ6ETbx55PDT-_GO5xo5Sgw1_JZzTvSbt7fkOQprlS_vv_AztEvebXszom84HQDtEcN_rbizbcGf7O5ackXDdUN584d9vFg_8P4tYikDgIKqVaihFIHB2nIksyjb-M9BE_Mo8o48LmDxCNYEq29kRoKn2IZgJmq4Aw6Ny6_ywbYQH-P8aCnOoTUOymdVLl0Ct8UrkrAyArtsCEbrUfUQsx4TsQbc4ueD2HAIgZsaixhwBIGhmxn88Wiz_ZxgewegWQjR3m6uxfY0zZOe5tTi3SuCrSaZSUrp9BAdgHd0swAKDlkjwliljJx1HTU59Sdta198_7Y7hYmR2NY5mrInkWh0GD9wcWbE9gLlLzrnOT2OUkcWjhfvIapjaqqtX8wev_i4gfsKrWbAttpts0Gq-WZf8iuwNfVrF0-ijPvNz6rOLg
  priority: 102
  providerName: ProQuest
Title Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers, speciation and ozone formation potential
URI https://www.proquest.com/docview/2256017170
https://doaj.org/article/3e3ac73655664d4da6405af14929cc64
Volume 19
WOSCitedRecordID wos000475370200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: RKB
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: P5Z
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BFMQW
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PCBAR
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PATMY
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BENPR
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PIMPY
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQwoEL_4jAsrIQAlYian4cO-bWrXbFSrREZUELF8ud2EulKqnaLAdOvANPwWvxJMwk2Wp7AA5waVRnojgzE3vGGX8fY0-VwiC_BBHO4pRAtVMZziBLQnA4mfgyd8q26Ppv1GSSn57q4hLVF9WEdfDAneIGqUstqFRmGHeIUpRWYohhPQb2iQaQhASKbkjcBVPicOtTLfpaRqmWzKOQuJm6D5QYrYiBhWUY6zDPtUIXIYSdSxNSi9v_u9G5nXKObv5DZ2-xG32cyYfdJbfZFVfdYcEYQ-R61a6k82d8tJhjvNr-u8t-UC082bxq-Bnm5s1nXntuex4FdLM58KquQqKctpXjOKyhUReOd7xQwKk4nTia-IvJ-MPb0T4nJjlai1vzecVbnm7ebYrkMU5OP799R72oV7xctaUhLzlt-uwcBW9b8vprjbfZbK7ky5r6hq_LPfb-6PBk9DrseRxCyIRswhxy5S3EPokSh-mMc-AdkY1KbYE0Fjn0j0gpp4WCzMV4DkDPpLca8xmb3mc7-IDuAeNezZT3sbNCWCFTYSW2ZLaMQIsSQ6-ADS6MaaAHOSeujYXBZIfMb9D8JtaGzG_I_AHb31yx7AA-_iB7QCbfyBE0d9uAmja9D5i_-UDAnpB3GQLfqKi658yer9fm-N3UDDOdYvwrUhmw572Qr7H_YPvNEqgFwuvaktzdkkTTwvbpCyc2_ei0Nkmbh2MiHz38H0_0iF0n7dCKd5zssp1mde4es2vwpZmvV3vs6sHhpJjutasd-Ftkn7CtGJ6MP9LxeFzgkV7eX7zAQZ8
linkProvider Copernicus Gesellschaft
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NctMwENaUlhm48N8hUEDDQKEzeBLbsmQxw6ENZJppEv4K7U0oa7lkJmOHOKUDJ96Bp-DCQ_Ek7NpOIAd664GjLdmWpd3VftJqP8YeKIVOfgLCG_ohJdUOpTeEKPDA4WSSJrFTtsyu31ODQXx4qF-tsJ_zszAUVjm3iaWhTnKgNfJmUGIHBB-tOoJyz305QXxWPOs-x8F8GASdF_vtXa-mEPAgEnLmxRCr1IKfIsZ36Ek7B6kjnkupLbjQQsth01pKOS0URM7HMgA9lKnV6ErbEN-7OfnkEUsV7ebWlB3n2FosdYh6tbbT6b8-WEA82qUjiCfjlkecUNXGKHpJomlh4vnai2OtUDQps89fE2HJF_CvWaGc6jqX_7dOusIu1U4136604Cpbcdk11ugjHsin5bYB3-Tt8Qid8_LqOvtBgf8k4NmMH03zk9lHnqfc1qQRqFMj4FmeecSvbTPH0YajBI8dr0iwgFMkPhFS8ceD_vuX7S1OtHm08FjwUcZLUnJenQDlPs7Ev759x8FQT3kyLeNgnnA64VppBX424fnXHD-zOEnKJzm1DW3DDfbuTDpzna3iD7qbjKdqqNLUd1YIK2QorMQ7kU1aoEWCfmaDNecSZKDO6E7EImODyI5kzqDMGV8bkjlDMtdgW4snJlU2k1Pq7pBQLupRHvLyBva0qc2aCemPVCgjRAUiEYmVCABsirA70ABSNNh9EmlDmUYyCmU6ssdFYbpv35jtSIfo7ItQNtijulKaY_vB1idDsBcoOdlSzY2lmji0sFw8VwtTm-LC_NGJW6cX32MXdvf7PdPrDvZus4vUB7SI7wcbbHU2PXZ32Hn4PBsV07u11nP24azV6jffwZgM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFLZGhxA3_CMKAyzE3ySi5sexEySEuo6KalupNkC7M-6JPSpVSWk7JrjiHXgKXoHH4Uk4J0kLvWB3u-AysZM49neOz7F9zsfYQ6XQyM9AeMMgoqTakfSGEIceWJxMXJZYZcrs-ruq308OD9PBGvu5iIWhY5ULnVgq6qwAWiNvhaXvgM6H33L1sYjBdvfl5JNHDFK007qg06ggsmO_nKD7NnvR28axfhSG3VdvO6-9mmHAg1jIuZdAopyBwIV-aNHQthacJRpMmRqwkQHfYst9pWwqFMQ2wDKAdCidSdHSNhG-9xxbT6TywwZbH3S22vtLd4927Mjdk4nvET9UtUmKFpNoGZh4QeolSaoQppTl569JseQO-NcMUU573cv_c4ddYZdqY5u3K-m4ytZsfo0199BPKKbldgJ_zDvjERrt5dV19oMCAgj4-ZwfTYuT-UdeOG5qMgmUtRHwvMg94t02ueWo2xHZY8srcizgdEKfiKr40_7e-zedTU50erQgOeOjnJdk5byKDOUBztC_vn3HgVHPeTYtz8c84xT5WkkLfjbjxdcCP7OMMOWTgtqGOuMGe3cmPXeTNfAH7S3GnRoq5wJrhDBCRsJIvBObzIdUZGh_NllrgSYNdaZ3IhwZa_T4CH8a8aeDVBP-NOGvyTaXT0yqLCen1N0igC7rUX7y8gb2tK7VnY7oj1QkY_QWRCYyI9ExMA7d8TAFkKLJHhC8NWUgyQmaR-Z4NtO9g33djtMInQARySZ7UldyBbYfTB0xgr1ASctWam6s1MShhdXihYjoWkXP9B_5uH168X12AQVH7_b6O3fYReoCWtsPwg3WmE-P7V12Hj7PR7PpvVoBcPbhrEXoN8i6oJo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Persistent+growth+of+anthropogenic+non-methane+volatile+organic+compound+%28NMVOC%29+emissions+in+China+during+1990%E2%80%932017%3A+drivers%2C+speciation+and+ozone+formation+potential&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Li%2C+Meng&rft.au=Zhang%2C+Qiang&rft.au=Zheng%2C+Bo&rft.au=Tong%2C+Dan&rft.date=2019-07-12&rft.issn=1680-7324&rft.eissn=1680-7324&rft.volume=19&rft.issue=13&rft.spage=8897&rft.epage=8913&rft_id=info:doi/10.5194%2Facp-19-8897-2019&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_acp_19_8897_2019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon