The estimation and modelling of cause-specific cumulative incidence functions using time-dependent weights

Competing risks occur in survival analysis when an individual is at risk of more than one type of event and the occurrence of one event precludes the occurrence of any other event. A measure of interest with competing risks data is the cause-specific cumulative incidence function (CIF) which gives t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Stata journal Jg. 17; H. 1; S. 181
1. Verfasser: Lambert, Paul C
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.03.2017
Schlagworte:
ISSN:1536-867X
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Competing risks occur in survival analysis when an individual is at risk of more than one type of event and the occurrence of one event precludes the occurrence of any other event. A measure of interest with competing risks data is the cause-specific cumulative incidence function (CIF) which gives the absolute (or crude) risk of having the event by time , accounting for the fact that it is impossible to have the event if a competing event is experienced first. The user written command, stcompet, calculates non-parametric estimates of the cause-specific CIF and the official Stata command, stcrreg, fits the Fine and Gray model for competing risks data. Geskus (2011) has recently shown that some of the key measures in competing risks can be estimated in standard software by restructuring the data and incorporating weights. This has a number of advantages as any tools developed for standard survival analysis can then be used for the analysis of competing risks data. This paper describes the stcrprep command that restructures the data and calculates the appropriate weights. After using stcrprep a number of standard Stata survival analysis commands can then be used for the analysis of competing risks. For example, sts graph, failure will give a plot of the cause-specific CIF and stcox will fit the Fine and Gray proportional subhazards model. Using stcrprep together with stcox is computationally much more efficient than using stcrreg. In addition, the use of stcrprep opens up new opportunities for competing risk models. This is illustrated by fitting flexible parametric survival models to the expanded data to directly model the cause-specific CIF.
AbstractList Competing risks occur in survival analysis when an individual is at risk of more than one type of event and the occurrence of one event precludes the occurrence of any other event. A measure of interest with competing risks data is the cause-specific cumulative incidence function (CIF) which gives the absolute (or crude) risk of having the event by time t, accounting for the fact that it is impossible to have the event if a competing event is experienced first. The user written command, stcompet, calculates non-parametric estimates of the cause-specific CIF and the official Stata command, stcrreg, fits the Fine and Gray model for competing risks data. Geskus (2011) has recently shown that some of the key measures in competing risks can be estimated in standard software by restructuring the data and incorporating weights. This has a number of advantages as any tools developed for standard survival analysis can then be used for the analysis of competing risks data. This paper describes the stcrprep command that restructures the data and calculates the appropriate weights. After using stcrprep a number of standard Stata survival analysis commands can then be used for the analysis of competing risks. For example, sts graph, failure will give a plot of the cause-specific CIF and stcox will fit the Fine and Gray proportional subhazards model. Using stcrprep together with stcox is computationally much more efficient than using stcrreg. In addition, the use of stcrprep opens up new opportunities for competing risk models. This is illustrated by fitting flexible parametric survival models to the expanded data to directly model the cause-specific CIF.Competing risks occur in survival analysis when an individual is at risk of more than one type of event and the occurrence of one event precludes the occurrence of any other event. A measure of interest with competing risks data is the cause-specific cumulative incidence function (CIF) which gives the absolute (or crude) risk of having the event by time t, accounting for the fact that it is impossible to have the event if a competing event is experienced first. The user written command, stcompet, calculates non-parametric estimates of the cause-specific CIF and the official Stata command, stcrreg, fits the Fine and Gray model for competing risks data. Geskus (2011) has recently shown that some of the key measures in competing risks can be estimated in standard software by restructuring the data and incorporating weights. This has a number of advantages as any tools developed for standard survival analysis can then be used for the analysis of competing risks data. This paper describes the stcrprep command that restructures the data and calculates the appropriate weights. After using stcrprep a number of standard Stata survival analysis commands can then be used for the analysis of competing risks. For example, sts graph, failure will give a plot of the cause-specific CIF and stcox will fit the Fine and Gray proportional subhazards model. Using stcrprep together with stcox is computationally much more efficient than using stcrreg. In addition, the use of stcrprep opens up new opportunities for competing risk models. This is illustrated by fitting flexible parametric survival models to the expanded data to directly model the cause-specific CIF.
Competing risks occur in survival analysis when an individual is at risk of more than one type of event and the occurrence of one event precludes the occurrence of any other event. A measure of interest with competing risks data is the cause-specific cumulative incidence function (CIF) which gives the absolute (or crude) risk of having the event by time , accounting for the fact that it is impossible to have the event if a competing event is experienced first. The user written command, stcompet, calculates non-parametric estimates of the cause-specific CIF and the official Stata command, stcrreg, fits the Fine and Gray model for competing risks data. Geskus (2011) has recently shown that some of the key measures in competing risks can be estimated in standard software by restructuring the data and incorporating weights. This has a number of advantages as any tools developed for standard survival analysis can then be used for the analysis of competing risks data. This paper describes the stcrprep command that restructures the data and calculates the appropriate weights. After using stcrprep a number of standard Stata survival analysis commands can then be used for the analysis of competing risks. For example, sts graph, failure will give a plot of the cause-specific CIF and stcox will fit the Fine and Gray proportional subhazards model. Using stcrprep together with stcox is computationally much more efficient than using stcrreg. In addition, the use of stcrprep opens up new opportunities for competing risk models. This is illustrated by fitting flexible parametric survival models to the expanded data to directly model the cause-specific CIF.
Author Lambert, Paul C
Author_xml – sequence: 1
  givenname: Paul C
  surname: Lambert
  fullname: Lambert, Paul C
  organization: University of Leicester, Department of Health Sciences, Leicester UK; Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30542252$$D View this record in MEDLINE/PubMed
BookMark eNo1UMtKxDAUzWLEeegPuJAs3VST26ZplzL4ggE3I7grbXIzk6FNa9P4-HszOMKFC-cF5yzJzPUOCbni7JZzKe-4SPMil99csniMczYjiyOYRPR9TpbeHxjLJAc4J_OUiQxAwIIctnuk6Cfb1ZPtHa2dpl2vsW2t29HeUFUHj4kfUFljFVWhC22UfiK1TlmNTiE1wamj29Pgj7aYhonGAV3kJ_qFdref_AU5M3Xr8fL0V-Tt8WG7fk42r08v6_tNokSWT4mErBYFAy1NJtBoYHkmGgDFG14IpqQwUKQlpowzYIUpRYR5w4SJHq1zWJGbv9xh7D9C7FZ11qvYqHbYB18BF6KMI5VFlF6fpKHpUFfDGHcYf6r_feAXqVJooQ
CitedBy_id crossref_primary_10_1097_TP_0000000000004700
crossref_primary_10_1097_HEP_0000000000000652
crossref_primary_10_1001_jamanetworkopen_2022_36666
crossref_primary_10_1016_j_mayocp_2020_08_047
crossref_primary_10_1371_journal_pone_0298402
crossref_primary_10_1111_eci_14340
crossref_primary_10_1371_journal_pone_0329132
crossref_primary_10_1007_s11135_021_01126_6
crossref_primary_10_1016_j_cjca_2022_06_006
crossref_primary_10_1016_j_jhep_2024_05_020
crossref_primary_10_1093_ije_dyac217
crossref_primary_10_1177_08944393231183871
crossref_primary_10_1016_j_jhin_2024_07_016
crossref_primary_10_1016_j_jhep_2025_06_033
crossref_primary_10_1016_j_jid_2022_02_015
crossref_primary_10_1371_journal_pone_0320739
crossref_primary_10_1016_j_breast_2025_103883
crossref_primary_10_1016_j_jhep_2023_04_028
crossref_primary_10_1001_jamainternmed_2025_1809
crossref_primary_10_1038_s41375_020_0815_z
crossref_primary_10_1001_jamanetworkopen_2022_13945
crossref_primary_10_1007_s00402_023_05132_1
crossref_primary_10_1038_s41598_022_05196_w
crossref_primary_10_1136_bmjopen_2024_094252
crossref_primary_10_1016_j_alcr_2025_100672
crossref_primary_10_1016_j_eprac_2020_12_009
crossref_primary_10_1016_j_healthplace_2023_103095
crossref_primary_10_1245_s10434_021_11292_4
crossref_primary_10_1093_ckj_sfy080
crossref_primary_10_1177_0193841X241234412
crossref_primary_10_1007_s00402_025_05974_x
crossref_primary_10_1016_j_envint_2020_106320
crossref_primary_10_1016_j_schres_2022_07_008
crossref_primary_10_1186_s12885_025_14801_w
crossref_primary_10_1016_j_clon_2024_10_035
crossref_primary_10_1002_cam4_7145
crossref_primary_10_1016_j_socscimed_2020_112809
crossref_primary_10_1136_heartjnl_2019_315433
crossref_primary_10_1146_annurev_statistics_040522_094556
crossref_primary_10_1016_j_jshs_2024_101018
crossref_primary_10_1016_j_marpolbul_2025_117776
crossref_primary_10_1186_s12874_021_01213_0
crossref_primary_10_1002_sim_9898
crossref_primary_10_1038_s41393_019_0361_6
crossref_primary_10_1038_s41598_021_99971_w
crossref_primary_10_1080_09540121_2023_2224549
crossref_primary_10_1016_j_lansea_2025_100576
crossref_primary_10_1080_00365521_2023_2220856
ContentType Journal Article
DBID NPM
7X8
DOI 10.1177/1536867x1701700110
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Statistics
Mathematics
ExternalDocumentID 30542252
Genre Journal Article
GrantInformation_xml – fundername: Cancer Research UK
  grantid: A18262
GroupedDBID -TM
-~X
0R~
123
51Z
54M
AADUE
AAGLT
AAHPS
AAPII
AAQXI
AARIX
AATAA
ABCCA
ABDBF
ABEHJ
ABIDT
ABKRH
ABPNF
ABRHV
ABTDE
ABUJY
ACCVC
ACDXX
ACHQT
ACJER
ACOFE
ACOXC
ACROE
ACSIQ
ACUHS
ACUIR
ADEBD
ADRRZ
AEEHM
AENEX
AESZF
AEWDL
AEWHI
AEXNY
AFKRG
AFMOU
AFQAA
AFUIA
AGKLV
AGNHF
AHDMH
AJGYC
AJUZI
AJVBE
ALFTD
ALMA_UNASSIGNED_HOLDINGS
AMNSR
ANDLU
ARTOV
BPACV
DOPDO
DV7
EAP
EBS
EJD
ESX
F5P
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
IAO
INS
ITC
J8X
JAG
NPM
OJV
OK1
SAFTQ
SAUOL
SCNPE
SFC
SJN
YHZ
ZPPRI
7X8
AJHME
ID FETCH-LOGICAL-c546t-724a5802d7f45efd20645b22c1b1850c75f2839e3010208f951851b05f02ddd62
IEDL.DBID 7X8
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398760300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-867X
IngestDate Thu Oct 02 15:35:30 EDT 2025
Mon Jul 21 05:35:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Time-Dependent Effects
st0001
Competing Risks
Survival Analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-724a5802d7f45efd20645b22c1b1850c75f2839e3010208f951851b05f02ddd62
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.sagepub.com/doi/pdf/10.1177/1536867X1701700110
PMID 30542252
PQID 2155917098
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2155917098
pubmed_primary_30542252
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Stata journal
PublicationTitleAlternate Stata J
PublicationYear 2017
SSID ssj0047122
Score 2.3900003
Snippet Competing risks occur in survival analysis when an individual is at risk of more than one type of event and the occurrence of one event precludes the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 181
Title The estimation and modelling of cause-specific cumulative incidence functions using time-dependent weights
URI https://www.ncbi.nlm.nih.gov/pubmed/30542252
https://www.proquest.com/docview/2155917098
Volume 17
WOSCitedRecordID wos000398760300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qPdSDj_qqLyJ4DW7T7GZzEhGLl5YeFPa2ZPMQBLfVbas_35nsrp4EwcseAoElmcx8zOP7CLlKVaS4LQTjymomlBdMKV8wq4xVzqaFkTqITcjJJM0yNW0SblXTVtn6xOCo7cxgjvyaY_1sICOV3szfGKpGYXW1kdBYJ50hQBm0apl9VxHA74YqAjzqhKWJzNqhGRw3hzVY-kQ6chmI036HmCHUjHb--5O7ZLsBmfS2too9subKHtkafzO0Vj3SRZRZkzTvkxcwFop0G_UcI9WlpUEiB2fV6cxTo5eVYziViZ1F1Cxfg-rXylFM1QdZUooRMhgxxV76Z4qq9azV2F3Qj5CDrQ7I0-j-8e6BNSIMzMQiWTDJhY7TiFvpRey85UhwV3BuBgWE-sjI2ANCUW6I5HRR6gGxAYgrotjDHmsTfkg2ylnpjgmFC7Jp4EMUsdDGq0IbnYhkkGBUTEyfXLanmoORY-VCl262rPKfc-2To_pq8nnNxpGDwxLglPjJH3afki7HsBx6yM5Ix8MTd-dk06zgxN8vgvXAdzIdfwFDRs94
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+estimation+and+modelling+of+cause-specific+cumulative+incidence+functions+using+time-dependent+weights&rft.jtitle=The+Stata+journal&rft.au=Lambert%2C+Paul+C&rft.date=2017-03-01&rft.issn=1536-867X&rft.volume=17&rft.issue=1&rft.spage=181&rft_id=info:doi/10.1177%2F1536867x1701700110&rft_id=info%3Apmid%2F30542252&rft_id=info%3Apmid%2F30542252&rft.externalDocID=30542252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-867X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-867X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-867X&client=summon