Machine learning-based protein crystal detection for monitoring of crystallization processes enabled with large-scale synthetic data sets of photorealistic images

Since preparative chromatography is a sustainability challenge due to large amounts of consumables used in downstream processing of biomolecules, protein crystallization offers a promising alternative as a purification method. While the limited crystallizability of proteins often restricts a broad a...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry Vol. 414; no. 21; pp. 6379 - 6391
Main Authors: Bischoff, Daniel, Walla, Brigitte, Weuster-Botz, Dirk
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
Springer
Springer Nature B.V
Subjects:
ISSN:1618-2642, 1618-2650, 1618-2650
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Since preparative chromatography is a sustainability challenge due to large amounts of consumables used in downstream processing of biomolecules, protein crystallization offers a promising alternative as a purification method. While the limited crystallizability of proteins often restricts a broad application of crystallization as a purification method, advances in molecular biology, as well as computational methods are pushing the applicability towards integration in biotechnological downstream processes. However, in industrial and academic settings, monitoring protein crystallization processes non-invasively by microscopic photography and automated image evaluation remains a challenging problem. Recently, the identification of single crystal objects using deep learning has been the subject of increased attention for various model systems. However, the advancement of crystal detection using deep learning for biotechnological applications is limited: robust models obtained through supervised machine learning tasks require large-scale and high-quality data sets usually obtained in large projects through extensive manual labeling, an approach that is highly error-prone for dense systems of transparent crystals. For the first time, recent trends involving the use of synthetic data sets for supervised learning are transferred, thus generating photorealistic images of virtual protein crystals in suspension (PCS) through the use of ray tracing algorithms, accompanied by specialized data augmentations modelling experimental noise. Further, it is demonstrated that state-of-the-art models trained with the large-scale synthetic PCS data set outperform similar fine-tuned models based on the average precision metric on a validation data set, followed by experimental validation using high-resolution photomicrographs from stirred tank protein crystallization processes.
AbstractList Since preparative chromatography is a sustainability challenge due to large amounts of consumables used in downstream processing of biomolecules, protein crystallization offers a promising alternative as a purification method. While the limited crystallizability of proteins often restricts a broad application of crystallization as a purification method, advances in molecular biology, as well as computational methods are pushing the applicability towards integration in biotechnological downstream processes. However, in industrial and academic settings, monitoring protein crystallization processes non-invasively by microscopic photography and automated image evaluation remains a challenging problem. Recently, the identification of single crystal objects using deep learning has been the subject of increased attention for various model systems. However, the advancement of crystal detection using deep learning for biotechnological applications is limited: robust models obtained through supervised machine learning tasks require large-scale and high-quality data sets usually obtained in large projects through extensive manual labeling, an approach that is highly error-prone for dense systems of transparent crystals. For the first time, recent trends involving the use of synthetic data sets for supervised learning are transferred, thus generating photorealistic images of virtual protein crystals in suspension (PCS) through the use of ray tracing algorithms, accompanied by specialized data augmentations modelling experimental noise. Further, it is demonstrated that state-of-the-art models trained with the large-scale synthetic PCS data set outperform similar fine-tuned models based on the average precision metric on a validation data set, followed by experimental validation using high-resolution photomicrographs from stirred tank protein crystallization processes.Since preparative chromatography is a sustainability challenge due to large amounts of consumables used in downstream processing of biomolecules, protein crystallization offers a promising alternative as a purification method. While the limited crystallizability of proteins often restricts a broad application of crystallization as a purification method, advances in molecular biology, as well as computational methods are pushing the applicability towards integration in biotechnological downstream processes. However, in industrial and academic settings, monitoring protein crystallization processes non-invasively by microscopic photography and automated image evaluation remains a challenging problem. Recently, the identification of single crystal objects using deep learning has been the subject of increased attention for various model systems. However, the advancement of crystal detection using deep learning for biotechnological applications is limited: robust models obtained through supervised machine learning tasks require large-scale and high-quality data sets usually obtained in large projects through extensive manual labeling, an approach that is highly error-prone for dense systems of transparent crystals. For the first time, recent trends involving the use of synthetic data sets for supervised learning are transferred, thus generating photorealistic images of virtual protein crystals in suspension (PCS) through the use of ray tracing algorithms, accompanied by specialized data augmentations modelling experimental noise. Further, it is demonstrated that state-of-the-art models trained with the large-scale synthetic PCS data set outperform similar fine-tuned models based on the average precision metric on a validation data set, followed by experimental validation using high-resolution photomicrographs from stirred tank protein crystallization processes.
Since preparative chromatography is a sustainability challenge due to large amounts of consumables used in downstream processing of biomolecules, protein crystallization offers a promising alternative as a purification method. While the limited crystallizability of proteins often restricts a broad application of crystallization as a purification method, advances in molecular biology, as well as computational methods are pushing the applicability towards integration in biotechnological downstream processes. However, in industrial and academic settings, monitoring protein crystallization processes non-invasively by microscopic photography and automated image evaluation remains a challenging problem. Recently, the identification of single crystal objects using deep learning has been the subject of increased attention for various model systems. However, the advancement of crystal detection using deep learning for biotechnological applications is limited: robust models obtained through supervised machine learning tasks require large-scale and high-quality data sets usually obtained in large projects through extensive manual labeling, an approach that is highly error-prone for dense systems of transparent crystals. For the first time, recent trends involving the use of synthetic data sets for supervised learning are transferred, thus generating photorealistic images of virtual protein crystals in suspension (PCS) through the use of ray tracing algorithms, accompanied by specialized data augmentations modelling experimental noise. Further, it is demonstrated that state-of-the-art models trained with the large-scale synthetic PCS data set outperform similar fine-tuned models based on the average precision metric on a validation data set, followed by experimental validation using high-resolution photomicrographs from stirred tank protein crystallization processes.
Audience Academic
Author Walla, Brigitte
Weuster-Botz, Dirk
Bischoff, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0003-1780-1683
  surname: Bischoff
  fullname: Bischoff, Daniel
  organization: Technical University of Munich, Institute of Biochemical Engineering
– sequence: 2
  givenname: Brigitte
  orcidid: 0000-0002-9289-5539
  surname: Walla
  fullname: Walla, Brigitte
  organization: Technical University of Munich, Institute of Biochemical Engineering
– sequence: 3
  givenname: Dirk
  orcidid: 0000-0002-1171-4194
  surname: Weuster-Botz
  fullname: Weuster-Botz, Dirk
  email: dirk.weuster-botz@tum.de
  organization: Technical University of Munich, Institute of Biochemical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35661232$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhiNURC_wAiyQJTZsUnyLnWyQqoqbVMQG1pbtHM-48tiD7QGVx-FJ8cx0CnRRlEiJ4u__5OP8p91RTBG67jnB5wRj-bpgTInoMaU95gSTfnzUnRBBxp6KAR_dvXN63J2Wco0xGUYinnTHbBCCUEZPul-ftF36CCiAztHHRW90gRmtc6rgI7L5plQd0AwVbPUpIpcyWqXoa8oNR8kdmOB_6h3RshZKgYIgahOa7YevSxR0XkBfrA6Ayk2sS6jeollXjQrUsjWtl6lpQQdftmt-pRdQnnaPnQ4Fnt0-z7qv795-ufzQX31-__Hy4qq3Axe158MEwkjmjB2kpgNxnBs-WyAGqBksm6idMBupYwMRMzjQ0lA3YGsnYzhmZ92bvXe9MStowVizDmqd2zbyjUraq39Xol-qRfquJiYpoVMTvLoV5PRtA6WqlS8WQtAR0qYoKsnIBCGj-D8qJBsmLvnW-vIeep02ObaTaEKM20hy4o0631OLdrzKR5faFm27Zlh523rjfPt-IQlr90RlC7z4e9q7MQ_VaMC4B2xOpWRwyvq6-8HN7IMiWG1bqPYtVK2FatdCNbYovRc92B8MsX2orLfFgvxnzgdSvwEuvPOF
CitedBy_id crossref_primary_10_3389_fbioe_2024_1397465
crossref_primary_10_1007_s00216_022_04211_3
crossref_primary_10_1016_j_earscirev_2023_104430
crossref_primary_10_1107_S2053273323009300
crossref_primary_10_1107_S2059798324009276
crossref_primary_10_1002_cite_202255156
crossref_primary_10_3390_cryst14121009
crossref_primary_10_1080_17460441_2023_2246881
crossref_primary_10_3390_cryst13050773
Cites_doi 10.1016/j.cpart.2007.11.001
10.1007/BF02589501
10.1016/j.ces.2006.11.018
10.1016/j.ces.2004.09.068
10.1002/aic.690470922
10.1021/cg401098x
10.1016/0167-8655(82)90016-2
10.1016/S0003-2670(00)80543-7
10.1038/nature14539
10.1016/j.ces.2011.11.029
10.1016/j.biotechadv.2016.11.005
10.1021/acs.cgd.5b01748
10.1016/j.cej.2016.04.126
10.1145/325165.325247
10.3390/cryst11030258
10.1021/acs.cgd.8b00883
10.3390/cryst11060588
10.1016/j.ces.2015.05.053
10.1039/D0LC00153H
10.1021/acs.iecr.9b02450
10.1002/biot.202000010
10.1016/j.cherd.2021.04.013
10.1007/s00449-015-1374-y
10.1107/S090744490802982X
10.3390/cryst11080975
10.1016/j.str.2004.03.008
10.1016/j.ces.2006.03.035
10.1016/j.ces.2013.11.003
10.1109/ICCV.2017.324
10.1109/ICCV.2019.00502
10.1109/TGRS.2021.3062048
10.1007/978-3-030-58580-8_33
10.1021/cg1013945
10.1109/ICCV.2015.123
10.1109/ICCV.2017.322
10.23919/ChiCC.2019.8866441
10.23919/ChiCC.2017.8029197
10.1109/ICCV48922.2021.00366
10.1109/ICCV.2015.428
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
COPYRIGHT 2022 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U7
7X7
7XB
88E
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KB.
KR7
L7M
LK8
L~C
L~D
M0S
M1P
M7P
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOI 10.1007/s00216-022-04101-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (ProQuest)
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
Toxicology Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

AGRICOLA

Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1618-2650
EndPage 6391
ExternalDocumentID PMC9372129
A713713927
35661232
10_1007_s00216_022_04101_8
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: WE2715/14-2
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Technische Universität München (1025)
– fundername: Deutsche Forschungsgemeinschaft
  grantid: WE2715/14-2
– fundername: ;
– fundername: ;
  grantid: WE2715/14-2
GroupedDBID ---
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5VS
67Z
6NX
78A
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
EIOEI
EJD
EMK
EMOBN
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IAO
IFM
IGS
IHE
IHR
IJ-
IKXTQ
IMOTQ
INH
INR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
ML-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PDBOC
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
QOK
QOR
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
~8M
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U7
7XB
8BQ
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
7S9
L.6
5PM
ID FETCH-LOGICAL-c546t-459e6b73fbc57a251f44b4dce1be2b5c392c90382f3516defea7b2f50cc9bb403
IEDL.DBID M7P
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805911100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1618-2642
1618-2650
IngestDate Tue Nov 04 01:43:22 EST 2025
Sun Sep 28 12:40:32 EDT 2025
Sun Sep 28 01:05:27 EDT 2025
Wed Nov 05 14:59:21 EST 2025
Sat Nov 29 10:28:59 EST 2025
Wed Feb 19 02:25:22 EST 2025
Sat Nov 29 01:40:01 EST 2025
Tue Nov 18 22:13:39 EST 2025
Fri Feb 21 02:46:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Deep learning
Synthetic data sets
Protein crystallization
Automated image analysis
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-459e6b73fbc57a251f44b4dce1be2b5c392c90382f3516defea7b2f50cc9bb403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1780-1683
0000-0002-9289-5539
0000-0002-1171-4194
OpenAccessLink https://link.springer.com/10.1007/s00216-022-04101-8
PMID 35661232
PQID 2700903794
PQPubID 2034506
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9372129
proquest_miscellaneous_2718361186
proquest_miscellaneous_2673594749
proquest_journals_2700903794
gale_infotracacademiconefile_A713713927
pubmed_primary_35661232
crossref_citationtrail_10_1007_s00216_022_04101_8
crossref_primary_10_1007_s00216_022_04101_8
springer_journals_10_1007_s00216_022_04101_8
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Analytical and bioanalytical chemistry
PublicationTitleAbbrev Anal Bioanal Chem
PublicationTitleAlternate Anal Bioanal Chem
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References El Arnaout, Kurki, Vaarala, Ojala, Cullen, Sullivan (CR7) 2016; 300
CR39
CR38
Sklansky (CR36) 1982; 1
CR37
Hermann, Bischoff, Grob, Janowski, Hekmat, Niessing (CR6) 2021; 11
Dos Santos, Carvalho, Roque (CR1) 2017; 35
CR13
Borchert, Temmel, Eisenschmidt, Lorenz, Seidel-Morgenstern, Sundmacher (CR17) 2014; 14
CR35
LeCun, Bengio, Hinton (CR21) 2015; 521
CR32
Pons, Vivier (CR10) 1990; 238
CR31
Patience, Rawlings (CR11) 2001; 47
Su, He, Zhou, Huang, Zhou (CR25) 2020; 20
CR30
Liu, Freund, Spraggon (CR20) 2008; 64
Wu, Gao, Rohani (CR28) 2021; 170
Perlin (CR33) 1985; 19
Calderon De Anda, Wang, Roberts (CR9) 2005; 60
Wan, Ma, Wang (CR12) 2008; 6
Derewenda (CR3) 2004; 12
Schorsch, Vetter, Mazzotti (CR16) 2012; 77
Abdallah, Roy-Chowdhury, Fromme, Fromme, Ros (CR8) 2016; 16
Larsen, Rawlings, Ferrier (CR14) 2006; 61
CR29
CR26
CR24
Zhang, Ma, Liu, Wang (CR19) 2015; 137
CR22
Schorsch, Ochsenbein, Vetter, Morari, Mazzotti (CR18) 2014; 105
CR41
CR40
Larsen, Rawlings, Ferrier (CR15) 2007; 62
Hekmat (CR2) 2015; 38
Manee, Zhu, Romagnoli (CR27) 2019; 58
Grob, Huber, Walla, Hermann, Janowski, Niessing (CR4) 2020; 15
Gao, Wu, Bao, Gong, Wang, Rohani (CR23) 2018; 18
Hodges (CR42) 1958; 3
Trampert, Rubinstein, Boughorbel, Schlinkmann, Luschkova, Slusallek (CR34) 2021; 11
Walla, Bischoff, Janowski, von den Eichen, Niessing, Weuster-Botz (CR5) 2021; 11
Z Su (4101_CR25) 2020; 20
P Grob (4101_CR4) 2020; 15
T El Arnaout (4101_CR7) 2016; 300
DB Patience (4101_CR11) 2001; 47
J Hermann (4101_CR6) 2021; 11
4101_CR32
4101_CR31
4101_CR30
4101_CR13
4101_CR35
ZS Derewenda (4101_CR3) 2004; 12
P Trampert (4101_CR34) 2021; 11
Y LeCun (4101_CR21) 2015; 521
4101_CR39
C Borchert (4101_CR17) 2014; 14
4101_CR38
4101_CR37
B Walla (4101_CR5) 2021; 11
R Liu (4101_CR20) 2008; 64
JL Hodges (4101_CR42) 1958; 3
J Wan (4101_CR12) 2008; 6
D Hekmat (4101_CR2) 2015; 38
BG Abdallah (4101_CR8) 2016; 16
PA Larsen (4101_CR14) 2006; 61
4101_CR41
R Dos Santos (4101_CR1) 2017; 35
J Sklansky (4101_CR36) 1982; 1
4101_CR40
Z Gao (4101_CR23) 2018; 18
V Manee (4101_CR27) 2019; 58
J Calderon De Anda (4101_CR9) 2005; 60
4101_CR24
R Zhang (4101_CR19) 2015; 137
4101_CR22
4101_CR29
4101_CR26
S Schorsch (4101_CR18) 2014; 105
K Perlin (4101_CR33) 1985; 19
MN Pons (4101_CR10) 1990; 238
PA Larsen (4101_CR15) 2007; 62
Y Wu (4101_CR28) 2021; 170
S Schorsch (4101_CR16) 2012; 77
References_xml – volume: 6
  start-page: 9
  issue: 1
  year: 2008
  end-page: 15
  ident: CR12
  article-title: A method for analyzing on-line video images of crystallization at high-solid concentrations
  publication-title: Particuology
  doi: 10.1016/j.cpart.2007.11.001
– ident: CR22
– volume: 3
  start-page: 469
  issue: 5
  year: 1958
  end-page: 86
  ident: CR42
  article-title: The significance probability of the smirnov two-sample test
  publication-title: Ark för Matematik
  doi: 10.1007/BF02589501
– ident: CR39
– volume: 62
  start-page: 1430
  issue: 5
  year: 2007
  end-page: 41
  ident: CR15
  article-title: Model-based object recognition to measure crystal size and shape distributions from in situ video images
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2006.11.018
– ident: CR37
– ident: CR30
– volume: 60
  start-page: 1053
  issue: 4
  year: 2005
  end-page: 65
  ident: CR9
  article-title: Multi-scale segmentation image analysis for the in-process monitoring of particle shape with batch crystallisers
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2004.09.068
– volume: 47
  start-page: 2125
  issue: 9
  year: 2001
  ident: CR11
  article-title: Particle-shape monitoring and control in crystallization processes
  publication-title: Am Inst of Chem Eng
  doi: 10.1002/aic.690470922
– volume: 14
  start-page: 952
  issue: 3
  year: 2014
  end-page: 71
  ident: CR17
  article-title: Image-based in situ identification of face specific crystal growth rates from crystal populations
  publication-title: Cryst Growth Des
  doi: 10.1021/cg401098x
– ident: CR35
– volume: 1
  start-page: 79
  issue: 2
  year: 1982
  end-page: 83
  ident: CR36
  article-title: Finding the convex hull of a simple polygon
  publication-title: Pattern Recognition Lett
  doi: 10.1016/0167-8655(82)90016-2
– ident: CR29
– ident: CR40
– volume: 238
  start-page: 243
  year: 1990
  end-page: 9
  ident: CR10
  article-title: Crystallization monitoring by quantitative image analysis
  publication-title: Anal Chimi Acta
  doi: 10.1016/S0003-2670(00)80543-7
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 44
  ident: CR21
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 77
  start-page: 130
  year: 2012
  end-page: 42
  ident: CR16
  article-title: Measuring multidimensional particle size distributions during crystallization
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2011.11.029
– volume: 35
  start-page: 41
  issue: 1
  year: 2017
  end-page: 50
  ident: CR1
  article-title: Renaissance of Protein crystallization and precipitation in biopharmaceuticals purification
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2016.11.005
– volume: 16
  start-page: 2074
  issue: 4
  year: 2016
  end-page: 82
  ident: CR8
  article-title: Protein crystallization in an actuated microfluidic nanowell device
  publication-title: Cryst Growth & Des
  doi: 10.1021/acs.cgd.5b01748
– volume: 300
  start-page: 64
  year: 2016
  end-page: 74
  ident: CR7
  article-title: Crystallization monitoring using simultaneous bright field and plasdic imaging
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2016.04.126
– volume: 19
  start-page: 287
  issue: 3
  year: 1985
  end-page: 96
  ident: CR33
  article-title: An image synthesizer
  publication-title: SIGGRAPH Comput Graph
  doi: 10.1145/325165.325247
– volume: 11
  start-page: 258
  issue: 3
  year: 2021
  ident: CR34
  article-title: Deep neural networks for analysis of microscopy images–synthetic data generation and adaptive sampling
  publication-title: Crystals
  doi: 10.3390/cryst11030258
– volume: 18
  start-page: 4275
  issue: 8
  year: 2018
  end-page: 81
  ident: CR23
  article-title: Image analysis for in-line measurement of multidimensional size, shape, and polymorphic transformation of l-Glutamic acid using deep learning-based image segmentation and classification
  publication-title: Cryst Growth Des
  doi: 10.1021/acs.cgd.8b00883
– volume: 11
  start-page: 588
  issue: 6
  year: 2021
  ident: CR6
  article-title: Controlling protein crystallization by free energy guided design of interactions at crystal contacts
  publication-title: Crystals
  doi: 10.3390/cryst11060588
– ident: CR38
– volume: 137
  start-page: 9
  year: 2015
  end-page: 21
  ident: CR19
  article-title: On-line measurement of the real size and shape of crystals in stirred tank crystalliser using non-invasive stereo vision imaging
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2015.05.053
– ident: CR31
– ident: CR13
– volume: 20
  start-page: 1907
  issue: 11
  year: 2020
  end-page: 16
  ident: CR25
  article-title: A high-throughput system combining microfluidic hydrogel droplets with deep learning for screening the antisolvent-crystallization conditions of active pharmaceutical ingredients
  publication-title: Lab Chip
  doi: 10.1039/D0LC00153H
– volume: 58
  start-page: 23175
  issue: 51
  year: 2019
  end-page: 86
  ident: CR27
  article-title: A deep learning image-based sensor for real-time crystal size distribution characterization
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.9b02450
– ident: CR32
– volume: 15
  start-page: 2000010
  issue: 11
  year: 2020
  ident: CR4
  article-title: Crystal contact engineering enables efficient capture and purification of an oxidoreductase by technical crystallization
  publication-title: Biotechnol J
  doi: 10.1002/biot.202000010
– volume: 170
  start-page: 444
  year: 2021
  end-page: 55
  ident: CR28
  article-title: Deep learning-based oriented object detection for in situ image monitoring and analysis: A process analytical technology (PAT) application for taurine crystallization
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2021.04.013
– volume: 38
  start-page: 1209
  issue: 7
  year: 2015
  end-page: 31
  ident: CR2
  article-title: Large-scale crystallization of proteins for purification and formulation
  publication-title: Bioprocess and Biosyst Eng
  doi: 10.1007/s00449-015-1374-y
– volume: 64
  start-page: 1187
  issue: 12
  year: 2008
  end-page: 95
  ident: CR20
  article-title: Image-based crystal detection: a machine-learning approach
  publication-title: Acta Crystallogr Sect D: Biolog Crystallogr
  doi: 10.1107/S090744490802982X
– volume: 11
  start-page: 975
  issue: 8
  year: 2021
  ident: CR5
  article-title: Transfer of a rational crystal contact engineering strategy between diverse alcohol dehydrogenases
  publication-title: Crystals
  doi: 10.3390/cryst11080975
– ident: CR41
– ident: CR26
– ident: CR24
– volume: 12
  start-page: 529
  issue: 4
  year: 2004
  end-page: 35
  ident: CR3
  article-title: Rational protein crystallization by mutational surface engineering
  publication-title: Structure
  doi: 10.1016/j.str.2004.03.008
– volume: 61
  start-page: 5236
  issue: 16
  year: 2006
  end-page: 48
  ident: CR14
  article-title: An algorithm for analyzing noisy, in situ images of high-aspect-ratio crystals to monitor particle size distribution
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2006.03.035
– volume: 105
  start-page: 155
  year: 2014
  end-page: 68
  ident: CR18
  article-title: High accuracy online measurement of multidimensional particle size distributions during crystallization
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2013.11.003
– volume: 15
  start-page: 2000010
  issue: 11
  year: 2020
  ident: 4101_CR4
  publication-title: Biotechnol J
  doi: 10.1002/biot.202000010
– ident: 4101_CR26
  doi: 10.1109/ICCV.2017.324
– volume: 6
  start-page: 9
  issue: 1
  year: 2008
  ident: 4101_CR12
  publication-title: Particuology
  doi: 10.1016/j.cpart.2007.11.001
– ident: 4101_CR35
  doi: 10.1109/ICCV.2019.00502
– ident: 4101_CR38
– volume: 300
  start-page: 64
  year: 2016
  ident: 4101_CR7
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2016.04.126
– ident: 4101_CR29
  doi: 10.1109/TGRS.2021.3062048
– ident: 4101_CR30
  doi: 10.1007/978-3-030-58580-8_33
– ident: 4101_CR39
  doi: 10.1021/cg1013945
– ident: 4101_CR40
  doi: 10.1109/ICCV.2015.123
– volume: 60
  start-page: 1053
  issue: 4
  year: 2005
  ident: 4101_CR9
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2004.09.068
– volume: 19
  start-page: 287
  issue: 3
  year: 1985
  ident: 4101_CR33
  publication-title: SIGGRAPH Comput Graph
  doi: 10.1145/325165.325247
– volume: 105
  start-page: 155
  year: 2014
  ident: 4101_CR18
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2013.11.003
– volume: 38
  start-page: 1209
  issue: 7
  year: 2015
  ident: 4101_CR2
  publication-title: Bioprocess and Biosyst Eng
  doi: 10.1007/s00449-015-1374-y
– volume: 1
  start-page: 79
  issue: 2
  year: 1982
  ident: 4101_CR36
  publication-title: Pattern Recognition Lett
  doi: 10.1016/0167-8655(82)90016-2
– volume: 20
  start-page: 1907
  issue: 11
  year: 2020
  ident: 4101_CR25
  publication-title: Lab Chip
  doi: 10.1039/D0LC00153H
– ident: 4101_CR22
  doi: 10.1109/ICCV.2017.322
– volume: 61
  start-page: 5236
  issue: 16
  year: 2006
  ident: 4101_CR14
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2006.03.035
– volume: 11
  start-page: 975
  issue: 8
  year: 2021
  ident: 4101_CR5
  publication-title: Crystals
  doi: 10.3390/cryst11080975
– ident: 4101_CR24
  doi: 10.23919/ChiCC.2019.8866441
– volume: 11
  start-page: 588
  issue: 6
  year: 2021
  ident: 4101_CR6
  publication-title: Crystals
  doi: 10.3390/cryst11060588
– volume: 64
  start-page: 1187
  issue: 12
  year: 2008
  ident: 4101_CR20
  publication-title: Acta Crystallogr Sect D: Biolog Crystallogr
  doi: 10.1107/S090744490802982X
– volume: 35
  start-page: 41
  issue: 1
  year: 2017
  ident: 4101_CR1
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2016.11.005
– volume: 238
  start-page: 243
  year: 1990
  ident: 4101_CR10
  publication-title: Anal Chimi Acta
  doi: 10.1016/S0003-2670(00)80543-7
– ident: 4101_CR37
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 4101_CR21
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 18
  start-page: 4275
  issue: 8
  year: 2018
  ident: 4101_CR23
  publication-title: Cryst Growth Des
  doi: 10.1021/acs.cgd.8b00883
– volume: 170
  start-page: 444
  year: 2021
  ident: 4101_CR28
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2021.04.013
– volume: 77
  start-page: 130
  year: 2012
  ident: 4101_CR16
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2011.11.029
– volume: 3
  start-page: 469
  issue: 5
  year: 1958
  ident: 4101_CR42
  publication-title: Ark för Matematik
  doi: 10.1007/BF02589501
– volume: 137
  start-page: 9
  year: 2015
  ident: 4101_CR19
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2015.05.053
– ident: 4101_CR13
  doi: 10.23919/ChiCC.2017.8029197
– volume: 12
  start-page: 529
  issue: 4
  year: 2004
  ident: 4101_CR3
  publication-title: Structure
  doi: 10.1016/j.str.2004.03.008
– volume: 16
  start-page: 2074
  issue: 4
  year: 2016
  ident: 4101_CR8
  publication-title: Cryst Growth & Des
  doi: 10.1021/acs.cgd.5b01748
– volume: 47
  start-page: 2125
  issue: 9
  year: 2001
  ident: 4101_CR11
  publication-title: Am Inst of Chem Eng
  doi: 10.1002/aic.690470922
– ident: 4101_CR32
  doi: 10.1109/ICCV48922.2021.00366
– ident: 4101_CR41
– volume: 11
  start-page: 258
  issue: 3
  year: 2021
  ident: 4101_CR34
  publication-title: Crystals
  doi: 10.3390/cryst11030258
– volume: 58
  start-page: 23175
  issue: 51
  year: 2019
  ident: 4101_CR27
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.9b02450
– volume: 14
  start-page: 952
  issue: 3
  year: 2014
  ident: 4101_CR17
  publication-title: Cryst Growth Des
  doi: 10.1021/cg401098x
– volume: 62
  start-page: 1430
  issue: 5
  year: 2007
  ident: 4101_CR15
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2006.11.018
– ident: 4101_CR31
  doi: 10.1109/ICCV.2015.428
SSID ssj0015816
Score 2.4481916
Snippet Since preparative chromatography is a sustainability challenge due to large amounts of consumables used in downstream processing of biomolecules, protein...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6379
SubjectTerms Algorithms
Analysis
Analytical Chemistry
automation
Biochemistry
Biomolecules
Biotechnology
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
chromatography
Cognitive tasks
Computer applications
Crystallization
Crystalloids (Botany)
Crystals
data collection
Datasets
Deep learning
Food Science
Laboratory Medicine
Learning algorithms
Machine learning
Methods
Micrography
Molecular biology
Monitoring
Monitoring/Environmental Analysis
Photography
Photomicrographs
Protein purification
Proteins
Purification
purification methods
Ray tracing
Research Paper
Single crystals
Structure
Sustainability in (Bio-)Analytical Chemistry
Synthetic data
SummonAdditionalLinks – databaseName: SpringerLink Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_0FPTF74_qKREEH7TQTZumeTwOD188xC_uLSRp6i3sdZdNT7h_x7_UmWxa3UUPFPZh2UzTafrLzGTnC-AlnhhEKWqbExhy_O5ykoHUREDxtpsVHTex2YQ8Pm5OTtSHlBQWxmj30SUZJfWU7EbqiAJmeV5UCKS8uQrXUN1JwvLHT18n34FoYsNTqgRP8Vs8pcr8eY4tdbQrlH_TSrsRkztu06iNjm7_33PcgVvJ-mQHG7jchSu-vwc3Dsemb_fhx_sYXOlZ6ibxLSc117JYzmHeM7e-QHNywVo_xBiunqHRy86iYCAu2LIbaRYpw5OtNrkIPjAfE7VaRn_-sgXFoOcBMeJZuOjREEWmGEWssuCHQDOtTpc4racajTQ2P0PhFx7Al6O3nw_f5amNQ-5EVQ8IAOVrK8vOOiEN2lNdVdkKl3JmPbfCoYXmVFE2vCvFrG595420vBOFc8raqigfwl6_7P1jYKJU-IORRpiGOmUb1Vi81lS-9GQrZjAb36Z2qcY5tdpY6Kk6c1x9jauv4-rrJoPX0zWrTYWPS6lfEUg0bX-c2ZmUxYD8USEtfYCHfvwoLjPYH3Gkk1wImtz8-KwoBDN4MQ3jOyY3jen98hxpalkKVclKXUKDJkVZ4-GwzuDRBpoT87j1qKYOz0BugXYioIri2yP9_DRWFkdbFU0ZvO-bEbq_WP_7mjz5N_KncJNH9FOg3j7sDetz_wyuu-_DPKyfx738E56vRg4
  priority: 102
  providerName: Springer Nature
Title Machine learning-based protein crystal detection for monitoring of crystallization processes enabled with large-scale synthetic data sets of photorealistic images
URI https://link.springer.com/article/10.1007/s00216-022-04101-8
https://www.ncbi.nlm.nih.gov/pubmed/35661232
https://www.proquest.com/docview/2700903794
https://www.proquest.com/docview/2673594749
https://www.proquest.com/docview/2718361186
https://pubmed.ncbi.nlm.nih.gov/PMC9372129
Volume 414
WOSCitedRecordID wos000805911100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1618-2650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015816
  issn: 1618-2642
  databaseCode: RSV
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDQle-IYFRmUkJB4gkDhxnDyhbdqEhKiq8aG-RbHjsEpd0jUZ0v4d_lLuXCejlegLUhU1teM6zs93F_vudwCv8Y1BRCJRPoHBx-_aJxlISQQyXlZhUPHCJpuQ43E6nWYTt-DWOrfKXiZaQV02mtbIP9AGaRZECJ-Pi0ufskbR7qpLobEDe8SSwK3r3mTYRRCpTX1KnPDkycVd0IwNnSPlRu633A9ihKWfrimmTfH8l37a9J3c2EC1eun0_v_e0QO45yxSdriC0EO4ZepHcOe4TwT3GH5_sQ6XhrkMEz99Un0lsxQPs5rp5TWamHNWms76ddUMDWF2YYUF9Zk1VV9n7qI-2WIVn2BaZmzwVsloQZjNyS_dbxE3hrXXNRqn2ClGXqysNV1LLS3OG2zWEG8jlc0uUCC2T-D76cm340--S-3gaxEnHYIiM4mSUaW0kAXaWFUcqxgHNVSGK6HRatM4NimvIhEmpalMIRWvRKB1plQcRE9ht25qsw9MRBn-UMhCFCllzy6yVOG1RWwiQ_ajB2H_XHPteM8p_cY8HxibLRZyxEJusZCnHrwdrlmsWD-21n5DcMlJJGDLunCRDdg_ItfKD2UY4Sfj0oODHgq5kxVtfoMDD14NxfiMaeumqE1zhXUSGYkslnG2pQ6aGVGCL4yJB89WIB06j9OReHa4B3INvkMFYhlfL6ln55ZtHO1XNG_wf9_1QL_p-r_H5Pn2O30Bd7mde-SsdwC73fLKvITb-lc3a5cj2JFTaY_pCPaOTsaTMzz7fPR-ZOc3Hs--_vgDs5hVnA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQwcFS2SOXC-xEoYCQQB7DI2nEeB4RKadWq7apCReotJI5DV9omyyYF7e_wAXwjM86j7ErsrQekHKJ44kyceTnzAniJOwYllZ9yIgaO55qTDKQmApHI8qGbi8Q2mwhGo_D0NDpeg99dLgyFVXYy0QrqrNT0j_wdOUgjVyL5fJh-59Q1iryrXQuNhiwOzPwnbtmq9_uf8Pu-EmJ352R7j7ddBbhWnl8jPpHx00DmqVZBguo997zUy7QZpkakSqPBoPFBocilGvqZyU0SpCJXrtZRmnquxHmvwbon8ZUGsP5xZ3T8ufdbqNA2W6Uq9BQ7Jto0HZusR-qUAn4Fdz1kBB4uqMJlhfCXRlyO1lxy2VpNuHvrf1vD23CztbnZVsMkd2DNFHdhY7trdXcPfh3ZkFLD2h4a3zgp94zZIhbjgunZHI3oCctMbSPXCoamPju34pDWiJV5BzNp81rZtMnAMBUzNj0tY_TLm00o8p5XyBmGVfMCzW9EilGcLqtMXdFM07MSpzVUmZLGxuco8qv78OVKlugBDIqyMI-AKRnhhSRIVBJSf_AkClO8N_GMNGQhOzDs6CjWbWV3ajAyifua1Jb2YqS92NJeHDrwpr9n2tQ1WQn9msgzJqGHM-ukzd1A_Kh8WLwVDCUekQgc2OxIL26lYRVf0p0DL_ph_MbknEoKU14gjB9IFXmBF62AQUNK-rgl9h142DBFjzwKHKokJBwIFtilB6A66osjxfjM1lNHCx0NOHzu246xLlH_95o8Xv2mz2Fj7-ToMD7cHx08gRvC8j2FJm7CoJ5dmKdwXf-ox9XsWStDGHy9apb7A674sFE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoAL74KhwCKBOIDbeO312geESktEFYh6AKk3412vaaTUDrELyt_hZ_DrmFk_SiKRWw9IOUTZ8Xqzntd6Zr4BeI4nBuGLULnEDC5-1y7pQGoiEPMs9wY5T22zCTkeR8fH8dEG_O5qYSitstOJVlFnpaZ35LsUII0HPrLPbt6mRRwdDN_OvrvUQYoirV07jYZFRmbxE49v1ZvDA3zWLzgfvv-8_8FtOwy4WgRhjWuLTaiknystZIqmPg8CFWTaeMpwJTQ6DxpvGvHcF16YmdykUvFcDLSOlQoGPs57CS6jFRYkUaN3O30EQ0S27Srh0VMWGW8LdmzZHhlWSv3l7iBAkXCjJaO4ahr-so2reZsrwVtrE4c3_-fdvAU3Wk-c7TWicxs2THEHru13DfDuwq9PNtHUsLazxjeXTH7GLLTFpGB6vkDXesoyU9t8toLhAYCdWiVJ-8XKvKOZttWubNbUZZiKGVu0ljF6Ec6mlI_vVigvhlWLAp1yXBSj7F1WmbqimWYnJU5rCK-SxianaAiqe_DlQrZoCzaLsjAPgAk_xh9SmYo0oq7haRwpvDYNjG_Ib3bA63gq0S3eO7UdmSY9UrXlwwT5MLF8mEQOvOqvmTVoJ2upXxKrJqQKcWadthUduD4CFUv2pOfjJ-bSge2ODZNWR1bJOQ868KwfxmdMIau0MOUZ0oQSRSuQQbyGBt0rP8SDcujA_UZA-sWjGiJ8Ie6AXBKdnoDQ1ZdHismJRVlHvx3dOrzv607Izpf-7z15uP6fPoWrKGfJx8Px6BFc51YFUL7iNmzW8zPzGK7oH_Wkmj-xyoTB14uWtz9ycbec
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+protein+crystal+detection+for+monitoring+of+crystallization+processes+enabled+with+large-scale+synthetic+data+sets+of+photorealistic+images&rft.jtitle=Analytical+and+bioanalytical+chemistry&rft.au=Bischoff%2C+Daniel&rft.au=Walla%2C+Brigitte&rft.au=Weuster-Botz%2C+Dirk&rft.date=2022-09-01&rft.issn=1618-2650&rft.eissn=1618-2650&rft.volume=414&rft.issue=21&rft.spage=6379&rft_id=info:doi/10.1007%2Fs00216-022-04101-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1618-2642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1618-2642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1618-2642&client=summon