Purifying stem cell‐derived red blood cells: a high‐throughput label‐free downstream processing strategy based on microfluidic spiral inertial separation and membrane filtration
Cell‐based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and econom...
Saved in:
| Published in: | Biotechnology and bioengineering Vol. 117; no. 7; pp. 2032 - 2045 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Wiley Subscription Services, Inc
01.07.2020
John Wiley and Sons Inc |
| Subjects: | |
| ISSN: | 0006-3592, 1097-0290, 1097-0290 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Cell‐based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability‐based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high‐throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products.
To address the challenge of stem‐cell‐derived red blood cells purification, we propose a label‐free approach to separate cells at high throughput based on their morphological (size) and mechanical (deformability) properties. The process consists of two main steps: (a) a microfluidic separation using inertial focusing in spiral microchannel and (b) membrane filtration. |
|---|---|
| AbstractList | Cell‐based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability‐based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high‐throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products. To address the challenge of stem‐cell‐derived red blood cells purification, we propose a label‐free approach to separate cells at high throughput based on their morphological (size) and mechanical (deformability) properties. The process consists of two main steps: (a) a microfluidic separation using inertial focusing in spiral microchannel and (b) membrane filtration. Cell‐based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability‐based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high‐throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products. Cell‐based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability‐based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high‐throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products. To address the challenge of stem‐cell‐derived red blood cells purification, we propose a label‐free approach to separate cells at high throughput based on their morphological (size) and mechanical (deformability) properties. The process consists of two main steps: (a) a microfluidic separation using inertial focusing in spiral microchannel and (b) membrane filtration. Cell-based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability-based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high-throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products.Cell-based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability-based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high-throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products. |
| Author | Guzniczak, Ewa Chandra, Tamir Jimenez, Melanie Otto, Oliver Bridle, Helen Willoughby, Nik Robertson, Neil A. Whyte, Graeme |
| AuthorAffiliation | 5 Biomedical Engineering Division, James Watt School of Engineering University of Glasgow Glasgow Scotland 2 Centre for Innovation Competence – Humoral Immune Reactions in Cardiovascular Diseases University of Greifswald Greifswald Germany 3 Deutsches Zentrum für Herz‐Kreislaufforschung Partner Site Greifswald Greifswald Germany 4 MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh Western General Hospital Edinburgh Scotland 1 Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science Heriot‐Watt University Edinburgh Scotland |
| AuthorAffiliation_xml | – name: 1 Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science Heriot‐Watt University Edinburgh Scotland – name: 2 Centre for Innovation Competence – Humoral Immune Reactions in Cardiovascular Diseases University of Greifswald Greifswald Germany – name: 3 Deutsches Zentrum für Herz‐Kreislaufforschung Partner Site Greifswald Greifswald Germany – name: 4 MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh Western General Hospital Edinburgh Scotland – name: 5 Biomedical Engineering Division, James Watt School of Engineering University of Glasgow Glasgow Scotland |
| Author_xml | – sequence: 1 givenname: Ewa orcidid: 0000-0002-7380-2077 surname: Guzniczak fullname: Guzniczak, Ewa email: eg100@hw.ac.uk organization: Heriot‐Watt University – sequence: 2 givenname: Oliver surname: Otto fullname: Otto, Oliver organization: Partner Site Greifswald – sequence: 3 givenname: Graeme surname: Whyte fullname: Whyte, Graeme organization: Heriot‐Watt University – sequence: 4 givenname: Tamir surname: Chandra fullname: Chandra, Tamir organization: Western General Hospital – sequence: 5 givenname: Neil A. surname: Robertson fullname: Robertson, Neil A. organization: Western General Hospital – sequence: 6 givenname: Nik surname: Willoughby fullname: Willoughby, Nik organization: Heriot‐Watt University – sequence: 7 givenname: Melanie surname: Jimenez fullname: Jimenez, Melanie organization: University of Glasgow – sequence: 8 givenname: Helen surname: Bridle fullname: Bridle, Helen organization: Heriot‐Watt University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32100873$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks9u1DAQxi1URLeFAy-ALHGBw7aOHccJBySo-FOpEhzK2XKcya4rxw520mpvPAJvw_vwJMzulgoqwcGyPf59n2bGc0QOQgxAyNOCnRSM8dPWTSdciaJ5QBYFa9SS8YYdkAVjrFoK2fBDcpTzFV5VXVWPyKHgqKuVWJAfn-fk-o0LK5onGKgF739--95BctfQ0YSr9TF2u4f8ihq6dqs1EtM6xXm1HueJetPCVtQnANrFm5CnBGagY4oWct57JzPBakNbk9EyBjo4m2LvZ9c5S_PokvHUBUiTw0OG0aDAIWdCRwcY2mQC0N75aR9_TB72xmd4crsfky_v312efVxefPpwfvbmYmllWTVLJQXUfdt3wFpWQS9F2VoQSoJhEuMKe8LLVpTSSluxuugLqQpelqVtmC2kOCav977j3A7QWQiYgNdjcoNJGx2N03-_BLfWq3itlahF3Sg0eHFrkOLXGfKkB5e3zcR64pw1F5XknJWsQfT5PfQqzilgeZqXBVdVXTcVUs_-zOguld9_isDLPYANzjlBf4cUTG_nReO86N28IHt6j7Vu2jUYi3H-f4ob52Hzb2v99vxyr_gFj2DZcw |
| CitedBy_id | crossref_primary_10_3390_bios11110464 crossref_primary_10_3390_bios14100466 crossref_primary_10_1080_23746149_2023_2246704 crossref_primary_10_1039_D4AN01288G crossref_primary_10_1016_j_biteb_2022_101014 crossref_primary_10_1063_5_0009673 crossref_primary_10_1016_j_memsci_2020_118804 crossref_primary_10_3390_ijms22189808 crossref_primary_10_1007_s13206_023_00131_1 crossref_primary_10_1186_s13287_024_03754_9 crossref_primary_10_1109_JSEN_2022_3225637 |
| Cites_doi | 10.1140/epje/i2008-10438-8 10.1002/term.2337 10.1016/j.tmrv.2006.11.004 10.1182/blood-2008-05-157198 10.1242/jcs.202192 10.1063/1.5040316 10.1039/b912547g 10.1016/S0167-7799(03)00076-3 10.1073/pnas.0802220105 10.1089/ten.tec.2011.0207 10.1039/C7AY02500A 10.1016/j.yexcr.2018.02.017 10.1038/nbt1245 10.5966/sctm.2013-0054 10.1016/j.blre.2011.11.002 10.1038/srep11018 10.1007/s12033-008-9045-8 10.1039/c0lc00595a 10.1063/1.2756272 10.1007/s10404-017-1896-5 10.1007/s12185-008-0062-y 10.1038/s41598-018-31019-y 10.1116/1.3475531 10.1371/journal.pone.0046550 10.1038/nmeth.4639 10.1186/1475-2875-10-251 10.1182/blood-2011-06-362038 10.1039/C9LC01000A 10.1006/bcmd.2002.0502 10.1039/b807107a 10.1016/j.biotechadv.2011.05.002 10.1098/rsif.2014.0065 10.1038/s41598-017-14958-w 10.1039/C8LC00250A 10.1073/pnas.1402306111 10.1371/journal.pone.0166657 10.1039/C5LC00805K 10.1182/blood-2008-09-177212 10.5966/sctm.2014-0154 10.1002/biot.201200368 10.1111/j.1537-2995.2008.01828.x 10.1038/srep36386 10.3390/s18061762 10.1038/nbt.2450 10.1016/j.stem.2012.01.001 10.1002/biot.200800241 10.1039/c0lc00579g 10.1182/blood-2011-09-376475 10.1063/1.4939946 10.3727/096368909X485049 10.3324/haematol.2009.019828 10.3324/haematol.2010.023556 10.1007/978-1-4939-7428-3_18 10.1038/ncomms14750 10.1177/2472630317751214 10.1039/C9LC00120D 10.18609/cgti.2017.041 10.1002/stem.1136 10.1016/j.tmrv.2011.01.002 10.1525/bio.2013.63.8.6 10.1002/biot.200900115 10.1038/nbt0502-467 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley Periodicals, Inc. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 The Authors. published by Wiley Periodicals LLC |
| Copyright_xml | – notice: 2020 Wiley Periodicals, Inc. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 The Authors. published by Wiley Periodicals LLC |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
| DOI | 10.1002/bit.27319 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Biology Anatomy & Physiology |
| DocumentTitleAlternate | GUZNICZAK et al |
| EISSN | 1097-0290 |
| EndPage | 2045 |
| ExternalDocumentID | PMC7383897 32100873 10_1002_bit_27319 BIT27319 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: MC_PC_14104 |
| GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
| ID | FETCH-LOGICAL-c5469-753e8fbfde0b06ef534bce375ea05fbf700024b345c5c6081f15712444c90c153 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000540022600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0006-3592 1097-0290 |
| IngestDate | Tue Nov 04 01:51:27 EST 2025 Fri Jul 11 09:09:34 EDT 2025 Fri Jul 25 19:21:31 EDT 2025 Mon Jul 21 06:05:12 EDT 2025 Tue Nov 18 21:28:27 EST 2025 Sat Nov 29 07:13:20 EST 2025 Wed Jan 22 16:33:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | deformability stem cell-derived red blood cells purification sorting spiral microchannel |
| Language | English |
| License | 2020 Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5469-753e8fbfde0b06ef534bce375ea05fbf700024b345c5c6081f15712444c90c153 |
| Notes | Melanie Jimenez and Helen Bridle contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7380-2077 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7383897 |
| PMID | 32100873 |
| PQID | 2412768896 |
| PQPubID | 48814 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7383897 proquest_miscellaneous_2365220409 proquest_journals_2412768896 pubmed_primary_32100873 crossref_primary_10_1002_bit_27319 crossref_citationtrail_10_1002_bit_27319 wiley_primary_10_1002_bit_27319_BIT27319 |
| PublicationCentury | 2000 |
| PublicationDate | July 2020 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York – name: Hoboken |
| PublicationTitle | Biotechnology and bioengineering |
| PublicationTitleAlternate | Biotechnol Bioeng |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2017; 7 2017; 8 2011; 118 2017; 3 2020; 20 2010; 19 2018; 365 2013; 63 2008; 39 2011; 11 2019; 19 2008; 8 2011; 10 2008; 105 2011; 17 2012; 10 2018; 8 2014; 3 2006; 24 2010; 28 2012; 26 2011; 25 2008; 112 2014; 9 2007; 21 2010; 5 2011; 29 2014; 11 2010; 8 2015; 15 2018; 1698 2015; 5 2015; 4 2017; 21 2016; 10 2007; 91 2017; 130 2018; 23 2014; 111 2012; 30 2009; 28 2016; 11 2002; 28 2018; 18 2016; 6 2002; 20 2013; 31 2008; 48 2009; 9 2008; 87 2009; 4 2018; 12 2012; 7 2018; 10 2003; 21 2012; 119 2010; 95 2018; 15 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_20_1 Henderson C. (e_1_2_8_21_1) 2010; 28 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 McIntyre C. A. (e_1_2_8_34_1) 2010; 8 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Campos‐Gonzalez R. (e_1_2_8_7_1) 2018; 23 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 5 issue: 1 year: 2015 article-title: Membrane‐less microfiltration using inertial microfluidics publication-title: Scientific Reports – volume: 8 issue: 1 year: 2018 article-title: Inertial‐based filtration method for removal of microcarriers from mesenchymal stem cell suspensions publication-title: Scientific Reports – volume: 105 start-page: 13087 issue: 35 year: 2008 end-page: 13092 article-title: Generation of functional erythrocytes from human embryonic stem cell‐derived definitive hematopoiesis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 19 start-page: 2456 issue: 14 year: 2019 end-page: 2465 article-title: Cell sorting actuated by a microfluidic inertial vortex publication-title: Lab on a Chip – volume: 5 start-page: 50 issue: 1 year: 2010 end-page: 61 article-title: Stem cell separation: A bottleneck in stem cell therapy publication-title: Biotechnology Journal – volume: 12 issue: 4 year: 2018 article-title: Impact of poloxamer 188 (pluronic F‐68) additive on cell mechanical properties, quantification by real‐time deformability cytometry publication-title: Biomicrofluidics – volume: 19 start-page: 453 issue: 4 year: 2010 end-page: 469 article-title: Humanized culture medium for clinical expansion of human erythroblasts publication-title: Cell Transplantation – volume: 30 start-page: 1587 issue: 8 year: 2012 end-page: 1596 article-title: Concise review: Stem cell‐derived erythrocytes as upcoming players in blood transfusion publication-title: Stem Cells – volume: 3 start-page: 447 year: 2017 end-page: 467 article-title: Challenges and advances in scale‐up of label‐free downstream processing for allogeneic cell therapies publication-title: Cell and Gene Therapy Insights – volume: 26 start-page: 81 issue: 2 year: 2012 end-page: 95 article-title: Ex‐vivo expansion of red blood cells: How real for transfusion in humans? publication-title: Blood Reviews – volume: 28 start-page: 169 issue: 2 year: 2002 end-page: 180 article-title: In vitro mass production of human erythroid cells from the blood of normal donors and of thalassemic patients publication-title: Blood Cells, Molecules & Diseases – volume: 11 issue: 96 year: 2014 article-title: Co‐culture systems and technologies: Taking synthetic biology to the next level publication-title: Journal of the Royal Society, Interface – volume: 39 start-page: 167 issue: 2 year: 2008 end-page: 177 article-title: Pluronic enhances the robustness and reduces the cell attachment of mammalian cells publication-title: Molecular Biotechnology – volume: 63 start-page: 632 issue: 8 year: 2013 end-page: 643 article-title: How far are stem‐cell‐derived erythrocytes from the clinical arena? publication-title: BioScience – volume: 12 start-page: e368 issue: 1 year: 2018 end-page: e378 article-title: The productivity limit of manufacturing blood cell therapy in scalable stirred bioreactors publication-title: Journal of Tissue Engineering and Regenerative Medicine – volume: 1698 start-page: 285 year: 2018 end-page: 292 article-title: Good manufacturing practice (GMP) translation of advanced cellular therapeutics: Lessons for the manufacture of erythrocytes as medicinal products publication-title: Methods in Molecular Biology – volume: 11 issue: 12 year: 2016 article-title: Evaluation of stem cell‐derived red blood cells as a transfusion product using a novel animal model publication-title: PLoS One – volume: 11 start-page: 1359 issue: 7 year: 2011 end-page: 1367 article-title: High‐throughput cell cycle synchronization using inertial forces in spiral microchannels publication-title: Lab on a Chip – volume: 23 start-page: 338 issue: 4 year: 2018 end-page: 351 article-title: Deterministic lateral displacement: The next‐generation CAR T‐cell processing? publication-title: SLAS Technology – volume: 111 start-page: E4409 issue: 42 year: 2014 end-page: E4418 article-title: Multivariate biophysical markers predictive of mesenchymal stromal cell multipotency publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 28 start-page: 441 issue: 4 year: 2009 end-page: 455 article-title: Molecular‐statistical approach to a behavior of ferroelectric, antiferroelectric and ferrielectric smectic phases in the electric field publication-title: The European Physical Journal. E, Soft Matter – volume: 11 start-page: 912 issue: 5 year: 2011 end-page: 920 article-title: Deformability‐based cell classification and enrichment using inertial microfluidics publication-title: Lab on a Chip – volume: 8 start-page: 44 year: 2010 end-page: 53 article-title: Fluorescence‐activated cell sorting for CGMP processing of therapeutic cells publication-title: BioProcess International – volume: 95 start-page: 1651 issue: 10 year: 2010 end-page: 1659 article-title: Red blood cell generation from human induced pluripotent stem cells: Perspectives for transfusion medicine publication-title: Haematologica – volume: 112 start-page: 4362 issue: 12 year: 2008 end-page: 4363 article-title: Toward the manufacture of red blood cells? publication-title: Blood – volume: 112 start-page: 4475 issue: 12 year: 2008 end-page: 4484 article-title: Biologic properties and enucleation of red blood cells from human embryonic stem cells publication-title: Blood – volume: 17 start-page: 1131 issue: 11 year: 2011 end-page: 1137 article-title: Ultra‐high‐yield manufacture of red blood cells from hematopoietic stem cells publication-title: Tissue Engineering. Part C, Methods – volume: 95 start-page: 1594 issue: 9 year: 2010 end-page: 1598 article-title: The majority of the in vitro erythroid expansion potential resides in CD34(−)cells, outweighing the contribution of CD34(+) cells and significantly increasing the erythroblast yield from peripheral blood samples publication-title: Haematologica – volume: 4 start-page: 186 issue: 2 year: 2009 end-page: 201 article-title: Emerging trends in plasma‐free manufacturing of recombinant protein therapeutics expressed in mammalian cells publication-title: Biotechnology Journal – volume: 18 start-page: 2826 issue: 18 year: 2018 end-page: 2837 article-title: Continuous removal of small nonviable suspended mammalian cells and debris from bioreactors using inertial microfluidics publication-title: Lab on a Chip – volume: 9 start-page: 3038 issue: 21 year: 2009 end-page: 3046 article-title: Inertial microfluidics publication-title: Lab on a Chip – volume: 29 start-page: 661 issue: 6 year: 2011 end-page: 666 article-title: Manufactured RBC—rivers of blood, or an oasis in the desert? publication-title: Biotechnology Advances – volume: 10 issue: 1 year: 2016 article-title: A scalable label‐free approach to separate human pluripotent cells from differentiated derivatives publication-title: Biomicrofluidics – volume: 15 start-page: 4591 issue: 24 year: 2015 end-page: 4597 article-title: Isolating single cells in a neurosphere assay using inertial microfluidics publication-title: Lab on a Chip – volume: 28 start-page: 1066 issue: 5 year: 2010 end-page: 1069 article-title: Investigation of the behavior of serum and plasma in a microfluidics system publication-title: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures – volume: 20 start-page: 614 year: 2020 end-page: 625 article-title: Deformability‐induced lift force in spiral microchannels for cell separation publication-title: Lab on a Chip – volume: 7 issue: 1 year: 2017 article-title: High‐throughput assessment of mechanical properties of stem cell derived red blood cells, toward cellular downstream processing publication-title: Scientific Reports – volume: 21 start-page: 233 issue: 5 year: 2003 end-page: 240 article-title: Hematopoietic stem cells: From the bone to the bioreactor publication-title: Trends in Biotechnology – volume: 365 start-page: 57 issue: 1 year: 2018 end-page: 65 article-title: Human serum alters cell culture behavior and improves spheroid formation in comparison to fetal bovine serum publication-title: Experimental Cell Research – volume: 48 start-page: 2235 issue: 10 year: 2008 end-page: 2245 article-title: In vitro clinical‐grade generation of red blood cells from human umbilical cord blood CD34+ cells publication-title: Transfusion – volume: 4 start-page: 56 issue: 1 year: 2015 end-page: 65 article-title: Bone marrow regeneration promoted by biophysically sorted osteoprogenitors from mesenchymal stromal cells publication-title: Stem Cells Translational Medicine – volume: 8 year: 2017 article-title: An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells publication-title: Nature Communications – volume: 31 start-page: 46 issue: 1 year: 2013 end-page: 53 article-title: Differential analysis of gene regulation at transcript resolution with RNA‐seq publication-title: Nature Biotechnology – volume: 130 start-page: 2243 issue: 14 year: 2017 end-page: 2250 article-title: Emerging roles of mechanical forces in chromatin regulation publication-title: Journal of Cell Science – volume: 9 start-page: 28 issue: 1 year: 2014 end-page: 38 article-title: Large‐scale production of red blood cells from stem cells: What are the technical challenges ahead? publication-title: Biotechnology Journal – volume: 8 start-page: 1906 issue: 11 year: 2008 end-page: 1914 article-title: Continuous particle separation in spiral microchannels using Dean flows and differential migration publication-title: Lab on a Chip – volume: 20 start-page: 467 issue: 5 year: 2002 end-page: 472 article-title: Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo publication-title: Nature Biotechnology – volume: 119 start-page: 6296 issue: 26 year: 2012 end-page: 6306 article-title: Maturing reticulocytes internalize plasma membrane in glycophorin A‐containing vesicles that fuse with autophagosomes before exocytosis publication-title: Blood – volume: 91 issue: 3 year: 2007 article-title: Membrane‐free microfiltration by asymmetric inertial migration publication-title: Applied Physics Letters – volume: 118 start-page: 5071 issue: 19 year: 2011 end-page: 5079 article-title: Proof of principle for transfusion of in vitro–generated red blood cells publication-title: Blood – volume: 10 start-page: 115 issue: 2 year: 2012 end-page: 119 article-title: The potential of stem cells as an in vitro source of red blood cells for transfusion publication-title: Cell Stem Cell – volume: 3 start-page: 346 issue: 3 year: 2014 end-page: 355 article-title: Concise review: Stem cell‐based approaches to red blood cell production for transfusion publication-title: Stem Cells Translational Medicine – volume: 10 start-page: 713 issue: 7 year: 2018 end-page: 721 article-title: Label‐free mesenchymal stem cell enrichment from bone marrow samples by inertial microfluidics publication-title: Analytical Methods – volume: 18 issue: 6 year: 2018 article-title: Progress of inertial microfluidics in principle and application publication-title: Sensors – volume: 87 start-page: 339 issue: 4 year: 2008 end-page: 350 article-title: Ex vivo large‐scale generation of human red blood cells from cord blood CD34+ cells by co‐culturing with macrophages publication-title: International Journal of Hematology – volume: 25 start-page: 206 issue: 3 year: 2011 end-page: 216 article-title: Banking of pluripotent adult stem cells as an unlimited source for red blood cell production: Potential applications for alloimmunized patients and rare blood challenges publication-title: Transfusion Medicine Reviews – volume: 21 start-page: 1 issue: 4 year: 2017 end-page: 9 article-title: Spiral‐shaped inertial stem cell device for high‐throughput enrichment of iPSC‐derived neural stem cells publication-title: Microfluidics and Nanofluidics – volume: 6 year: 2016 article-title: Cascading and parallelising curvilinear inertial focusing systems for high volume, wide size distribution, separation and concentration of particles publication-title: Scientific Reports – volume: 15 start-page: 355 issue: 5 year: 2018 end-page: 358 article-title: Real‐time fluorescence and deformability cytometry publication-title: Nature Methods – volume: 21 start-page: 91 issue: 2 year: 2007 end-page: 100 article-title: Ex vivo production of human red blood cells from hematopoietic stem cells: What is the future in transfusion? publication-title: Transfusion Medicine Reviews – volume: 10 start-page: 251 year: 2011 article-title: Development and evaluation of a prototype non‐woven fabric filter for purification of malaria‐infected blood publication-title: Malaria Journal – volume: 7 issue: 10 year: 2012 article-title: Label‐free enrichment of adrenal cortical progenitor cells using inertial microfluidics publication-title: PLoS One – volume: 24 start-page: 1255 issue: 10 year: 2006 end-page: 1257 article-title: Efficient enucleation of erythroblasts differentiated in vitro from hematopoietic stem and progenitor cells publication-title: Nature Biotechnology – ident: e_1_2_8_10_1 doi: 10.1140/epje/i2008-10438-8 – ident: e_1_2_8_3_1 doi: 10.1002/term.2337 – ident: e_1_2_8_9_1 doi: 10.1016/j.tmrv.2006.11.004 – ident: e_1_2_8_30_1 doi: 10.1182/blood-2008-05-157198 – ident: e_1_2_8_41_1 doi: 10.1242/jcs.202192 – ident: e_1_2_8_17_1 doi: 10.1063/1.5040316 – ident: e_1_2_8_8_1 doi: 10.1039/b912547g – ident: e_1_2_8_6_1 doi: 10.1016/S0167-7799(03)00076-3 – ident: e_1_2_8_31_1 doi: 10.1073/pnas.0802220105 – ident: e_1_2_8_58_1 doi: 10.1089/ten.tec.2011.0207 – ident: e_1_2_8_26_1 doi: 10.1039/C7AY02500A – ident: e_1_2_8_20_1 doi: 10.1016/j.yexcr.2018.02.017 – ident: e_1_2_8_39_1 doi: 10.1038/nbt1245 – ident: e_1_2_8_52_1 doi: 10.5966/sctm.2013-0054 – ident: e_1_2_8_36_1 doi: 10.1016/j.blre.2011.11.002 – ident: e_1_2_8_62_1 doi: 10.1038/srep11018 – ident: e_1_2_8_56_1 doi: 10.1007/s12033-008-9045-8 – ident: e_1_2_8_22_1 doi: 10.1039/c0lc00595a – ident: e_1_2_8_51_1 doi: 10.1063/1.2756272 – ident: e_1_2_8_54_1 doi: 10.1007/s10404-017-1896-5 – ident: e_1_2_8_11_1 doi: 10.1007/s12185-008-0062-y – ident: e_1_2_8_42_1 doi: 10.1038/s41598-018-31019-y – volume: 28 start-page: 1066 issue: 5 year: 2010 ident: e_1_2_8_21_1 article-title: Investigation of the behavior of serum and plasma in a microfluidics system publication-title: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures doi: 10.1116/1.3475531 – ident: e_1_2_8_23_1 doi: 10.1371/journal.pone.0046550 – ident: e_1_2_8_48_1 doi: 10.1038/nmeth.4639 – ident: e_1_2_8_55_1 doi: 10.1186/1475-2875-10-251 – ident: e_1_2_8_12_1 doi: 10.1182/blood-2011-06-362038 – ident: e_1_2_8_18_1 doi: 10.1039/C9LC01000A – ident: e_1_2_8_37_1 doi: 10.1006/bcmd.2002.0502 – ident: e_1_2_8_4_1 doi: 10.1039/b807107a – ident: e_1_2_8_57_1 doi: 10.1016/j.biotechadv.2011.05.002 – ident: e_1_2_8_13_1 doi: 10.1098/rsif.2014.0065 – ident: e_1_2_8_19_1 doi: 10.1038/s41598-017-14958-w – ident: e_1_2_8_24_1 doi: 10.1039/C8LC00250A – ident: e_1_2_8_28_1 doi: 10.1073/pnas.1402306111 – ident: e_1_2_8_53_1 doi: 10.1371/journal.pone.0166657 – ident: e_1_2_8_43_1 doi: 10.1039/C5LC00805K – ident: e_1_2_8_5_1 doi: 10.1182/blood-2008-09-177212 – ident: e_1_2_8_46_1 doi: 10.5966/sctm.2014-0154 – ident: e_1_2_8_49_1 doi: 10.1002/biot.201200368 – ident: e_1_2_8_2_1 doi: 10.1111/j.1537-2995.2008.01828.x – ident: e_1_2_8_40_1 doi: 10.1038/srep36386 – ident: e_1_2_8_14_1 doi: 10.3390/s18061762 – ident: e_1_2_8_60_1 doi: 10.1038/nbt.2450 – ident: e_1_2_8_35_1 doi: 10.1016/j.stem.2012.01.001 – ident: e_1_2_8_16_1 doi: 10.1002/biot.200800241 – ident: e_1_2_8_27_1 doi: 10.1039/c0lc00579g – ident: e_1_2_8_15_1 doi: 10.1182/blood-2011-09-376475 – ident: e_1_2_8_63_1 doi: 10.1063/1.4939946 – ident: e_1_2_8_38_1 doi: 10.3727/096368909X485049 – ident: e_1_2_8_61_1 doi: 10.3324/haematol.2009.019828 – ident: e_1_2_8_25_1 doi: 10.3324/haematol.2010.023556 – ident: e_1_2_8_33_1 doi: 10.1007/978-1-4939-7428-3_18 – ident: e_1_2_8_59_1 doi: 10.1038/ncomms14750 – volume: 23 start-page: 338 issue: 4 year: 2018 ident: e_1_2_8_7_1 article-title: Deterministic lateral displacement: The next‐generation CAR T‐cell processing? publication-title: SLAS Technology doi: 10.1177/2472630317751214 – ident: e_1_2_8_47_1 doi: 10.1039/C9LC00120D – ident: e_1_2_8_32_1 doi: 10.18609/cgti.2017.041 – ident: e_1_2_8_64_1 doi: 10.1002/stem.1136 – ident: e_1_2_8_45_1 doi: 10.1016/j.tmrv.2011.01.002 – ident: e_1_2_8_29_1 doi: 10.1525/bio.2013.63.8.6 – ident: e_1_2_8_50_1 doi: 10.1002/biot.200900115 – volume: 8 start-page: 44 year: 2010 ident: e_1_2_8_34_1 article-title: Fluorescence‐activated cell sorting for CGMP processing of therapeutic cells publication-title: BioProcess International – ident: e_1_2_8_44_1 doi: 10.1038/nbt0502-467 |
| SSID | ssj0007866 |
| Score | 2.4084995 |
| Snippet | Cell‐based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product... Cell-based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2032 |
| SubjectTerms | Biopharmaceuticals CD34 antigen Cell Line Cell Separation - instrumentation Cord blood Deformability Equipment Design Erythrocytes Erythrocytes - cytology Erythropoiesis Filtration Filtration - instrumentation Fluorescence Formability Gene expression Humans Manufacturing industry Mechanical properties Membrane filtration Membranes Microfluidic Analytical Techniques - instrumentation Microfluidics Nuclei (cytology) Purification Purity Separation sorting spiral microchannel Stem cells Stem Cells - cytology stem cell‐derived red blood cells Umbilical cord |
| Title | Purifying stem cell‐derived red blood cells: a high‐throughput label‐free downstream processing strategy based on microfluidic spiral inertial separation and membrane filtration |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.27319 https://www.ncbi.nlm.nih.gov/pubmed/32100873 https://www.proquest.com/docview/2412768896 https://www.proquest.com/docview/2365220409 https://pubmed.ncbi.nlm.nih.gov/PMC7383897 |
| Volume | 117 |
| WOSCitedRecordID | wos000540022600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0290 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007866 issn: 0006-3592 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB2VFAQ8cEm5BEq1IIR4MXVsr9eGp7YQgYSqCrVS3ix7L8JS7ER2XKlvfAJ_w__wJcysLzQqSEg8RLKyY8fxzs6cWc-cAXiJEYWemog76E0DJzBp6KSR8J0YXRG6EzFVgbLNJsTxcTSfxydb8K6vhWn5IYYNN1oZ1l7TAk-zev83aWiWr9-g7yXKz20P9ZaPYPv9l9nZ58EQi6h9VUlBs89jrycWcr394eRNd3QFY15NlbwMYa0Pmt39r7u_B3c66MkOWl25D1u6HMPOQYlhd3HBXjGbDGp32cdw47A_unnUt4Qbw-1L7IU78OOkqXJbJsWIDZrRO4Cf374rHD7XilX4sWnxdqB-y1JG3Mgo0fUGWjVrhjqo6SRTac0U7XRT5nvBVm39Qntty2ZxwcjhKrYsWUFJhGbR5CqXzGYKLBjVMKKxWrBat2zmKJeWihW6wMdUambyRccQ_ADOZh9Ojz46XR8IR3KM3h2MqHRkMqO0m7mhNtwPMql9wXXqcvxekFkPMj_gkssQMY6ZckG4JZCxK9GkP4RRuSz1Y2Bob8JIIeREucAnuDylkNOVnuKpkdkEXvfqkMiOJJ16dSySlt7ZS3DiEjtxE3gxiK5aZpA_Ce32OpV0xqFOEDR5GOVFcTiB58MwTiVNBz6RZYMyfojIGC0sXuJRq4LDr1DZlYsLagJiQzkHAaIM3xwp86-WOlz4ESJUgX_TKuffbzw5_HRqD578u-hTuOXRboRNZt6F0bpq9DO4Ls_XeV3twTUxj_a6NfoL4D1FWQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF1VLajwwCXlEigwIIT6YurYXl8QL20hakWIKpRKfbPsvQhLthM5caW-8Qn8Df_DlzCzvtCoICHxEMnKjh3HOztzZjxzlrHXGFGokQ65hd7Uszyd-FYSBq4VoStCdxKMpCfNZhPBdBqen0enG-x91wvT8EP0CTdaGcZe0wKnhPT-b9bQNFu9RedLnJ9bHqoR6vfWhy_js0lviYOweVdJUbPLI6djFrKd_f7kdX90DWRer5W8imGNExrf_b_bv8futOATDhptuc82VDlgOwclBt7FJbwBUw5q8uwDdvOwO9o-6jaFG7DbV_gLd9iP07rKTKMUEB800FuAn9--Sxy-UBIq_JjCeDOwfAcJEDsySrS7Ay3qFaAWKjpJV0qBpFw31b4XsGg6GJprGz6LSyCXK2FeQkFlhDqvM5kJMLUCOVAXI5qrHJaq4TNHuaSUUKgCn1OpQGd5yxH8gJ2NP86Ojq12JwhLcIzfLYypVKhTLZWd2r7S3PVSodyAq8Tm-H1Aht1LXY8LLnxEOXrEA0IunohsgUb9Idss56V6zAAtjh9KBJ0o57kEmEcUdNrCkTzRIh2yvU4fYtHSpNNuHXncEDw7MU5cbCZuyF71oouGG-RPQrudUsWteVjGCJscjPPCyB-yl_0wTiVNBz6ReY0yro_YGG0sXuJRo4P9r1DjlY1LasiCNe3sBYg0fH2kzL4a8vDADRGjBvg3jXb-_cbjw5OZOXjy76Iv2Pbx7PMknpxMPz1ltxzKTZjS5l22uapq9YzdEBerbFk9b5fqL4J4SGE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB1VKVB44JJyCRRYEEK8mDq-rY146YWIiiqKUCv1zbL3olqynciJK_WNT-Bv-B--hJn1hUYFCYmHSFZ27Dje2Zkz65kzAG8wolBjHfoWelPP8nQSWEnIXStCV4TuhI-lJ02zCT6dhmdn0WwDPna1MA0_RL_hRivD2Gta4Goh9e5v1tA0W71H50ucn5seNZEZwObh18npcW-Jedi8q6So2fUjp2MWsp3d_uR1f3QNZF7PlbyKYY0Tmtz7v9u_D3db8Mn2Gm15ABuqHML2XomBd3HJ3jKTDmr22Ydwc7872jromsIN4c4V_sJt-DGrq8wUSjHig2b0FuDnt-8Shy-UZBV-TGK8GVh-YAkjdmSUaLsDLeoVQy1UdJKulGKS9rop971gi6aCobm24bO4ZORyJZuXrKA0Qp3XmcwEM7kCOaMqRjRXOVuqhs8c5ZJSskIV-JxKxXSWtxzBD-F08unk4LPVdoKwhI_xu4UxlQp1qqWyUztQ2ne9VCiX-yqxffyek2H3UtfzhS8CRDl67HNCLp6IbIFG_REMynmpngBDixOEEkEnynkuAeYxBZ22cKSfaJGO4F2nD7FoadKpW0ceNwTPTowTF5uJG8HrXnTRcIP8SWinU6q4NQ_LGGGTg3FeGAUjeNUP41TSdOATmdco4waIjdHG4iUeNzrY_woVXtm4pEbA17SzFyDS8PWRMjs35OHcDRGjcvybRjv_fuPx_tGJOXj676Iv4dbscBIfH02_PIPbDm1NmMzmHRisqlo9hxviYpUtqxftSv0Fp3FH3A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Purifying+stem+cell%E2%80%90derived+red+blood+cells%3A+a+high%E2%80%90throughput+label%E2%80%90free+downstream+processing+strategy+based+on+microfluidic+spiral+inertial+separation+and+membrane+filtration&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Guzniczak%2C+Ewa&rft.au=Otto%2C+Oliver&rft.au=Whyte%2C+Graeme&rft.au=Chandra%2C+Tamir&rft.date=2020-07-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=117&rft.issue=7&rft.spage=2032&rft.epage=2045&rft_id=info:doi/10.1002%2Fbit.27319&rft_id=info%3Apmid%2F32100873&rft.externalDocID=PMC7383897 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |