Purifying stem cell‐derived red blood cells: a high‐throughput label‐free downstream processing strategy based on microfluidic spiral inertial separation and membrane filtration

Cell‐based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and econom...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering Vol. 117; no. 7; pp. 2032 - 2045
Main Authors: Guzniczak, Ewa, Otto, Oliver, Whyte, Graeme, Chandra, Tamir, Robertson, Neil A., Willoughby, Nik, Jimenez, Melanie, Bridle, Helen
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01.07.2020
John Wiley and Sons Inc
Subjects:
ISSN:0006-3592, 1097-0290, 1097-0290
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cell‐based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability‐based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high‐throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products. To address the challenge of stem‐cell‐derived red blood cells purification, we propose a label‐free approach to separate cells at high throughput based on their morphological (size) and mechanical (deformability) properties. The process consists of two main steps: (a) a microfluidic separation using inertial focusing in spiral microchannel and (b) membrane filtration.
AbstractList Cell‐based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability‐based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high‐throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products. To address the challenge of stem‐cell‐derived red blood cells purification, we propose a label‐free approach to separate cells at high throughput based on their morphological (size) and mechanical (deformability) properties. The process consists of two main steps: (a) a microfluidic separation using inertial focusing in spiral microchannel and (b) membrane filtration.
Cell‐based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability‐based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high‐throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products.
Cell‐based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability‐based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high‐throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products. To address the challenge of stem‐cell‐derived red blood cells purification, we propose a label‐free approach to separate cells at high throughput based on their morphological (size) and mechanical (deformability) properties. The process consists of two main steps: (a) a microfluidic separation using inertial focusing in spiral microchannel and (b) membrane filtration.
Cell-based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability-based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high-throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products.Cell-based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability-based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high-throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products.
Author Guzniczak, Ewa
Chandra, Tamir
Jimenez, Melanie
Otto, Oliver
Bridle, Helen
Willoughby, Nik
Robertson, Neil A.
Whyte, Graeme
AuthorAffiliation 5 Biomedical Engineering Division, James Watt School of Engineering University of Glasgow Glasgow Scotland
2 Centre for Innovation Competence – Humoral Immune Reactions in Cardiovascular Diseases University of Greifswald Greifswald Germany
3 Deutsches Zentrum für Herz‐Kreislaufforschung Partner Site Greifswald Greifswald Germany
4 MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh Western General Hospital Edinburgh Scotland
1 Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science Heriot‐Watt University Edinburgh Scotland
AuthorAffiliation_xml – name: 1 Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science Heriot‐Watt University Edinburgh Scotland
– name: 2 Centre for Innovation Competence – Humoral Immune Reactions in Cardiovascular Diseases University of Greifswald Greifswald Germany
– name: 3 Deutsches Zentrum für Herz‐Kreislaufforschung Partner Site Greifswald Greifswald Germany
– name: 4 MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh Western General Hospital Edinburgh Scotland
– name: 5 Biomedical Engineering Division, James Watt School of Engineering University of Glasgow Glasgow Scotland
Author_xml – sequence: 1
  givenname: Ewa
  orcidid: 0000-0002-7380-2077
  surname: Guzniczak
  fullname: Guzniczak, Ewa
  email: eg100@hw.ac.uk
  organization: Heriot‐Watt University
– sequence: 2
  givenname: Oliver
  surname: Otto
  fullname: Otto, Oliver
  organization: Partner Site Greifswald
– sequence: 3
  givenname: Graeme
  surname: Whyte
  fullname: Whyte, Graeme
  organization: Heriot‐Watt University
– sequence: 4
  givenname: Tamir
  surname: Chandra
  fullname: Chandra, Tamir
  organization: Western General Hospital
– sequence: 5
  givenname: Neil A.
  surname: Robertson
  fullname: Robertson, Neil A.
  organization: Western General Hospital
– sequence: 6
  givenname: Nik
  surname: Willoughby
  fullname: Willoughby, Nik
  organization: Heriot‐Watt University
– sequence: 7
  givenname: Melanie
  surname: Jimenez
  fullname: Jimenez, Melanie
  organization: University of Glasgow
– sequence: 8
  givenname: Helen
  surname: Bridle
  fullname: Bridle, Helen
  organization: Heriot‐Watt University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32100873$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9u1DAQxi1URLeFAy-ALHGBw7aOHccJBySo-FOpEhzK2XKcya4rxw520mpvPAJvw_vwJMzulgoqwcGyPf59n2bGc0QOQgxAyNOCnRSM8dPWTSdciaJ5QBYFa9SS8YYdkAVjrFoK2fBDcpTzFV5VXVWPyKHgqKuVWJAfn-fk-o0LK5onGKgF739--95BctfQ0YSr9TF2u4f8ihq6dqs1EtM6xXm1HueJetPCVtQnANrFm5CnBGagY4oWct57JzPBakNbk9EyBjo4m2LvZ9c5S_PokvHUBUiTw0OG0aDAIWdCRwcY2mQC0N75aR9_TB72xmd4crsfky_v312efVxefPpwfvbmYmllWTVLJQXUfdt3wFpWQS9F2VoQSoJhEuMKe8LLVpTSSluxuugLqQpelqVtmC2kOCav977j3A7QWQiYgNdjcoNJGx2N03-_BLfWq3itlahF3Sg0eHFrkOLXGfKkB5e3zcR64pw1F5XknJWsQfT5PfQqzilgeZqXBVdVXTcVUs_-zOguld9_isDLPYANzjlBf4cUTG_nReO86N28IHt6j7Vu2jUYi3H-f4ob52Hzb2v99vxyr_gFj2DZcw
CitedBy_id crossref_primary_10_3390_bios11110464
crossref_primary_10_3390_bios14100466
crossref_primary_10_1080_23746149_2023_2246704
crossref_primary_10_1039_D4AN01288G
crossref_primary_10_1016_j_biteb_2022_101014
crossref_primary_10_1063_5_0009673
crossref_primary_10_1016_j_memsci_2020_118804
crossref_primary_10_3390_ijms22189808
crossref_primary_10_1007_s13206_023_00131_1
crossref_primary_10_1186_s13287_024_03754_9
crossref_primary_10_1109_JSEN_2022_3225637
Cites_doi 10.1140/epje/i2008-10438-8
10.1002/term.2337
10.1016/j.tmrv.2006.11.004
10.1182/blood-2008-05-157198
10.1242/jcs.202192
10.1063/1.5040316
10.1039/b912547g
10.1016/S0167-7799(03)00076-3
10.1073/pnas.0802220105
10.1089/ten.tec.2011.0207
10.1039/C7AY02500A
10.1016/j.yexcr.2018.02.017
10.1038/nbt1245
10.5966/sctm.2013-0054
10.1016/j.blre.2011.11.002
10.1038/srep11018
10.1007/s12033-008-9045-8
10.1039/c0lc00595a
10.1063/1.2756272
10.1007/s10404-017-1896-5
10.1007/s12185-008-0062-y
10.1038/s41598-018-31019-y
10.1116/1.3475531
10.1371/journal.pone.0046550
10.1038/nmeth.4639
10.1186/1475-2875-10-251
10.1182/blood-2011-06-362038
10.1039/C9LC01000A
10.1006/bcmd.2002.0502
10.1039/b807107a
10.1016/j.biotechadv.2011.05.002
10.1098/rsif.2014.0065
10.1038/s41598-017-14958-w
10.1039/C8LC00250A
10.1073/pnas.1402306111
10.1371/journal.pone.0166657
10.1039/C5LC00805K
10.1182/blood-2008-09-177212
10.5966/sctm.2014-0154
10.1002/biot.201200368
10.1111/j.1537-2995.2008.01828.x
10.1038/srep36386
10.3390/s18061762
10.1038/nbt.2450
10.1016/j.stem.2012.01.001
10.1002/biot.200800241
10.1039/c0lc00579g
10.1182/blood-2011-09-376475
10.1063/1.4939946
10.3727/096368909X485049
10.3324/haematol.2009.019828
10.3324/haematol.2010.023556
10.1007/978-1-4939-7428-3_18
10.1038/ncomms14750
10.1177/2472630317751214
10.1039/C9LC00120D
10.18609/cgti.2017.041
10.1002/stem.1136
10.1016/j.tmrv.2011.01.002
10.1525/bio.2013.63.8.6
10.1002/biot.200900115
10.1038/nbt0502-467
ContentType Journal Article
Copyright 2020 Wiley Periodicals, Inc.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 The Authors. published by Wiley Periodicals LLC
Copyright_xml – notice: 2020 Wiley Periodicals, Inc.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 The Authors. published by Wiley Periodicals LLC
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1002/bit.27319
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
DocumentTitleAlternate GUZNICZAK et al
EISSN 1097-0290
EndPage 2045
ExternalDocumentID PMC7383897
32100873
10_1002_bit_27319
BIT27319
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_PC_14104
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c5469-753e8fbfde0b06ef534bce375ea05fbf700024b345c5c6081f15712444c90c153
IEDL.DBID DRFUL
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000540022600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-3592
1097-0290
IngestDate Tue Nov 04 01:51:27 EST 2025
Fri Jul 11 09:09:34 EDT 2025
Fri Jul 25 19:21:31 EDT 2025
Mon Jul 21 06:05:12 EDT 2025
Tue Nov 18 21:28:27 EST 2025
Sat Nov 29 07:13:20 EST 2025
Wed Jan 22 16:33:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords deformability
stem cell-derived red blood cells
purification
sorting
spiral microchannel
Language English
License 2020 Wiley Periodicals, Inc.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5469-753e8fbfde0b06ef534bce375ea05fbf700024b345c5c6081f15712444c90c153
Notes Melanie Jimenez and Helen Bridle contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7380-2077
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7383897
PMID 32100873
PQID 2412768896
PQPubID 48814
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7383897
proquest_miscellaneous_2365220409
proquest_journals_2412768896
pubmed_primary_32100873
crossref_primary_10_1002_bit_27319
crossref_citationtrail_10_1002_bit_27319
wiley_primary_10_1002_bit_27319_BIT27319
PublicationCentury 2000
PublicationDate July 2020
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
– name: Hoboken
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol Bioeng
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2017; 7
2017; 8
2011; 118
2017; 3
2020; 20
2010; 19
2018; 365
2013; 63
2008; 39
2011; 11
2019; 19
2008; 8
2011; 10
2008; 105
2011; 17
2012; 10
2018; 8
2014; 3
2006; 24
2010; 28
2012; 26
2011; 25
2008; 112
2014; 9
2007; 21
2010; 5
2011; 29
2014; 11
2010; 8
2015; 15
2018; 1698
2015; 5
2015; 4
2017; 21
2016; 10
2007; 91
2017; 130
2018; 23
2014; 111
2012; 30
2009; 28
2016; 11
2002; 28
2018; 18
2016; 6
2002; 20
2013; 31
2008; 48
2009; 9
2008; 87
2009; 4
2018; 12
2012; 7
2018; 10
2003; 21
2012; 119
2010; 95
2018; 15
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_20_1
Henderson C. (e_1_2_8_21_1) 2010; 28
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
McIntyre C. A. (e_1_2_8_34_1) 2010; 8
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Campos‐Gonzalez R. (e_1_2_8_7_1) 2018; 23
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 5
  issue: 1
  year: 2015
  article-title: Membrane‐less microfiltration using inertial microfluidics
  publication-title: Scientific Reports
– volume: 8
  issue: 1
  year: 2018
  article-title: Inertial‐based filtration method for removal of microcarriers from mesenchymal stem cell suspensions
  publication-title: Scientific Reports
– volume: 105
  start-page: 13087
  issue: 35
  year: 2008
  end-page: 13092
  article-title: Generation of functional erythrocytes from human embryonic stem cell‐derived definitive hematopoiesis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 19
  start-page: 2456
  issue: 14
  year: 2019
  end-page: 2465
  article-title: Cell sorting actuated by a microfluidic inertial vortex
  publication-title: Lab on a Chip
– volume: 5
  start-page: 50
  issue: 1
  year: 2010
  end-page: 61
  article-title: Stem cell separation: A bottleneck in stem cell therapy
  publication-title: Biotechnology Journal
– volume: 12
  issue: 4
  year: 2018
  article-title: Impact of poloxamer 188 (pluronic F‐68) additive on cell mechanical properties, quantification by real‐time deformability cytometry
  publication-title: Biomicrofluidics
– volume: 19
  start-page: 453
  issue: 4
  year: 2010
  end-page: 469
  article-title: Humanized culture medium for clinical expansion of human erythroblasts
  publication-title: Cell Transplantation
– volume: 30
  start-page: 1587
  issue: 8
  year: 2012
  end-page: 1596
  article-title: Concise review: Stem cell‐derived erythrocytes as upcoming players in blood transfusion
  publication-title: Stem Cells
– volume: 3
  start-page: 447
  year: 2017
  end-page: 467
  article-title: Challenges and advances in scale‐up of label‐free downstream processing for allogeneic cell therapies
  publication-title: Cell and Gene Therapy Insights
– volume: 26
  start-page: 81
  issue: 2
  year: 2012
  end-page: 95
  article-title: Ex‐vivo expansion of red blood cells: How real for transfusion in humans?
  publication-title: Blood Reviews
– volume: 28
  start-page: 169
  issue: 2
  year: 2002
  end-page: 180
  article-title: In vitro mass production of human erythroid cells from the blood of normal donors and of thalassemic patients
  publication-title: Blood Cells, Molecules & Diseases
– volume: 11
  issue: 96
  year: 2014
  article-title: Co‐culture systems and technologies: Taking synthetic biology to the next level
  publication-title: Journal of the Royal Society, Interface
– volume: 39
  start-page: 167
  issue: 2
  year: 2008
  end-page: 177
  article-title: Pluronic enhances the robustness and reduces the cell attachment of mammalian cells
  publication-title: Molecular Biotechnology
– volume: 63
  start-page: 632
  issue: 8
  year: 2013
  end-page: 643
  article-title: How far are stem‐cell‐derived erythrocytes from the clinical arena?
  publication-title: BioScience
– volume: 12
  start-page: e368
  issue: 1
  year: 2018
  end-page: e378
  article-title: The productivity limit of manufacturing blood cell therapy in scalable stirred bioreactors
  publication-title: Journal of Tissue Engineering and Regenerative Medicine
– volume: 1698
  start-page: 285
  year: 2018
  end-page: 292
  article-title: Good manufacturing practice (GMP) translation of advanced cellular therapeutics: Lessons for the manufacture of erythrocytes as medicinal products
  publication-title: Methods in Molecular Biology
– volume: 11
  issue: 12
  year: 2016
  article-title: Evaluation of stem cell‐derived red blood cells as a transfusion product using a novel animal model
  publication-title: PLoS One
– volume: 11
  start-page: 1359
  issue: 7
  year: 2011
  end-page: 1367
  article-title: High‐throughput cell cycle synchronization using inertial forces in spiral microchannels
  publication-title: Lab on a Chip
– volume: 23
  start-page: 338
  issue: 4
  year: 2018
  end-page: 351
  article-title: Deterministic lateral displacement: The next‐generation CAR T‐cell processing?
  publication-title: SLAS Technology
– volume: 111
  start-page: E4409
  issue: 42
  year: 2014
  end-page: E4418
  article-title: Multivariate biophysical markers predictive of mesenchymal stromal cell multipotency
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 28
  start-page: 441
  issue: 4
  year: 2009
  end-page: 455
  article-title: Molecular‐statistical approach to a behavior of ferroelectric, antiferroelectric and ferrielectric smectic phases in the electric field
  publication-title: The European Physical Journal. E, Soft Matter
– volume: 11
  start-page: 912
  issue: 5
  year: 2011
  end-page: 920
  article-title: Deformability‐based cell classification and enrichment using inertial microfluidics
  publication-title: Lab on a Chip
– volume: 8
  start-page: 44
  year: 2010
  end-page: 53
  article-title: Fluorescence‐activated cell sorting for CGMP processing of therapeutic cells
  publication-title: BioProcess International
– volume: 95
  start-page: 1651
  issue: 10
  year: 2010
  end-page: 1659
  article-title: Red blood cell generation from human induced pluripotent stem cells: Perspectives for transfusion medicine
  publication-title: Haematologica
– volume: 112
  start-page: 4362
  issue: 12
  year: 2008
  end-page: 4363
  article-title: Toward the manufacture of red blood cells?
  publication-title: Blood
– volume: 112
  start-page: 4475
  issue: 12
  year: 2008
  end-page: 4484
  article-title: Biologic properties and enucleation of red blood cells from human embryonic stem cells
  publication-title: Blood
– volume: 17
  start-page: 1131
  issue: 11
  year: 2011
  end-page: 1137
  article-title: Ultra‐high‐yield manufacture of red blood cells from hematopoietic stem cells
  publication-title: Tissue Engineering. Part C, Methods
– volume: 95
  start-page: 1594
  issue: 9
  year: 2010
  end-page: 1598
  article-title: The majority of the in vitro erythroid expansion potential resides in CD34(−)cells, outweighing the contribution of CD34(+) cells and significantly increasing the erythroblast yield from peripheral blood samples
  publication-title: Haematologica
– volume: 4
  start-page: 186
  issue: 2
  year: 2009
  end-page: 201
  article-title: Emerging trends in plasma‐free manufacturing of recombinant protein therapeutics expressed in mammalian cells
  publication-title: Biotechnology Journal
– volume: 18
  start-page: 2826
  issue: 18
  year: 2018
  end-page: 2837
  article-title: Continuous removal of small nonviable suspended mammalian cells and debris from bioreactors using inertial microfluidics
  publication-title: Lab on a Chip
– volume: 9
  start-page: 3038
  issue: 21
  year: 2009
  end-page: 3046
  article-title: Inertial microfluidics
  publication-title: Lab on a Chip
– volume: 29
  start-page: 661
  issue: 6
  year: 2011
  end-page: 666
  article-title: Manufactured RBC—rivers of blood, or an oasis in the desert?
  publication-title: Biotechnology Advances
– volume: 10
  issue: 1
  year: 2016
  article-title: A scalable label‐free approach to separate human pluripotent cells from differentiated derivatives
  publication-title: Biomicrofluidics
– volume: 15
  start-page: 4591
  issue: 24
  year: 2015
  end-page: 4597
  article-title: Isolating single cells in a neurosphere assay using inertial microfluidics
  publication-title: Lab on a Chip
– volume: 28
  start-page: 1066
  issue: 5
  year: 2010
  end-page: 1069
  article-title: Investigation of the behavior of serum and plasma in a microfluidics system
  publication-title: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures
– volume: 20
  start-page: 614
  year: 2020
  end-page: 625
  article-title: Deformability‐induced lift force in spiral microchannels for cell separation
  publication-title: Lab on a Chip
– volume: 7
  issue: 1
  year: 2017
  article-title: High‐throughput assessment of mechanical properties of stem cell derived red blood cells, toward cellular downstream processing
  publication-title: Scientific Reports
– volume: 21
  start-page: 233
  issue: 5
  year: 2003
  end-page: 240
  article-title: Hematopoietic stem cells: From the bone to the bioreactor
  publication-title: Trends in Biotechnology
– volume: 365
  start-page: 57
  issue: 1
  year: 2018
  end-page: 65
  article-title: Human serum alters cell culture behavior and improves spheroid formation in comparison to fetal bovine serum
  publication-title: Experimental Cell Research
– volume: 48
  start-page: 2235
  issue: 10
  year: 2008
  end-page: 2245
  article-title: In vitro clinical‐grade generation of red blood cells from human umbilical cord blood CD34+ cells
  publication-title: Transfusion
– volume: 4
  start-page: 56
  issue: 1
  year: 2015
  end-page: 65
  article-title: Bone marrow regeneration promoted by biophysically sorted osteoprogenitors from mesenchymal stromal cells
  publication-title: Stem Cells Translational Medicine
– volume: 8
  year: 2017
  article-title: An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells
  publication-title: Nature Communications
– volume: 31
  start-page: 46
  issue: 1
  year: 2013
  end-page: 53
  article-title: Differential analysis of gene regulation at transcript resolution with RNA‐seq
  publication-title: Nature Biotechnology
– volume: 130
  start-page: 2243
  issue: 14
  year: 2017
  end-page: 2250
  article-title: Emerging roles of mechanical forces in chromatin regulation
  publication-title: Journal of Cell Science
– volume: 9
  start-page: 28
  issue: 1
  year: 2014
  end-page: 38
  article-title: Large‐scale production of red blood cells from stem cells: What are the technical challenges ahead?
  publication-title: Biotechnology Journal
– volume: 8
  start-page: 1906
  issue: 11
  year: 2008
  end-page: 1914
  article-title: Continuous particle separation in spiral microchannels using Dean flows and differential migration
  publication-title: Lab on a Chip
– volume: 20
  start-page: 467
  issue: 5
  year: 2002
  end-page: 472
  article-title: Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo
  publication-title: Nature Biotechnology
– volume: 119
  start-page: 6296
  issue: 26
  year: 2012
  end-page: 6306
  article-title: Maturing reticulocytes internalize plasma membrane in glycophorin A‐containing vesicles that fuse with autophagosomes before exocytosis
  publication-title: Blood
– volume: 91
  issue: 3
  year: 2007
  article-title: Membrane‐free microfiltration by asymmetric inertial migration
  publication-title: Applied Physics Letters
– volume: 118
  start-page: 5071
  issue: 19
  year: 2011
  end-page: 5079
  article-title: Proof of principle for transfusion of in vitro–generated red blood cells
  publication-title: Blood
– volume: 10
  start-page: 115
  issue: 2
  year: 2012
  end-page: 119
  article-title: The potential of stem cells as an in vitro source of red blood cells for transfusion
  publication-title: Cell Stem Cell
– volume: 3
  start-page: 346
  issue: 3
  year: 2014
  end-page: 355
  article-title: Concise review: Stem cell‐based approaches to red blood cell production for transfusion
  publication-title: Stem Cells Translational Medicine
– volume: 10
  start-page: 713
  issue: 7
  year: 2018
  end-page: 721
  article-title: Label‐free mesenchymal stem cell enrichment from bone marrow samples by inertial microfluidics
  publication-title: Analytical Methods
– volume: 18
  issue: 6
  year: 2018
  article-title: Progress of inertial microfluidics in principle and application
  publication-title: Sensors
– volume: 87
  start-page: 339
  issue: 4
  year: 2008
  end-page: 350
  article-title: Ex vivo large‐scale generation of human red blood cells from cord blood CD34+ cells by co‐culturing with macrophages
  publication-title: International Journal of Hematology
– volume: 25
  start-page: 206
  issue: 3
  year: 2011
  end-page: 216
  article-title: Banking of pluripotent adult stem cells as an unlimited source for red blood cell production: Potential applications for alloimmunized patients and rare blood challenges
  publication-title: Transfusion Medicine Reviews
– volume: 21
  start-page: 1
  issue: 4
  year: 2017
  end-page: 9
  article-title: Spiral‐shaped inertial stem cell device for high‐throughput enrichment of iPSC‐derived neural stem cells
  publication-title: Microfluidics and Nanofluidics
– volume: 6
  year: 2016
  article-title: Cascading and parallelising curvilinear inertial focusing systems for high volume, wide size distribution, separation and concentration of particles
  publication-title: Scientific Reports
– volume: 15
  start-page: 355
  issue: 5
  year: 2018
  end-page: 358
  article-title: Real‐time fluorescence and deformability cytometry
  publication-title: Nature Methods
– volume: 21
  start-page: 91
  issue: 2
  year: 2007
  end-page: 100
  article-title: Ex vivo production of human red blood cells from hematopoietic stem cells: What is the future in transfusion?
  publication-title: Transfusion Medicine Reviews
– volume: 10
  start-page: 251
  year: 2011
  article-title: Development and evaluation of a prototype non‐woven fabric filter for purification of malaria‐infected blood
  publication-title: Malaria Journal
– volume: 7
  issue: 10
  year: 2012
  article-title: Label‐free enrichment of adrenal cortical progenitor cells using inertial microfluidics
  publication-title: PLoS One
– volume: 24
  start-page: 1255
  issue: 10
  year: 2006
  end-page: 1257
  article-title: Efficient enucleation of erythroblasts differentiated in vitro from hematopoietic stem and progenitor cells
  publication-title: Nature Biotechnology
– ident: e_1_2_8_10_1
  doi: 10.1140/epje/i2008-10438-8
– ident: e_1_2_8_3_1
  doi: 10.1002/term.2337
– ident: e_1_2_8_9_1
  doi: 10.1016/j.tmrv.2006.11.004
– ident: e_1_2_8_30_1
  doi: 10.1182/blood-2008-05-157198
– ident: e_1_2_8_41_1
  doi: 10.1242/jcs.202192
– ident: e_1_2_8_17_1
  doi: 10.1063/1.5040316
– ident: e_1_2_8_8_1
  doi: 10.1039/b912547g
– ident: e_1_2_8_6_1
  doi: 10.1016/S0167-7799(03)00076-3
– ident: e_1_2_8_31_1
  doi: 10.1073/pnas.0802220105
– ident: e_1_2_8_58_1
  doi: 10.1089/ten.tec.2011.0207
– ident: e_1_2_8_26_1
  doi: 10.1039/C7AY02500A
– ident: e_1_2_8_20_1
  doi: 10.1016/j.yexcr.2018.02.017
– ident: e_1_2_8_39_1
  doi: 10.1038/nbt1245
– ident: e_1_2_8_52_1
  doi: 10.5966/sctm.2013-0054
– ident: e_1_2_8_36_1
  doi: 10.1016/j.blre.2011.11.002
– ident: e_1_2_8_62_1
  doi: 10.1038/srep11018
– ident: e_1_2_8_56_1
  doi: 10.1007/s12033-008-9045-8
– ident: e_1_2_8_22_1
  doi: 10.1039/c0lc00595a
– ident: e_1_2_8_51_1
  doi: 10.1063/1.2756272
– ident: e_1_2_8_54_1
  doi: 10.1007/s10404-017-1896-5
– ident: e_1_2_8_11_1
  doi: 10.1007/s12185-008-0062-y
– ident: e_1_2_8_42_1
  doi: 10.1038/s41598-018-31019-y
– volume: 28
  start-page: 1066
  issue: 5
  year: 2010
  ident: e_1_2_8_21_1
  article-title: Investigation of the behavior of serum and plasma in a microfluidics system
  publication-title: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures
  doi: 10.1116/1.3475531
– ident: e_1_2_8_23_1
  doi: 10.1371/journal.pone.0046550
– ident: e_1_2_8_48_1
  doi: 10.1038/nmeth.4639
– ident: e_1_2_8_55_1
  doi: 10.1186/1475-2875-10-251
– ident: e_1_2_8_12_1
  doi: 10.1182/blood-2011-06-362038
– ident: e_1_2_8_18_1
  doi: 10.1039/C9LC01000A
– ident: e_1_2_8_37_1
  doi: 10.1006/bcmd.2002.0502
– ident: e_1_2_8_4_1
  doi: 10.1039/b807107a
– ident: e_1_2_8_57_1
  doi: 10.1016/j.biotechadv.2011.05.002
– ident: e_1_2_8_13_1
  doi: 10.1098/rsif.2014.0065
– ident: e_1_2_8_19_1
  doi: 10.1038/s41598-017-14958-w
– ident: e_1_2_8_24_1
  doi: 10.1039/C8LC00250A
– ident: e_1_2_8_28_1
  doi: 10.1073/pnas.1402306111
– ident: e_1_2_8_53_1
  doi: 10.1371/journal.pone.0166657
– ident: e_1_2_8_43_1
  doi: 10.1039/C5LC00805K
– ident: e_1_2_8_5_1
  doi: 10.1182/blood-2008-09-177212
– ident: e_1_2_8_46_1
  doi: 10.5966/sctm.2014-0154
– ident: e_1_2_8_49_1
  doi: 10.1002/biot.201200368
– ident: e_1_2_8_2_1
  doi: 10.1111/j.1537-2995.2008.01828.x
– ident: e_1_2_8_40_1
  doi: 10.1038/srep36386
– ident: e_1_2_8_14_1
  doi: 10.3390/s18061762
– ident: e_1_2_8_60_1
  doi: 10.1038/nbt.2450
– ident: e_1_2_8_35_1
  doi: 10.1016/j.stem.2012.01.001
– ident: e_1_2_8_16_1
  doi: 10.1002/biot.200800241
– ident: e_1_2_8_27_1
  doi: 10.1039/c0lc00579g
– ident: e_1_2_8_15_1
  doi: 10.1182/blood-2011-09-376475
– ident: e_1_2_8_63_1
  doi: 10.1063/1.4939946
– ident: e_1_2_8_38_1
  doi: 10.3727/096368909X485049
– ident: e_1_2_8_61_1
  doi: 10.3324/haematol.2009.019828
– ident: e_1_2_8_25_1
  doi: 10.3324/haematol.2010.023556
– ident: e_1_2_8_33_1
  doi: 10.1007/978-1-4939-7428-3_18
– ident: e_1_2_8_59_1
  doi: 10.1038/ncomms14750
– volume: 23
  start-page: 338
  issue: 4
  year: 2018
  ident: e_1_2_8_7_1
  article-title: Deterministic lateral displacement: The next‐generation CAR T‐cell processing?
  publication-title: SLAS Technology
  doi: 10.1177/2472630317751214
– ident: e_1_2_8_47_1
  doi: 10.1039/C9LC00120D
– ident: e_1_2_8_32_1
  doi: 10.18609/cgti.2017.041
– ident: e_1_2_8_64_1
  doi: 10.1002/stem.1136
– ident: e_1_2_8_45_1
  doi: 10.1016/j.tmrv.2011.01.002
– ident: e_1_2_8_29_1
  doi: 10.1525/bio.2013.63.8.6
– ident: e_1_2_8_50_1
  doi: 10.1002/biot.200900115
– volume: 8
  start-page: 44
  year: 2010
  ident: e_1_2_8_34_1
  article-title: Fluorescence‐activated cell sorting for CGMP processing of therapeutic cells
  publication-title: BioProcess International
– ident: e_1_2_8_44_1
  doi: 10.1038/nbt0502-467
SSID ssj0007866
Score 2.4084995
Snippet Cell‐based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product...
Cell-based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2032
SubjectTerms Biopharmaceuticals
CD34 antigen
Cell Line
Cell Separation - instrumentation
Cord blood
Deformability
Equipment Design
Erythrocytes
Erythrocytes - cytology
Erythropoiesis
Filtration
Filtration - instrumentation
Fluorescence
Formability
Gene expression
Humans
Manufacturing industry
Mechanical properties
Membrane filtration
Membranes
Microfluidic Analytical Techniques - instrumentation
Microfluidics
Nuclei (cytology)
Purification
Purity
Separation
sorting
spiral microchannel
Stem cells
Stem Cells - cytology
stem cell‐derived red blood cells
Umbilical cord
Title Purifying stem cell‐derived red blood cells: a high‐throughput label‐free downstream processing strategy based on microfluidic spiral inertial separation and membrane filtration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.27319
https://www.ncbi.nlm.nih.gov/pubmed/32100873
https://www.proquest.com/docview/2412768896
https://www.proquest.com/docview/2365220409
https://pubmed.ncbi.nlm.nih.gov/PMC7383897
Volume 117
WOSCitedRecordID wos000540022600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0290
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007866
  issn: 0006-3592
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB2VFAQ8cEm5BEq1IIR4MXVsr9eGp7YQgYSqCrVS3ix7L8JS7ER2XKlvfAJ_w__wJcysLzQqSEg8RLKyY8fxzs6cWc-cAXiJEYWemog76E0DJzBp6KSR8J0YXRG6EzFVgbLNJsTxcTSfxydb8K6vhWn5IYYNN1oZ1l7TAk-zev83aWiWr9-g7yXKz20P9ZaPYPv9l9nZ58EQi6h9VUlBs89jrycWcr394eRNd3QFY15NlbwMYa0Pmt39r7u_B3c66MkOWl25D1u6HMPOQYlhd3HBXjGbDGp32cdw47A_unnUt4Qbw-1L7IU78OOkqXJbJsWIDZrRO4Cf374rHD7XilX4sWnxdqB-y1JG3Mgo0fUGWjVrhjqo6SRTac0U7XRT5nvBVm39Qntty2ZxwcjhKrYsWUFJhGbR5CqXzGYKLBjVMKKxWrBat2zmKJeWihW6wMdUambyRccQ_ADOZh9Ojz46XR8IR3KM3h2MqHRkMqO0m7mhNtwPMql9wXXqcvxekFkPMj_gkssQMY6ZckG4JZCxK9GkP4RRuSz1Y2Bob8JIIeREucAnuDylkNOVnuKpkdkEXvfqkMiOJJ16dSySlt7ZS3DiEjtxE3gxiK5aZpA_Ce32OpV0xqFOEDR5GOVFcTiB58MwTiVNBz6RZYMyfojIGC0sXuJRq4LDr1DZlYsLagJiQzkHAaIM3xwp86-WOlz4ESJUgX_TKuffbzw5_HRqD578u-hTuOXRboRNZt6F0bpq9DO4Ls_XeV3twTUxj_a6NfoL4D1FWQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF1VLajwwCXlEigwIIT6YurYXl8QL20hakWIKpRKfbPsvQhLthM5caW-8Qn8Df_DlzCzvtCoICHxEMnKjh3HOztzZjxzlrHXGFGokQ65hd7Uszyd-FYSBq4VoStCdxKMpCfNZhPBdBqen0enG-x91wvT8EP0CTdaGcZe0wKnhPT-b9bQNFu9RedLnJ9bHqoR6vfWhy_js0lviYOweVdJUbPLI6djFrKd_f7kdX90DWRer5W8imGNExrf_b_bv8futOATDhptuc82VDlgOwclBt7FJbwBUw5q8uwDdvOwO9o-6jaFG7DbV_gLd9iP07rKTKMUEB800FuAn9--Sxy-UBIq_JjCeDOwfAcJEDsySrS7Ay3qFaAWKjpJV0qBpFw31b4XsGg6GJprGz6LSyCXK2FeQkFlhDqvM5kJMLUCOVAXI5qrHJaq4TNHuaSUUKgCn1OpQGd5yxH8gJ2NP86Ojq12JwhLcIzfLYypVKhTLZWd2r7S3PVSodyAq8Tm-H1Aht1LXY8LLnxEOXrEA0IunohsgUb9Idss56V6zAAtjh9KBJ0o57kEmEcUdNrCkTzRIh2yvU4fYtHSpNNuHXncEDw7MU5cbCZuyF71oouGG-RPQrudUsWteVjGCJscjPPCyB-yl_0wTiVNBz6ReY0yro_YGG0sXuJRo4P9r1DjlY1LasiCNe3sBYg0fH2kzL4a8vDADRGjBvg3jXb-_cbjw5OZOXjy76Iv2Pbx7PMknpxMPz1ltxzKTZjS5l22uapq9YzdEBerbFk9b5fqL4J4SGE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB1VKVB44JJyCRRYEEK8mDq-rY146YWIiiqKUCv1zbL3olqynciJK_WNT-Bv-B--hJn1hUYFCYmHSFZ27Dje2Zkz65kzAG8wolBjHfoWelPP8nQSWEnIXStCV4TuhI-lJ02zCT6dhmdn0WwDPna1MA0_RL_hRivD2Gta4Goh9e5v1tA0W71H50ucn5seNZEZwObh18npcW-Jedi8q6So2fUjp2MWsp3d_uR1f3QNZF7PlbyKYY0Tmtz7v9u_D3db8Mn2Gm15ABuqHML2XomBd3HJ3jKTDmr22Ydwc7872jromsIN4c4V_sJt-DGrq8wUSjHig2b0FuDnt-8Shy-UZBV-TGK8GVh-YAkjdmSUaLsDLeoVQy1UdJKulGKS9rop971gi6aCobm24bO4ZORyJZuXrKA0Qp3XmcwEM7kCOaMqRjRXOVuqhs8c5ZJSskIV-JxKxXSWtxzBD-F08unk4LPVdoKwhI_xu4UxlQp1qqWyUztQ2ne9VCiX-yqxffyek2H3UtfzhS8CRDl67HNCLp6IbIFG_REMynmpngBDixOEEkEnynkuAeYxBZ22cKSfaJGO4F2nD7FoadKpW0ceNwTPTowTF5uJG8HrXnTRcIP8SWinU6q4NQ_LGGGTg3FeGAUjeNUP41TSdOATmdco4waIjdHG4iUeNzrY_woVXtm4pEbA17SzFyDS8PWRMjs35OHcDRGjcvybRjv_fuPx_tGJOXj676Iv4dbscBIfH02_PIPbDm1NmMzmHRisqlo9hxviYpUtqxftSv0Fp3FH3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Purifying+stem+cell%E2%80%90derived+red+blood+cells%3A+a+high%E2%80%90throughput+label%E2%80%90free+downstream+processing+strategy+based+on+microfluidic+spiral+inertial+separation+and+membrane+filtration&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Guzniczak%2C+Ewa&rft.au=Otto%2C+Oliver&rft.au=Whyte%2C+Graeme&rft.au=Chandra%2C+Tamir&rft.date=2020-07-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=117&rft.issue=7&rft.spage=2032&rft.epage=2045&rft_id=info:doi/10.1002%2Fbit.27319&rft_id=info%3Apmid%2F32100873&rft.externalDocID=PMC7383897
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon