A rapid and label-free platform for virus capture and identification from clinical samples

Emerging and reemerging viruses are responsible for a number of recent epidemic outbreaks. A crucial step in predicting and controlling outbreaks is the timely and accurate characterization of emerging virus strains. We present a portable microfluidic platform containing carbon nanotube arrays with...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the National Academy of Sciences - PNAS Ročník 117; číslo 2; s. 895
Hlavní autori: Yeh, Yin-Ting, Gulino, Kristen, Zhang, YuHe, Sabestien, Aswathy, Chou, Tsui-Wen, Zhou, Bin, Lin, Zhong, Albert, Istvan, Lu, Huaguang, Swaminathan, Venkataraman, Ghedin, Elodie, Terrones, Mauricio
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 14.01.2020
Predmet:
ISSN:1091-6490, 1091-6490
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Emerging and reemerging viruses are responsible for a number of recent epidemic outbreaks. A crucial step in predicting and controlling outbreaks is the timely and accurate characterization of emerging virus strains. We present a portable microfluidic platform containing carbon nanotube arrays with differential filtration porosity for the rapid enrichment and optical identification of viruses. Different emerging strains (or unknown viruses) can be enriched and identified in real time through a multivirus capture component in conjunction with surface-enhanced Raman spectroscopy. More importantly, after viral capture and detection on a chip, viruses remain viable and get purified in a microdevice that permits subsequent in-depth characterizations by various conventional methods. We validated this platform using different subtypes of avian influenza A viruses and human samples with respiratory infections. This technology successfully enriched rhinovirus, influenza virus, and parainfluenza viruses, and maintained the stoichiometric viral proportions when the samples contained more than one type of virus, thus emulating coinfection. Viral capture and detection took only a few minutes with a 70-fold enrichment enhancement; detection could be achieved with as little as 10 EID /mL (50% egg infective dose per microliter), with a virus specificity of 90%. After enrichment using the device, we demonstrated by sequencing that the abundance of viral-specific reads significantly increased from 4.1 to 31.8% for parainfluenza and from 0.08 to 0.44% for influenza virus. This enrichment method coupled to Raman virus identification constitutes an innovative system that could be used to quickly track and monitor viral outbreaks in real time.
AbstractList Emerging and reemerging viruses are responsible for a number of recent epidemic outbreaks. A crucial step in predicting and controlling outbreaks is the timely and accurate characterization of emerging virus strains. We present a portable microfluidic platform containing carbon nanotube arrays with differential filtration porosity for the rapid enrichment and optical identification of viruses. Different emerging strains (or unknown viruses) can be enriched and identified in real time through a multivirus capture component in conjunction with surface-enhanced Raman spectroscopy. More importantly, after viral capture and detection on a chip, viruses remain viable and get purified in a microdevice that permits subsequent in-depth characterizations by various conventional methods. We validated this platform using different subtypes of avian influenza A viruses and human samples with respiratory infections. This technology successfully enriched rhinovirus, influenza virus, and parainfluenza viruses, and maintained the stoichiometric viral proportions when the samples contained more than one type of virus, thus emulating coinfection. Viral capture and detection took only a few minutes with a 70-fold enrichment enhancement; detection could be achieved with as little as 102 EID50/mL (50% egg infective dose per microliter), with a virus specificity of 90%. After enrichment using the device, we demonstrated by sequencing that the abundance of viral-specific reads significantly increased from 4.1 to 31.8% for parainfluenza and from 0.08 to 0.44% for influenza virus. This enrichment method coupled to Raman virus identification constitutes an innovative system that could be used to quickly track and monitor viral outbreaks in real time.Emerging and reemerging viruses are responsible for a number of recent epidemic outbreaks. A crucial step in predicting and controlling outbreaks is the timely and accurate characterization of emerging virus strains. We present a portable microfluidic platform containing carbon nanotube arrays with differential filtration porosity for the rapid enrichment and optical identification of viruses. Different emerging strains (or unknown viruses) can be enriched and identified in real time through a multivirus capture component in conjunction with surface-enhanced Raman spectroscopy. More importantly, after viral capture and detection on a chip, viruses remain viable and get purified in a microdevice that permits subsequent in-depth characterizations by various conventional methods. We validated this platform using different subtypes of avian influenza A viruses and human samples with respiratory infections. This technology successfully enriched rhinovirus, influenza virus, and parainfluenza viruses, and maintained the stoichiometric viral proportions when the samples contained more than one type of virus, thus emulating coinfection. Viral capture and detection took only a few minutes with a 70-fold enrichment enhancement; detection could be achieved with as little as 102 EID50/mL (50% egg infective dose per microliter), with a virus specificity of 90%. After enrichment using the device, we demonstrated by sequencing that the abundance of viral-specific reads significantly increased from 4.1 to 31.8% for parainfluenza and from 0.08 to 0.44% for influenza virus. This enrichment method coupled to Raman virus identification constitutes an innovative system that could be used to quickly track and monitor viral outbreaks in real time.
Emerging and reemerging viruses are responsible for a number of recent epidemic outbreaks. A crucial step in predicting and controlling outbreaks is the timely and accurate characterization of emerging virus strains. We present a portable microfluidic platform containing carbon nanotube arrays with differential filtration porosity for the rapid enrichment and optical identification of viruses. Different emerging strains (or unknown viruses) can be enriched and identified in real time through a multivirus capture component in conjunction with surface-enhanced Raman spectroscopy. More importantly, after viral capture and detection on a chip, viruses remain viable and get purified in a microdevice that permits subsequent in-depth characterizations by various conventional methods. We validated this platform using different subtypes of avian influenza A viruses and human samples with respiratory infections. This technology successfully enriched rhinovirus, influenza virus, and parainfluenza viruses, and maintained the stoichiometric viral proportions when the samples contained more than one type of virus, thus emulating coinfection. Viral capture and detection took only a few minutes with a 70-fold enrichment enhancement; detection could be achieved with as little as 10 EID /mL (50% egg infective dose per microliter), with a virus specificity of 90%. After enrichment using the device, we demonstrated by sequencing that the abundance of viral-specific reads significantly increased from 4.1 to 31.8% for parainfluenza and from 0.08 to 0.44% for influenza virus. This enrichment method coupled to Raman virus identification constitutes an innovative system that could be used to quickly track and monitor viral outbreaks in real time.
Author Zhou, Bin
Ghedin, Elodie
Lu, Huaguang
Gulino, Kristen
Chou, Tsui-Wen
Swaminathan, Venkataraman
Lin, Zhong
Sabestien, Aswathy
Zhang, YuHe
Yeh, Yin-Ting
Terrones, Mauricio
Albert, Istvan
Author_xml – sequence: 1
  givenname: Yin-Ting
  orcidid: 0000-0002-1512-9267
  surname: Yeh
  fullname: Yeh, Yin-Ting
  email: yxy155@psu.edu, mut11@psu.edu
  organization: Department of Physics, The Pennsylvania State University, University Park, PA 16802; yxy155@psu.edu mut11@psu.edu
– sequence: 2
  givenname: Kristen
  surname: Gulino
  fullname: Gulino, Kristen
  organization: Department of Biology, New York University, New York, NY 10003
– sequence: 3
  givenname: YuHe
  surname: Zhang
  fullname: Zhang, YuHe
  organization: Department of Physics, The Pennsylvania State University, University Park, PA 16802
– sequence: 4
  givenname: Aswathy
  surname: Sabestien
  fullname: Sabestien, Aswathy
  organization: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
– sequence: 5
  givenname: Tsui-Wen
  surname: Chou
  fullname: Chou, Tsui-Wen
  organization: Department of Biology, New York University, New York, NY 10003
– sequence: 6
  givenname: Bin
  surname: Zhou
  fullname: Zhou, Bin
  organization: Department of Biology, New York University, New York, NY 10003
– sequence: 7
  givenname: Zhong
  surname: Lin
  fullname: Lin, Zhong
  organization: Department of Physics, The Pennsylvania State University, University Park, PA 16802
– sequence: 8
  givenname: Istvan
  surname: Albert
  fullname: Albert, Istvan
  organization: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
– sequence: 9
  givenname: Huaguang
  surname: Lu
  fullname: Lu, Huaguang
  organization: Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
– sequence: 10
  givenname: Venkataraman
  surname: Swaminathan
  fullname: Swaminathan, Venkataraman
  organization: Department of Physics, The Pennsylvania State University, University Park, PA 16802
– sequence: 11
  givenname: Elodie
  orcidid: 0000-0002-1515-725X
  surname: Ghedin
  fullname: Ghedin, Elodie
  organization: Department of Biology, New York University, New York, NY 10003
– sequence: 12
  givenname: Mauricio
  orcidid: 0000-0003-0010-2851
  surname: Terrones
  fullname: Terrones, Mauricio
  email: yxy155@psu.edu, mut11@psu.edu
  organization: Department of Physics, The Pennsylvania State University, University Park, PA 16802; yxy155@psu.edu mut11@psu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31882450$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAUhYMozkPX7iRLNx1z85g2y2HwBQNudOOm5AmRNK1JK_jvLTqCm3Muh48D96zQaeqTQ-gKyAZIzW6HpMoGJBAABlCfoCUQCdWWS3L6716gVSnvhBApGnKOFgyahnJBluhth7MagsUqWRyVdrHy2Tk8RDX6Pnd4FvwZ8lSwUcM4ZfdDBuvSGHwwagx9wj73HTYxpDmIuKhuiK5coDOvYnGXR1-j1_u7l_1jdXh-eNrvDpURXIyVBy41A01Bq1pvmZNMe2GZ5MzwhnFCXL2V1AhpnQXL3VYY1Qg9P6CE8ZSu0c1v75D7j8mVse1CMS5GlVw_lZYyBlTUEsSMXh_RSXfOtkMOncpf7d8e9BsnUmSI
CitedBy_id crossref_primary_10_1016_j_tibtech_2020_07_004
crossref_primary_10_3390_nano12203572
crossref_primary_10_1016_j_tifs_2021_08_008
crossref_primary_10_3390_pr8121654
crossref_primary_10_1039_D1SC00616A
crossref_primary_10_1088_2399_1984_ac701d
crossref_primary_10_1038_s41598_021_84565_3
crossref_primary_10_3390_diagnostics11061119
crossref_primary_10_1063_1_5142767
crossref_primary_10_1002_anie_202109985
crossref_primary_10_1016_j_imed_2022_10_001
crossref_primary_10_1016_j_bios_2021_113004
crossref_primary_10_1007_s12274_021_3718_z
crossref_primary_10_1016_j_jtice_2020_11_024
crossref_primary_10_3390_bios13060594
crossref_primary_10_1002_adma_202312518
crossref_primary_10_1002_jrs_6345
crossref_primary_10_1038_s41598_022_14107_y
crossref_primary_10_1007_s12551_021_00807_8
crossref_primary_10_1002_adts_202100205
crossref_primary_10_3390_ijms21145126
crossref_primary_10_2174_0113816128282085231226065407
crossref_primary_10_1016_j_saa_2025_126541
crossref_primary_10_1038_s41467_022_32261_9
crossref_primary_10_1364_AO_445953
crossref_primary_10_1111_irv_13114
crossref_primary_10_1038_s41598_021_99150_x
crossref_primary_10_1039_D0NR06832B
crossref_primary_10_1016_j_trac_2021_116438
crossref_primary_10_1016_j_snb_2022_132445
crossref_primary_10_1038_s41378_024_00834_x
crossref_primary_10_1016_j_trac_2023_117361
crossref_primary_10_3390_nano10091645
crossref_primary_10_1063_5_0015246
crossref_primary_10_1016_j_microc_2025_114691
crossref_primary_10_1016_j_apsusc_2022_156011
crossref_primary_10_1002_adpr_202000150
crossref_primary_10_1142_S1793984425300018
crossref_primary_10_1016_j_bios_2022_114721
crossref_primary_10_1007_s00604_021_04864_4
crossref_primary_10_1089_omi_2022_0072
crossref_primary_10_2174_0126667975284619240222051806
crossref_primary_10_1016_j_optcom_2021_127463
crossref_primary_10_1016_j_trac_2022_116623
crossref_primary_10_3390_ijerph20085471
crossref_primary_10_1016_j_jbiomech_2021_110235
crossref_primary_10_3390_bios12111013
crossref_primary_10_1002_adma_202103646
crossref_primary_10_1016_j_bios_2020_112291
crossref_primary_10_1186_s12951_022_01711_3
crossref_primary_10_1007_s40820_021_00620_8
crossref_primary_10_1002_tbio_202100008
crossref_primary_10_1016_j_addr_2021_04_014
crossref_primary_10_3389_fmicb_2021_769597
crossref_primary_10_1212_CON_0000000000001393
crossref_primary_10_3390_bios12121065
crossref_primary_10_1002_slct_202204615
crossref_primary_10_1111_1348_0421_13033
crossref_primary_10_2147_IJN_S436867
crossref_primary_10_1109_MCE_2020_3033270
crossref_primary_10_1016_j_snb_2023_134866
crossref_primary_10_1016_j_trac_2020_115984
crossref_primary_10_1007_s00216_021_03171_4
crossref_primary_10_1016_j_biotechadv_2024_108391
crossref_primary_10_3390_mi14091744
crossref_primary_10_1007_s42600_025_00404_8
crossref_primary_10_3390_bios15090558
crossref_primary_10_3390_chemosensors11080461
crossref_primary_10_1016_j_scs_2021_103046
crossref_primary_10_1016_j_foodchem_2023_136242
crossref_primary_10_1016_j_talanta_2021_122989
crossref_primary_10_1002_bab_2260
crossref_primary_10_1515_nanoph_2022_0571
crossref_primary_10_1088_1361_6528_ace117
crossref_primary_10_1016_j_snb_2022_132812
crossref_primary_10_3390_ma14216707
crossref_primary_10_1016_j_buildenv_2024_111484
crossref_primary_10_1016_j_talanta_2023_124892
crossref_primary_10_3390_antibiotics9120916
crossref_primary_10_1016_j_trac_2021_116400
crossref_primary_10_1016_j_colsurfb_2023_113602
crossref_primary_10_1038_s41598_022_06393_3
crossref_primary_10_3390_spectroscj3010006
crossref_primary_10_1039_D0RA08888A
crossref_primary_10_1016_j_carbon_2022_04_015
crossref_primary_10_1016_j_jhazmat_2025_138157
crossref_primary_10_3390_ijms24098081
crossref_primary_10_1038_s41565_020_0656_y
crossref_primary_10_3390_vaccines10081200
crossref_primary_10_1088_2515_7647_ac1cd7
crossref_primary_10_1016_j_trac_2022_116659
crossref_primary_10_1109_JPHOT_2021_3074386
crossref_primary_10_12688_f1000research_149263_1
crossref_primary_10_12688_f1000research_149263_2
crossref_primary_10_3389_fbioe_2022_1076749
crossref_primary_10_1016_j_vibspec_2023_103560
crossref_primary_10_1002_INMD_20230060
crossref_primary_10_3389_fmicb_2021_683580
crossref_primary_10_1080_10408347_2025_2481406
crossref_primary_10_1016_j_microc_2024_110912
crossref_primary_10_1016_j_carbon_2025_120015
crossref_primary_10_1038_s41598_021_92376_9
crossref_primary_10_1073_pnas_2118836119
crossref_primary_10_1039_D0NR06340A
crossref_primary_10_1002_jrs_70035
crossref_primary_10_1002_jrs_6608
crossref_primary_10_1088_1612_202X_ac6805
crossref_primary_10_3390_bios14010020
crossref_primary_10_1002_adfm_202204681
crossref_primary_10_3390_pr11041191
crossref_primary_10_1002_smll_202100692
crossref_primary_10_1039_D5NR01131K
crossref_primary_10_1007_s10946_020_09935_0
crossref_primary_10_3390_s21134617
crossref_primary_10_1002_smtd_202500117
crossref_primary_10_1002_smtd_202001250
crossref_primary_10_1016_j_matt_2021_11_028
crossref_primary_10_1186_s12951_022_01558_8
crossref_primary_10_1002_ange_202109985
crossref_primary_10_3389_fnano_2020_588915
crossref_primary_10_3390_life12050649
crossref_primary_10_1016_j_trac_2021_116415
crossref_primary_10_1039_D0QM00255K
crossref_primary_10_1080_05704928_2021_1942894
crossref_primary_10_1016_j_mehy_2020_110356
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1910113117
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 31882450
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
ECM
EIF
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YIF
YIN
YKV
YSK
ZCA
~02
~KM
7X8
ADQXQ
ID FETCH-LOGICAL-c545t-f149b31b21ba7b63e93bf5d3943c483400e7692c59ded1d4e65ca85b824a5cf22
IEDL.DBID 7X8
ISICitedReferencesCount 156
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508976200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 13:04:33 EDT 2025
Wed Feb 19 02:30:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords virus isolation
microfabrication
carbon nanotube
infectious disease
sequencing
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-f149b31b21ba7b63e93bf5d3943c483400e7692c59ded1d4e65ca85b824a5cf22
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1512-9267
0000-0002-1515-725X
0000-0003-0010-2851
OpenAccessLink https://www.pnas.org/content/pnas/117/2/895.full.pdf
PMID 31882450
PQID 2331257915
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2331257915
pubmed_primary_31882450
PublicationCentury 2000
PublicationDate 2020-01-14
PublicationDateYYYYMMDD 2020-01-14
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
SSID ssj0009580
Score 2.6494474
Snippet Emerging and reemerging viruses are responsible for a number of recent epidemic outbreaks. A crucial step in predicting and controlling outbreaks is the timely...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 895
SubjectTerms Humans
Influenza A virus - isolation & purification
Microbiological Techniques - instrumentation
Microbiological Techniques - methods
Microtechnology - methods
Nanotubes, Carbon
Respiratory Tract Infections - diagnosis
Respiratory Tract Infections - virology
Respirovirus - isolation & purification
Rhinovirus - isolation & purification
Sensitivity and Specificity
Silicon Dioxide
Spectrum Analysis, Raman - methods
Staining and Labeling
Virion
Virology - instrumentation
Virology - methods
Virus Diseases - diagnosis
Virus Diseases - virology
Viruses - genetics
Viruses - isolation & purification
Title A rapid and label-free platform for virus capture and identification from clinical samples
URI https://www.ncbi.nlm.nih.gov/pubmed/31882450
https://www.proquest.com/docview/2331257915
Volume 117
WOSCitedRecordID wos000508976200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qPXhR6_tJBA96iM1zd3MSEcWDlh4UipeSzQMKsl271d_vZJuiBw-Cl5wSdsk88s1M8g1C54Y6W2jqiTS0JJLlhhRCamJ4qaxT1IrQsus_5v1-MRzqQUq4Nela5cInto7aTWzMkfe4EHAW55qp6_qdxK5RsbqaWmgso44AKBMNMx8WP0h3izkbgWYkk5ouqH1y0asr01xBrALqLVjqVvYrvmzPmfuN__7hJlpPCBPfzFWii5Z8tYW6yYYbfJGIpi-30esNnpp67LCpHAZt8G8kTL3H9ZuZRSyLYcCf4-lHg62pY6mhnTl26YZRK1QcH6jgxQNL3JhIN9zsoJf7u-fbB5J6LRALGGpGAkRKpWAlZ6XJy0x4LcqgnNBS2JhvpNTnmeZWaecdc9JnyppClQWXRtnA-S5aqSaV30eYgtitAyghXC5DRgFheohSHXgTb3kIB-hssX8j0OVYoDCVn3w0o-8dPEB7cyGM6jnpxgh8D3xL0cM_rD5CazyGxZQRJo9RJ4Al-xO0aj9n42Z62ioJjP3B0xepdsbB
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rapid+and+label-free+platform+for+virus+capture+and+identification+from+clinical+samples&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yeh%2C+Yin-Ting&rft.au=Gulino%2C+Kristen&rft.au=Zhang%2C+YuHe&rft.au=Sabestien%2C+Aswathy&rft.date=2020-01-14&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=117&rft.issue=2&rft.spage=895&rft_id=info:doi/10.1073%2Fpnas.1910113117&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon