Efficient collective swimming by harnessing vortices through deep reinforcement learning
Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fi...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 115; H. 23; S. 5849 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
05.06.2018
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms. |
|---|---|
| AbstractList | Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms. Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms.Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms. |
| Author | Koumoutsakos, Petros Verma, Siddhartha Novati, Guido |
| Author_xml | – sequence: 1 givenname: Siddhartha orcidid: 0000-0002-8941-0633 surname: Verma fullname: Verma, Siddhartha organization: Computational Science and Engineering Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland – sequence: 2 givenname: Guido surname: Novati fullname: Novati, Guido organization: Computational Science and Engineering Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland – sequence: 3 givenname: Petros orcidid: 0000-0001-8337-2122 surname: Koumoutsakos fullname: Koumoutsakos, Petros email: petros@ethz.ch organization: Computational Science and Engineering Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland petros@ethz.ch |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29784820$$D View this record in MEDLINE/PubMed |
| BookMark | eNpN0DtPwzAUBWALFdEHzGwoI0vK9SNxMqKqBaRKLB3YIse5bo0SJ9hJUf89qSgS0z1H-nSGOycT1zok5J7CkoLkT51TYUkzgJxxSpMrMqOQ0zgVOUz-5SmZh_AJI0syuCFTlstMZAxm5GNtjNUWXR_ptq5R9_aIUfi2TWPdPipP0UF5hyGc27H1vdUYov7g22F_iCrELvJonWm9xua8UuPoR3xLro2qA95d7oLsNuvd6jXevr-8rZ63sU5E0scGOEt1qROZirJkIsnTCnmKmPBKccCUK0FzikJKqABNJsoMTMVNKoViFVuQx9_ZzrdfA4a-aGzQWNfKYTuEgoFgUsiM0ZE-XOhQNlgVnbeN8qfi7xnsBzEnZPE |
| CitedBy_id | crossref_primary_10_1017_jfm_2025_10392 crossref_primary_10_1038_s42256_024_00859_x crossref_primary_10_1007_s42241_021_0070_4 crossref_primary_10_1017_jfm_2024_343 crossref_primary_10_1088_1402_4896_acb859 crossref_primary_10_1088_2632_2153_abdaf8 crossref_primary_10_1137_24M164392X crossref_primary_10_1126_scirobotics_abd9285 crossref_primary_10_1002_gamm_202100007 crossref_primary_10_1002_VIW_20200113 crossref_primary_10_1038_s41598_023_44268_3 crossref_primary_10_3390_biomimetics9010033 crossref_primary_10_3390_app9081652 crossref_primary_10_1177_0954406220915216 crossref_primary_10_1016_j_jcp_2023_111983 crossref_primary_10_1016_j_cma_2025_117910 crossref_primary_10_1109_LRA_2021_3059629 crossref_primary_10_1103_PhysRevX_9_041024 crossref_primary_10_1017_jfm_2024_333 crossref_primary_10_1038_s41598_019_57143_x crossref_primary_10_1039_D3SC05661A crossref_primary_10_1007_s42241_025_0103_5 crossref_primary_10_1016_j_apor_2024_104119 crossref_primary_10_1080_14685248_2020_1797059 crossref_primary_10_1016_j_cja_2021_07_027 crossref_primary_10_7554_eLife_90352 crossref_primary_10_1038_s41598_021_04456_5 crossref_primary_10_1017_jfm_2019_62 crossref_primary_10_3389_fmars_2022_918104 crossref_primary_10_3390_biomimetics5020013 crossref_primary_10_1038_s41467_022_35427_7 crossref_primary_10_1371_journal_pone_0215265 crossref_primary_10_1016_j_oceaneng_2024_117822 crossref_primary_10_1140_epje_s10189_023_00271_0 crossref_primary_10_1049_iet_csr_2019_0040 crossref_primary_10_1007_s42241_020_0027_z crossref_primary_10_1038_s41598_019_44556_x crossref_primary_10_3390_fluids6060204 crossref_primary_10_1017_jfm_2024_77 crossref_primary_10_1017_jfm_2021_918 crossref_primary_10_1126_scirobotics_abb9764 crossref_primary_10_1007_s42241_020_0026_0 crossref_primary_10_1103_PhysRevFluids_7_L061101 crossref_primary_10_1017_jfm_2023_637 crossref_primary_10_7554_eLife_96129 crossref_primary_10_1093_icb_icab071 crossref_primary_10_1088_1748_3190_ad936d crossref_primary_10_1002_fld_5025 crossref_primary_10_1088_1367_2630_adfd05 crossref_primary_10_1007_s00442_021_04942_7 crossref_primary_10_1007_s00366_024_02093_w crossref_primary_10_1016_j_euromechflu_2022_02_008 crossref_primary_10_1109_LCSYS_2020_2980669 crossref_primary_10_1177_14680874231184002 crossref_primary_10_1017_jfm_2024_69 crossref_primary_10_3390_fluids6070233 crossref_primary_10_1016_j_oceaneng_2021_110357 crossref_primary_10_1063_5_0253696 crossref_primary_10_1140_epje_s10189_022_00259_2 crossref_primary_10_1088_1748_3190_ac9fb5 crossref_primary_10_1016_j_jcp_2022_111271 crossref_primary_10_1038_s41467_022_28957_7 crossref_primary_10_1088_1748_3190_ac9bb4 crossref_primary_10_1038_s42005_023_01366_y crossref_primary_10_1017_jfm_2025_10470 crossref_primary_10_1103_PhysRevFluids_6_050504 crossref_primary_10_1103_PhysRevFluids_6_050505 crossref_primary_10_1016_j_oceaneng_2023_115263 crossref_primary_10_1186_s10033_022_00791_4 crossref_primary_10_1039_D2SC01278B crossref_primary_10_1017_jfm_2020_1028 crossref_primary_10_1088_1742_6596_2753_1_012024 crossref_primary_10_1016_j_nantod_2022_101505 crossref_primary_10_1038_s42256_020_00272_0 crossref_primary_10_1016_j_oceaneng_2024_119236 crossref_primary_10_3390_act13120488 crossref_primary_10_1007_s11012_024_01830_1 crossref_primary_10_1017_jfm_2023_76 crossref_primary_10_1088_1748_3190_abdd9c crossref_primary_10_1103_gy7m_4ysj crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1007_s10409_021_01143_6 crossref_primary_10_2514_1_J064790 crossref_primary_10_1002_anie_202209970 crossref_primary_10_3389_fphy_2022_870273 crossref_primary_10_1017_jfm_2021_551 crossref_primary_10_1063_5_0184690 crossref_primary_10_1103_PhysRevFluids_10_043104 crossref_primary_10_1038_s41598_023_36399_4 crossref_primary_10_1017_jfm_2025_10215 crossref_primary_10_1140_epje_s10189_023_00285_8 crossref_primary_10_1016_j_oceaneng_2024_118363 crossref_primary_10_1038_s41598_021_81124_8 crossref_primary_10_1017_jfm_2022_476 crossref_primary_10_1016_j_jcp_2021_110317 crossref_primary_10_1002_ange_202209970 crossref_primary_10_3390_biomimetics8020168 crossref_primary_10_1242_jeb_244983 crossref_primary_10_1038_s41467_021_21331_z crossref_primary_10_1016_j_ijheatfluidflow_2023_109199 crossref_primary_10_1016_j_cbpc_2023_109812 crossref_primary_10_1063_5_0201965 crossref_primary_10_1038_s41598_023_36305_y crossref_primary_10_1371_journal_pone_0250837 crossref_primary_10_1103_gt7n_8jtk crossref_primary_10_1016_j_aquatox_2023_106773 crossref_primary_10_1111_jfb_15931 crossref_primary_10_1016_j_ifacsc_2023_100226 crossref_primary_10_1016_j_compbiomed_2024_108383 crossref_primary_10_1039_D4SM01274G crossref_primary_10_1016_j_oceaneng_2022_110574 crossref_primary_10_1017_jfm_2024_503 crossref_primary_10_1063_5_0228610 crossref_primary_10_1073_pnas_2004939117 crossref_primary_10_1016_j_cma_2025_118030 crossref_primary_10_1145_3730848 crossref_primary_10_1109_TIE_2022_3174306 crossref_primary_10_1038_s44172_022_00046_z crossref_primary_10_1016_j_ijheatfluidflow_2023_109139 crossref_primary_10_1109_MRA_2023_3348303 crossref_primary_10_1038_s41598_023_34007_z crossref_primary_10_1007_s42791_024_00067_z crossref_primary_10_1016_j_renene_2021_04_053 crossref_primary_10_1080_10618562_2023_2171021 crossref_primary_10_1007_s10494_024_00619_2 crossref_primary_10_1007_s11538_022_01027_1 crossref_primary_10_1016_j_knosys_2023_110401 crossref_primary_10_1016_j_oceaneng_2021_109191 crossref_primary_10_1109_TNNLS_2020_3016906 crossref_primary_10_3389_fphy_2020_00200 crossref_primary_10_1038_s41467_021_27015_y crossref_primary_10_1017_jfm_2023_1096 crossref_primary_10_1063_5_0237682 crossref_primary_10_1145_3687904 crossref_primary_10_1017_jfm_2023_147 crossref_primary_10_1017_dce_2023_28 crossref_primary_10_1007_s10494_024_00609_4 crossref_primary_10_1016_j_isci_2025_112056 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125561 crossref_primary_10_3390_fluids6020073 crossref_primary_10_1016_j_aquaeng_2024_102511 crossref_primary_10_3390_biomimetics8070510 crossref_primary_10_1017_jfm_2023_28 crossref_primary_10_1088_1748_3190_ae0632 crossref_primary_10_1017_jfm_2022_315 crossref_primary_10_1007_s11071_023_08285_1 crossref_primary_10_3390_make3030029 crossref_primary_10_1038_s41598_021_92965_8 crossref_primary_10_1209_0295_5075_acc88c crossref_primary_10_1016_j_egyai_2025_100567 crossref_primary_10_3390_app9173573 crossref_primary_10_1016_j_addma_2021_102033 crossref_primary_10_1016_j_cja_2024_03_019 crossref_primary_10_1088_1748_3190_ad1b2e crossref_primary_10_1016_j_cma_2023_116204 crossref_primary_10_1051_jnwpu_20224030576 crossref_primary_10_1140_epje_s10189_025_00511_5 crossref_primary_10_1016_j_oceaneng_2022_113258 crossref_primary_10_1088_1748_3190_abc294 crossref_primary_10_1016_j_oceaneng_2023_113670 crossref_primary_10_1111_jfb_14641 crossref_primary_10_1093_icb_icae044 crossref_primary_10_1017_jfm_2025_10303 crossref_primary_10_1016_j_buildenv_2024_111357 crossref_primary_10_1103_PhysRevE_104_014210 crossref_primary_10_1134_S0032945223070068 crossref_primary_10_1038_s42256_020_0146_9 crossref_primary_10_1007_s10641_025_01693_9 crossref_primary_10_1039_D3SC06343G crossref_primary_10_1063_5_0273201 crossref_primary_10_1146_annurev_control_030123_015238 crossref_primary_10_7554_eLife_81392 crossref_primary_10_1007_s00162_022_00604_3 crossref_primary_10_1007_s10228_021_00822_5 crossref_primary_10_1063_5_0218482 crossref_primary_10_1063_5_0273348 crossref_primary_10_1016_j_jmapro_2024_05_001 crossref_primary_10_1103_PhysRevLett_134_044001 crossref_primary_10_1017_jfm_2021_978 crossref_primary_10_1103_PhysRevApplied_23_044058 crossref_primary_10_1016_j_jtbi_2024_111821 crossref_primary_10_1088_1748_3190_abb521 crossref_primary_10_1016_j_ijheatfluidflow_2025_110050 crossref_primary_10_1093_icb_icab133 crossref_primary_10_1016_j_advengsoft_2025_104014 crossref_primary_10_1109_TMECH_2020_3041506 crossref_primary_10_3390_fluids7020056 crossref_primary_10_7554_eLife_96129_3 crossref_primary_10_1007_s00162_020_00520_4 crossref_primary_10_1016_j_oceaneng_2023_113811 crossref_primary_10_1177_14680874211019345 crossref_primary_10_1038_s42003_019_0612_2 crossref_primary_10_1007_s42241_018_0100_z crossref_primary_10_1016_j_oceaneng_2024_118089 crossref_primary_10_3389_frobt_2022_825889 crossref_primary_10_1038_s41467_025_58125_6 crossref_primary_10_1002_aisy_202100183 crossref_primary_10_1088_1742_6596_2882_1_012065 crossref_primary_10_1016_j_jcp_2021_110741 crossref_primary_10_1088_1748_3190_adebce crossref_primary_10_1146_annurev_fluid_010719_060214 crossref_primary_10_1146_annurev_fluid_010719_060228 crossref_primary_10_3390_fluids9090216 crossref_primary_10_1002_advs_202410229 crossref_primary_10_1063_5_0097241 crossref_primary_10_1109_ACCESS_2021_3129709 crossref_primary_10_1109_TASE_2023_3315549 crossref_primary_10_1103_646f_dt2k crossref_primary_10_3389_fphy_2023_1279883 crossref_primary_10_1145_3696189 crossref_primary_10_1038_s42005_022_00935_x crossref_primary_10_3390_fluids7010041 crossref_primary_10_7554_eLife_90352_3 crossref_primary_10_1016_j_jcp_2023_112018 crossref_primary_10_1016_j_renene_2022_09_090 crossref_primary_10_1177_09544062221079693 crossref_primary_10_1038_s41467_020_19086_0 crossref_primary_10_1088_1748_3190_ad1335 crossref_primary_10_1088_1748_3190_ac165e crossref_primary_10_1089_zeb_2019_1851 crossref_primary_10_1016_j_ast_2023_108737 crossref_primary_10_1080_24705357_2020_1869916 crossref_primary_10_1073_pnas_2019683118 crossref_primary_10_1038_s41598_022_16181_8 crossref_primary_10_1007_s42241_020_0077_2 crossref_primary_10_1007_s10409_024_23664_x crossref_primary_10_1016_j_oceaneng_2024_118538 crossref_primary_10_1016_j_jfluidstructs_2024_104175 crossref_primary_10_3390_pr11061861 crossref_primary_10_1017_jfm_2021_1045 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1800923115 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 29784820 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DOOOF DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YIF YIN YKV YSK ZCA ~02 ~KM 7X8 ADQXQ |
| ID | FETCH-LOGICAL-c545t-f0326cbc5764bb24596de36ee53da30e63a4191e4770d0ef84b80fd3f674a2d2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 328 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434114900031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Thu Oct 02 10:24:08 EDT 2025 Wed Feb 19 02:02:46 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | energy harvesting deep reinforcement learning autonomous navigation recurrent neural networks fish schooling |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c545t-f0326cbc5764bb24596de36ee53da30e63a4191e4770d0ef84b80fd3f674a2d2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8337-2122 0000-0002-8941-0633 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6003313 |
| PMID | 29784820 |
| PQID | 2042747821 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2042747821 pubmed_primary_29784820 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-05 |
| PublicationDateYYYYMMDD | 2018-06-05 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2018 |
| SSID | ssj0009580 |
| Score | 2.6864727 |
| Snippet | Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 5849 |
| SubjectTerms | Animals Behavior, Animal - physiology Biomechanical Phenomena Computer Simulation Fishes - physiology Learning - physiology Models, Biological Reinforcement, Psychology Spatial Navigation - physiology Swimming - physiology |
| Title | Efficient collective swimming by harnessing vortices through deep reinforcement learning |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29784820 https://www.proquest.com/docview/2042747821 |
| Volume | 115 |
| WOSCitedRecordID | wos000434114900031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleMhIDDAE3dhxnQgi1YoCqQ4WyVYkf0KFJaEoR_56z4woWJCSWSFEUJ7LPd993Pn2H0AVQBhPzyARUMmVbmMlAANAIwliSLCSSRq7a_fkxHgxEmiZDn3CrfVnl0ic6R61KaXPkQNKZJVAi7N5Wb4HtGmVPV30LjVXUovAFa9VxKn6I7opGjSDpBpwlZCntE9Obqsjq666wkkNWb-Z3fOniTH_rv3-4jTY9wsR3jUm00YoudlDb7-EaX3qh6atdlPacfgSEHWzNoXF9uP6YTKcQ0HD-iV-zmXWF9m5R2gFhAN_ZByutKzzTTnlVuiQj9i0oXvbQqN8b3T8EvtNCIAFBzQNDAMXJXAL5YHkesijhSlOudURVRonmNGNA7DSLY6KINoLlghhFDY9ZFqpwH60VZaEPEbZy9kZxwTQD4md4rhN4TkROVGZ4lHTQ-XLyxmDI9nQiK3T5Xo-_p6-DDpoVGFeN4sY4BK7LAKsc_eHtY7QBoEa4cq7oBLUMbGN9itblYj6pZ2fOQuA6GD59AeV5xn4 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+collective+swimming+by+harnessing+vortices+through+deep+reinforcement+learning&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Verma%2C+Siddhartha&rft.au=Novati%2C+Guido&rft.au=Koumoutsakos%2C+Petros&rft.date=2018-06-05&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=115&rft.issue=23&rft.spage=5849&rft_id=info:doi/10.1073%2Fpnas.1800923115&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |