Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP
Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel fusion protein, StyA2B, with a putative function in styrene metabolism via styrene oxide and phenylacetic acid. Gene cluster analysis indicated t...
Saved in:
| Published in: | Journal of bacteriology Vol. 191; no. 15; p. 4996 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.08.2009
|
| Subjects: | |
| ISSN: | 1098-5530, 1098-5530 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel fusion protein, StyA2B, with a putative function in styrene metabolism via styrene oxide and phenylacetic acid. Gene cluster analysis indicated that the highly related fusion proteins of Nocardia farcinica IFM10152 and Arthrobacter aurescens TC1 are involved in a similar physiological process. Whereas 413 amino acids of the N terminus of StyA2B are highly similar to those of the oxygenases of two-component styrene monooxygenases (SMOs) from pseudomonads, the residual 160 amino acids of the C terminus show significant homology to the flavin reductases of these systems. Cloning and functional expression of His(10)-StyA2B revealed for the first time that the fusion protein does in fact catalyze two separate reactions. Strictly NADH-dependent reduction of flavins and highly enantioselective oxygenation of styrene to (S)-styrene oxide were shown. Inhibition studies and photometric analysis of recombinant StyA2B indicated the absence of tightly bound heme and flavin cofactors in this self-sufficient monooxygenase. StyA2B oxygenates a spectrum of aromatic compounds similar to those of two-component SMOs. However, the specific activities of the flavin-reducing and styrene-oxidizing functions of StyA2B are one to two orders of magnitude lower than those of StyA/StyB from Pseudomonas sp. strain VLB120. |
|---|---|
| AbstractList | Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel fusion protein, StyA2B, with a putative function in styrene metabolism via styrene oxide and phenylacetic acid. Gene cluster analysis indicated that the highly related fusion proteins of Nocardia farcinica IFM10152 and Arthrobacter aurescens TC1 are involved in a similar physiological process. Whereas 413 amino acids of the N terminus of StyA2B are highly similar to those of the oxygenases of two-component styrene monooxygenases (SMOs) from pseudomonads, the residual 160 amino acids of the C terminus show significant homology to the flavin reductases of these systems. Cloning and functional expression of His(10)-StyA2B revealed for the first time that the fusion protein does in fact catalyze two separate reactions. Strictly NADH-dependent reduction of flavins and highly enantioselective oxygenation of styrene to (S)-styrene oxide were shown. Inhibition studies and photometric analysis of recombinant StyA2B indicated the absence of tightly bound heme and flavin cofactors in this self-sufficient monooxygenase. StyA2B oxygenates a spectrum of aromatic compounds similar to those of two-component SMOs. However, the specific activities of the flavin-reducing and styrene-oxidizing functions of StyA2B are one to two orders of magnitude lower than those of StyA/StyB from Pseudomonas sp. strain VLB120. Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel fusion protein, StyA2B, with a putative function in styrene metabolism via styrene oxide and phenylacetic acid. Gene cluster analysis indicated that the highly related fusion proteins of Nocardia farcinica IFM10152 and Arthrobacter aurescens TC1 are involved in a similar physiological process. Whereas 413 amino acids of the N terminus of StyA2B are highly similar to those of the oxygenases of two-component styrene monooxygenases (SMOs) from pseudomonads, the residual 160 amino acids of the C terminus show significant homology to the flavin reductases of these systems. Cloning and functional expression of His(10)-StyA2B revealed for the first time that the fusion protein does in fact catalyze two separate reactions. Strictly NADH-dependent reduction of flavins and highly enantioselective oxygenation of styrene to (S)-styrene oxide were shown. Inhibition studies and photometric analysis of recombinant StyA2B indicated the absence of tightly bound heme and flavin cofactors in this self-sufficient monooxygenase. StyA2B oxygenates a spectrum of aromatic compounds similar to those of two-component SMOs. However, the specific activities of the flavin-reducing and styrene-oxidizing functions of StyA2B are one to two orders of magnitude lower than those of StyA/StyB from Pseudomonas sp. strain VLB120.Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel fusion protein, StyA2B, with a putative function in styrene metabolism via styrene oxide and phenylacetic acid. Gene cluster analysis indicated that the highly related fusion proteins of Nocardia farcinica IFM10152 and Arthrobacter aurescens TC1 are involved in a similar physiological process. Whereas 413 amino acids of the N terminus of StyA2B are highly similar to those of the oxygenases of two-component styrene monooxygenases (SMOs) from pseudomonads, the residual 160 amino acids of the C terminus show significant homology to the flavin reductases of these systems. Cloning and functional expression of His(10)-StyA2B revealed for the first time that the fusion protein does in fact catalyze two separate reactions. Strictly NADH-dependent reduction of flavins and highly enantioselective oxygenation of styrene to (S)-styrene oxide were shown. Inhibition studies and photometric analysis of recombinant StyA2B indicated the absence of tightly bound heme and flavin cofactors in this self-sufficient monooxygenase. StyA2B oxygenates a spectrum of aromatic compounds similar to those of two-component SMOs. However, the specific activities of the flavin-reducing and styrene-oxidizing functions of StyA2B are one to two orders of magnitude lower than those of StyA/StyB from Pseudomonas sp. strain VLB120. |
| Author | van Berkel, Willem J H Schlömann, Michael Tischler, Dirk Eulberg, Dirk Lakner, Silvia Kaschabek, Stefan R |
| Author_xml | – sequence: 1 givenname: Dirk surname: Tischler fullname: Tischler, Dirk email: Dirk-Tischler@email.de organization: Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany. Dirk-Tischler@email.de – sequence: 2 givenname: Dirk surname: Eulberg fullname: Eulberg, Dirk – sequence: 3 givenname: Silvia surname: Lakner fullname: Lakner, Silvia – sequence: 4 givenname: Stefan R surname: Kaschabek fullname: Kaschabek, Stefan R – sequence: 5 givenname: Willem J H surname: van Berkel fullname: van Berkel, Willem J H – sequence: 6 givenname: Michael surname: Schlömann fullname: Schlömann, Michael |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19482928$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLw0AUhQep2Ieu3Mus3KXOM8kstVStFBTRlYswmdzRSDK3ZhKx_96KFVx9B87HWZwpGQUMQMgpZ3PORX5xdzVnTLIsYeaATDgzeaK1ZKN_eUymMb4zxpXS4oiMuVG5MCKfkJdVBaGvfe1sX2Og6KmlAT-hoREan8TB77p659DYbzsIQFsMiF_bVwg2AvUdtvTxDSt06NwQKW7sD_ji4ZgcettEONlzRp6vl0-L22R9f7NaXK4Tp5XukwqUsbJ0SsrcaaEcQJY6a6UABsZpW0qZphWvoHRGcqFkqbMy9UL61DhnxYyc_-5uOvwYIPZFW0cHTWMD4BCLNFOZyVOzE8_24lC2UBWbrm5tty3-7hDfxfJkbg |
| CitedBy_id | crossref_primary_10_1007_s00253_016_7782_3 crossref_primary_10_1128_JB_00723_10 crossref_primary_10_1371_journal_pone_0073350 crossref_primary_10_1007_s00203_014_1022_y crossref_primary_10_1371_journal_pone_0138798 crossref_primary_10_1039_C5CC07548C crossref_primary_10_1002_anie_202423117 crossref_primary_10_1002_cbic_201700653 crossref_primary_10_1016_j_biotechadv_2021_107712 crossref_primary_10_1007_s12010_020_03413_8 crossref_primary_10_1016_j_chemosphere_2023_138928 crossref_primary_10_1016_j_bcab_2021_102263 crossref_primary_10_1007_s11356_018_3718_z crossref_primary_10_1128_AEM_00154_18 crossref_primary_10_1128_AEM_07641_11 crossref_primary_10_1016_j_abb_2022_109123 crossref_primary_10_3389_fmicb_2022_1001750 crossref_primary_10_1007_s12010_012_9659_y crossref_primary_10_1007_s00253_019_10292_5 crossref_primary_10_1111_mmi_13852 crossref_primary_10_3390_biology7030042 crossref_primary_10_1016_j_watres_2024_122064 crossref_primary_10_3390_bioengineering9090432 crossref_primary_10_3390_ijms20194787 crossref_primary_10_1128_spectrum_01526_25 crossref_primary_10_1016_j_molcatb_2010_08_012 crossref_primary_10_3390_microorganisms8040554 crossref_primary_10_1186_1471_2164_13_534 crossref_primary_10_1016_j_mcat_2022_112680 crossref_primary_10_1128_Spectrum_00474_21 crossref_primary_10_1002_cctc_201901894 crossref_primary_10_1007_s12010_020_03421_8 crossref_primary_10_1016_j_chemosphere_2024_142489 crossref_primary_10_3390_molecules23040809 crossref_primary_10_1016_j_jbiotec_2012_06_028 crossref_primary_10_1099_ijsem_0_004863 crossref_primary_10_1016_j_febslet_2013_10_013 crossref_primary_10_1016_j_jbiosc_2011_08_028 crossref_primary_10_1515_hsz_2019_0109 crossref_primary_10_1007_s10482_012_9704_4 crossref_primary_10_1002_adsc_201100384 crossref_primary_10_1016_j_molcatb_2016_08_003 crossref_primary_10_1002_adsc_201400383 crossref_primary_10_1007_s12268_013_0277_1 crossref_primary_10_1128_AEM_01095_19 crossref_primary_10_1007_s12010_016_2384_1 crossref_primary_10_1016_j_scitotenv_2021_146184 crossref_primary_10_1039_C3CC49747J crossref_primary_10_3389_fmicb_2015_01073 crossref_primary_10_1016_j_molcatb_2016_04_012 crossref_primary_10_3390_app11177941 crossref_primary_10_3389_fmicb_2023_1127308 crossref_primary_10_1007_s12010_016_2304_4 crossref_primary_10_1128_AEM_01453_17 crossref_primary_10_3390_molecules26061514 crossref_primary_10_3390_microorganisms10081619 crossref_primary_10_3390_su12176740 crossref_primary_10_1039_c0cc04360e crossref_primary_10_1016_j_mcat_2018_04_015 crossref_primary_10_1039_D4RA00844H crossref_primary_10_1016_j_molcatb_2011_07_012 crossref_primary_10_1007_s00253_011_3849_3 crossref_primary_10_1016_j_abb_2013_12_005 crossref_primary_10_1080_07388551_2017_1355293 crossref_primary_10_1002_adsc_201100446 crossref_primary_10_1002_ange_202423117 crossref_primary_10_1002_cctc_201901353 crossref_primary_10_1111_1574_6968_12096 crossref_primary_10_1007_s00284_016_1055_3 crossref_primary_10_3390_catal10050568 crossref_primary_10_1016_j_bbapap_2017_09_004 crossref_primary_10_3389_fmicb_2022_812143 crossref_primary_10_3390_ijms20225809 crossref_primary_10_1002_cbic_202300833 crossref_primary_10_1016_j_ibiod_2017_01_027 crossref_primary_10_1074_jbc_M110_163881 crossref_primary_10_1186_s13068_023_02331_1 crossref_primary_10_1016_j_jhazmat_2018_12_068 crossref_primary_10_1002_cbic_202100643 crossref_primary_10_1016_j_biotechadv_2015_01_012 crossref_primary_10_1111_1574_6968_12616 crossref_primary_10_1146_annurev_chembioeng_092120_091054 crossref_primary_10_1016_j_tetasy_2012_09_017 crossref_primary_10_1002_jobm_201000032 crossref_primary_10_1016_j_enzmictec_2019_109391 crossref_primary_10_1016_j_jes_2022_06_025 crossref_primary_10_1186_s13568_015_0112_9 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1128/JB.00307-09 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1098-5530 |
| ExternalDocumentID | 19482928 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 186 18M 1VV 29J 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 79B 85S 8WZ 9M8 A6W AAGFI ABPPZ ACGFO ACGOD ACNCT ACPRK ADBBV ADXHL AENEX AFFDN AFFNX AFRAH AGCDD AGVNZ AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CGR CJ0 CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 L7B MVM NHB NPM O9- OHT OK1 P-O P-S P2P PQQKQ QZG RHI RNS RPM RSF RXW TAE TR2 UHB UKR UPT VH1 W8F WH7 WHG WOQ X7M Y6R YQT YR2 YZZ ZCA ZCG ZGI ZXP ZY4 ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c545t-de49a3bc4338c524cee76caa32e0e9c5ab3366d1debc931243b57b6f23f69cca2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 98 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000267937000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1098-5530 |
| IngestDate | Thu Oct 02 04:56:01 EDT 2025 Mon Jul 21 05:52:42 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c545t-de49a3bc4338c524cee76caa32e0e9c5ab3366d1debc931243b57b6f23f69cca2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://jb.asm.org/content/jb/191/15/4996.full.pdf |
| PMID | 19482928 |
| PQID | 67479869 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_67479869 pubmed_primary_19482928 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-08-01 |
| PublicationDateYYYYMMDD | 2009-08-01 |
| PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of bacteriology |
| PublicationTitleAlternate | J Bacteriol |
| PublicationYear | 2009 |
| References | 16140257 - Arch Biochem Biophys. 2005 Oct 1;442(1):102-16 3243435 - Gene. 1988 Dec 15;73(1):237-44 16905618 - Biophys J. 2006 Nov 1;91(9):3206-16 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 17275397 - Curr Opin Chem Biol. 2007 Apr;11(2):195-202 12209784 - Biotechnol Bioeng. 2002 Oct 5;80(1):33-41 15961029 - Curr Opin Biotechnol. 2005 Jun;16(3):282-90 15869268 - J Am Chem Soc. 2005 May 11;127(18):6540-1 9287340 - J Biol Chem. 1997 Sep 12;272(37):23303-11 17644649 - Appl Environ Microbiol. 2007 Sep;73(18):5832-9 12419614 - Trends Microbiol. 2002 Nov;10(11):502-8 16712999 - J Biotechnol. 2006 Aug 5;124(4):670-89 11590012 - Trends Biochem Sci. 2001 Oct;26(10):597-604 12218013 - J Bacteriol. 2002 Oct;184(19):5282-92 9495745 - J Bacteriol. 1998 Mar;180(5):1082-94 12038996 - Curr Opin Chem Biol. 2002 Apr;6(2):136-44 12837091 - J Am Chem Soc. 2003 Jul 9;125(27):8209-17 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 15347765 - Microbiology. 2004 Sep;150(Pt 9):3075-87 4852581 - Arch Microbiol. 1974;99(1):61-70 12968028 - J Biol Chem. 2003 Nov 28;278(48):47545-53 10068790 - Antonie Van Leeuwenhoek. 1998 Jul-Oct;74(1-3):71-82 10584075 - Proteins. 1999 Nov 1;37(2):303-9 2020552 - Nucleic Acids Res. 1991 Mar 11;19(5):1154 9361415 - Appl Environ Microbiol. 1997 Nov;63(11):4287-91 18183391 - Appl Microbiol Biotechnol. 2008 Mar;78(3):455-63 8660575 - Anal Biochem. 1996 Jun 1;237(2):260-73 17269701 - Biotechnol Prog. 2007 Jan-Feb;23(1):293-6 16607529 - Appl Microbiol Biotechnol. 2006 Oct;72(5):876-82 8077188 - J Biol Chem. 1994 Sep 9;269(36):22459-62 9172343 - Appl Environ Microbiol. 1997 Jun;63(6):2232-9 17023115 - Biochim Biophys Acta. 2007 Mar;1770(3):345-59 12076537 - Trends Biochem Sci. 2002 May;27(5):250-7 9396791 - Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 14703520 - J Biol Chem. 2004 Mar 26;279(13):12860-7 3804973 - J Bacteriol. 1987 Feb;169(2):699-703 7028434 - Drug Metab Rev. 1981;12(1):1-117 942051 - Anal Biochem. 1976 May 7;72:248-54 15688254 - Arch Microbiol. 2005 Feb;183(2):80-94 12142492 - Annu Rev Microbiol. 2002;56:743-68 2265755 - Gene. 1990 Nov 30;96(1):23-8 9748275 - J Biol Chem. 1998 Oct 2;273(40):25974-86 11172694 - Curr Med Chem. 2001 Mar;8(4):345-69 19286665 - J Biol Chem. 2009 May 1;284(18):11792-805 12413667 - FEMS Microbiol Rev. 2002 Nov;26(4):403-17 18224639 - Angew Chem Int Ed Engl. 2008;47(12):2275-8 3027047 - J Bacteriol. 1987 Feb;169(2):764-70 15292130 - J Bacteriol. 2004 Aug;186(16):5292-302 15196492 - Curr Opin Microbiol. 2004 Jun;7(3):255-61 8990288 - J Bacteriol. 1997 Jan;179(2):370-81 14597173 - Gene. 2003 Nov 13;319:71-83 9495744 - J Bacteriol. 1998 Mar;180(5):1072-81 3086309 - J Biol Chem. 1986 Jun 5;261(16):7160-9 |
| References_xml | – reference: 4852581 - Arch Microbiol. 1974;99(1):61-70 – reference: 15196492 - Curr Opin Microbiol. 2004 Jun;7(3):255-61 – reference: 3243435 - Gene. 1988 Dec 15;73(1):237-44 – reference: 14703520 - J Biol Chem. 2004 Mar 26;279(13):12860-7 – reference: 14597173 - Gene. 2003 Nov 13;319:71-83 – reference: 12038996 - Curr Opin Chem Biol. 2002 Apr;6(2):136-44 – reference: 8077188 - J Biol Chem. 1994 Sep 9;269(36):22459-62 – reference: 15688254 - Arch Microbiol. 2005 Feb;183(2):80-94 – reference: 12419614 - Trends Microbiol. 2002 Nov;10(11):502-8 – reference: 9287340 - J Biol Chem. 1997 Sep 12;272(37):23303-11 – reference: 17275397 - Curr Opin Chem Biol. 2007 Apr;11(2):195-202 – reference: 7028434 - Drug Metab Rev. 1981;12(1):1-117 – reference: 17269701 - Biotechnol Prog. 2007 Jan-Feb;23(1):293-6 – reference: 3086309 - J Biol Chem. 1986 Jun 5;261(16):7160-9 – reference: 9495745 - J Bacteriol. 1998 Mar;180(5):1082-94 – reference: 15869268 - J Am Chem Soc. 2005 May 11;127(18):6540-1 – reference: 9495744 - J Bacteriol. 1998 Mar;180(5):1072-81 – reference: 12076537 - Trends Biochem Sci. 2002 May;27(5):250-7 – reference: 11172694 - Curr Med Chem. 2001 Mar;8(4):345-69 – reference: 16607529 - Appl Microbiol Biotechnol. 2006 Oct;72(5):876-82 – reference: 18183391 - Appl Microbiol Biotechnol. 2008 Mar;78(3):455-63 – reference: 8990288 - J Bacteriol. 1997 Jan;179(2):370-81 – reference: 12413667 - FEMS Microbiol Rev. 2002 Nov;26(4):403-17 – reference: 3027047 - J Bacteriol. 1987 Feb;169(2):764-70 – reference: 3804973 - J Bacteriol. 1987 Feb;169(2):699-703 – reference: 12968028 - J Biol Chem. 2003 Nov 28;278(48):47545-53 – reference: 19286665 - J Biol Chem. 2009 May 1;284(18):11792-805 – reference: 15347765 - Microbiology. 2004 Sep;150(Pt 9):3075-87 – reference: 942051 - Anal Biochem. 1976 May 7;72:248-54 – reference: 2020552 - Nucleic Acids Res. 1991 Mar 11;19(5):1154 – reference: 18224639 - Angew Chem Int Ed Engl. 2008;47(12):2275-8 – reference: 12142492 - Annu Rev Microbiol. 2002;56:743-68 – reference: 15961029 - Curr Opin Biotechnol. 2005 Jun;16(3):282-90 – reference: 15292130 - J Bacteriol. 2004 Aug;186(16):5292-302 – reference: 9748275 - J Biol Chem. 1998 Oct 2;273(40):25974-86 – reference: 9396791 - Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 – reference: 17023115 - Biochim Biophys Acta. 2007 Mar;1770(3):345-59 – reference: 8660575 - Anal Biochem. 1996 Jun 1;237(2):260-73 – reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 – reference: 11590012 - Trends Biochem Sci. 2001 Oct;26(10):597-604 – reference: 16140257 - Arch Biochem Biophys. 2005 Oct 1;442(1):102-16 – reference: 12209784 - Biotechnol Bioeng. 2002 Oct 5;80(1):33-41 – reference: 17644649 - Appl Environ Microbiol. 2007 Sep;73(18):5832-9 – reference: 10584075 - Proteins. 1999 Nov 1;37(2):303-9 – reference: 9172343 - Appl Environ Microbiol. 1997 Jun;63(6):2232-9 – reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 – reference: 9361415 - Appl Environ Microbiol. 1997 Nov;63(11):4287-91 – reference: 16905618 - Biophys J. 2006 Nov 1;91(9):3206-16 – reference: 12218013 - J Bacteriol. 2002 Oct;184(19):5282-92 – reference: 16712999 - J Biotechnol. 2006 Aug 5;124(4):670-89 – reference: 12837091 - J Am Chem Soc. 2003 Jul 9;125(27):8209-17 – reference: 2265755 - Gene. 1990 Nov 30;96(1):23-8 – reference: 10068790 - Antonie Van Leeuwenhoek. 1998 Jul-Oct;74(1-3):71-82 |
| SSID | ssj0014452 |
| Score | 2.3251655 |
| Snippet | Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4996 |
| SubjectTerms | Bacterial Proteins - classification Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacterial Proteins - physiology Chromatography, High Pressure Liquid Epoxy Compounds - chemistry Epoxy Compounds - metabolism Gas Chromatography-Mass Spectrometry Genome, Bacterial - genetics Genome, Bacterial - physiology Models, Biological Molecular Sequence Data Oxygenases - classification Oxygenases - genetics Oxygenases - metabolism Oxygenases - physiology Phylogeny Recombinant Proteins - genetics Recombinant Proteins - metabolism Rhodococcus - enzymology Rhodococcus - genetics Rhodococcus - metabolism Styrene - chemistry Styrene - metabolism |
| Title | Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19482928 https://www.proquest.com/docview/67479869 |
| Volume | 191 |
| WOSCitedRecordID | wos000267937000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6qVfDi-1Gfe_C62mQf2QVBtFhEsBRRKHgIu5sNCiWppi323zubB9704CW5ZEOY_TLzzczODELn1DItLGfEd7cCB4UGRANQSOSUMAY4byLScthENBjI0UgNW-iqqYXxxyobnVgq6iS3PkZ-KYD3KinU9eSD-JlRPrdaD9BYQm0KRMZjOhr95BAY41WuU0nih-PU1XmgkC8fbi9KdJPuL8yytDD9jf992yZar5klvqmgsIVaLttGq9WsycUOeq1KctM6RofzFGuc5XM3xoUbp6SYlc0k4Blc-Mh05jC8OM-_FgAxMHXYF6LgpzdwY0GH2lmBvbsNt6A33EUv_bvn3j2pJysQ2BY-JYljSlNjGTiolocMLGUkrNY0dF2nLNeGUiGSIHHGKgoUgBoeGZGGNBUK9jzcQ8tZnrkDhBlzRnIuo5A5JqjWieQsDIDnsa42TnXQWSOzGJDr0xE6c_msiBupddB-JfZ4UjXYiAPFZKhCefjn2iO0VqV3_Im8Y9RO4Z91J2jFzqfvxedpCQi4DoaP35OXwR0 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+a+novel+self-sufficient+styrene+monooxygenase+from+Rhodococcus+opacus+1CP&rft.jtitle=Journal+of+bacteriology&rft.au=Tischler%2C+Dirk&rft.au=Eulberg%2C+Dirk&rft.au=Lakner%2C+Silvia&rft.au=Kaschabek%2C+Stefan+R&rft.date=2009-08-01&rft.eissn=1098-5530&rft.volume=191&rft.issue=15&rft.spage=4996&rft_id=info:doi/10.1128%2FJB.00307-09&rft_id=info%3Apmid%2F19482928&rft_id=info%3Apmid%2F19482928&rft.externalDocID=19482928 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5530&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5530&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5530&client=summon |