Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP

Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel fusion protein, StyA2B, with a putative function in styrene metabolism via styrene oxide and phenylacetic acid. Gene cluster analysis indicated t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bacteriology Vol. 191; no. 15; p. 4996
Main Authors: Tischler, Dirk, Eulberg, Dirk, Lakner, Silvia, Kaschabek, Stefan R, van Berkel, Willem J H, Schlömann, Michael
Format: Journal Article
Language:English
Published: United States 01.08.2009
Subjects:
ISSN:1098-5530, 1098-5530
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel fusion protein, StyA2B, with a putative function in styrene metabolism via styrene oxide and phenylacetic acid. Gene cluster analysis indicated that the highly related fusion proteins of Nocardia farcinica IFM10152 and Arthrobacter aurescens TC1 are involved in a similar physiological process. Whereas 413 amino acids of the N terminus of StyA2B are highly similar to those of the oxygenases of two-component styrene monooxygenases (SMOs) from pseudomonads, the residual 160 amino acids of the C terminus show significant homology to the flavin reductases of these systems. Cloning and functional expression of His(10)-StyA2B revealed for the first time that the fusion protein does in fact catalyze two separate reactions. Strictly NADH-dependent reduction of flavins and highly enantioselective oxygenation of styrene to (S)-styrene oxide were shown. Inhibition studies and photometric analysis of recombinant StyA2B indicated the absence of tightly bound heme and flavin cofactors in this self-sufficient monooxygenase. StyA2B oxygenates a spectrum of aromatic compounds similar to those of two-component SMOs. However, the specific activities of the flavin-reducing and styrene-oxidizing functions of StyA2B are one to two orders of magnitude lower than those of StyA/StyB from Pseudomonas sp. strain VLB120.
AbstractList Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel fusion protein, StyA2B, with a putative function in styrene metabolism via styrene oxide and phenylacetic acid. Gene cluster analysis indicated that the highly related fusion proteins of Nocardia farcinica IFM10152 and Arthrobacter aurescens TC1 are involved in a similar physiological process. Whereas 413 amino acids of the N terminus of StyA2B are highly similar to those of the oxygenases of two-component styrene monooxygenases (SMOs) from pseudomonads, the residual 160 amino acids of the C terminus show significant homology to the flavin reductases of these systems. Cloning and functional expression of His(10)-StyA2B revealed for the first time that the fusion protein does in fact catalyze two separate reactions. Strictly NADH-dependent reduction of flavins and highly enantioselective oxygenation of styrene to (S)-styrene oxide were shown. Inhibition studies and photometric analysis of recombinant StyA2B indicated the absence of tightly bound heme and flavin cofactors in this self-sufficient monooxygenase. StyA2B oxygenates a spectrum of aromatic compounds similar to those of two-component SMOs. However, the specific activities of the flavin-reducing and styrene-oxidizing functions of StyA2B are one to two orders of magnitude lower than those of StyA/StyB from Pseudomonas sp. strain VLB120.
Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel fusion protein, StyA2B, with a putative function in styrene metabolism via styrene oxide and phenylacetic acid. Gene cluster analysis indicated that the highly related fusion proteins of Nocardia farcinica IFM10152 and Arthrobacter aurescens TC1 are involved in a similar physiological process. Whereas 413 amino acids of the N terminus of StyA2B are highly similar to those of the oxygenases of two-component styrene monooxygenases (SMOs) from pseudomonads, the residual 160 amino acids of the C terminus show significant homology to the flavin reductases of these systems. Cloning and functional expression of His(10)-StyA2B revealed for the first time that the fusion protein does in fact catalyze two separate reactions. Strictly NADH-dependent reduction of flavins and highly enantioselective oxygenation of styrene to (S)-styrene oxide were shown. Inhibition studies and photometric analysis of recombinant StyA2B indicated the absence of tightly bound heme and flavin cofactors in this self-sufficient monooxygenase. StyA2B oxygenates a spectrum of aromatic compounds similar to those of two-component SMOs. However, the specific activities of the flavin-reducing and styrene-oxidizing functions of StyA2B are one to two orders of magnitude lower than those of StyA/StyB from Pseudomonas sp. strain VLB120.Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel fusion protein, StyA2B, with a putative function in styrene metabolism via styrene oxide and phenylacetic acid. Gene cluster analysis indicated that the highly related fusion proteins of Nocardia farcinica IFM10152 and Arthrobacter aurescens TC1 are involved in a similar physiological process. Whereas 413 amino acids of the N terminus of StyA2B are highly similar to those of the oxygenases of two-component styrene monooxygenases (SMOs) from pseudomonads, the residual 160 amino acids of the C terminus show significant homology to the flavin reductases of these systems. Cloning and functional expression of His(10)-StyA2B revealed for the first time that the fusion protein does in fact catalyze two separate reactions. Strictly NADH-dependent reduction of flavins and highly enantioselective oxygenation of styrene to (S)-styrene oxide were shown. Inhibition studies and photometric analysis of recombinant StyA2B indicated the absence of tightly bound heme and flavin cofactors in this self-sufficient monooxygenase. StyA2B oxygenates a spectrum of aromatic compounds similar to those of two-component SMOs. However, the specific activities of the flavin-reducing and styrene-oxidizing functions of StyA2B are one to two orders of magnitude lower than those of StyA/StyB from Pseudomonas sp. strain VLB120.
Author van Berkel, Willem J H
Schlömann, Michael
Tischler, Dirk
Eulberg, Dirk
Lakner, Silvia
Kaschabek, Stefan R
Author_xml – sequence: 1
  givenname: Dirk
  surname: Tischler
  fullname: Tischler, Dirk
  email: Dirk-Tischler@email.de
  organization: Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany. Dirk-Tischler@email.de
– sequence: 2
  givenname: Dirk
  surname: Eulberg
  fullname: Eulberg, Dirk
– sequence: 3
  givenname: Silvia
  surname: Lakner
  fullname: Lakner, Silvia
– sequence: 4
  givenname: Stefan R
  surname: Kaschabek
  fullname: Kaschabek, Stefan R
– sequence: 5
  givenname: Willem J H
  surname: van Berkel
  fullname: van Berkel, Willem J H
– sequence: 6
  givenname: Michael
  surname: Schlömann
  fullname: Schlömann, Michael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19482928$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLw0AUhQep2Ieu3Mus3KXOM8kstVStFBTRlYswmdzRSDK3ZhKx_96KFVx9B87HWZwpGQUMQMgpZ3PORX5xdzVnTLIsYeaATDgzeaK1ZKN_eUymMb4zxpXS4oiMuVG5MCKfkJdVBaGvfe1sX2Og6KmlAT-hoREan8TB77p659DYbzsIQFsMiF_bVwg2AvUdtvTxDSt06NwQKW7sD_ji4ZgcettEONlzRp6vl0-L22R9f7NaXK4Tp5XukwqUsbJ0SsrcaaEcQJY6a6UABsZpW0qZphWvoHRGcqFkqbMy9UL61DhnxYyc_-5uOvwYIPZFW0cHTWMD4BCLNFOZyVOzE8_24lC2UBWbrm5tty3-7hDfxfJkbg
CitedBy_id crossref_primary_10_1007_s00253_016_7782_3
crossref_primary_10_1128_JB_00723_10
crossref_primary_10_1371_journal_pone_0073350
crossref_primary_10_1007_s00203_014_1022_y
crossref_primary_10_1371_journal_pone_0138798
crossref_primary_10_1039_C5CC07548C
crossref_primary_10_1002_anie_202423117
crossref_primary_10_1002_cbic_201700653
crossref_primary_10_1016_j_biotechadv_2021_107712
crossref_primary_10_1007_s12010_020_03413_8
crossref_primary_10_1016_j_chemosphere_2023_138928
crossref_primary_10_1016_j_bcab_2021_102263
crossref_primary_10_1007_s11356_018_3718_z
crossref_primary_10_1128_AEM_00154_18
crossref_primary_10_1128_AEM_07641_11
crossref_primary_10_1016_j_abb_2022_109123
crossref_primary_10_3389_fmicb_2022_1001750
crossref_primary_10_1007_s12010_012_9659_y
crossref_primary_10_1007_s00253_019_10292_5
crossref_primary_10_1111_mmi_13852
crossref_primary_10_3390_biology7030042
crossref_primary_10_1016_j_watres_2024_122064
crossref_primary_10_3390_bioengineering9090432
crossref_primary_10_3390_ijms20194787
crossref_primary_10_1128_spectrum_01526_25
crossref_primary_10_1016_j_molcatb_2010_08_012
crossref_primary_10_3390_microorganisms8040554
crossref_primary_10_1186_1471_2164_13_534
crossref_primary_10_1016_j_mcat_2022_112680
crossref_primary_10_1128_Spectrum_00474_21
crossref_primary_10_1002_cctc_201901894
crossref_primary_10_1007_s12010_020_03421_8
crossref_primary_10_1016_j_chemosphere_2024_142489
crossref_primary_10_3390_molecules23040809
crossref_primary_10_1016_j_jbiotec_2012_06_028
crossref_primary_10_1099_ijsem_0_004863
crossref_primary_10_1016_j_febslet_2013_10_013
crossref_primary_10_1016_j_jbiosc_2011_08_028
crossref_primary_10_1515_hsz_2019_0109
crossref_primary_10_1007_s10482_012_9704_4
crossref_primary_10_1002_adsc_201100384
crossref_primary_10_1016_j_molcatb_2016_08_003
crossref_primary_10_1002_adsc_201400383
crossref_primary_10_1007_s12268_013_0277_1
crossref_primary_10_1128_AEM_01095_19
crossref_primary_10_1007_s12010_016_2384_1
crossref_primary_10_1016_j_scitotenv_2021_146184
crossref_primary_10_1039_C3CC49747J
crossref_primary_10_3389_fmicb_2015_01073
crossref_primary_10_1016_j_molcatb_2016_04_012
crossref_primary_10_3390_app11177941
crossref_primary_10_3389_fmicb_2023_1127308
crossref_primary_10_1007_s12010_016_2304_4
crossref_primary_10_1128_AEM_01453_17
crossref_primary_10_3390_molecules26061514
crossref_primary_10_3390_microorganisms10081619
crossref_primary_10_3390_su12176740
crossref_primary_10_1039_c0cc04360e
crossref_primary_10_1016_j_mcat_2018_04_015
crossref_primary_10_1039_D4RA00844H
crossref_primary_10_1016_j_molcatb_2011_07_012
crossref_primary_10_1007_s00253_011_3849_3
crossref_primary_10_1016_j_abb_2013_12_005
crossref_primary_10_1080_07388551_2017_1355293
crossref_primary_10_1002_adsc_201100446
crossref_primary_10_1002_ange_202423117
crossref_primary_10_1002_cctc_201901353
crossref_primary_10_1111_1574_6968_12096
crossref_primary_10_1007_s00284_016_1055_3
crossref_primary_10_3390_catal10050568
crossref_primary_10_1016_j_bbapap_2017_09_004
crossref_primary_10_3389_fmicb_2022_812143
crossref_primary_10_3390_ijms20225809
crossref_primary_10_1002_cbic_202300833
crossref_primary_10_1016_j_ibiod_2017_01_027
crossref_primary_10_1074_jbc_M110_163881
crossref_primary_10_1186_s13068_023_02331_1
crossref_primary_10_1016_j_jhazmat_2018_12_068
crossref_primary_10_1002_cbic_202100643
crossref_primary_10_1016_j_biotechadv_2015_01_012
crossref_primary_10_1111_1574_6968_12616
crossref_primary_10_1146_annurev_chembioeng_092120_091054
crossref_primary_10_1016_j_tetasy_2012_09_017
crossref_primary_10_1002_jobm_201000032
crossref_primary_10_1016_j_enzmictec_2019_109391
crossref_primary_10_1016_j_jes_2022_06_025
crossref_primary_10_1186_s13568_015_0112_9
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1128/JB.00307-09
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1098-5530
ExternalDocumentID 19482928
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
186
18M
1VV
29J
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
79B
85S
8WZ
9M8
A6W
AAGFI
ABPPZ
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
ADXHL
AENEX
AFFDN
AFFNX
AFRAH
AGCDD
AGVNZ
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CGR
CJ0
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
MVM
NHB
NPM
O9-
OHT
OK1
P-O
P-S
P2P
PQQKQ
QZG
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WHG
WOQ
X7M
Y6R
YQT
YR2
YZZ
ZCA
ZCG
ZGI
ZXP
ZY4
~02
~KM
7X8
ID FETCH-LOGICAL-c545t-de49a3bc4338c524cee76caa32e0e9c5ab3366d1debc931243b57b6f23f69cca2
IEDL.DBID 7X8
ISICitedReferencesCount 98
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000267937000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1098-5530
IngestDate Thu Oct 02 04:56:01 EDT 2025
Mon Jul 21 05:52:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-de49a3bc4338c524cee76caa32e0e9c5ab3366d1debc931243b57b6f23f69cca2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://jb.asm.org/content/jb/191/15/4996.full.pdf
PMID 19482928
PQID 67479869
PQPubID 23479
ParticipantIDs proquest_miscellaneous_67479869
pubmed_primary_19482928
PublicationCentury 2000
PublicationDate 2009-08-01
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2009
References 16140257 - Arch Biochem Biophys. 2005 Oct 1;442(1):102-16
3243435 - Gene. 1988 Dec 15;73(1):237-44
16905618 - Biophys J. 2006 Nov 1;91(9):3206-16
2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
17275397 - Curr Opin Chem Biol. 2007 Apr;11(2):195-202
12209784 - Biotechnol Bioeng. 2002 Oct 5;80(1):33-41
15961029 - Curr Opin Biotechnol. 2005 Jun;16(3):282-90
15869268 - J Am Chem Soc. 2005 May 11;127(18):6540-1
9287340 - J Biol Chem. 1997 Sep 12;272(37):23303-11
17644649 - Appl Environ Microbiol. 2007 Sep;73(18):5832-9
12419614 - Trends Microbiol. 2002 Nov;10(11):502-8
16712999 - J Biotechnol. 2006 Aug 5;124(4):670-89
11590012 - Trends Biochem Sci. 2001 Oct;26(10):597-604
12218013 - J Bacteriol. 2002 Oct;184(19):5282-92
9495745 - J Bacteriol. 1998 Mar;180(5):1082-94
12038996 - Curr Opin Chem Biol. 2002 Apr;6(2):136-44
12837091 - J Am Chem Soc. 2003 Jul 9;125(27):8209-17
9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
15347765 - Microbiology. 2004 Sep;150(Pt 9):3075-87
4852581 - Arch Microbiol. 1974;99(1):61-70
12968028 - J Biol Chem. 2003 Nov 28;278(48):47545-53
10068790 - Antonie Van Leeuwenhoek. 1998 Jul-Oct;74(1-3):71-82
10584075 - Proteins. 1999 Nov 1;37(2):303-9
2020552 - Nucleic Acids Res. 1991 Mar 11;19(5):1154
9361415 - Appl Environ Microbiol. 1997 Nov;63(11):4287-91
18183391 - Appl Microbiol Biotechnol. 2008 Mar;78(3):455-63
8660575 - Anal Biochem. 1996 Jun 1;237(2):260-73
17269701 - Biotechnol Prog. 2007 Jan-Feb;23(1):293-6
16607529 - Appl Microbiol Biotechnol. 2006 Oct;72(5):876-82
8077188 - J Biol Chem. 1994 Sep 9;269(36):22459-62
9172343 - Appl Environ Microbiol. 1997 Jun;63(6):2232-9
17023115 - Biochim Biophys Acta. 2007 Mar;1770(3):345-59
12076537 - Trends Biochem Sci. 2002 May;27(5):250-7
9396791 - Nucleic Acids Res. 1997 Dec 15;25(24):4876-82
14703520 - J Biol Chem. 2004 Mar 26;279(13):12860-7
3804973 - J Bacteriol. 1987 Feb;169(2):699-703
7028434 - Drug Metab Rev. 1981;12(1):1-117
942051 - Anal Biochem. 1976 May 7;72:248-54
15688254 - Arch Microbiol. 2005 Feb;183(2):80-94
12142492 - Annu Rev Microbiol. 2002;56:743-68
2265755 - Gene. 1990 Nov 30;96(1):23-8
9748275 - J Biol Chem. 1998 Oct 2;273(40):25974-86
11172694 - Curr Med Chem. 2001 Mar;8(4):345-69
19286665 - J Biol Chem. 2009 May 1;284(18):11792-805
12413667 - FEMS Microbiol Rev. 2002 Nov;26(4):403-17
18224639 - Angew Chem Int Ed Engl. 2008;47(12):2275-8
3027047 - J Bacteriol. 1987 Feb;169(2):764-70
15292130 - J Bacteriol. 2004 Aug;186(16):5292-302
15196492 - Curr Opin Microbiol. 2004 Jun;7(3):255-61
8990288 - J Bacteriol. 1997 Jan;179(2):370-81
14597173 - Gene. 2003 Nov 13;319:71-83
9495744 - J Bacteriol. 1998 Mar;180(5):1072-81
3086309 - J Biol Chem. 1986 Jun 5;261(16):7160-9
References_xml – reference: 4852581 - Arch Microbiol. 1974;99(1):61-70
– reference: 15196492 - Curr Opin Microbiol. 2004 Jun;7(3):255-61
– reference: 3243435 - Gene. 1988 Dec 15;73(1):237-44
– reference: 14703520 - J Biol Chem. 2004 Mar 26;279(13):12860-7
– reference: 14597173 - Gene. 2003 Nov 13;319:71-83
– reference: 12038996 - Curr Opin Chem Biol. 2002 Apr;6(2):136-44
– reference: 8077188 - J Biol Chem. 1994 Sep 9;269(36):22459-62
– reference: 15688254 - Arch Microbiol. 2005 Feb;183(2):80-94
– reference: 12419614 - Trends Microbiol. 2002 Nov;10(11):502-8
– reference: 9287340 - J Biol Chem. 1997 Sep 12;272(37):23303-11
– reference: 17275397 - Curr Opin Chem Biol. 2007 Apr;11(2):195-202
– reference: 7028434 - Drug Metab Rev. 1981;12(1):1-117
– reference: 17269701 - Biotechnol Prog. 2007 Jan-Feb;23(1):293-6
– reference: 3086309 - J Biol Chem. 1986 Jun 5;261(16):7160-9
– reference: 9495745 - J Bacteriol. 1998 Mar;180(5):1082-94
– reference: 15869268 - J Am Chem Soc. 2005 May 11;127(18):6540-1
– reference: 9495744 - J Bacteriol. 1998 Mar;180(5):1072-81
– reference: 12076537 - Trends Biochem Sci. 2002 May;27(5):250-7
– reference: 11172694 - Curr Med Chem. 2001 Mar;8(4):345-69
– reference: 16607529 - Appl Microbiol Biotechnol. 2006 Oct;72(5):876-82
– reference: 18183391 - Appl Microbiol Biotechnol. 2008 Mar;78(3):455-63
– reference: 8990288 - J Bacteriol. 1997 Jan;179(2):370-81
– reference: 12413667 - FEMS Microbiol Rev. 2002 Nov;26(4):403-17
– reference: 3027047 - J Bacteriol. 1987 Feb;169(2):764-70
– reference: 3804973 - J Bacteriol. 1987 Feb;169(2):699-703
– reference: 12968028 - J Biol Chem. 2003 Nov 28;278(48):47545-53
– reference: 19286665 - J Biol Chem. 2009 May 1;284(18):11792-805
– reference: 15347765 - Microbiology. 2004 Sep;150(Pt 9):3075-87
– reference: 942051 - Anal Biochem. 1976 May 7;72:248-54
– reference: 2020552 - Nucleic Acids Res. 1991 Mar 11;19(5):1154
– reference: 18224639 - Angew Chem Int Ed Engl. 2008;47(12):2275-8
– reference: 12142492 - Annu Rev Microbiol. 2002;56:743-68
– reference: 15961029 - Curr Opin Biotechnol. 2005 Jun;16(3):282-90
– reference: 15292130 - J Bacteriol. 2004 Aug;186(16):5292-302
– reference: 9748275 - J Biol Chem. 1998 Oct 2;273(40):25974-86
– reference: 9396791 - Nucleic Acids Res. 1997 Dec 15;25(24):4876-82
– reference: 17023115 - Biochim Biophys Acta. 2007 Mar;1770(3):345-59
– reference: 8660575 - Anal Biochem. 1996 Jun 1;237(2):260-73
– reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
– reference: 11590012 - Trends Biochem Sci. 2001 Oct;26(10):597-604
– reference: 16140257 - Arch Biochem Biophys. 2005 Oct 1;442(1):102-16
– reference: 12209784 - Biotechnol Bioeng. 2002 Oct 5;80(1):33-41
– reference: 17644649 - Appl Environ Microbiol. 2007 Sep;73(18):5832-9
– reference: 10584075 - Proteins. 1999 Nov 1;37(2):303-9
– reference: 9172343 - Appl Environ Microbiol. 1997 Jun;63(6):2232-9
– reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
– reference: 9361415 - Appl Environ Microbiol. 1997 Nov;63(11):4287-91
– reference: 16905618 - Biophys J. 2006 Nov 1;91(9):3206-16
– reference: 12218013 - J Bacteriol. 2002 Oct;184(19):5282-92
– reference: 16712999 - J Biotechnol. 2006 Aug 5;124(4):670-89
– reference: 12837091 - J Am Chem Soc. 2003 Jul 9;125(27):8209-17
– reference: 2265755 - Gene. 1990 Nov 30;96(1):23-8
– reference: 10068790 - Antonie Van Leeuwenhoek. 1998 Jul-Oct;74(1-3):71-82
SSID ssj0014452
Score 2.3251655
Snippet Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4996
SubjectTerms Bacterial Proteins - classification
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacterial Proteins - physiology
Chromatography, High Pressure Liquid
Epoxy Compounds - chemistry
Epoxy Compounds - metabolism
Gas Chromatography-Mass Spectrometry
Genome, Bacterial - genetics
Genome, Bacterial - physiology
Models, Biological
Molecular Sequence Data
Oxygenases - classification
Oxygenases - genetics
Oxygenases - metabolism
Oxygenases - physiology
Phylogeny
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Rhodococcus - enzymology
Rhodococcus - genetics
Rhodococcus - metabolism
Styrene - chemistry
Styrene - metabolism
Title Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP
URI https://www.ncbi.nlm.nih.gov/pubmed/19482928
https://www.proquest.com/docview/67479869
Volume 191
WOSCitedRecordID wos000267937000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6qVfDi-1Gfe_C62mQf2QVBtFhEsBRRKHgIu5sNCiWppi323zubB9704CW5ZEOY_TLzzczODELn1DItLGfEd7cCB4UGRANQSOSUMAY4byLScthENBjI0UgNW-iqqYXxxyobnVgq6iS3PkZ-KYD3KinU9eSD-JlRPrdaD9BYQm0KRMZjOhr95BAY41WuU0nih-PU1XmgkC8fbi9KdJPuL8yytDD9jf992yZar5klvqmgsIVaLttGq9WsycUOeq1KctM6RofzFGuc5XM3xoUbp6SYlc0k4Blc-Mh05jC8OM-_FgAxMHXYF6LgpzdwY0GH2lmBvbsNt6A33EUv_bvn3j2pJysQ2BY-JYljSlNjGTiolocMLGUkrNY0dF2nLNeGUiGSIHHGKgoUgBoeGZGGNBUK9jzcQ8tZnrkDhBlzRnIuo5A5JqjWieQsDIDnsa42TnXQWSOzGJDr0xE6c_msiBupddB-JfZ4UjXYiAPFZKhCefjn2iO0VqV3_Im8Y9RO4Z91J2jFzqfvxedpCQi4DoaP35OXwR0
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+a+novel+self-sufficient+styrene+monooxygenase+from+Rhodococcus+opacus+1CP&rft.jtitle=Journal+of+bacteriology&rft.au=Tischler%2C+Dirk&rft.au=Eulberg%2C+Dirk&rft.au=Lakner%2C+Silvia&rft.au=Kaschabek%2C+Stefan+R&rft.date=2009-08-01&rft.eissn=1098-5530&rft.volume=191&rft.issue=15&rft.spage=4996&rft_id=info:doi/10.1128%2FJB.00307-09&rft_id=info%3Apmid%2F19482928&rft_id=info%3Apmid%2F19482928&rft.externalDocID=19482928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5530&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5530&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5530&client=summon