Impact of existing vaccines in reducing antibiotic resistance: Primary and secondary effects
Vaccines impact antibiotic-resistant infections in two ways: through a direct reduction in the organisms and strains carrying resistant genes that are specifically targeted by the vaccine and also via a secondary effect through a reduction in febrile illnesses that often lead to the use of antibioti...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 115; H. 51; S. 12896 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
18.12.2018
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Vaccines impact antibiotic-resistant infections in two ways: through a direct reduction in the organisms and strains carrying resistant genes that are specifically targeted by the vaccine and also via a secondary effect through a reduction in febrile illnesses that often lead to the use of antibiotics. We review here the impact of pneumococcal conjugate vaccines (PCVs) on the prevalence of antibiotic-resistant disease and antibiotic usage as an example of the direct effect of vaccines on antibiotic resistance and the impact of influenza vaccination on antibiotic usage as an example of a secondary effect. A prelicensure study of a PCV in Africa demonstrated 67% fewer penicillin-resistant invasive disease episodes in the PCV group compared with controls. Similar studies in the United States and Europe demonstrated reductions in antibiotic use consistent with the vaccines' impact on the risk of otitis media infections in children. Postlicensure reductions in the circulation of antibiotic-resistant strains targeted by the vaccines have been dramatic, with virtual elimination of these strains in children following vaccine introduction. In terms of a secondary effect, following influenza vaccination reductions of 13-50% have been observed in the use of antibiotics by individuals receiving influenza vaccine compared with controls. With the demonstrated effectiveness of vaccination programs in impacting the risk of antibiotic-resistant infections and the increasing threat to public health that these infections represent, more attention needs to be given to development and utilization of vaccines to address antibiotic resistance. |
|---|---|
| AbstractList | Vaccines impact antibiotic-resistant infections in two ways: through a direct reduction in the organisms and strains carrying resistant genes that are specifically targeted by the vaccine and also via a secondary effect through a reduction in febrile illnesses that often lead to the use of antibiotics. We review here the impact of pneumococcal conjugate vaccines (PCVs) on the prevalence of antibiotic-resistant disease and antibiotic usage as an example of the direct effect of vaccines on antibiotic resistance and the impact of influenza vaccination on antibiotic usage as an example of a secondary effect. A prelicensure study of a PCV in Africa demonstrated 67% fewer penicillin-resistant invasive disease episodes in the PCV group compared with controls. Similar studies in the United States and Europe demonstrated reductions in antibiotic use consistent with the vaccines' impact on the risk of otitis media infections in children. Postlicensure reductions in the circulation of antibiotic-resistant strains targeted by the vaccines have been dramatic, with virtual elimination of these strains in children following vaccine introduction. In terms of a secondary effect, following influenza vaccination reductions of 13-50% have been observed in the use of antibiotics by individuals receiving influenza vaccine compared with controls. With the demonstrated effectiveness of vaccination programs in impacting the risk of antibiotic-resistant infections and the increasing threat to public health that these infections represent, more attention needs to be given to development and utilization of vaccines to address antibiotic resistance. Vaccines impact antibiotic-resistant infections in two ways: through a direct reduction in the organisms and strains carrying resistant genes that are specifically targeted by the vaccine and also via a secondary effect through a reduction in febrile illnesses that often lead to the use of antibiotics. We review here the impact of pneumococcal conjugate vaccines (PCVs) on the prevalence of antibiotic-resistant disease and antibiotic usage as an example of the direct effect of vaccines on antibiotic resistance and the impact of influenza vaccination on antibiotic usage as an example of a secondary effect. A prelicensure study of a PCV in Africa demonstrated 67% fewer penicillin-resistant invasive disease episodes in the PCV group compared with controls. Similar studies in the United States and Europe demonstrated reductions in antibiotic use consistent with the vaccines' impact on the risk of otitis media infections in children. Postlicensure reductions in the circulation of antibiotic-resistant strains targeted by the vaccines have been dramatic, with virtual elimination of these strains in children following vaccine introduction. In terms of a secondary effect, following influenza vaccination reductions of 13-50% have been observed in the use of antibiotics by individuals receiving influenza vaccine compared with controls. With the demonstrated effectiveness of vaccination programs in impacting the risk of antibiotic-resistant infections and the increasing threat to public health that these infections represent, more attention needs to be given to development and utilization of vaccines to address antibiotic resistance.Vaccines impact antibiotic-resistant infections in two ways: through a direct reduction in the organisms and strains carrying resistant genes that are specifically targeted by the vaccine and also via a secondary effect through a reduction in febrile illnesses that often lead to the use of antibiotics. We review here the impact of pneumococcal conjugate vaccines (PCVs) on the prevalence of antibiotic-resistant disease and antibiotic usage as an example of the direct effect of vaccines on antibiotic resistance and the impact of influenza vaccination on antibiotic usage as an example of a secondary effect. A prelicensure study of a PCV in Africa demonstrated 67% fewer penicillin-resistant invasive disease episodes in the PCV group compared with controls. Similar studies in the United States and Europe demonstrated reductions in antibiotic use consistent with the vaccines' impact on the risk of otitis media infections in children. Postlicensure reductions in the circulation of antibiotic-resistant strains targeted by the vaccines have been dramatic, with virtual elimination of these strains in children following vaccine introduction. In terms of a secondary effect, following influenza vaccination reductions of 13-50% have been observed in the use of antibiotics by individuals receiving influenza vaccine compared with controls. With the demonstrated effectiveness of vaccination programs in impacting the risk of antibiotic-resistant infections and the increasing threat to public health that these infections represent, more attention needs to be given to development and utilization of vaccines to address antibiotic resistance. |
| Author | Black, Steven Klugman, Keith P |
| Author_xml | – sequence: 1 givenname: Keith P surname: Klugman fullname: Klugman, Keith P organization: Pneumonia Program Strategy Team, Bill and Melinda Gates Foundation, Seattle, WA 98102 – sequence: 2 givenname: Steven surname: Black fullname: Black, Steven email: stevblack@gmail.com organization: Division of Infectious Diseases, Cincinnati Children's Hospital, Cincinnati, OH 45999 stevblack@gmail.com |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30559195$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkE1LxDAQhoOsuB969iY5eqkmadNuvMnix8KCHvQmlHQykcg2rU0q-u_Nsit4mneeeRiGmZOJ7zwScs7ZFWdVft17Ha54JThTknN5RGYp8awsFJv8y1MyD-GDsWQt2QmZ5kxKxZWckbd122uItLMUv12Izr_TLw3gPAbqPB3QjLCD2kfXuC46SCwkU3vAG_o8uFYPP2lsaEDovNl1aC1CDKfk2OptwLNDXZDX-7uX1WO2eXpYr243GchCxsyUSvOygapUqrICjbQGl8ZKkFAY2WisBKJtsKyshtwykzMuOGq5FAkpsSCX-7390H2OGGLdugC43WqP3RhqwZNZVCoXSb04qGPToqn7_f3130fEL03BZzw |
| CitedBy_id | crossref_primary_10_1093_cid_ciaa1308 crossref_primary_10_1186_s12917_025_04479_4 crossref_primary_10_1186_s12879_025_11082_3 crossref_primary_10_3390_antibiotics10050471 crossref_primary_10_1007_s00210_025_04165_0 crossref_primary_10_1099_mgen_0_000851 crossref_primary_10_1016_j_ijpharm_2021_120306 crossref_primary_10_1080_21645515_2024_2396707 crossref_primary_10_1016_j_meegid_2024_105606 crossref_primary_10_1016_S0140_6736_24_00878_X crossref_primary_10_1016_j_chembiol_2023_11_003 crossref_primary_10_1017_S0950268822000371 crossref_primary_10_1136_bmjgh_2020_002348 crossref_primary_10_1007_s40272_021_00468_w crossref_primary_10_1186_s12913_023_10174_7 crossref_primary_10_1186_s13756_023_01272_6 crossref_primary_10_1007_s11033_024_09870_2 crossref_primary_10_1002_vetr_2786 crossref_primary_10_1093_cid_ciaa269 crossref_primary_10_1099_mgen_0_000622 crossref_primary_10_1099_mgen_0_000506 crossref_primary_10_3390_pharmaceutics16040455 crossref_primary_10_1038_s41586_019_1656_7 crossref_primary_10_1017_S0950268821001254 crossref_primary_10_3389_fmicb_2020_01249 crossref_primary_10_1038_s41586_020_2238_4 crossref_primary_10_1080_00963402_2019_1680053 crossref_primary_10_3390_vaccines12080852 crossref_primary_10_1073_pnas_2004933118 crossref_primary_10_3390_microbiolres14030094 crossref_primary_10_1371_journal_pone_0219097 crossref_primary_10_1136_bmjgh_2020_004898 crossref_primary_10_1007_s11356_024_32853_6 crossref_primary_10_1128_IAI_00219_20 crossref_primary_10_1073_pnas_1717157115 crossref_primary_10_1093_ofid_ofad098 crossref_primary_10_4103_ijmm_IJMM_19_223 crossref_primary_10_3390_vaccines9111232 crossref_primary_10_1093_cid_ciab062 crossref_primary_10_1093_femsre_fuaa067 crossref_primary_10_1099_mgen_0_001444 crossref_primary_10_1016_j_vaccine_2020_09_048 crossref_primary_10_1016_S0987_7983_24_00156_7 crossref_primary_10_1093_infdis_jiad420 crossref_primary_10_1371_journal_pone_0269916 crossref_primary_10_1038_s41579_020_00506_3 crossref_primary_10_2217_fmb_2022_0052 crossref_primary_10_1080_14760584_2022_2021880 crossref_primary_10_1007_s10096_024_04968_8 crossref_primary_10_1073_pnas_2013515118 crossref_primary_10_3934_publichealth_2021045 crossref_primary_10_1099_mgen_0_000645 crossref_primary_10_3390_vaccines13090923 crossref_primary_10_1016_j_vaccine_2019_12_038 crossref_primary_10_3390_vaccines11091412 crossref_primary_10_22207_JPAM_19_2_01 crossref_primary_10_3389_fmars_2022_938742 crossref_primary_10_1111_1751_7915_14310 crossref_primary_10_1080_07853890_2020_1782460 crossref_primary_10_1093_ofid_ofac039 crossref_primary_10_3390_vaccines9050420 crossref_primary_10_1186_s12879_023_08453_z crossref_primary_10_1093_ofid_ofab063 crossref_primary_10_3390_vaccines10040554 crossref_primary_10_1016_j_apm_2024_06_042 crossref_primary_10_1093_cid_ciac811 crossref_primary_10_1080_14760584_2023_2256394 crossref_primary_10_1016_j_micpath_2020_104114 crossref_primary_10_1186_s12879_025_11080_5 crossref_primary_10_7774_cevr_2021_10_2_81 crossref_primary_10_1016_j_ijid_2023_08_002 crossref_primary_10_1016_j_ejim_2021_10_005 crossref_primary_10_1093_ofid_ofac420 crossref_primary_10_1093_cid_ciz517 crossref_primary_10_3390_microorganisms10010127 crossref_primary_10_1016_j_vaccine_2022_04_009 crossref_primary_10_4315_JFP_21_033 crossref_primary_10_1080_21645515_2022_2145069 crossref_primary_10_1038_s41598_024_54250_2 crossref_primary_10_1007_s10719_023_10100_3 crossref_primary_10_2147_IJGM_S409476 crossref_primary_10_3389_fimmu_2025_1652460 crossref_primary_10_1016_j_vaccine_2020_09_051 crossref_primary_10_1093_cid_ciab276 crossref_primary_10_1016_j_eimce_2025_03_007 crossref_primary_10_1080_21645515_2023_2215149 crossref_primary_10_1016_j_molstruc_2025_143640 crossref_primary_10_7554_eLife_64139 crossref_primary_10_1080_21645515_2022_2151291 crossref_primary_10_1186_s12916_021_02049_7 crossref_primary_10_1007_s00103_019_03066_x crossref_primary_10_1093_ofid_ofae307 crossref_primary_10_1016_j_emcon_2024_100440 crossref_primary_10_3390_vaccines8030505 crossref_primary_10_1093_cid_ciz484 crossref_primary_10_1186_s12929_019_0591_0 crossref_primary_10_2147_IDR_S531874 crossref_primary_10_3390_pharmacy8010044 crossref_primary_10_4102_jsava_v90i0_1765 crossref_primary_10_1038_s41467_021_23049_4 crossref_primary_10_1016_j_vaccine_2020_02_054 crossref_primary_10_1099_mgen_0_000831 crossref_primary_10_1016_S0140_6736_21_02724_0 crossref_primary_10_1093_cid_ciad562 crossref_primary_10_1016_j_diagmicrobio_2020_115282 crossref_primary_10_1186_s13073_021_00901_2 crossref_primary_10_3390_vaccines10122100 crossref_primary_10_1016_j_eimc_2025_01_002 crossref_primary_10_2478_am_2022_022 crossref_primary_10_3389_fmicb_2022_965572 crossref_primary_10_1038_s41541_020_00232_0 crossref_primary_10_2147_IDR_S544665 crossref_primary_10_1093_ofid_ofaa587 crossref_primary_10_3390_ijerph20116025 crossref_primary_10_1002_adma_202211717 crossref_primary_10_1371_journal_pone_0297041 crossref_primary_10_1080_21645515_2021_1942712 crossref_primary_10_1016_j_vaccine_2025_127455 crossref_primary_10_1007_s11033_025_10678_x crossref_primary_10_1126_scitranslmed_aaz8690 crossref_primary_10_3390_antibiotics12020274 crossref_primary_10_1186_s13756_022_01173_0 crossref_primary_10_3390_antibiotics12040780 crossref_primary_10_3390_antibiotics11020200 crossref_primary_10_1007_s00134_019_05862_0 crossref_primary_10_1016_j_ijid_2022_01_022 crossref_primary_10_3390_vaccines8020293 crossref_primary_10_1016_j_smim_2020_101423 crossref_primary_10_1016_j_vaccine_2020_06_040 crossref_primary_10_36290_vnl_2021_032 crossref_primary_10_7759_cureus_82064 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1721095115 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 30559195 |
| Genre | Journal Article Review |
| GeographicLocations | South Africa |
| GeographicLocations_xml | – name: South Africa |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c545t-d69a16bc76997f2ed5fde8df5c5c4d5bae72eefbe67fac3f0d30121ea58267f92 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 153 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453529800042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Sun Nov 09 11:51:49 EST 2025 Mon Jul 21 06:07:17 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 51 |
| Keywords | influenza vaccine antibiotic resistance vaccines pneumococcal vaccine |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c545t-d69a16bc76997f2ed5fde8df5c5c4d5bae72eefbe67fac3f0d30121ea58267f92 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.pnas.org/doi/10.1073/pnas.1721095115 |
| PMID | 30559195 |
| PQID | 2158247932 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2158247932 pubmed_primary_30559195 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-18 |
| PublicationDateYYYYMMDD | 2018-12-18 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-18 day: 18 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2018 |
| SSID | ssj0009580 |
| Score | 2.6281955 |
| SecondaryResourceType | review_article |
| Snippet | Vaccines impact antibiotic-resistant infections in two ways: through a direct reduction in the organisms and strains carrying resistant genes that are... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 12896 |
| SubjectTerms | Bacterial Infections - epidemiology Bacterial Infections - prevention & control Drug Resistance, Bacterial - drug effects Humans Influenza Vaccines - therapeutic use Pneumococcal Infections - epidemiology Pneumococcal Infections - prevention & control Pneumococcal Vaccines - therapeutic use South Africa - epidemiology |
| Title | Impact of existing vaccines in reducing antibiotic resistance: Primary and secondary effects |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30559195 https://www.proquest.com/docview/2158247932 |
| Volume | 115 |
| WOSCitedRecordID | wos000453529800042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQQPeqj2lSbxIiIuenDZg8IehJIn9NKu23V_vzNtF70IgpdCExqa6UzyZWb6DSEXTANs4JkKojhMg1SApQsuTJBJHhkntUiZb4pN8NFITCZy3Dnc6i6tcrkmNgu1rQz6yG9gaxIxuoHiu-lHgFWjMLraldBYJb0EoAxqNZ-IH6S7omUjkFGQpTJcUvvw5GZaqvoajz8IMSL2O75s9pnh1n_fcJtsdgiT3rcq0Scrrtwh_c6Ga3rZEU1f7ZL35-YXSVp5ioSYmABNF8pgqL2mRUlnSOuKjSD9QhcVDAhtNSJOGOqWjlumCui2tMaDtcW7LkNkj7wNH18fnoKu2kJgAEXNA5tJFWXa8ExK7mNnmbdOWM8MM6llWjkeO-e1y7hXJvGhTZAPzimYNTTJeJ-slVXpDgllSussiSNtDU-ZMyq0WqUAxGIFXcINyPlSgjloM4YoVOmqzzr_luGAHLSfIZ-2k8mRm0xGkh394eljsgHIRmDeSSROSM-DLbtTsm4W86KenTVqAtfR-OULcpHJdQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+existing+vaccines+in+reducing+antibiotic+resistance%3A+Primary+and+secondary+effects&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Klugman%2C+Keith+P&rft.au=Black%2C+Steven&rft.date=2018-12-18&rft.eissn=1091-6490&rft.volume=115&rft.issue=51&rft.spage=12896&rft_id=info:doi/10.1073%2Fpnas.1721095115&rft_id=info%3Apmid%2F30559195&rft_id=info%3Apmid%2F30559195&rft.externalDocID=30559195 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |