Musical training sharpens and bonds ears and tongue to hear speech better

The idea that musical training improves speech perception in challenging listening environments is appealing and of clinical importance, yet the mechanisms of any such musician advantage are not well specified. Here, using functional magnetic resonance imaging (fMRI), we found that musicians outperf...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 51; p. 13579
Main Authors: Du, Yi, Zatorre, Robert J
Format: Journal Article
Language:English
Published: United States 19.12.2017
Subjects:
ISSN:1091-6490, 1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The idea that musical training improves speech perception in challenging listening environments is appealing and of clinical importance, yet the mechanisms of any such musician advantage are not well specified. Here, using functional magnetic resonance imaging (fMRI), we found that musicians outperformed nonmusicians in identifying syllables at varying signal-to-noise ratios (SNRs), which was associated with stronger activation of the left inferior frontal and right auditory regions in musicians compared with nonmusicians. Moreover, musicians showed greater specificity of phoneme representations in bilateral auditory and speech motor regions (e.g., premotor cortex) at higher SNRs and in the left speech motor regions at lower SNRs, as determined by multivoxel pattern analysis. Musical training also enhanced the intrahemispheric and interhemispheric functional connectivity between auditory and speech motor regions. Our findings suggest that improved speech in noise perception in musicians relies on stronger recruitment of, finer phonological representations in, and stronger functional connectivity between auditory and frontal speech motor cortices in both hemispheres, regions involved in bottom-up spectrotemporal analyses and top-down articulatory prediction and sensorimotor integration, respectively.
AbstractList The idea that musical training improves speech perception in challenging listening environments is appealing and of clinical importance, yet the mechanisms of any such musician advantage are not well specified. Here, using functional magnetic resonance imaging (fMRI), we found that musicians outperformed nonmusicians in identifying syllables at varying signal-to-noise ratios (SNRs), which was associated with stronger activation of the left inferior frontal and right auditory regions in musicians compared with nonmusicians. Moreover, musicians showed greater specificity of phoneme representations in bilateral auditory and speech motor regions (e.g., premotor cortex) at higher SNRs and in the left speech motor regions at lower SNRs, as determined by multivoxel pattern analysis. Musical training also enhanced the intrahemispheric and interhemispheric functional connectivity between auditory and speech motor regions. Our findings suggest that improved speech in noise perception in musicians relies on stronger recruitment of, finer phonological representations in, and stronger functional connectivity between auditory and frontal speech motor cortices in both hemispheres, regions involved in bottom-up spectrotemporal analyses and top-down articulatory prediction and sensorimotor integration, respectively.
The idea that musical training improves speech perception in challenging listening environments is appealing and of clinical importance, yet the mechanisms of any such musician advantage are not well specified. Here, using functional magnetic resonance imaging (fMRI), we found that musicians outperformed nonmusicians in identifying syllables at varying signal-to-noise ratios (SNRs), which was associated with stronger activation of the left inferior frontal and right auditory regions in musicians compared with nonmusicians. Moreover, musicians showed greater specificity of phoneme representations in bilateral auditory and speech motor regions (e.g., premotor cortex) at higher SNRs and in the left speech motor regions at lower SNRs, as determined by multivoxel pattern analysis. Musical training also enhanced the intrahemispheric and interhemispheric functional connectivity between auditory and speech motor regions. Our findings suggest that improved speech in noise perception in musicians relies on stronger recruitment of, finer phonological representations in, and stronger functional connectivity between auditory and frontal speech motor cortices in both hemispheres, regions involved in bottom-up spectrotemporal analyses and top-down articulatory prediction and sensorimotor integration, respectively.The idea that musical training improves speech perception in challenging listening environments is appealing and of clinical importance, yet the mechanisms of any such musician advantage are not well specified. Here, using functional magnetic resonance imaging (fMRI), we found that musicians outperformed nonmusicians in identifying syllables at varying signal-to-noise ratios (SNRs), which was associated with stronger activation of the left inferior frontal and right auditory regions in musicians compared with nonmusicians. Moreover, musicians showed greater specificity of phoneme representations in bilateral auditory and speech motor regions (e.g., premotor cortex) at higher SNRs and in the left speech motor regions at lower SNRs, as determined by multivoxel pattern analysis. Musical training also enhanced the intrahemispheric and interhemispheric functional connectivity between auditory and speech motor regions. Our findings suggest that improved speech in noise perception in musicians relies on stronger recruitment of, finer phonological representations in, and stronger functional connectivity between auditory and frontal speech motor cortices in both hemispheres, regions involved in bottom-up spectrotemporal analyses and top-down articulatory prediction and sensorimotor integration, respectively.
Author Zatorre, Robert J
Du, Yi
Author_xml – sequence: 1
  givenname: Yi
  surname: Du
  fullname: Du, Yi
  email: duyi@psych.ac.cn
  organization: Department of Psychology, University of Chinese Academy of Sciences, Beijing, China 100049
– sequence: 2
  givenname: Robert J
  surname: Zatorre
  fullname: Zatorre, Robert J
  organization: International Laboratory for Brain, Music and Sound Research, Montréal, QC, Canada H3A 2B4
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29203648$$D View this record in MEDLINE/PubMed
BookMark eNpNjz1PwzAYhC1URD9gZkMeWVJe27Edj6jio1IRC8yR7bxpg1In2MnAvydSi8T03J1OJ92SzEIXkJBbBmsGWjz0waY104xzLhjLL8iCgWGZyg3M_uk5Wab0BQBGFnBF5txwECovFmT7NqbG25YO0TahCXuaDjb2GBK1oaKuC1WiaOPJDl3YjziBHqaMph7RH6jDYcB4TS5r2ya8OXNFPp-fPjav2e79Zbt53GVe5nLInEKlnM7RK-FrL6UWRtSWA7NOe547aSSTfroDFrRmINBIq6raSRTeIV-R-9NuH7vvEdNQHpvksW1twG5MJTNaAFdQFFP17lwd3RGrso_N0caf8u8-_wW4Pl44
CitedBy_id crossref_primary_10_1097_AUD_0000000000000921
crossref_primary_10_1016_j_heares_2018_03_004
crossref_primary_10_1371_journal_pone_0305969
crossref_primary_10_1038_s41467_025_62155_5
crossref_primary_10_1007_s12264_024_01234_x
crossref_primary_10_1016_j_jvoice_2023_01_008
crossref_primary_10_1177_1747021819888982
crossref_primary_10_3389_fnins_2021_696240
crossref_primary_10_1016_j_heares_2023_108770
crossref_primary_10_1525_mp_2022_39_3_309
crossref_primary_10_1038_s44271_023_00053_6
crossref_primary_10_1016_j_cortex_2024_02_011
crossref_primary_10_3390_audiolres14040052
crossref_primary_10_17979_digilec_2022_9_0_8779
crossref_primary_10_1371_journal_pone_0207265
crossref_primary_10_3389_fpsyg_2021_623787
crossref_primary_10_7759_cureus_14587
crossref_primary_10_1002_hbm_70199
crossref_primary_10_3389_fnins_2018_00495
crossref_primary_10_1007_s00429_021_02433_2
crossref_primary_10_1093_cercor_bhad543
crossref_primary_10_1371_journal_pone_0318600
crossref_primary_10_1097_MD_0000000000009628
crossref_primary_10_3389_fpsyg_2020_01927
crossref_primary_10_1016_j_neuroimage_2022_119311
crossref_primary_10_3758_s13423_021_01933_w
crossref_primary_10_1007_s00221_020_05765_3
crossref_primary_10_1159_000515136
crossref_primary_10_1038_s41598_020_60609_y
crossref_primary_10_3389_fnins_2019_00199
crossref_primary_10_1016_j_cognition_2023_105405
crossref_primary_10_1038_s41598_018_27126_5
crossref_primary_10_1016_j_cnp_2025_08_002
crossref_primary_10_1177_0305735618804038
crossref_primary_10_1016_j_heares_2022_108442
crossref_primary_10_1177_17470218231172494
crossref_primary_10_3758_s13423_022_02076_2
crossref_primary_10_1111_psyp_14371
crossref_primary_10_1007_s11682_024_00883_w
crossref_primary_10_1002_hbm_25416
crossref_primary_10_3389_fnins_2018_00121
crossref_primary_10_3390_diagnostics13050934
crossref_primary_10_1016_j_bandl_2019_104645
crossref_primary_10_1093_cercor_bhac302
crossref_primary_10_3390_healthcare11142027
crossref_primary_10_1093_cercor_bhab063
crossref_primary_10_1038_s41598_022_20869_2
crossref_primary_10_1111_nyas_15315
crossref_primary_10_1162_jocn_a_02275
crossref_primary_10_1016_j_neurobiolaging_2019_05_015
crossref_primary_10_3389_fnins_2025_1580045
crossref_primary_10_1162_IMAG_a_75
crossref_primary_10_1525_mp_2018_36_2_156
crossref_primary_10_1162_nol_a_00013
crossref_primary_10_1525_mp_2025_2327968
crossref_primary_10_3389_fpsyg_2025_1538511
crossref_primary_10_1007_s11571_022_09924_w
crossref_primary_10_1016_j_bbr_2020_112662
crossref_primary_10_1016_j_chb_2024_108468
crossref_primary_10_1016_j_bandl_2021_105006
crossref_primary_10_1146_annurev_psych_032323_051354
crossref_primary_10_1097_AUD_0000000000000754
crossref_primary_10_1093_cercor_bhad056
crossref_primary_10_1523_JNEUROSCI_0932_20_2020
crossref_primary_10_1080_23279095_2025_2520473
crossref_primary_10_3389_fnins_2021_764342
crossref_primary_10_1111_nyas_14810
crossref_primary_10_3389_fpsyg_2025_1505694
crossref_primary_10_1073_pnas_1811793115
crossref_primary_10_1525_mp_2024_42_1_73
crossref_primary_10_1093_cercor_bhy193
crossref_primary_10_3390_brainsci10100695
crossref_primary_10_1097_j_pain_0000000000003749
crossref_primary_10_1111_ejn_70100
crossref_primary_10_1371_journal_pbio_3003247
crossref_primary_10_3758_s13415_024_01195_8
crossref_primary_10_1016_j_tics_2018_08_003
crossref_primary_10_1177_20592043221140524
crossref_primary_10_1016_j_neuroimage_2021_118544
crossref_primary_10_1080_14992027_2019_1623424
crossref_primary_10_1177_03057356241261371
crossref_primary_10_1016_j_neuroimage_2020_117396
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1712223114
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
Music
EISSN 1091-6490
ExternalDocumentID 29203648
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c545t-b6e66b74ec63cfc557393fa201ab7c24b59515c2310a077103e95a6dfb5e3cbe2
IEDL.DBID 7X8
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418321600077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Sep 04 15:48:13 EDT 2025
Mon Jul 21 05:48:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords functional connectivity
musical training
multivoxel pattern classification
speech in noise perception
auditory–motor integration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-b6e66b74ec63cfc557393fa201ab7c24b59515c2310a077103e95a6dfb5e3cbe2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://ir.psych.ac.cn/handle/311026/22268
PMID 29203648
PQID 1973026088
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1973026088
pubmed_primary_29203648
PublicationCentury 2000
PublicationDate 2017-12-19
PublicationDateYYYYMMDD 2017-12-19
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
References 26399909 - Sci Rep. 2015 Sep 24;5:14489
23141061 - Neuron. 2012 Nov 8;76(3):486-502
24890664 - Eur J Neurosci. 2014 Aug;40(4):2662-73
27684369 - PLoS One. 2016 Sep 29;11(9):e0163380
24179219 - Science. 2013 Nov 1;342(6158):585-9
27166170 - Cereb Cortex. 2017 May 1;27(5):2768-2778
21871571 - Neuroimage. 2012 Jan 16;59(2):1200-8
28890684 - Front Neurosci. 2017 Aug 25;11:479
22484411 - Neuroimage. 2012 Jul 16;61(4):1277-86
19073623 - Cereb Cortex. 2009 Jul;19(7):1583-96
23831039 - Hear Res. 2014 Feb;308:162-73
21241645 - J Am Acad Audiol. 2010 Oct;21(9):575-85
21779271 - Front Psychol. 2011 Jul 07;2:156
20547229 - Neuroimage. 2010 Oct 15;53(1):1-15
21924359 - Neuroimage. 2012 Feb 1;59(3):2636-43
22524346 - Ann N Y Acad Sci. 2012 Apr;1252:100-7
28213134 - Hear Res. 2017 Sep;352:49-69
16162673 - Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14110-5
21716636 - Front Psychol. 2011 Jun 13;2:113
27483187 - Nat Commun. 2016 Aug 02;7:12241
17675590 - J Speech Lang Hear Res. 2007 Aug;50(4):844-56
25618067 - J Acoust Soc Am. 2015 Jan;137(1):378-87
12965041 - J Cogn Neurosci. 2003 Jul 1;15(5):673-82
17215391 - J Neurosci. 2007 Jan 10;27(2):308-14
26139842 - Cereb Cortex. 2016 Jul;26(7):3125-34
25773614 - Ann N Y Acad Sci. 2015 Mar;1337:32-9
26112910 - Sci Rep. 2015 Jun 26;5:11628
19734788 - Ear Hear. 2009 Dec;30(6):653-61
21747773 - Front Psychol. 2011 Jun 29;2:142
24489819 - PLoS One. 2014 Jan 28;9(1):e86980
25390195 - J Cogn Neurosci. 2015 May;27(5):1044-59
14534258 - J Neurosci. 2003 Oct 8;23(27):9240-5
27821280 - Brain Lang. 2017 Jan;164:77-105
17585307 - Nat Rev Neurosci. 2007 Jul;8(7):547-58
21706013 - Nat Methods. 2011 Jun 26;8(8):665-70
21645541 - Neurosci Biobehav Rev. 2011 Nov;35(10):2046-57
21910546 - Psychol Aging. 2012 Jun;27(2):410-7
20648064 - Nat Rev Neurosci. 2010 Aug;11(8):599-605
24778251 - Proc Natl Acad Sci U S A. 2014 May 13;111(19):7126-31
17431404 - Nat Rev Neurosci. 2007 May;8(5):393-402
25646513 - Philos Trans R Soc Lond B Biol Sci. 2015 Mar 19;370(1664):20140090
References_xml – reference: 28213134 - Hear Res. 2017 Sep;352:49-69
– reference: 26139842 - Cereb Cortex. 2016 Jul;26(7):3125-34
– reference: 14534258 - J Neurosci. 2003 Oct 8;23(27):9240-5
– reference: 21706013 - Nat Methods. 2011 Jun 26;8(8):665-70
– reference: 17215391 - J Neurosci. 2007 Jan 10;27(2):308-14
– reference: 27166170 - Cereb Cortex. 2017 May 1;27(5):2768-2778
– reference: 17431404 - Nat Rev Neurosci. 2007 May;8(5):393-402
– reference: 24179219 - Science. 2013 Nov 1;342(6158):585-9
– reference: 27684369 - PLoS One. 2016 Sep 29;11(9):e0163380
– reference: 17675590 - J Speech Lang Hear Res. 2007 Aug;50(4):844-56
– reference: 26112910 - Sci Rep. 2015 Jun 26;5:11628
– reference: 21716636 - Front Psychol. 2011 Jun 13;2:113
– reference: 19073623 - Cereb Cortex. 2009 Jul;19(7):1583-96
– reference: 25390195 - J Cogn Neurosci. 2015 May;27(5):1044-59
– reference: 16162673 - Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14110-5
– reference: 17585307 - Nat Rev Neurosci. 2007 Jul;8(7):547-58
– reference: 21924359 - Neuroimage. 2012 Feb 1;59(3):2636-43
– reference: 23141061 - Neuron. 2012 Nov 8;76(3):486-502
– reference: 21871571 - Neuroimage. 2012 Jan 16;59(2):1200-8
– reference: 27483187 - Nat Commun. 2016 Aug 02;7:12241
– reference: 24489819 - PLoS One. 2014 Jan 28;9(1):e86980
– reference: 27821280 - Brain Lang. 2017 Jan;164:77-105
– reference: 21645541 - Neurosci Biobehav Rev. 2011 Nov;35(10):2046-57
– reference: 22484411 - Neuroimage. 2012 Jul 16;61(4):1277-86
– reference: 24778251 - Proc Natl Acad Sci U S A. 2014 May 13;111(19):7126-31
– reference: 25618067 - J Acoust Soc Am. 2015 Jan;137(1):378-87
– reference: 24890664 - Eur J Neurosci. 2014 Aug;40(4):2662-73
– reference: 21910546 - Psychol Aging. 2012 Jun;27(2):410-7
– reference: 20648064 - Nat Rev Neurosci. 2010 Aug;11(8):599-605
– reference: 25773614 - Ann N Y Acad Sci. 2015 Mar;1337:32-9
– reference: 20547229 - Neuroimage. 2010 Oct 15;53(1):1-15
– reference: 25646513 - Philos Trans R Soc Lond B Biol Sci. 2015 Mar 19;370(1664):20140090
– reference: 12965041 - J Cogn Neurosci. 2003 Jul 1;15(5):673-82
– reference: 26399909 - Sci Rep. 2015 Sep 24;5:14489
– reference: 19734788 - Ear Hear. 2009 Dec;30(6):653-61
– reference: 28890684 - Front Neurosci. 2017 Aug 25;11:479
– reference: 21779271 - Front Psychol. 2011 Jul 07;2:156
– reference: 22524346 - Ann N Y Acad Sci. 2012 Apr;1252:100-7
– reference: 21747773 - Front Psychol. 2011 Jun 29;2:142
– reference: 23831039 - Hear Res. 2014 Feb;308:162-73
– reference: 21241645 - J Am Acad Audiol. 2010 Oct;21(9):575-85
SSID ssj0009580
Score 2.5574968
Snippet The idea that musical training improves speech perception in challenging listening environments is appealing and of clinical importance, yet the mechanisms of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 13579
SubjectTerms Adult
Brain - diagnostic imaging
Brain - physiology
Case-Control Studies
Connectome
Female
Humans
Male
Music
Noise
Speech Perception
Title Musical training sharpens and bonds ears and tongue to hear speech better
URI https://www.ncbi.nlm.nih.gov/pubmed/29203648
https://www.proquest.com/docview/1973026088
Volume 114
WOSCitedRecordID wos000418321600077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctoAwsQHmWl4zEAINpHceOMyGEqGCg6gBSt8hPypIW3PL5OechWJCQWBJFSqTodOf72WffH6ELYG4vvaREJd7DBCXjRCsviTEJE8LIRJlabCIbjeRkko-bBbfQbKtsx8RqoLYzE9fI-zQHXwT4lvJm_k6ialSsrjYSGquowwBlYmBmE_mj6a6suxHklIg0H7StfTLWn5cqXNOMxvRI4xGe3_iyyjPDrf_-4TbabAgT39Yu0UUrrtxB3SaGA75sGk1f7aLHSuQZ3m11InCYxnJMGbAqLdaz0gYMkVA_AiS-Lh3ccBTBxmHunJliXR0H2kMvw_vnuwfSSCsQA8i0IFo4IXSWOiOY8Ybz2BjPK6ABpTOTpJoDeXET4U8NMqAQ5nKuhPWaO2a0S_bRWjkr3SHC2ipLjU1ya3XK2EB6pjnMcVOubaqp7qHz1lwFuG6sR6jSzZah-DZYDx3UNi_mdY-NIopoMZHKoz98fYw2kphsaUJofoI6HgLXnaJ187l4Cx9nlU_AdTR--gLLQMFQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Musical+training+sharpens+and+bonds+ears+and+tongue+to+hear+speech+better&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Du%2C+Yi&rft.au=Zatorre%2C+Robert+J&rft.date=2017-12-19&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=114&rft.issue=51&rft.spage=13579&rft_id=info:doi/10.1073%2Fpnas.1712223114&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon