Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR

Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 113; H. 9; S. E1152
Hauptverfasser: Stevers, Loes M, Lam, Chan V, Leysen, Seppe F R, Meijer, Femke A, van Scheppingen, Daphne S, de Vries, Rens M J M, Carlile, Graeme W, Milroy, Lech G, Thomas, David Y, Brunsveld, Luc, Ottmann, Christian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.03.2016
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics.
AbstractList Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics.Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics.
Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics.
Author Milroy, Lech G
Carlile, Graeme W
Lam, Chan V
Brunsveld, Luc
Leysen, Seppe F R
Ottmann, Christian
de Vries, Rens M J M
Stevers, Loes M
Meijer, Femke A
Thomas, David Y
van Scheppingen, Daphne S
Author_xml – sequence: 1
  givenname: Loes M
  surname: Stevers
  fullname: Stevers, Loes M
  organization: Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
– sequence: 2
  givenname: Chan V
  surname: Lam
  fullname: Lam, Chan V
  organization: Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
– sequence: 3
  givenname: Seppe F R
  surname: Leysen
  fullname: Leysen, Seppe F R
  organization: Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
– sequence: 4
  givenname: Femke A
  surname: Meijer
  fullname: Meijer, Femke A
  organization: Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
– sequence: 5
  givenname: Daphne S
  surname: van Scheppingen
  fullname: van Scheppingen, Daphne S
  organization: Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
– sequence: 6
  givenname: Rens M J M
  surname: de Vries
  fullname: de Vries, Rens M J M
  organization: Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
– sequence: 7
  givenname: Graeme W
  surname: Carlile
  fullname: Carlile, Graeme W
  organization: Cystic Fibrosis Translational Research Centre, Department of Biochemistry, McGill University, Montreal, QC, Canada, H3G 1Y6
– sequence: 8
  givenname: Lech G
  surname: Milroy
  fullname: Milroy, Lech G
  organization: Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
– sequence: 9
  givenname: David Y
  surname: Thomas
  fullname: Thomas, David Y
  organization: Cystic Fibrosis Translational Research Centre, Department of Biochemistry, McGill University, Montreal, QC, Canada, H3G 1Y6
– sequence: 10
  givenname: Luc
  surname: Brunsveld
  fullname: Brunsveld, Luc
  organization: Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
– sequence: 11
  givenname: Christian
  surname: Ottmann
  fullname: Ottmann, Christian
  email: c.ottmann@tue.nl
  organization: Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Department of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany c.ottmann@tue.nl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26888287$$D View this record in MEDLINE/PubMed
BookMark eNpNkDtPwzAYRS1URB8wsyGPLCm2k_gxoooCUiWkqsyR7XyhRo5TYkeo_HpKKRLTvcM5d7hTNApdAISuKZlTIvK7XdBxTkvKeU4pzc_QhBJFM14oMvrXx2ga4zshRJWSXKAx41JKJsUE7Rdb3WuboHdfOrkuYB1qHFvtfdZ2HuzgAcekjfN_QNfgtAXcDj656BLgdFCgxcaF2oU3bCB9AgRMiyzP8uPeD7_Gdddqd_QXy836Ep032ke4OuUMvS4fNounbPXy-Ly4X2W2LMqUKckMbxgQ0lgL2jDTFHV-aJoXXBqlVMOkLEVd1FwYURMNQqm8KSzh3FJgM3T7u7vru48BYqpaFy14rwN0Q6yoEIRRUXJ6QG9O6GBaqKtd71rd76u_u9g3tENvhw
CitedBy_id crossref_primary_10_1039_D0SC05838F
crossref_primary_10_1016_j_chembiol_2021_05_009
crossref_primary_10_1016_j_cbpa_2022_102169
crossref_primary_10_1002_ange_201701807
crossref_primary_10_1007_s00044_022_02882_2
crossref_primary_10_1016_j_nbd_2023_106166
crossref_primary_10_3390_ijms20143518
crossref_primary_10_1007_s00018_016_2388_6
crossref_primary_10_1016_j_jbc_2021_100551
crossref_primary_10_1038_s41467_019_08317_8
crossref_primary_10_1002_cbic_202300163
crossref_primary_10_1039_D1SC02120F
crossref_primary_10_1016_j_bmc_2022_117020
crossref_primary_10_3389_fphar_2024_1476331
crossref_primary_10_1002_1873_3468_12723
crossref_primary_10_1074_jbc_RA120_014708
crossref_primary_10_1016_j_ejmech_2017_04_058
crossref_primary_10_1016_j_phrs_2017_09_007
crossref_primary_10_1016_j_jmb_2021_167174
crossref_primary_10_1016_j_bmc_2016_03_023
crossref_primary_10_1039_C6CP04137J
crossref_primary_10_1021_jacs_3c05161
crossref_primary_10_1016_j_phrs_2020_105236
crossref_primary_10_1038_s41467_024_53277_3
crossref_primary_10_1074_jbc_RA117_000897
crossref_primary_10_1038_s41531_021_00230_6
crossref_primary_10_1073_pnas_1717560115
crossref_primary_10_4103_1673_5374_211176
crossref_primary_10_1002_cmdc_202400543
crossref_primary_10_1002_ange_201705476
crossref_primary_10_1007_s00425_018_3051_2
crossref_primary_10_3389_fmolb_2022_1016071
crossref_primary_10_1038_s41467_021_21908_8
crossref_primary_10_1038_s41467_022_31206_6
crossref_primary_10_1016_j_jbc_2025_108416
crossref_primary_10_1016_j_bmcl_2018_04_046
crossref_primary_10_3390_ijms241310538
crossref_primary_10_1016_j_jsb_2020_107662
crossref_primary_10_1016_j_jbc_2024_105651
crossref_primary_10_1016_j_plaphy_2018_02_013
crossref_primary_10_1134_S0006297924603319
crossref_primary_10_1039_C8SC05242E
crossref_primary_10_1126_science_aay0543
crossref_primary_10_3389_fphar_2021_689205
crossref_primary_10_1021_jacs_0c02151
crossref_primary_10_1002_anie_201705476
crossref_primary_10_1021_jacs_4c13462
crossref_primary_10_1371_journal_pone_0178933
crossref_primary_10_1107_S2053230X2001122X
crossref_primary_10_1016_j_chembiol_2020_02_010
crossref_primary_10_1371_journal_pone_0268335
crossref_primary_10_1155_2017_1529402
crossref_primary_10_1002_ange_201806584
crossref_primary_10_1016_j_jmb_2024_168592
crossref_primary_10_3390_ijms21072407
crossref_primary_10_1038_s42003_021_02518_y
crossref_primary_10_1042_BCJ20200084
crossref_primary_10_1016_j_exer_2018_02_022
crossref_primary_10_4103_ajprhc_ajprhc_186_24
crossref_primary_10_1016_j_bbrc_2023_02_013
crossref_primary_10_1002_prot_26300
crossref_primary_10_1016_j_arr_2024_102572
crossref_primary_10_1002_anie_201701807
crossref_primary_10_1016_j_bmcl_2018_01_030
crossref_primary_10_1021_jacs_8b09618
crossref_primary_10_1128_mbio_01008_25
crossref_primary_10_1080_14728222_2019_1628948
crossref_primary_10_3389_fmolb_2021_749052
crossref_primary_10_1021_jacs_4c11102
crossref_primary_10_1073_pnas_1722437115
crossref_primary_10_1093_bib_bbac127
crossref_primary_10_1039_C7CC90258A
crossref_primary_10_1042_BCJ20161078
crossref_primary_10_1002_humu_23941
crossref_primary_10_1107_S2053230X21006658
crossref_primary_10_3389_fmolb_2022_1043673
crossref_primary_10_1016_j_ejmech_2023_115950
crossref_primary_10_1080_07391102_2019_1692073
crossref_primary_10_1021_jacs_7b07939
crossref_primary_10_1021_jacs_1c03035
crossref_primary_10_1016_j_jmb_2021_166875
crossref_primary_10_1038_s41598_019_50941_3
crossref_primary_10_1111_febs_16433
crossref_primary_10_1002_anie_201806584
crossref_primary_10_1002_cbic_202000761
crossref_primary_10_1002_chem_201801074
crossref_primary_10_1016_j_jbc_2023_104855
crossref_primary_10_1016_j_jmb_2017_11_010
crossref_primary_10_1016_j_neuron_2017_02_018
crossref_primary_10_1091_mbc_E18_07_0415
crossref_primary_10_1002_cbic_202400214
crossref_primary_10_1016_j_ddtec_2017_10_004
crossref_primary_10_1074_jbc_RA120_013756
crossref_primary_10_1002_cbic_202300636
crossref_primary_10_1007_s12013_022_01067_3
crossref_primary_10_3390_molecules23061386
crossref_primary_10_1002_1873_3468_13993
crossref_primary_10_3390_biom11091393
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1516631113
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 26888287
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c545t-982b6f2e00fcceab2bf4d3ceaa6468b999f28857d4d67b7d0ae7993f4c066c1e2
IEDL.DBID 7X8
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000371204500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 12:25:53 EDT 2025
Thu Apr 03 07:02:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords protein–protein interaction
multivalency
disordered protein
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-982b6f2e00fcceab2bf4d3ceaa6468b999f28857d4d67b7d0ae7993f4c066c1e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1073/pnas.1516631113
PMID 26888287
PQID 1770217561
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1770217561
pubmed_primary_26888287
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
References 11146634 - Nat Cell Biol. 2001 Jan;3(1):100-5
24550932 - Front Genet. 2014 Feb 03;5:10
12606564 - EMBO J. 2003 Mar 3;22(5):987-94
17289589 - Mol Cell. 2007 Feb 9;25(3):427-40
16678438 - Semin Cancer Biol. 2006 Jun;16(3):162-72
8929531 - Cell. 1996 Nov 15;87(4):619-28
22649097 - Sci Signal. 2012 May 29;5(226):ra39
25495366 - J Womens Health (Larchmt). 2014 Dec;23(12):1012-20
23481256 - EMBO J. 2013 Apr 3;32(7):926-37
24351927 - Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E34-43
16972791 - Biol Chem. 2006 Sep;387(9):1227-36
20141511 - Biochem J. 2010 Apr 1;427(1):69-78
20057044 - Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21
10488331 - Mol Cell. 1999 Aug;4(2):153-66
1699669 - Cell. 1990 Nov 16;63(4):827-34
20124692 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32
23666117 - Nat Chem Biol. 2013 Jul;9(7):444-54
23210482 - ACS Chem Biol. 2013 Jan 18;8(1):27-35
10836149 - Annu Rev Pharmacol Toxicol. 2000;40:617-47
12140255 - J Cell Sci. 2002 Aug 15;115(Pt 16):3235-40
19662078 - EMBO Rep. 2009 Sep;10(9):983-9
9428519 - Cell. 1997 Dec 26;91(7):961-71
24191035 - Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):E4427-36
18096515 - Biochem Biophys Res Commun. 2008 Feb 22;366(4):1025-9
17291132 - Paediatr Drugs. 2007;9(1):1-10
16157656 - Exp Physiol. 2006 Jan;91(1):123-9
23793146 - Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1204-14
20206173 - FEBS Lett. 2010 Apr 16;584(8):1443-8
15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
19019741 - J Cyst Fibros. 2009 Mar;8(2):115-21
24631642 - Int J Biochem Cell Biol. 2014 Jul;52:94-102
17235285 - EMBO J. 2007 Feb 7;26(3):902-13
22151054 - FEBS J. 2012 Feb;279(4):563-71
19461840 - J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674
16369096 - Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82
12437930 - Cell. 2002 Nov 15;111(4):577-88
2772657 - Science. 1989 Sep 8;245(4922):1059-65
15857577 - Cell Res. 2005 Apr;15(4):228-36
15888700 - N Engl J Med. 2005 May 12;352(19):1992-2001
25440716 - Trends Biochem Sci. 2014 Nov;39(11):556-69
17497613 - Chembiochem. 2007 Jun 18;8(9):1012-20
22278744 - Mol Biol Cell. 2012 Mar;23(6):996-1009
17085597 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17237-42
20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
25939886 - Biochem J. 2015 Jul 1;469(1):107-20
11911880 - FEBS Lett. 2002 Feb 20;513(1):53-7
12007216 - Hum Mutat. 2002 Jun;19(6):575-606
23568668 - IUBMB Life. 2013 Jun;65(6):513-7
25559843 - Pflugers Arch. 2015 May;467(5):1105-20
16403219 - BMC Cell Biol. 2006;7:1
21983031 - Semin Cell Dev Biol. 2011 Sep;22(7):705-12
20400943 - Nature. 2010 May 6;465(7294):101-5
11237748 - Biochem Biophys Res Commun. 2001 Mar 9;281(4):917-23
18463090 - Mol Cell Proteomics. 2008 Sep;7(9):1598-608
References_xml – reference: 12140255 - J Cell Sci. 2002 Aug 15;115(Pt 16):3235-40
– reference: 16157656 - Exp Physiol. 2006 Jan;91(1):123-9
– reference: 25559843 - Pflugers Arch. 2015 May;467(5):1105-20
– reference: 18096515 - Biochem Biophys Res Commun. 2008 Feb 22;366(4):1025-9
– reference: 10836149 - Annu Rev Pharmacol Toxicol. 2000;40:617-47
– reference: 20141511 - Biochem J. 2010 Apr 1;427(1):69-78
– reference: 21983031 - Semin Cell Dev Biol. 2011 Sep;22(7):705-12
– reference: 18463090 - Mol Cell Proteomics. 2008 Sep;7(9):1598-608
– reference: 15857577 - Cell Res. 2005 Apr;15(4):228-36
– reference: 16369096 - Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82
– reference: 22649097 - Sci Signal. 2012 May 29;5(226):ra39
– reference: 19019741 - J Cyst Fibros. 2009 Mar;8(2):115-21
– reference: 22151054 - FEBS J. 2012 Feb;279(4):563-71
– reference: 24631642 - Int J Biochem Cell Biol. 2014 Jul;52:94-102
– reference: 25440716 - Trends Biochem Sci. 2014 Nov;39(11):556-69
– reference: 20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
– reference: 19461840 - J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674
– reference: 17291132 - Paediatr Drugs. 2007;9(1):1-10
– reference: 11146634 - Nat Cell Biol. 2001 Jan;3(1):100-5
– reference: 24351927 - Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E34-43
– reference: 1699669 - Cell. 1990 Nov 16;63(4):827-34
– reference: 16403219 - BMC Cell Biol. 2006;7:1
– reference: 25939886 - Biochem J. 2015 Jul 1;469(1):107-20
– reference: 16678438 - Semin Cancer Biol. 2006 Jun;16(3):162-72
– reference: 23666117 - Nat Chem Biol. 2013 Jul;9(7):444-54
– reference: 2772657 - Science. 1989 Sep 8;245(4922):1059-65
– reference: 19662078 - EMBO Rep. 2009 Sep;10(9):983-9
– reference: 20206173 - FEBS Lett. 2010 Apr 16;584(8):1443-8
– reference: 17289589 - Mol Cell. 2007 Feb 9;25(3):427-40
– reference: 23568668 - IUBMB Life. 2013 Jun;65(6):513-7
– reference: 12007216 - Hum Mutat. 2002 Jun;19(6):575-606
– reference: 24191035 - Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):E4427-36
– reference: 10488331 - Mol Cell. 1999 Aug;4(2):153-66
– reference: 17085597 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17237-42
– reference: 25495366 - J Womens Health (Larchmt). 2014 Dec;23(12):1012-20
– reference: 23210482 - ACS Chem Biol. 2013 Jan 18;8(1):27-35
– reference: 20057044 - Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21
– reference: 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
– reference: 20124692 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32
– reference: 17235285 - EMBO J. 2007 Feb 7;26(3):902-13
– reference: 17497613 - Chembiochem. 2007 Jun 18;8(9):1012-20
– reference: 8929531 - Cell. 1996 Nov 15;87(4):619-28
– reference: 22278744 - Mol Biol Cell. 2012 Mar;23(6):996-1009
– reference: 15888700 - N Engl J Med. 2005 May 12;352(19):1992-2001
– reference: 12606564 - EMBO J. 2003 Mar 3;22(5):987-94
– reference: 11911880 - FEBS Lett. 2002 Feb 20;513(1):53-7
– reference: 16972791 - Biol Chem. 2006 Sep;387(9):1227-36
– reference: 12437930 - Cell. 2002 Nov 15;111(4):577-88
– reference: 11237748 - Biochem Biophys Res Commun. 2001 Mar 9;281(4):917-23
– reference: 20400943 - Nature. 2010 May 6;465(7294):101-5
– reference: 9428519 - Cell. 1997 Dec 26;91(7):961-71
– reference: 24550932 - Front Genet. 2014 Feb 03;5:10
– reference: 23793146 - Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1204-14
– reference: 23481256 - EMBO J. 2013 Apr 3;32(7):926-37
SSID ssj0009580
Score 2.5275435
Snippet Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage E1152
SubjectTerms 14-3-3 Proteins - chemistry
14-3-3 Proteins - metabolism
Amino Acid Sequence
Binding Sites
Calorimetry
Cystic Fibrosis Transmembrane Conductance Regulator - chemistry
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Models, Molecular
Molecular Sequence Data
Title Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR
URI https://www.ncbi.nlm.nih.gov/pubmed/26888287
https://www.proquest.com/docview/1770217561
Volume 113
WOSCitedRecordID wos000371204500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA_qPHhR53O-iOBBD9G2SZPmJDIcXhxjTNitNGkCg7WdVgX_e7-0mXoRBC-lhyQtX77HL_leCF1wziy1WpNYypwwHSuSWJBHqqjlwD9M56ppNiGGw2Q6lSN_4Vb7sMqlTmwUdV5pd0d-Ewrh4DOY-9vFM3Fdo5x31bfQWEUdClDGcbWYJj-K7iZtNQIZEs5ksCztI-jNoszqa7B2YHBds_Xf8WVjZwZb__3DbbTpESa-a1mii1ZMuYO6XoZrfOkLTV_too_-V7XmNhkTZ2WO6yKbz0nRts01GNCji5_1AyqLATHiJgzRfRe7mwhTYDVrsmOwD_vCISOU0GY9N36M86rIZs38_mAy3kNPg_tJ_4H4VgxEA8R6JTKJFLeRCQLYV5OpyMX3UXjLOOOJApRpoySJRc5yLpTIg8wIQD6WaYA0OjTRPlorq9IcuiRxLa3h0kpjAR5YBbpaKRFR51BlcdRD50vypsDqzn-RlaZ6q9NvAvfQQbtH6aKtyZFGHI7ycPo7-sPsY7QBsIe3kWQnqGNB0M0pWtfvQLqXs4aH4DkcPX4CiNjR6A
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+and+small-molecule+stabilization+of+the+multisite+tandem+binding+between+14-3-3+and+the+R+domain+of+CFTR&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Stevers%2C+Loes+M&rft.au=Lam%2C+Chan+V&rft.au=Leysen%2C+Seppe+F+R&rft.au=Meijer%2C+Femke+A&rft.date=2016-03-01&rft.eissn=1091-6490&rft.volume=113&rft.issue=9&rft.spage=E1152&rft_id=info:doi/10.1073%2Fpnas.1516631113&rft_id=info%3Apmid%2F26888287&rft_id=info%3Apmid%2F26888287&rft.externalDocID=26888287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon