Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence

Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 113; H. 26; S. E3686
Hauptverfasser: Keum, Dongil, Kruse, Martin, Kim, Dong-Il, Hille, Bertil, Suh, Byung-Chang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 28.06.2016
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2 and probably PI(3,4,5)P3 as well as 5-phosphate from phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 in response to membrane depolarization. Recent proposals say these reactions have differing voltage dependence. Using Förster resonance energy transfer probes specific for different PIs in living cells with zebrafish VSP, we quantitate both voltage-dependent 5- and 3-phosphatase subreactions against endogenous substrates. These activities become apparent with different voltage thresholds, voltage sensitivities, and catalytic rates. As an analytical tool, we refine a kinetic model that includes the endogenous pools of phosphoinositides, endogenous phosphatase and kinase reactions connecting them, and four exogenous voltage-dependent 5- and 3-phosphatase subreactions of VSP. We show that apparent voltage threshold differences for seeing effects of the 5- and 3-phosphatase activities in cells are not due to different intrinsic voltage dependence of these reactions. Rather, the reactions have a common voltage dependence, and apparent differences arise only because each VSP subreaction has a different absolute catalytic rate that begins to surpass the respective endogenous enzyme activities at different voltages. For zebrafish VSP, our modeling revealed that 3-phosphatase activity against PI(3,4,5)P3 is 55-fold slower than 5-phosphatase activity against PI(4,5)P2; thus, PI(4,5)P2 generated more slowly from dephosphorylating PI(3,4,5)P3 might never accumulate. When 5-phosphatase activity was counteracted by coexpression of a phosphatidylinositol 4-phosphate 5-kinase, there was accumulation of PI(4,5)P2 in parallel to PI(3,4,5)P3 dephosphorylation, emphasizing that VSPs can cleave the 3-phosphate of PI(3,4,5)P3.
AbstractList Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2 and probably PI(3,4,5)P3 as well as 5-phosphate from phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 in response to membrane depolarization. Recent proposals say these reactions have differing voltage dependence. Using Förster resonance energy transfer probes specific for different PIs in living cells with zebrafish VSP, we quantitate both voltage-dependent 5- and 3-phosphatase subreactions against endogenous substrates. These activities become apparent with different voltage thresholds, voltage sensitivities, and catalytic rates. As an analytical tool, we refine a kinetic model that includes the endogenous pools of phosphoinositides, endogenous phosphatase and kinase reactions connecting them, and four exogenous voltage-dependent 5- and 3-phosphatase subreactions of VSP. We show that apparent voltage threshold differences for seeing effects of the 5- and 3-phosphatase activities in cells are not due to different intrinsic voltage dependence of these reactions. Rather, the reactions have a common voltage dependence, and apparent differences arise only because each VSP subreaction has a different absolute catalytic rate that begins to surpass the respective endogenous enzyme activities at different voltages. For zebrafish VSP, our modeling revealed that 3-phosphatase activity against PI(3,4,5)P3 is 55-fold slower than 5-phosphatase activity against PI(4,5)P2; thus, PI(4,5)P2 generated more slowly from dephosphorylating PI(3,4,5)P3 might never accumulate. When 5-phosphatase activity was counteracted by coexpression of a phosphatidylinositol 4-phosphate 5-kinase, there was accumulation of PI(4,5)P2 in parallel to PI(3,4,5)P3 dephosphorylation, emphasizing that VSPs can cleave the 3-phosphate of PI(3,4,5)P3.
Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2 and probably PI(3,4,5)P3 as well as 5-phosphate from phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 in response to membrane depolarization. Recent proposals say these reactions have differing voltage dependence. Using Förster resonance energy transfer probes specific for different PIs in living cells with zebrafish VSP, we quantitate both voltage-dependent 5- and 3-phosphatase subreactions against endogenous substrates. These activities become apparent with different voltage thresholds, voltage sensitivities, and catalytic rates. As an analytical tool, we refine a kinetic model that includes the endogenous pools of phosphoinositides, endogenous phosphatase and kinase reactions connecting them, and four exogenous voltage-dependent 5- and 3-phosphatase subreactions of VSP. We show that apparent voltage threshold differences for seeing effects of the 5- and 3-phosphatase activities in cells are not due to different intrinsic voltage dependence of these reactions. Rather, the reactions have a common voltage dependence, and apparent differences arise only because each VSP subreaction has a different absolute catalytic rate that begins to surpass the respective endogenous enzyme activities at different voltages. For zebrafish VSP, our modeling revealed that 3-phosphatase activity against PI(3,4,5)P3 is 55-fold slower than 5-phosphatase activity against PI(4,5)P2; thus, PI(4,5)P2 generated more slowly from dephosphorylating PI(3,4,5)P3 might never accumulate. When 5-phosphatase activity was counteracted by coexpression of a phosphatidylinositol 4-phosphate 5-kinase, there was accumulation of PI(4,5)P2 in parallel to PI(3,4,5)P3 dephosphorylation, emphasizing that VSPs can cleave the 3-phosphate of PI(3,4,5)P3.Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2 and probably PI(3,4,5)P3 as well as 5-phosphate from phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 in response to membrane depolarization. Recent proposals say these reactions have differing voltage dependence. Using Förster resonance energy transfer probes specific for different PIs in living cells with zebrafish VSP, we quantitate both voltage-dependent 5- and 3-phosphatase subreactions against endogenous substrates. These activities become apparent with different voltage thresholds, voltage sensitivities, and catalytic rates. As an analytical tool, we refine a kinetic model that includes the endogenous pools of phosphoinositides, endogenous phosphatase and kinase reactions connecting them, and four exogenous voltage-dependent 5- and 3-phosphatase subreactions of VSP. We show that apparent voltage threshold differences for seeing effects of the 5- and 3-phosphatase activities in cells are not due to different intrinsic voltage dependence of these reactions. Rather, the reactions have a common voltage dependence, and apparent differences arise only because each VSP subreaction has a different absolute catalytic rate that begins to surpass the respective endogenous enzyme activities at different voltages. For zebrafish VSP, our modeling revealed that 3-phosphatase activity against PI(3,4,5)P3 is 55-fold slower than 5-phosphatase activity against PI(4,5)P2; thus, PI(4,5)P2 generated more slowly from dephosphorylating PI(3,4,5)P3 might never accumulate. When 5-phosphatase activity was counteracted by coexpression of a phosphatidylinositol 4-phosphate 5-kinase, there was accumulation of PI(4,5)P2 in parallel to PI(3,4,5)P3 dephosphorylation, emphasizing that VSPs can cleave the 3-phosphate of PI(3,4,5)P3.
Author Kruse, Martin
Suh, Byung-Chang
Keum, Dongil
Kim, Dong-Il
Hille, Bertil
Author_xml – sequence: 1
  givenname: Dongil
  surname: Keum
  fullname: Keum, Dongil
  organization: Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
– sequence: 2
  givenname: Martin
  orcidid: 0000-0003-4301-8385
  surname: Kruse
  fullname: Kruse, Martin
  organization: Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
– sequence: 3
  givenname: Dong-Il
  surname: Kim
  fullname: Kim, Dong-Il
  organization: Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
– sequence: 4
  givenname: Bertil
  orcidid: 0000-0002-7266-1671
  surname: Hille
  fullname: Hille, Bertil
  email: hille@uw.edu, bcsuh@DGIST.ac.kr
  organization: Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195 hille@uw.edu bcsuh@DGIST.ac.kr
– sequence: 5
  givenname: Byung-Chang
  surname: Suh
  fullname: Suh, Byung-Chang
  email: hille@uw.edu, bcsuh@DGIST.ac.kr
  organization: Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195 hille@uw.edu bcsuh@DGIST.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27222577$$D View this record in MEDLINE/PubMed
BookMark eNpNkL1PwzAQxS1URD9gZkMeWVJsx67jEVV8SZVggDm62JfWKLVDnRYx848ToJU63em93z093ZgMQgxIyCVnU850ftMGSFM-YzOpBef5CRlxZng2k4YNjvYhGaf0zhgzqmBnZCi0EEJpPSLfL6uY2lX0ISbfeYdUZRSCo3nW_jnQQUIKtvO73sdEY02B7mLTwRKzhCH5sKTHrA-06eFetdg0iaZV_KR9cui8heZwSh22GHrV4jk5raFJeLGfE_J2f_c6f8wWzw9P89tFZpVUXWY01lgxRMdBy9pW2kihDLha5CiMQuu4tFBp1FLlvKgdSu3qymplC4BCTMj1f267iR9bTF259um3IwSM21TygjHNcqlNj17t0W21Rle2G7-GzVd5eJz4AUogdd8
CitedBy_id crossref_primary_10_1038_s41467_023_36911_4
crossref_primary_10_1073_pnas_2025343118
crossref_primary_10_1007_s11626_021_00546_w
crossref_primary_10_1016_j_bpj_2023_01_022
crossref_primary_10_1113_JP273274
crossref_primary_10_1038_s41467_024_51400_y
crossref_primary_10_1016_j_chembiol_2016_07_001
crossref_primary_10_1073_pnas_1607427113
crossref_primary_10_1073_pnas_2500651122
crossref_primary_10_7554_eLife_17159
crossref_primary_10_7554_eLife_41653
crossref_primary_10_1073_pnas_1604218113
crossref_primary_10_1007_s00018_018_2867_z
crossref_primary_10_1016_j_celrep_2025_116200
crossref_primary_10_1042_BCJ20180022
crossref_primary_10_1371_journal_pone_0209056
crossref_primary_10_1113_JP274113
crossref_primary_10_2183_pjab_95_010
crossref_primary_10_3892_etm_2021_10853
crossref_primary_10_1038_s42003_022_03916_6
crossref_primary_10_1038_s41540_019_0114_3
crossref_primary_10_1073_pnas_1809762115
crossref_primary_10_1073_pnas_2206649119
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1606472113
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 27222577
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P41 GM103313
– fundername: NINDS NIH HHS
  grantid: R37 NS008174
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YIF
YIN
YKV
YSK
ZCA
~02
~KM
7X8
ADQXQ
ID FETCH-LOGICAL-c545t-97efeb0eed1a74fcb794259adf23e295ecd14cab7e745318fde47dfbc75c8aa82
IEDL.DBID 7X8
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379033400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Sep 04 17:05:37 EDT 2025
Wed Feb 19 02:39:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords Dr-VSP
Ci-VSP
PI(3,4,5)P3
phosphoinositide
PI(4,5)P2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-97efeb0eed1a74fcb794259adf23e295ecd14cab7e745318fde47dfbc75c8aa82
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7266-1671
0000-0003-4301-8385
OpenAccessLink https://www.pnas.org/content/pnas/113/26/E3686.full.pdf
PMID 27222577
PQID 1800703479
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1800703479
pubmed_primary_27222577
PublicationCentury 2000
PublicationDate 2016-06-28
PublicationDateYYYYMMDD 2016-06-28
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
References 27044890 - J Cell Biol. 2016 Apr 11;213(1):33-48
22717989 - Mol Neurobiol. 2012 Oct;46(2):227-41
17615106 - J Physiol. 2007 Sep 15;583(Pt 3):875-89
25904865 - Front Pharmacol. 2015 Apr 08;6:63
4040596 - Lipids. 1985 Jun;20(6):350-6
24711504 - J Cell Biol. 2014 Apr 14;205(1):113-26
11716755 - Biochem J. 2001 Dec 1;360(Pt 2):277-83
26878552 - Nat Chem Biol. 2016 Apr;12 (4):261-7
17254962 - Cell. 2007 Jan 26;128(2):239-40
19332618 - J Gen Physiol. 2009 Apr;133(4):347-59
18818307 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17600-7
6087155 - Nature. 1984 Aug 2-8;310(5976):414-5
16888807 - J Cell Biochem. 2007 Jan 1;100(1):112-28
23630338 - J Gen Physiol. 2013 May;141(5):537-55
27317741 - Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7012-4
22481094 - Cell Signal. 2012 Aug;24(8):1541-7
22645351 - Proc Natl Acad Sci U S A. 2012 Jun 19;109 (25):10089-94
24843134 - Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2281-90
24269904 - Dev Biol. 2014 Feb 1;386(1):165-80
11279206 - J Biol Chem. 2001 Jun 15;276(24):21745-53
20694004 - Nat Neurosci. 2010 Sep;13(9):1075-81
16633340 - Nature. 2006 May 25;441(7092):518-22
24470487 - J Gen Physiol. 2014 Feb;143(2):183-201
9268346 - J Biol Chem. 1997 Aug 29;272(35):22059-66
21618529 - J Cell Physiol. 2011 Nov;226(11):2740-6
25347851 - Physiol Rep. 2014 Jul 16;2(7):null
1322270 - Development. 1992 May;115(1):187-95
16698010 - Dev Biol. 2006 Jul 15;295(2):604-14
7791763 - Mol Cell Biol. 1995 Jul;15(7):3563-70
14585353 - Cancer Cell. 2003 Oct;4(4):257-62
10200246 - Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4240-5
17347852 - Pflugers Arch. 2007 Jun;454(3):361-71
19196647 - Physiology (Bethesda). 2009 Feb;24:8-16
11604140 - Neuron. 2001 Oct 11;32(1):79-88
12771127 - J Cell Biol. 2003 May 26;161(4):779-91
9786958 - J Cell Biol. 1998 Oct 19;143(2):501-10
14764604 - J Biol Chem. 2004 Apr 16;279(16):16606-13
25873899 - Front Pharmacol. 2015 Mar 31;6:68
21543329 - J Biol Chem. 2011 Jul 1;286(26):23368-77
18794881 - Oncogene. 2008 Sep 18;27(41):5464-76
23630337 - J Gen Physiol. 2013 May;141(5):521-35
22455914 - Biophys J. 2012 Mar 21;102(6):1313-22
9079675 - J Biol Chem. 1997 Mar 28;272(13):8474-81
18375390 - J Biol Chem. 2008 Jun 27;283(26):18248-59
11001876 - Biochem J. 2000 Oct 1;351(Pt 1):19-31
11301249 - Curr Biol. 2001 Mar 20;11(6):386-95
12857747 - J Biol Chem. 2003 Sep 5;278(36):33617-20
12374785 - FASEB J. 2002 Oct;16(12):1623-9
15902207 - Nature. 2005 Jun 30;435(7046):1239-43
10662831 - J Neurosci. 2000 Feb 15;20(4):1404-13
11897055 - J Biomol Screen. 2002 Feb;7(1):45-55
19011685 - PLoS One. 2008;3(11):e3737
16990515 - Science. 2006 Dec 1;314(5804):1454-7
20237161 - Mol Biol Cell. 2010 May 1;21(9):1546-55
21357898 - Physiology (Bethesda). 2011 Feb;26(1):6-13
26682807 - Biophys J. 2015 Dec 15;109 (12 ):2480-91
20100891 - J Gen Physiol. 2010 Feb;135(2):99-114
24127524 - J Gen Physiol. 2013 Nov;142(5):543-55
944858 - Nature. 1976 May 6;261(5555):68-71
24218396 - J Gen Physiol. 2013 Dec;142(6):575-8
23836686 - J Physiol. 2013 Sep 15;591(18):4427-37
25062359 - Annu Rev Cell Dev Biol. 2014;30:317-36
25225550 - J Gen Physiol. 2014 Oct;144(4):297-309
22562138 - Nat Struct Mol Biol. 2012 May 06;19(6):633-41
8645147 - Biochem J. 1996 May 1;315 ( Pt 3):709-13
11973355 - J Cell Sci. 2002 May 15;115(Pt 10):2139-49
25748412 - Dev Biol. 2015 May 15;401(2):188-205
19047057 - J Biol Chem. 2009 Jan 23;284(4):2106-13
21454672 - J Biol Chem. 2011 May 20;286(20):17945-53
27482102 - Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):E4755
24038012 - J Cell Physiol. 2014 Apr;229(4):422-33
11152673 - J Biol Chem. 2001 May 4;276(18):15337-44
18988856 - Science. 2008 Nov 7;322(5903):963-6
12466854 - Nature. 2002 Dec 5;420(6915):582-6
24360283 - Cell. 2013 Dec 19;155(7):1654-1654.e1
26745405 - Biophys J. 2016 Jan 5;110(1):14-25
18524949 - Proc Natl Acad Sci U S A. 2008 Jun 10;105(23 ):7970-5
26350112 - Lung Cancer. 2015 Nov;90(2):334-41
References_xml – reference: 15902207 - Nature. 2005 Jun 30;435(7046):1239-43
– reference: 11001876 - Biochem J. 2000 Oct 1;351(Pt 1):19-31
– reference: 25904865 - Front Pharmacol. 2015 Apr 08;6:63
– reference: 11301249 - Curr Biol. 2001 Mar 20;11(6):386-95
– reference: 22481094 - Cell Signal. 2012 Aug;24(8):1541-7
– reference: 11152673 - J Biol Chem. 2001 May 4;276(18):15337-44
– reference: 23630337 - J Gen Physiol. 2013 May;141(5):521-35
– reference: 24470487 - J Gen Physiol. 2014 Feb;143(2):183-201
– reference: 19332618 - J Gen Physiol. 2009 Apr;133(4):347-59
– reference: 10200246 - Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4240-5
– reference: 9786958 - J Cell Biol. 1998 Oct 19;143(2):501-10
– reference: 19011685 - PLoS One. 2008;3(11):e3737
– reference: 22717989 - Mol Neurobiol. 2012 Oct;46(2):227-41
– reference: 944858 - Nature. 1976 May 6;261(5555):68-71
– reference: 24127524 - J Gen Physiol. 2013 Nov;142(5):543-55
– reference: 17615106 - J Physiol. 2007 Sep 15;583(Pt 3):875-89
– reference: 16990515 - Science. 2006 Dec 1;314(5804):1454-7
– reference: 25062359 - Annu Rev Cell Dev Biol. 2014;30:317-36
– reference: 24843134 - Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2281-90
– reference: 12466854 - Nature. 2002 Dec 5;420(6915):582-6
– reference: 22562138 - Nat Struct Mol Biol. 2012 May 06;19(6):633-41
– reference: 16888807 - J Cell Biochem. 2007 Jan 1;100(1):112-28
– reference: 25748412 - Dev Biol. 2015 May 15;401(2):188-205
– reference: 25225550 - J Gen Physiol. 2014 Oct;144(4):297-309
– reference: 25347851 - Physiol Rep. 2014 Jul 16;2(7):null
– reference: 21357898 - Physiology (Bethesda). 2011 Feb;26(1):6-13
– reference: 18818307 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17600-7
– reference: 14764604 - J Biol Chem. 2004 Apr 16;279(16):16606-13
– reference: 21618529 - J Cell Physiol. 2011 Nov;226(11):2740-6
– reference: 23836686 - J Physiol. 2013 Sep 15;591(18):4427-37
– reference: 12771127 - J Cell Biol. 2003 May 26;161(4):779-91
– reference: 26745405 - Biophys J. 2016 Jan 5;110(1):14-25
– reference: 14585353 - Cancer Cell. 2003 Oct;4(4):257-62
– reference: 11604140 - Neuron. 2001 Oct 11;32(1):79-88
– reference: 19047057 - J Biol Chem. 2009 Jan 23;284(4):2106-13
– reference: 21454672 - J Biol Chem. 2011 May 20;286(20):17945-53
– reference: 24269904 - Dev Biol. 2014 Feb 1;386(1):165-80
– reference: 20694004 - Nat Neurosci. 2010 Sep;13(9):1075-81
– reference: 10662831 - J Neurosci. 2000 Feb 15;20(4):1404-13
– reference: 21543329 - J Biol Chem. 2011 Jul 1;286(26):23368-77
– reference: 11897055 - J Biomol Screen. 2002 Feb;7(1):45-55
– reference: 19196647 - Physiology (Bethesda). 2009 Feb;24:8-16
– reference: 18794881 - Oncogene. 2008 Sep 18;27(41):5464-76
– reference: 25873899 - Front Pharmacol. 2015 Mar 31;6:68
– reference: 27044890 - J Cell Biol. 2016 Apr 11;213(1):33-48
– reference: 24218396 - J Gen Physiol. 2013 Dec;142(6):575-8
– reference: 24711504 - J Cell Biol. 2014 Apr 14;205(1):113-26
– reference: 22645351 - Proc Natl Acad Sci U S A. 2012 Jun 19;109 (25):10089-94
– reference: 4040596 - Lipids. 1985 Jun;20(6):350-6
– reference: 16698010 - Dev Biol. 2006 Jul 15;295(2):604-14
– reference: 17254962 - Cell. 2007 Jan 26;128(2):239-40
– reference: 9268346 - J Biol Chem. 1997 Aug 29;272(35):22059-66
– reference: 26878552 - Nat Chem Biol. 2016 Apr;12 (4):261-7
– reference: 17347852 - Pflugers Arch. 2007 Jun;454(3):361-71
– reference: 26350112 - Lung Cancer. 2015 Nov;90(2):334-41
– reference: 8645147 - Biochem J. 1996 May 1;315 ( Pt 3):709-13
– reference: 24360283 - Cell. 2013 Dec 19;155(7):1654-1654.e1
– reference: 11716755 - Biochem J. 2001 Dec 1;360(Pt 2):277-83
– reference: 6087155 - Nature. 1984 Aug 2-8;310(5976):414-5
– reference: 24038012 - J Cell Physiol. 2014 Apr;229(4):422-33
– reference: 11279206 - J Biol Chem. 2001 Jun 15;276(24):21745-53
– reference: 18375390 - J Biol Chem. 2008 Jun 27;283(26):18248-59
– reference: 12857747 - J Biol Chem. 2003 Sep 5;278(36):33617-20
– reference: 18524949 - Proc Natl Acad Sci U S A. 2008 Jun 10;105(23 ):7970-5
– reference: 7791763 - Mol Cell Biol. 1995 Jul;15(7):3563-70
– reference: 11973355 - J Cell Sci. 2002 May 15;115(Pt 10):2139-49
– reference: 22455914 - Biophys J. 2012 Mar 21;102(6):1313-22
– reference: 20100891 - J Gen Physiol. 2010 Feb;135(2):99-114
– reference: 20237161 - Mol Biol Cell. 2010 May 1;21(9):1546-55
– reference: 12374785 - FASEB J. 2002 Oct;16(12):1623-9
– reference: 18988856 - Science. 2008 Nov 7;322(5903):963-6
– reference: 26682807 - Biophys J. 2015 Dec 15;109 (12 ):2480-91
– reference: 1322270 - Development. 1992 May;115(1):187-95
– reference: 16633340 - Nature. 2006 May 25;441(7092):518-22
– reference: 23630338 - J Gen Physiol. 2013 May;141(5):537-55
– reference: 27317741 - Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7012-4
– reference: 9079675 - J Biol Chem. 1997 Mar 28;272(13):8474-81
– reference: 27482102 - Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):E4755
SSID ssj0009580
Score 2.3708725
Snippet Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage E3686
SubjectTerms Fluorescence Resonance Energy Transfer
Humans
Kinetics
Phosphatidylinositol Phosphates - chemistry
Phosphatidylinositol Phosphates - metabolism
Phosphoric Monoester Hydrolases - chemistry
Phosphoric Monoester Hydrolases - metabolism
PTEN Phosphohydrolase - chemistry
PTEN Phosphohydrolase - metabolism
Substrate Specificity
Title Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence
URI https://www.ncbi.nlm.nih.gov/pubmed/27222577
https://www.proquest.com/docview/1800703479
Volume 113
WOSCitedRecordID wos000379033400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevDi-7G-iOBBD8Htc9KTiLh40GUPCntb0jzcgqTVVP0B_nEn3Ra9CIKXXtqUkMzjy2TmG0JOU54ApEnCQqM0i4XmTGQGmNKIdUUWi9A0lPl3MBrxySQbtwE316ZVdjaxMdSqlD5GfhFwz0zj6x4vqxfmu0b529W2hcYi6UUIZbxUw4T_IN3lczaCLGBpnA06ah-ILiornI-sePb0wPc2-A1fNn5muPbfGa6T1RZh0qu5SGyQBW03yUarw46etUTT51vkczwrXTUrC9tkbilNE0aFVTRiVfNG1OjjqC99eG-IV2lpqKBo0Gq0Qsz53Hf7RH9-W1j6XPgYBfU3Ao66WflBi6YYGIWhG0q71rtSb5PH4c3D9S1rmzIwiWCrZhloo_MButZAQGxkjgqNRyihTBjpMEu0VEEsRQ4aYtRvjiIQgzK5hERyIXi4Q5ZsafUeoUEU5EbyHIxCYAkIncI8RQuaKz3Af0GfnHQLPUWh9_MWVpdvbvq91H2yO9-taTVn55iG4I-wAPt_GH1AVhAApT71K-SHpGdQ5fURWZbvdeFejxtpwudofP8F8ZjYLw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphoinositide+5-+and+3-phosphatase+activities+of+a+voltage-sensing+phosphatase+in+living+cells+show+identical+voltage+dependence&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Keum%2C+Dongil&rft.au=Kruse%2C+Martin&rft.au=Kim%2C+Dong-Il&rft.au=Hille%2C+Bertil&rft.date=2016-06-28&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=113&rft.issue=26&rft.spage=E3686&rft_id=info:doi/10.1073%2Fpnas.1606472113&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon